
Chapter 6

Iterative Method for Fixed Points
of Nonexpansive Mappings

6.1 Introduction

We begin this chapter with the following well known definition and theorem.

Definition 6.1. Let (M,ρ) be a metric space. A mapping T : M → M is
called a contraction if there exists k ∈ [0, 1) such that ρ(Tx, Ty) ≤ kρ(x, y)
for all x, y ∈ M . If k = 1, then T is called nonexpansive.

Theorem 6.2. (Banach Contraction Mapping Principle). Let (M,ρ) be a
complete metric space and T : M → M be a contraction. Then T has a
unique fixed point, i.e. there exists a unique x∗ ∈ M such that Tx∗ = x∗.
Moreover, for arbitrary x0 ∈ M , the sequence {xn} defined iteratively by
xn+1 = Txn, n ≥ 0, converges to the unique fixed point of T .

Apart from being an obvious generalization of the contraction mappings,
nonexpansive maps are important, as has been observed by Bruck [59], mainly
for the following two reasons:

• Nonexpansive maps are intimately connected with the monotonicity meth-
ods developed since the early 1960’s and constitute one of the first classes
of nonlinear mappings for which fixed point theorems were obtained by us-
ing the fine geometric properties of the underlying Banach spaces instead
of compactness properties.

• Nonexpansive mappings appear in applications as the transition oper-
ators for initial value problems of differential inclusions of the form
0 ∈ du

dt + T (t)u, where the operators {T (t)} are, in general, set-valued
and are accretive or dissipative and minimally continuous.

The following fixed point theorem has been proved for nonexpansive maps
on uniformly convex spaces.

Theorem 6.3. (Kirk, [283]) Let E be a reflexive Banach space and let K be
a nonempty closed bounded and convex subset of E with normal structure.
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58 6 Iterative Method for Fixed Points of Nonexpansive Mappings

Let T : K → K be a nonexpansive mapping of K into itself. Then T has a
fixed point.

Unlike in the case of the Banach contraction mapping principle, trivial exam-
ples show that the sequence of successive approximations xn+1 = Txn, x0 ∈
K, n ≥ 0, (where K is a nonempty closed convex and bounded subset of a
real Banach space E), for a nonexpansive mapping T : K → K even with
a unique fixed point, may fail to converge to the fixed point. It suffices, for
example, to take for T , a rotation of the unit ball in the plane around the
origin of coordinates. More precisely, we have the following example.

Example 6.4. Let B := {x ∈ R
2 : ||x|| ≤ 1} and let T denote an anticlockwise

rotation of π
4 about the origin of coordinates. Then T is nonexpansive with

the origin as the only fixed point. Moreover, the sequence {xn} defined by
xn+1 = Txn, x0 = (1, 0) ∈ B,n ≥ 0, does not converge to zero.

Krasnoselskii [291], however, showed that in this example, one can obtain a
convergent sequence of successive approximations if instead of T one takes
the auxiliary nonexpansive mapping 1

2 (I + T ), where I denotes the identity
transformation of the plane, i.e., if the sequence of successive approximations
is defined by x0 ∈ K,

xn+1 =
1
2
(xn + Txn), n = 0, 1, ... (6.1)

instead of by the usual so-called Picard iterates, xn+1 = Txn, x0 ∈ K, n ≥ 0.
It is easy to see that the mappings T and 1

2 (I + T ) have the same set of
fixed points, so that the limit of a convergent sequence defined by (6.1) is
necessarily a fixed point of T .

More generally, if X is a normed linear space and K is a convex subset
of X, a generalization of equation (6.1) which has proved successful in the
approximation of fixed points of nonexpansive mappings T : K → K (when
they exist), is the following scheme: x0 ∈ K,

xn+1 = (1 − λ)xn + λTxn, n = 0, 1, 2, . . . ;λ ∈ (0, 1) , (6.2)

λ constant (see, e.g., Schaefer [431]). However, the most general Mann-type
iterative scheme now studied is the following: x0 ∈ K,

xn+1 = (1 − Cn)xn + CnTxn, n = 0, 1, 2, ... (6.3)

where {Cn}∞n=1 ⊂ (0, 1) is a real sequence satisfying appropriate conditions
(see, e.g., Chidume [87], Edelstein and O’Brian [218], Ishikawa [259]). Under

the following additional assumptions (i) lim Cn = 0; and (ii)
∞∑

n=0
Cn = ∞,

the sequence {xn} generated by (6.3) is generally referred to as the Mann
sequence in the light of Mann [319]. The recursion formula (6.2) is conse-
quently called the Krasnoselskii-Mann (KM) formula for finding fixed points
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of ne (nonexpansive) mappings. The following quotation further shows the
importance of iterative methods for approximating fixed points of nonexpan-
sive mappings.

• “Many well-known algorithms in signal processing and image reconstruc-
tion are iterative in nature .... A wide variety of iterative procedures used in
signal processing and image reconstruction and elsewhere are special cases
of the KM iteration procedure, for particular choices of the ne operator....”
(Charles Byrne , [63]).

Definition 6.5. Let K be a subset of a normed linear space E. Let T :
K → E be a map such that F (T ) := {x ∈ K : Tx = x} 
= ∅. F (T ) is
called the fixed point set of T . The map T is called quasi-nonexpansive if
‖Tx − Tx∗‖ ≤ ‖x − x∗‖ holds for all x ∈ K and x∗ ∈ F (T ) .

It is clear that every nonexpansive map with a nonempty fixed point set,
F (T ), is quasi-nonexpansive. In section 6.6, we will give an example of a
quasi-nonexpansive map which is not nonexpansive.

6.2 Asymptotic Regularity

Let T : K → K be a nonexpansive self-mapping on a convex subset K
of a normed linear space X. Let Sλ := λI + (1 − λ)T, λ ∈ (0, 1), where I
denotes the identity map of K. Then for fixed x0 ∈ K, {Sn

λ (x0)} is defined
by Sn

λ (x0) = λxn +(1−λ)Txn, where xn = Sn−1
λ (x0). In [291], Krasnoselskii

proved that if X is uniformly convex and K is compact then, for any x0 ∈ K,
the sequence {Sn

1
2
(x0)}∞n=1, of iterates of x0 under S 1

2
= 1

2 (I + T ) converges
to a fixed point of T . Schaefer [431] observed that the same holds for any
Sλ = λI + (1 − λ)T with 0 < λ < 1, and Edelstein [217] proved that strict
convexity of X suffices. The important and natural question of whether or
not strict convexity can be removed remained open for many years. In 1967,
this question was resolved in the affirmative in the following theorem.

Theorem 6.6. (Ishikawa, [259]) Let K be a subset of a Banach space X
and let T be a nonexpansive mapping from K into X. For x0 ∈ K, define
the sequence {xn}∞n=1 by (6.3), where the real sequence {Cn}∞n=0 satisfies:

(a)
∞∑

n=0
Cn diverges, (b) 0 ≤ Cn ≤ b < 1 for all positive integers n; and (c)

xn ∈ K for all positive integers n. If {xn}∞n=1 is bounded, then xn−Txn → 0
as n → ∞.

One consequence of Theorem 6.6 is that if K is convex and compact, the
sequence {xn} defined by (6.3) converges strongly to a fixed point of T (see
Theorem 6.17 below). Another consequence of Theorem 6.6 is that for K
convex and T mapping K into a bounded subset of X, the iterates of the
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map Sλ = (1 − λ)I + λT , λ ∈ (0, 1) are asymptotically regular at x, i.e.,
‖Sn+1

λ x − Sn
λx‖ → 0 as n → ∞. The concept of asymptotic regularity was

introduced by Browder and Petryshyn [51] and, as a metric notion, a mapping
T : M → M is said to be asymptotically regular on M if it is so at each
x0 in M . The relevance of asymptotic regularity to the existence of a fixed
point for T can clearly be seen from the following theorem.

Theorem 6.7. Suppose M is a metric space and T : M → M is continuous
and asymptotically regular at x0 in M . Then any cluster point of {Tn(x0)}∞n=1

is a fixed point of T .

It follows that for continuous T , asymptotic regularity of Sλ at any x0 in
K implies Sλ(p) = p for any cluster point p of {Sn

λ (x0)}∞n=1. Asymptotic
regularity is not only useful in proving that fixed points exist but also in
showing that in certain cases, the sequence of iterates at a point converges
to a fixed point.

Proposition 6.8. Let G be a linear mapping of a normed linear space E into
itself and suppose G is power bounded (i.e., for some k ≥ 0, ||Gn|| ≤ k, (n =
1, 2, ...), and asymptotically regular. If, for some x0 ∈ E, co{Gn(x0)} contains
a fixed point x∗ of G, then {Gn(x0)} converges strongly to x∗.

Proof. Let ε > 0 be given and suppose that y is a point of co{Gn(x0)} with

||x∗ − y|| < ε
2(k+1) . Setting y =

m∑
j=1

λjG
j(x0) we obtain, using the linearity

of G,

Gn(x0 − x∗) = Gn(x0 − y) + Gn(y − x∗)

= Gn
(
x0 −

m∑
j=1

λjG
j(x0)

)
+ Gn(y − x∗)

=
m∑

j=1

λj [Gn(x0) − Gn+j(x0)] + Gn(y − x∗),

since
∑m

j=1 λj = 1. Hence,
∣∣∣
∣∣∣Gn(x0 − x∗)

∣∣∣
∣∣∣ ≤

∣∣∣
∣∣∣∑m

j=1 λj [Gn(x0) −

Gn+j(x0)]
∣∣∣
∣∣∣ + kε

2(k+1) since ||Gn(y − x∗)|| ≤ ||Gn||.||y − x∗|| ≤ kε
2(k+1) .

Now, by asymptotic regularity, there exists an integer N0 > 0 such
that for all n ≥ N0, ||Gn(x0) − Gn+j(x0)|| ≤ ε

2 , (j = 1, 2, ...,m).

Hence ||Gn(x0 − x∗)|| <
∑m

j=1 λj

(
ε
2

)
+ ε

2 = ε ∀ n ≥ N0. This implies
Gn(x0 − x∗) = Gn(x0) − x∗ → 0 as n → ∞, proving Proposition 6.8. �

Remark 6.9. In connection with Theorem 6.7, we note that if E is a normed
linear space and K is a subset of E which is only assumed to be weakly
compact, then, in general, the sequence {Sn

λ (x0)} will not have any strong
cluster point as is shown in the following example.
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Example 6.10. There is a closed bounded and convex set K in the Hilbert
space l2, a nonexpansive self-map T of K and a point x0 ∈ K such that
{Sn

1
2
(x0)} does not converge in the norm topology.

For details, see Genel and Lindenstrauss, [228].

Definition 6.11. A Banach space X is called an Opial space (see, e.g. Opial,
[366]) if for all sequences {xn}∞n=0 in X such that {xn}∞n=0 converges weakly
to some x in X, the inequality

lim inf
n→∞

‖xn − y‖ > lim inf
n→∞

‖xn − x‖

holds for all y 
= x.

Every Hilbert space is an Opial space (see, e.g., Edelstein and O’Brian, [218],
Opial, [367]). In fact, for any normed linear space X, the existence of a weakly
sequentially continuous duality map implies X is an Opial space but the
converse implication does not hold (see, e.g. Edelstein and O’Brian, [218]). In
particular, �p(1 < p < ∞) spaces are Opial spaces but Lp (1 < p < ∞, p 
= 2)
spaces are not. Suppose now K is a weakly compact convex subset of a real
Opial space X and T is a nonexpansive mapping of K into itself. While
example 6.10 shows that we cannot, in general, get strong convergence of the
sequence defined by (6.3) to a fixed point of T , Theorem 6.20 (below) allows
us to conclude that the sequence converges weakly to a fixed point of T if E
is an Opial space.

6.3 Uniform Asymptotic Regularity

Definition 6.12. Let K be a subset of a real normed linear space X.
A mapping U : K → X is called uniformly asymptotically regular if for
any ε > 0, there exists an integer N > 0 such that for any x0 ∈ K and for all
n ≥ N, ||Un+1x0 − Unx0|| < ε.

Definition 6.13. Given a set A and x0 ∈ A, call a sequence {xn}∞n=0 admis-
sible if there is a non-increasing sequence {Cn}∞n=0 in (0, 1) such that (6.3)
holds.

We now prove the following theorems.

Theorem 6.14. Let K be a subset of a real normed linear space X and let f
be a nonexpansive mapping from K into X. Suppose for x0 ∈ K there exists
an admissible sequence {xn}∞n=0 ⊆ K which is bounded. Then lim

n→∞
‖xn+1 −

xn‖ = 0. Moreover, if K is a bounded subset of X, then the above limit is
uniform.
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Theorem 6.15. With K, f and X as in Theorem 6.14 and x0 ∈ K, suppose
there exists an admissible sequence {xn}∞n=0 ⊆ K which is bounded and which
is such that the non-increasing sequence {Cn}∞n=0 also satisfies 0<a ≤ Cn <1
for all n ≥ 1. Then lim

n→∞
‖xn − f(xn)‖ = 0.

The above theorems are easy consequences of the following more technical
theorem.

Theorem 6.16. Let K be a subset of a real normed linear space X and let f
be a nonexpansive mapping from K into X. Suppose there exists a set A ⊆ K
such that for each x0 ∈ A there is an admissible sequence {xn}∞n=0 ⊆ A,
and suppose further that there exists some δ > 0 such that for each positive
integer N , and some admissible sequence {xn}∞n=0 ⊆ A,

sup
k≥N

||xk+1 − xk|| > δ. (6.4)

Then, A is unbounded.

We prove Theorems 6.14 and 6.15 from Theorem 6.16.

Proof of Theorem 6.14. Both parts follow immediately from Theorem
6.16; the first by setting {xn}∞n=0 = A in the theorem and the second by
setting K = A. �

Proof of Theorem 6.15. Since f is nonexpansive we obtain,

‖xn+1 − f(xn+1)‖ = ‖(1 − Cn)(xn − f(xn)) + f(xn) − f(xn+1)‖

≤ (1 − Cn)‖xn − f(xn)‖

+‖xn − ((1 − Cn)xn + Cnf(xn))‖

= ‖xn − f(xn)‖·

Thus the sequence {‖xn − f(xn)‖}∞n=0 is non-increasing and bounded below,
so lim

n→∞
‖xn − f(xn)‖ exists. But from xn+1 = (1 − Cn)xn + Cnf(xn),

lim
n→∞

‖xn − f(xn)‖ = lim
n→∞

1
Cn

‖xn+1 − xn‖ ≤ 1
a

lim
n→∞

‖xn+1 − xn‖ = 0,

(by Theorem 6.16 since the admissible sequence {xn}∞n=0 is bounded), and
this establishes Theorem 6.15. We next give the following proof.

Proof of Theorem 6.16. Assume by way of contradiction that A is bounded
and let ‖xn‖ ≤ ρ for each n. Let M be a fixed positive integer such that
(M − 1)δ > 2ρ+1. Choose N , with N > max{M, [(2ρ− δ)M/(1−C1)MC1]}
(where here [·] denotes the greatest integer function) such that for some δ > 0
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and x0 ∈ A, the corresponding admissible sequence {xn}∞n=0 in A satisfies
‖xN+1 − xN‖ > δ. Using the nonexpansiveness of f , we easily obtain the
following:

‖xn+1 − xn‖ = Cn‖(1 − Cn−1)(xn−1 − f(xn−1)) + f(xn−1) − f(xn)‖
≤ Cn(1 − Cn−1)‖xn−1 − f(xn−1)‖

+‖xn−1 − [(1 − Cn−1)xn−1 + Cn−1f(xn−1)]‖
= Cn

Cn−1
‖xn − xn−1‖ ≤ ‖xn − xn−1‖ ,

the last equality following from (6.3) with n replaced by (n − 1) and T re-
placed by f while the last inequality follows since {Cn}∞n=0 is a non-increasing
sequence. Hence it follows that ‖xi+1−xi‖ > δ for all i ≤ N , and furthermore
we obtain the following:

δ < ‖xN+1 − xN‖ ≤ ‖xN − xN−1‖ ≤ · · · ≤ ‖x2 − x1‖ ≤ 2ρ; (6.5)

‖f(xi+1) − f(xi)‖ ≤ ‖xi+1 − xi‖ for all i = 0, 1, . . . , N ; (6.6)

and xi+1 = (1 − Ci)xi + Cif(xi) so that

f(xi) =
xi+1

Ci
−

(
1 − Ci

Ci

)
xi, i = 1, 2, . . . , N ; (6.7)

which implies,
∣∣∣
∣∣∣ 1
Ci

{xi+1 − (1 − Ci)xi} −
1

Ci−1
{xi − (1 − Ci−1)xi−1}

∣∣∣
∣∣∣

= ‖f(xi) − f(xi−1)‖ ≤ ‖xi − xi−1‖,
and this reduces to

∣∣∣
∣∣∣ 1
Ci

[xi+1 − xi] −
(

1 − Ci−1

Ci−1

)
[xi − xi−1]

∣∣∣
∣∣∣ ≤ ‖xi − xi−1‖ (6.8)

for all i = 1, 2, . . . , N . Now set I = [(2ρ − δ)/(1 − C1)MC1] and consider the
collection of I intervals [sk, sk+1] where

sk =
{

δ + k(1 − C1)MC1, k = 0, 1, ..., I − 1,
2ρ, k = I.

We claim that some one of these intervals must contain at least M of the
numbers {||xi − xi+1||}N−1

i=0 ⊆ [δ, 2ρ]. If this is not the case, then N < MI =

M
[

2ρ−δ
(1−C1)M C1

]
contradicting our choice of N . Thus for some r, and some

s = sk ∈ [δ, 2ρ],
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‖xr+i+1 − xr+i‖ ∈ [s, s + (1 − C1)MC1] (6.9)

for i = 0, 1, . . . , (M − 1). Define Δxi = xi − xi−1, i = 1, 2, . . . , N . Replacing
i in (6.8) by r + M − j − 1, (j = 0, 1, . . . ,M − 1) we see that (6.8) and (6.9)
imply

∣∣∣
∣∣∣ 1
Cr+M−j−1

Δxr+M−j −
(

1 − Cr+M−j−2

Cr+M−j−2

)
Δxr+M−j−1

∣∣∣
∣∣∣

≤ s + (1 − C1)MC1. (6.10)

Choose f∗ ∈ X∗ (the dual space of X) with ‖f∗‖ = 1 and f∗(Δxr+M ) =
‖Δxr+M‖. Then using (6.10) we obtain,

∣∣∣∣
1

Cr+M−j−1
f∗(Δxr+M−j) −

(
1 − Cr+M−j−2

Cr+M−j−2

)
f∗(Δxr+M−j−1)

∣∣∣∣

≤ ‖f∗‖ ·
∣∣∣
∣∣∣ 1
Cr+M−j−1

Δxr+M−j −
(

1 − Cr+M−j−2

Cr+M−j−2

)
Δxr+M−j−1

∣∣∣
∣∣∣

≤ s + (1 − C1)MC1,

which yields

f∗(Δxr+M−j−1) ≥
(

Cr+M−j−2

Cr+M−j−1

)(
1

1 − Cr+M−j−2

)
f∗(Δxr+M−j)

−
(

Cr+M−j−2

1 − Cr+M−j−2

)
(s + (1 − C1)MC1). (6.11)

Observe that since {Ci}∞i=0 is non-increasing, for all i ≥ 1, (1−Ci)−1 ≤ (1−
C1)−1 and Ci(1−Ci)−1 ≤ C1(1−C1)−1. Now for j = 0, using f∗(Δxr+M ) =
‖Δxr+M‖ ∈ [s, s + (1 − C1)MC1] we obtain from (6.11),

f∗(Δxr+M−1) ≥
(

1
1 − Cr+M−2

)
s −

(
Cr+M−2

1 − Cr+M−2

)
{s + (1 − C1)MC1}

≥ s − C2
1 (1 − C1)M−1. (6.12)

We will show that (6.12) implies

f∗(Δxr+M−j−1) ≥ s − (1 − C1)M−1C2
1

j∑
t=0

(
1

1 − C1

)t

, (6.13)

for j = 1, 2, . . . , M − 1. We establish this by induction. For j = 0, (6.13)
reduces to (6.12). Suppose now (6.13) holds for j ≤ k, for some k ∈
{1, 2, 3, . . . ,M − 2}. Then from (6.11) and the inductive hypothesis we
obtain,
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f∗(Δxr+M−(k+1)−1) = f∗(Δxr+M−k−2)

≥
(

Cr+m−k−3
Cr+M−k−2

)(
1

1−Cr+M−k−3

)
f∗ (Δxr+M−k−1)

−
(

Cr+M−k−3
1−Cr+M−k−3

)
{s + (1 − C1)MC1}

≥
(

1
1−Cr+M−k−3

)[
s − (1 − C1)M−1C2

1

k∑
t=0

(
1

1−C1

)t
]

−
(

Cr+M−k−3
1−Cr+M−k−3

)
{s + (1 − C1)MC1}

≥ s −
(

1
1−C1

)
(1 − C1)M−1C2

1

k∑
t=0

(
1

1−C1

)t

−
(

C1
1−C1

)
(1 − C1)MC1

= s − (1 − C1)M−1C2
1

k+1∑
t=0

(
1

1−C1

)t

,

which completes the induction. Recalling that f∗ is linear and summing
(6.13), by telescoping, from j = 0 to (M − 2) yields:

f∗(xr+M−1 − xr) = f∗(xr+M−1) − f∗(xr)

≥ (M − 1)s − (1 − C1)M−1C2
1

[
1 +

(
1 +

1
1 − C1

)

+ · · · +
(
1 +

1
1 − C1

+ · · · +
( 1

1 − C1

)M−2)]
.

Set λ = 1 − C1 so that,

f∗(xr+M−1 − xr) = (M − 1)s − λM−1(1 − λ)2
[
1 +

(λ + 1
λ

)

+ · · · +
(λM−2 + · · · + λ + 1

λM−2

)]

= (M − 1)s − λ(1 − λ)
[
λM−1

{(1 − λ

λ

)
+

(1 − λ2

λ2

)

+ · · · +
(1 − λM−1

λM−1

)}]
≥ (M − 1)s − 1,

the last inequality following since

λ(1 − λ)
[
λM−1

{(
1 − λ

λ

)
+

(
1 − λ2

λ2

)
+ · · · +

(
1 − λM−1

λM−1

)}]

< λ(1 − λ)(λM−2 + · · · + λ + 1) ≤ 1 .

But s ≥ δ implies (M−1)s ≥ (M−1)δ > 2ρ+1, so that f∗(xr+M−1−xr) > ρ.
Also,
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f∗(xr+M−1 − xr) ≤ |f∗(xr+M−1 − xr)| ≤ ‖f∗‖ · ‖xr+M−1 − xr‖

= ‖xr+M−1 − xr‖ .

Hence, ‖xr+M−1 − xr‖ > 2ρ, contradicting the assumption that ‖xn‖ ≤ ρ
for each n, and completing the proof of Theorem 6.16. �

6.4 Strong Convergence

Using the technique of Theorem 6.16 we are able to prove the following
theorem.

Theorem 6.17. With K, X and f as in Theorem 6.16, suppose for some
x0 ∈ K, the corresponding admissible sequence {xn}∞n=0 ⊆ K has a cluster
point q ∈ K. Then f(q) = q and xn → q. In particular, if the range of f
is contained in a compact subset of K then {xn}∞n=0 converges strongly to a
fixed point of f .

Proof. In Edelstein [216], it was shown that q is also a cluster point of {fn(q)}
and that ‖fn+1(q) − fn(q)‖ = ‖f(q) − q‖ for all n. Thus if f i(q) := xi and
Δxi = xi−xi−1, i = 1, 2, . . . then ‖Δxi+1‖ = ‖Δxi‖ for all i. As in the proof
of Theorem 6.16, we have, ‖Δxi+1‖ = ‖xi+1−xi‖ ≤ Ci

Ci−1
‖xi−xi−1‖ ≤ ‖xi−

xi−1‖ = ‖Δxi‖ and this implies Ci = Ci−1 for all i since ‖Δxi−1‖ = ‖Δxi‖.
Hence, from xi+1 −xi = (1−Ci)xi +Cif(xi)− (1−Ci−1)xi−1 −Ci−1f(xi−1)
we obtain,

‖Δxi+1‖ ≤ (1 − Ci)‖Δxi‖ + Ci‖Δf(xi)‖

≤ (1 − Ci)‖Δxi‖ + Ci‖Δxi‖ = ‖Δxi‖ ,

and this implies, ‖Δxi‖ = ‖Δf(xi)‖. Assume for contradiction that,

‖Δxi‖ = ‖Δf(xi)‖ = β > 0, i = 1, 2, . . .. (6.14)

Choose N , K ∈ N
+ sufficiently large. From (6.14) we have, for i = N + K,

‖ΔxN+K‖ = ‖Δf(xN+K)‖ = β > 0 . (6.15)

Let f∗ ∈ X∗ such that ‖f∗‖ = 1 and f∗(ΔxN+K) = ‖ΔxN+K‖. Then for
j = 0, 1, 2, . . . ,

f∗(Δf(xN+K−j)) ≤ ‖f∗‖ · ‖Δf(xN+K−j)‖ = ‖Δf(xN+K−j)‖ = s· (6.16)

From xN+K−j+1 = (1−CN+K−j)xN+K−j + CN+K−jf(xN+K−j) we obtain,
using Ci = Ci−1 for all i,

ΔxN+K−j+1 = (1 − CN+K−j)ΔxN+K−j + CN+K−jΔf(xN+K−j)· (6.17)
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We will show that applying f∗ to this equation yields:

f∗(ΔxN+K−j) ≥ β for j = 0, 1, . . .. (6.18)

We establish (6.18) by induction. Observe that f∗(ΔxN+K) = ‖ΔxN+K‖ = β
satisfies (6.18) with j = 0. Now if j = 1, applying f∗ to (6.17) and using (6.16)
yield:

f∗(ΔxN+K−1) =
(

1
1 − CN+K−1

)
f∗(ΔxN+K) −

(
CN+K−1

1 − CN+K−1

)
×

f∗ (Δf(xN+K−1))

≥
(

1
1 − CN+K−1

)
β −

(
CN+K−1

1 − CN+K−1

)
β = β ,

and (6.18) holds for j = 1. Assume it holds for j = 0, 1, . . . , t. Then using
(6.16), (6.17), and the inductive hypothesis we have,

f∗(ΔxN+K−t−1) =
(

1
1−CN+K−t−1

)
f∗ (ΔxN+K−t)

−
(

CN+K−t−1
1−CN+K−t−1

)
f∗ (Δf(xN+K−t−1))

≥
(

1
1−CN+K−t−1

)
β −

(
CN+K−t−1

1−CN+K−t−1

)
β = β ,

which completes the induction. Using the technique of the proof of Theorem
6.16 and summing (6.18) from j = 0 to K − 1 yields:

‖xN+K − xN‖ ≥ f∗(xN+K − xN ) ≥ Kβ , (6.19)

and this implies that the sequence {xi}∞i=0 cannot have a convergent subse-
quence, a contradiction of the fact that {xn}∞n=0 has a cluster point. Hence
β = 0 and f(q) = q. That xn → q now follows readily from the nonexpan-
siveness of f . �

For our next result the following definition is needed.

Definition 6.18. (Petryshyn, [381]). Let C be a subset of a real normed
linear space X. A mapping f : C → X is said to be demicompact at h ∈ X
if, for any bounded sequence {xn}∞n=0 in C such that xn − f(xn) → h as
n → ∞, there exist a subsequence {xnj

}∞j=0 and an x ∈ C such that xnj
→ x

as j → ∞ and x − f(x) = h.

Corollary 6.19 Suppose X is a real normed linear space, C is a closed
bounded convex subset of X and f is a nonexpansive mapping of C into C.
Suppose further that either, (i) f is demicompact at 0, or (ii) (I − f) maps
closed bounded subsets of X into closed subsets of X. For x0 ∈ C let
{xn}∞n=0 ⊆ C be an admissible sequence where the real sequence {Cn}∞n=0
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also satisfies 0 < a ≤ Cn ≤ b < 1 for all n ≥ 1. Then {xn}∞n=0 converges
strongly to a fixed point of f in C.

Proof. (i) From xn+1 = (1 − Cn)xn + Cnf(xn) we obtain xn − f(xn) =
1

Cn
{xn−xn−1}. Since C is bounded, {xn}∞n=0 is a bounded sequence and also

{Cn}∞n=1 bounded away from 0 implies (by Theorem 6.15) that {xn −f(xn)}
is convergent to 0 so that by the demicompactness of f at 0, {xn}∞n=0 has a
cluster point in C. The result follows by Theorem 6.17.
(ii) If q is a fixed point of f , {‖xn−q‖}∞n=0 does not increase with n. It suffices,
therefore, to show that there exists a subsequence of {xn}∞n=0 which converges
strongly to a fixed point of f . For x0 ∈ C, let K be the strong closure of the
set {xn}∞n=0. By Theorem 6.15, {(I − f)(xn)} converges strongly to 0 as
n → ∞. Hence, 0 lies in the strong closure of (I − f)(K) and since the latter
is closed by hypothesis (since K is closed and bounded), 0 lies in (I − f)(K).
Hence, there is a subsequence {xnj

}∞j=0 such that xnj
→ μ ∈ C, where μ is a

point such that (I − f)μ = 0. Hence xn → μ. �

6.5 Weak Convergence

Theorem 6.20. Let X be an Opial space and f : K → K be a nonexpansive
self-mapping of a weakly compact convex subset K of X. For any x0 in K,
let {xn}∞n=0 ⊆ K be the corresponding admissible sequence which is such that
the non-increasing sequence {Cn}∞n=1 also satisfies 0 < a ≤ Cn < 1 for all
n ≥ 1. Then {xn}∞n=0 converges weakly to a fixed point of f .

We shall need the following definition.

Definition 6.21. A mapping T : K → X is called demiclosed at y if, for
any sequence {xn}∞n=0 ⊆ K which converges weakly to an x in K, the strong
convergence of the sequence {T (xn)}∞n=0 to y in K implies Tx = y.

The technique of Edelstein and O’Brian [218] together with Theorem 6.15
yields the following proof.

Proof of Theorem 6.20. Since X is an Opial space and f is nonexpansive,
(I − f) is demiclosed (see, e.g. Opial, [366]). Furthermore, by Theorem 6.15,
f is asymptotically regular. Hence, by a result of Browder and Petryshyn
[51], any weak cluster point of {xn}∞n=0 ⊆ K is a fixed point of f . We
claim that {xn}∞n=0 ⊆ K has a unique weak cluster point. Suppose there
exist two distinct weak cluster points of {xn}∞n=0, say q1 and q2, and two
subsequences {xni

}∞i=1 and {xnj
}∞j=1 such that {xni

}∞i=1 converges weakly to
q1 and {xnj

}∞j=1 converges weakly to q2. Let p ∈ F (f) where F (f) denotes
the fixed point set of f . Then, it is easy to see that ‖xn+1 − p‖ ≤ ‖xn − p‖
for each n ≥ 0 so that lim

n→∞
‖xn − p‖ exists for every p ∈ F (f). Thus, since

X is an Opial space, it follows that
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lim
n→∞

‖xn − q1‖ = lim
i→∞

‖xni
− q1‖ < lim

i→∞
‖xni

− q2‖

= lim
n→∞

‖xn − q2‖

lim
n→∞

‖xn − q2‖ = lim
j→∞

‖xnj
− q2‖ < lim

j→∞
‖xnj

− q1‖

= lim
n→∞

‖xn − q1‖,

this contradiction implies there exists exactly one weak cluster point q of
{xn}∞n=0 ⊆ K. By weak compactness of K, {xn}∞n=0 converges weakly to q.
�

Theorem 6.22. Let K be a closed convex subset of a reflexive Banach space
X, and T a continuous mapping of K into X such that (i) F (T ) 
= ∅, where
F (T ) denotes the fixed point set of T in K, (ii) If Tp = p, then ‖Tx − p‖ ≤
‖x − p‖ for all x in K, (iii) There exist an x0 in K and a corresponding
admissible sequence {xn}∞n=0 ⊆ K, (iv) T is asymptotically regular at x0, (v)
If {xnj

}∞j=1 is a subsequence of {xn}∞n=0 such that {xnj
}∞j=1 converges weakly

to x̃ in K and {xnj
−Txnj

} converges strongly to zero then x̃−T x̃ = 0, (vi)
X is an Opial space. Then the sequence {xn}∞n=0 converges weakly to a fixed
point of T in K.

Proof. Theorem 4.2 of Petryshyn and Williamson [382] implies the sequence
{xn}∞n=0 contains a weakly convergent subsequence with its limit in F (T )
and, furthermore, that every weakly convergent subsequence of {xn}∞n=0 has
a point q in F (T ) for its limit. As in the proof of Theorem 6.20, the sequence
{xn}∞n=0 has a unique weak cluster point q in K. By weak compactness of K,
{xn}∞n=0 converges weakly to q. �

6.6 Some Examples

Let K be a nonempty subset of a real normed linear space X. Recall that
a mapping T : K → X is called quasi-nonexpansive provided T has a fixed
point in K and that if Tp = p, p in K, then ‖Tx−p‖ ≤ ‖x−p‖ for all x in K.
In this section, we shall exhibit large classes of quasi-nonexpansive mappings
and these classes, in particular, properly contain the class of nonexpansive
mappings with fixed points.

The concept of quasi-nonexpansive mappings was essentially introduced
by Diaz and Metcalf [205]. A nonexpansive map T : K → K with at least
one fixed point in K is quasi-nonexpansive. Also, a linear quasi-nonexpansive
mapping on a subspace is nonexpansive on that subspace; but there exist
continuous and discontinuous nonlinear quasi-nonexpansive mappings which
are not nonexpansive (see, e.g., Example 6.23 below). We proved in Section
6.3 that if K is a nonempty closed convex bounded subset of X and T is a
nonexpansive mapping of K into a bounded subset of X, the iterates of the
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map Sλ = (1−λ)I+λT , λ ∈ (0, 1), are uniformly asymptotically regular on K.
In this section, we shall show by means of an example that this result does
not extend to the class of quasi-nonexpansive maps.

We start with the following example which shows that the class of quasi-
nonexpansive mappings properly includes that of nonexpansive maps with
fixed points.

Example 6.23. Let X = �∞ and K := {x ∈ �∞ : ‖x‖∞ ≤ 1}. Define f :K→K
by f(x) = (0, x2

1, x
2
2, x

2
3, . . . ) for x = (x1, x2, x3, . . . ) in K. Then it is clear

that f is continuous and maps K into K. Moreover f(p) = p if and only if
p = 0. Furthermore,

‖f(x) − p‖∞ = ‖f(x)‖∞ = ‖(0, x2
1, x

2
2, x

2
3, . . . )‖∞

≤ ‖(0, x1, x2, x3, . . . )‖∞ = ‖x‖∞ = ‖x − p‖∞

for all x in K. Therefore, f is quasi-nonexpansive. However, f is not nonex-
pansive.

For, if x = (3
4 , 3

4 , . . . ) and y = (1
2 , 1

2 , . . . ), it is clear that x and y belong
to K. Furthermore, ‖x − y‖∞ = ‖( 1

4 , 1
4 , . . . )‖ = 1

4 , and ‖f(x) − f(y)‖∞ =
‖(0, 5

16 , 5
16 , . . . )‖∞ = 5

16 > 1
4 = ‖x − y‖∞. �

Before we exhibit a large class of quasi-nonexpansive mappings we need the
following preliminaries.

Suppose X is a Banach space and K is a bounded closed and convex subset
of X. Within the past thirty years or so numerous papers have appeared
concerning variants of the following contractive condition for mappings T :
K → K introduced by Kannan [271]:

||Tx − Ty|| ≤ 1
2
(||x − Tx|| + ||y − Ty||), x, y ∈ K (∗)

(see e.g., Bianchini [31], Ciric [190], Hardy and Rogers [248], Ray [398], Reich
[399]-[402], Rhoades [415]-[420], Shimi [448], Soardi [457]). These mappings
are neither stronger nor weaker than the nonexpansive mappings. Neverthe-
less, it appears that most of the fixed point Theorems for nonexpansive map-
pings also hold for mappings which are continuous and satisfy (∗). A more
general class of mappings was introduced in Hardy and Rogers [248] and the
following result was proved.

Theorem 6.24. (Hardy and Rogers, [248]) Let (M,d) be a complete metric
space and T : M → M a continuous mapping satisfying for x, y ∈ M :

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)
+ a4d(x, Ty) + a5d(y, Tx), (6.20)

where ai ≥ 0,
5∑

i=1

ai < 1. Then T has a unique fixed point in M .
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Condition (6.20), of course, implies T is a strict contraction if ai = 0, i =
2, . . . , 5; it reduces to the condition studied by Reich [399] if a4 = a5 = 0;
and to a condition of Kannan [271] if a1 = a4 = a5 = 0, a2 = a3.

In the case that M is replaced by a uniformly convex Banach space, in-

equality (6.20) has been weakened to allow
5∑

i=1

ai = 1.

Theorem 6.25. (Goebel, Kirk and Shimi, [233]) Let X be a uniformly convex
Banach space, K a nonempty bounded closed and convex subset of X, T :
K → K a continuous mapping satisfying for all x, y in K:

‖Tx − Ty‖ ≤ a1‖x − y‖ + a2‖x − Tx‖ + a3‖y − Ty‖
+a4‖x − Ty‖ + a5‖y − Tx‖ (6.21)

where ai ≥ 0,
5∑

i=1

ai ≤ 1. Then T has a fixed point in K.

Remark 6.26. Since the four points {x, y, Tx, Ty} determine six distances in
M , inequality (6.21) amounts to saying that the image distance d(Tx, Ty)
never exceeds a fixed convex combination of the remaining five distances.
Geometrically, this type of condition is quite natural.

We now have the following proposition.

Proposition 6.27. Let T : K → K be a map satisfying inequality (6.21).
Then T is quasi-nonexpansive.

Iterative methods for approximating fixed points of quasi-nonexpansive map-
pings have been studied by various authors (e.g., Chidume [93, 96, 101, 105],
Dotson [211, 212, 213], Hardy and Rogers [248], Johnson [263], Outlaw [377],
Outlaw and Groetsch [378], Reich [399]-[402], Rhoades [419], Senter and
Dotson [441], Shimi [448]) and a host of other authors.

We now turn to the main example of this section which shows that a
quasi-nonexpansive mapping in an arbitrary real Banach space need not be
uniformly asymptotically regular.

Example 6.28. Let X = �∞ and B(0, 1) = {x ∈ �∞ : ‖x‖∞ ≤ 1}. The example
is the construction of an f : �∞ → �∞ such that, (i) f is continuous; (ii)
f : �∞ → B(0, 1); (iii) f(p) = p if and only if p = 0; (iv) ‖f(x) − p‖∞ ≤
‖x−p‖∞ for all x ∈ �∞ and the fixed point p; (v) for all n ∈ N

+, there exists
x ∈ B(0, 1) such that

‖Sn+1
λ x − Sn

λx‖ > λ2(1 − λ)2 ,

for arbitrary λ ∈ (0, 1) where Sn
λ (x) = Sλ(Sn−1

λ x) and Sλx = λx+(1−λ)f(x).

Define f : �∞ → B(0, 1) ⊂ �∞ by

f(x) =
{

(0, x2
1, x

2
2, x

2
3, . . . , . . . ); if ‖x‖∞ ≤ 1

‖x‖−2
∞ (0, x2

1, x
2
2, x

2
3, . . . ); if ‖x‖∞ > 1 ,
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where x = (x1, x2, x3, . . . ) ∈ �∞. Then it is clear that f satisfies (i) − (iii)
above. For (iv) we have,

‖f(x) − p‖∞ = ‖f(x)‖∞ ≤
{
‖x‖2

∞ ≤ ‖x‖∞; if ‖x‖∞ ≤ 1
1; if ‖x‖∞ > 1 ,

i.e., ‖f(x)− p‖∞ ≤ ‖x− p‖∞ and (iv) is satisfied. For (v), we examine f and
Sλ more closely. Now,

Sλ(x) = {λx1, λx2 + (1 − λ)x2
1, λx3 + (1 − λ)x2

2, . . . }.

Thus, if x = (x1, x2, x3, . . . ) and xj = a, where a is a constant for j ≥ k, then

(Sλ(x))j = λa + (1 − λ)a2 for j ≥ k + 1. (6.22)

More generally, by induction, if xj = a for j ≥ k then (Sn
λ (x))j = an, a

constant for j ≥ k + n, where the {an} satisfies the recurrence relation,

an = λan−1 + (1 − λ)a2
n−1, n ≥ 1, a0 = a. (6.23)

Suppose we have chosen x = (a, a, a, . . . ). Then

‖Sn+1
λ x − Sn

λx‖∞ = ‖λ(Sn
λ (x)) + (1 − λ)f(Sn

λ (x)) − Sn
λ (x)‖∞

= (1 − λ)‖Sn
λ (x) − f(Sn

λ (x))‖∞

= (1 − λ) sup
j≥1

|(Sn
λ (x))j−1 − (Sn

λ (x))2j−1|

≥ (1 − λ) sup
j>n

|(Sn
λ (x))j−1 − (Sn

λ (x))2j−1|

≥ (1 − λ)λ|an − a2
(n−1)|.

If we could choose 0 < a < 1 such that an = λ then x ∈ B(0, 1) and condition
(v) would be satisfied, completing the example. To do this, we note first that
from (6.23), if a < 1, then ak < a, inductively, and so

ak = λak−1 + (1 − λ)a2
k−1 < λak−1 + (1 − λ)ak−1 = ak−1 .

Thus, 1 > a > a1 > a2 > · · · > ak > . . . . Also, if we know ak then we can
find ak−1 from (6.23) (i.e., solving) as

ak−1 = 2−1(1 − λ)−1{−λ + [λ2 + 4(1 − λ)ak]
1
2 }. (6.24)

Note that if ak < 1, then ak−1 < 1 for, from (6.24), using ak < 1 we have,

ak−1 < 2−1(1 − λ)−1{−λ + [λ2 + 4(1 − λ)]
1
2 }

= 2−1(1 − λ)−1{−λ + (2 − λ)} = 1 .
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We can now show that (v) is satisfied. Choose n ∈ N+, and put an = λ.
Use (6.24) to compute an−1, an−2, . . . , a1, a0; a0 < 1. Then starting with
x = (a0, a0, a0, . . . ) we have x ∈ B(0, 1), an = λ and so, ‖Sn+1

λ x − Sn
λx‖ >

λ2(1 − λ)2, as required. �

6.7 Halpern-type Iteration Method

Let E be a real Banach space, K a closed convex subset of E and T : K → K
a nonexpansive mapping. For fixed t ∈ (0, 1) and arbitrary u ∈ K, let zt ∈ K
denote the unique fixed point of Tt defined by Ttx := tu + (1 − t)Tx, x ∈ K.
Assume F (T ) := {x ∈ K : Tx = x} 
= ∅. Browder [44] proved that if E = H,
a Hilbert space, then lim

t→0
zt exists and is a fixed point of T . Reich [412]

extended this result to uniformly smooth Banach spaces. Kirk [284] obtained
the same result in arbitrary Banach spaces under the additional assumption
that T has pre-compact range.

For a sequence {αn} in [0, 1] and an arbitrary u ∈ K, let the sequence
{xn} in K be iteratively defined by x0 ∈ K,

xn+1 := αnu + (1 − αn)Txn, n ≥ 0. (6.25)

Concerning this process, Reich [412] posed the following question.

Question. Let E be a Banach space. Is there a sequence {αn} such that
whenever a weakly compact convex subset K of E has the fixed point property
for nonexpansive mappings, then the sequence {xn} defined by (6.25) con-
verges to a fixed point of T for arbitrary fixed u ∈ K and all nonexpansive
T : K → K?

Halpern [245] was the first to study the convergence of the algorithm (6.25)
in the framework of Hilbert spaces. He proved the following Theorem.

Theorem H (Halpern, [245]) Let K be a bounded closed convex subset
of a Hilbert space H and T : K → K be a nonexpansive mapping. Let u ∈ K
be arbitrary. Define a real sequence {αn} in [0, 1] by αn = n−θ, θ ∈ (0, 1).
Define a sequence {xn} in K by x1 ∈ K, xn+1 = αnu + (1−αn)Txn, n ≥ 1.
Then, {xn} converges strongly to the element of F (T ) := {x ∈ K : Tx = x}
nearest to u.

An iteration method with recursion formula of the form (6.25) is now
referred to as a Halpern-type iteration method.

Lions [313] improved Theorem H, still in Hilbert spaces, by proving
strong convergence of {xn} to a fixed point of T if the real sequence {αn}
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satisfies the following conditions: (i) lim
n→∞

αn = 0; (ii)
∞∑

n=1
αn = ∞; and (iii)

lim
n→∞

|αn−αn−1|
α2

n
= 0.

Reich [412] gave an affirmative answer to the above question in the case
when E is uniformly smooth and αn = n−a with 0 < a < 1. It was observed
that both Halpern’s and Lions’ conditions on the real sequence {αn} excluded
the natural choice, αn := (n + 1)−1. This was overcome by Wittmann [505]
who proved, still in Hilbert spaces, the strong convergence of {xn} if {αn}
satisfies the following conditions:

(i) lim
n→∞

αn = 0; (ii)
∞∑

n=1

αn = ∞; and ; (iii)
∞∑

n=1

|αn+1 − αn| < ∞. (6.26)

Reich [413] extended this result of Wittmann to the class of Banach spaces
which are uniformly smooth and have weakly sequentially continuous duality
maps (e.g., lp(1 < p < ∞)), where the sequence {αn} is required to satisfy
conditions (i) and (ii) of (6.26) and to be decreasing (and hence also satisfies
(iii) of (6.26)). Shioji and Takahashi [450] extended Wittmann’s result to
Banach spaces with uniformly Gâteaux differentiable norms and in which
each nonempty closed convex bounded subset of K has the fixed point prop-
erty for nonexpansive mappings (e.g., Lp spaces (1 < p < ∞)). They proved
the following theorem.

Theorem ST. Let E be a Banach space whose norm is uniformly Gâteaux
differentiable and let K be a closed convex subset of E. Let T be a nonex-
pansive mapping from K into K such that the set F (T ) of fixed points of T
is nonempty. Let {αn} be a sequence which satisfies the following conditions:
0 ≤ αn ≤ 1, lim αn = 0,

∑
αn = ∞,

∑
|αn+1−αn| < ∞. Let u ∈ K and let

{xn} be the sequence defined by x0 ∈ K, xn+1 = αnu + (1 − αn)Txn, n ≥ 0.
Assume that {zt} converges strongly to z ∈ F (T ) as t ↓ 0, where for
0 < t < 1, zt is the unique element of K which satisfies zt = tu + (1 − t)Tzt.
Then, {xn} converges strongly to z.

A result of Reich [409] and that of Takahashi and Ueda [478] show that
if K satisfies some additional assumption, then {zt} defined above converges
strongly to a fixed point of T . In particular, the following is true.

Let E be a Banach space whose norm is uniformly Gâteaux differentiable
and let K be a weakly compact convex subset of E. Let T be a nonexpansive
mapping from K into K. Let u ∈ K and let zt be the unique element of K
which satisfies zt = tu+(1−t)Tzt for 0 < t < 1. Assume that each nonempty
T−invariant closed convex subset of K contains a fixed point of T . Then, {zt}
converges strongly to a fixed point of T .

Morales and Jung [341] established the following result.
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Theorem MJ (Morales and Jung, [341]) Let K be a nonempty closed convex
subset of a reflexive Banach space E which has uniformly Gâteaux differ-
entiable norm and T : K → K be a nonexpansive mapping with F (T ) 
= ∅.
Suppose that every nonempty closed convex bounded subset of K has the fixed
point property for nonexpansive mappings. Then there exists a continuous
path t → zt, 0 < t < 1 satisfying zt = tu + (1 − t)Tzt, for arbitrary but fixed
u ∈ K, which converges strongly to a fixed point of T .

Xu [511] (see, also [510]) showed that the result of Halpern holds in uni-
formly smooth Banach spaces if condition (iii) of Lions is replaced with the
condition (iii)∗ lim

n→∞
|αn−αn−1|

αn
= 0. He proved the following theorem.

Theorem 6.29. (Xu, [511]) Let E be a uniformly smooth Banach space, K
be a closed convex nonempty subset of E, T : K → K be a nonexpansive
mapping with F (T ) 
= ∅. Let u, x0 ∈ K be given and let {αn} ⊂ [0, 1] satisfy
the conditions: (a) lim αn = 0; (b)

∑
αn =∞; and (c) lim |αn−1−αn|

αn
=0. Then

the sequence {xn} generated by x0 ∈ K, xn+1 := (1−αn)Txn + αnu, n ≥ 0,
converges strongly to some x∗ ∈ F (T ).

Remark 6.30. Wittman [505] had earlier proved Theorem 6.29 with condition
(c) replaced by: (c)∗

∑
|αn+1 − αn| < ∞. The conditions (c) and (c)∗ are

not comparable. For instance, the sequence {αn} defined by

αn :=
{

n− 1
2 , if n is odd,

(n− 1
2 − 1)−1, if n is even,

satisfies (c) but fails to satisfy (c)∗.

Remark 6.31. Halpern showed that the conditions (i) lim
n→∞

αn = 0 and (ii)
∞∑

n=0
αn = ∞ are necessary for the convergence of the sequence {xn} de-

fined by (6.25). It is not known if generally they are sufficient. Some authors
have established that if in the recursion formula (6.25), Txn is replaced with

Tnxn :=
(

1
n

)n−1∑
k=0

T kxn, then conditions (i) and (ii) are sufficient.

In order to prove the main theorems of this section, we shall make use of the
following lemmas.

Lemma 6.32. (Tan and Xu, [487]) Let {an} be a sequence of nonnegative
real numbers satisfying the following relation:

an+1 ≤ an + σn, n ≥ 0,

such that
∞∑

n=1
σn < ∞. Then, lim an exists. If, in addition, {an} has a subse-

quence that converges to 0, then an converges to 0 as n → ∞.
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Proof. From 0 ≤ an+1 ≤ an + σn, n ≥ 0, we obtain that 0 ≤ an+1 ≤
a1+

∑n
1 σn ≤ a1+

∑∞
1 σn < ∞, n ≥ 0, and so {an} is bounded. Furthermore,

for fixed m ∈ N, we have

0 ≤ an+m ≤ an+m−1 + σn+m−1

≤ an+m−2 + σn+m−2 + σn+m−1

...

≤ αn +
n+m−1∑

i=n

σi.

Taking “lim sup” as m → ∞, we obtain that lim sup
m→∞

an ≤ an +
∑∞

i=n σi. Now,

taking “lim inf” as n → ∞, we get lim sup
n→∞

an ≤ lim inf an. Thus, lim inf
n→∞

an =

lim sup
n→∞

an, and the limit exists. If, in addition, {an} has a subsequence that

converges to 0, since the limit of {an} exists, then {an} converges to 0 as
n → ∞. �

Aliter. We give another proof of the first part of Lemma 6.32.

Define ρn :=
∑n−1

k=1 σk. Recall that lim
n→∞

ρn :=
∑∞

k=1 σk < ∞. Let
lim

n→∞
ρn = L < ∞, for some L ∈ R. Now, an+1+ρn ≤ an+σn+ρn = an+ρn+1

so that an+1 − ρn+1 ≤ an − ρn ∀ n ≥ 1. This implies that {an − ρn} is non-
increasing. Two cases arise.

Case 1: lim
n→∞

(an − ρn) = −∞, or, Case 2: lim
n→∞

(an − ρn) = M , for
some M ∈ R. We show Case 1 is impossible. Suppose, for contradiction,
case 1 holds. Then, lim

n→∞
an = lim

n→∞

(
an − ρn + ρn

)
= −∞ + L = −∞,

contradicting the hypothesis that an ≥ 0. So, case 2 holds. Hence,
lim

n→∞
an = lim

n→∞

(
an − ρn + ρn

)
= M + L, completing the proof.

Lemma 6.33. (Suzuki, [463]). Let {xn} and {yn} be bounded sequences in
a Banach space E and let {βn} be a sequence in [0, 1] with 0 < lim inf

n→∞
βn ≤

lim sup
n→∞

βn < 1. Suppose xn+1 = βnyn + (1− βn)xn for all integers n ≥ 0 and

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0. Then, lim
n→∞

||yn − xn|| = 0.

Lemma 6.34. (Xu, [511]). Let {an} be a sequence of nonnegative real num-
bers satisfying the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 0,
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where,

(i) {αn} ⊂ [0, 1],
∑

αn = ∞;
(ii) lim sup

n→∞
σn ≤ 0;

(iii) γn ≥ 0; (n ≥ 0),
∑

γn < ∞. Then, an → 0 as n → ∞.

6.7.1 Convergence Theorems

In the sequel, F (T ) := {x ∈ K : Tx = x}. In the next theorem, we shall
assume that {zt} converges strongly to a fixed point z of T as t → 0, where
zt is the unique element of K which satisfies zt = tu+(1− t)Tzt for arbitrary
u ∈ K.

Theorem 6.35. Let K be a nonempty closed convex subset of a real Banach
space E which has a uniformly Gâteaux differentiable norm and T : K → K
be a nonexpansive mapping with F (T ) 
= ∅. For a fixed δ ∈ (0, 1), define
S : K → K by Sx := (1− δ)x+ δTx ∀ x ∈ K. Let {αn} be a real sequence in
(0, 1) which satisfies the following conditions: C1 : lim αn = 0; C2 :

∑
αn =

∞. For arbitrary u, x0 ∈ K, let the sequence {xn} be defined iteratively by

xn+1 = αnu + (1 − αn)Sxn, n ≥ 0. (6.27)

Then, {xn} converges strongly to a fixed point of T .

Proof. Observe first that S is nonexpansive and has the same set of fixed
points as T . Define

βn := (1 − δ)αn + δ ∀ n ≥ 0; yn :=
xn+1 − xn + βnxn

βn
, n ≥ 0. (6.28)

Observe that βn → δ as n → ∞, and that if {xn} is bounded, then {yn}
is bounded. Let x∗ ∈ F (T ) = F (S). One easily shows by induction that
||xn − x∗|| ≤ max{||x0 − x∗||, ||u − x∗||} for all integers n ≥ 0, and so,
{xn}, {yn}, {Txn} and {Sxn} are all bounded. Also,

||xn+1 − Sxn|| = αn||u − Sxn|| → 0, (6.29)

as n → ∞. Observe also that from the definitions of βn and S, we obtain
that yn = 1

βn
(αnu + (1 − αn)δTxn) so that

||yn+1 − yn|| − ||xn+1 − xn|| ≤
∣∣∣αn+1

βn+1
− αn

βn

∣∣∣.||u||

+
(1 − αn+1)

βn+1
δ ||Txn+1 − Txn||

+
∣∣∣1 − αn+1

βn+1
− 1 − αn

βn

∣∣∣ δ ||Txn|| − ||xn+1 − xn||,
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so that, since {xn} and {Txn} are bounded, we obtain that, for some con-
stants M1 > 0, and M2 > 0,

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ lim sup
n→∞

{∣∣∣αn+1

βn+1
− αn

βn

∣∣∣.||u||

+
∣∣∣ (1 − αn+1)

βn+1
δ − 1

∣∣∣ M1

+
∣∣∣1 − αn+1

βn+1
− 1 − αn

βn

∣∣∣δM2

}
≤ 0.

Hence, by Lemma 6.33, ||yn−xn|| → 0 as n → ∞. Consequently, lim
n→∞

||xn+1−
xn|| = lim

n→∞
βn||yn − xn|| = 0. Combining this with (6.29) yields that

||xn − Sxn|| → 0 as n → ∞. (6.30)

We now show that

lim sup
n→∞

〈u − z, j(xn − z)〉 ≤ 0. (6.31)

For each integer n ≥ 1, let tn ∈ (0, 1) be such that

tn → 0, and
||xn − Sxn||

tn
→ 0, n → ∞. (6.32)

Let ztn
∈ K be the unique fixed point of the contraction mapping Stn

given
by Stn

x := tnu + (1 − tn)Sx, x ∈ K. Then, ztn
− xn = tn(u − xn) + (1 −

tn)(Sztn
− xn). Using inequality (4.4), we compute as follows:

||ztn
− xn||2 ≤ (1 − tn)2||Sztn

− xn||2 + 2tn〈u − xn, j(ztn
− xn)〉

≤ (1 − tn)2(||Sztn
− Sxn|| + ||Sxn − xn||)2 + 2tn(||ztn

− xn||2

+ 〈u − ztn
, j(ztn

− xn)〉)
≤ (1 + t2n)||ztn

− xn||2 + ||Sxn − xn|| ×
(2||ztn

− xn|| + ||Sxn − xn||)
+ 2tn〈u − ztn

, j(ztn
− xn)〉,

and hence,

〈u − ztn
, j(xn − ztn

)〉 ≤ tn
2
||ztn

− xn||2 +
||Sxn − xn||

2tn
× (2||ztn

− xn|| + ||Sxn − xn||).

Since {xn}, {ztn
} and {Sxn} are bounded and ||Sxn−xn||

2tn
→ 0, n → ∞, it

follows from the last inequality that

lim sup
n→∞

〈u − ztn
, j(xn − ztn

)〉 ≤ 0. (6.33)
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Moreover, we have that

〈u − ztn
, j(xn − ztn

)〉 = 〈u − z, j(xn − z)〉
+ 〈u − z, j(xn − ztn

) − j(xn − z)〉
+ 〈z − ztn

, j(xn − ztn
)〉. (6.34)

But, by hypothesis, ztn
→ z ∈ F (S), n → ∞. Thus, using the bound-

edness of {xn} we obtain that 〈z − ztn
, j(xn − ztn

)〉 → 0, n → ∞. Also,
〈u − z, j(xn − ztn

) − j(xn − z)〉 → 0, n → ∞, since j is norm-to-weak∗ uni-
formly continuous on bounded subsets of E. Hence, we obtain from (6.33)
and (6.34) that lim sup

n→∞
〈u− z, j(xn − z〉 ≤ 0. Furthermore, from (6.27) we get

that xn+1 − z = αn(u − z) + (1 − αn)(Sxn − z). It then follows that

||xn+1 − z||2 ≤ (1 − αn)2||Sxn − z||2 + 2αn〈u − z, j(xn+1 − z)〉
≤ (1 − αn)||xn − z||2 + αnσn,

where σn := 2〈u − z, j(xn+1 − z)〉; γn ≡ 0 ∀ n ≥ 0. Thus, by Lemma 6.34,
{xn} converges strongly to a fixed point of T . �

Remark 6.36. We note that every uniformly smooth Banach space has a uni-
formly Gâteaux differentiable norm and is such that every nonempty closed
convex and bounded subset of E has the fixed point property for nonexpan-
sive maps (see e.g., [189]).

Let Sn(x) := 1
n

n−1∑
k=0

Skx, where S : K → K is a nonexpansive map. With this

definition, Xu proved the following theorem.

Theorem HKX (Xu, [511], Theorem 3.2) Assume that E is a real uni-
formly convex and uniformly smooth Banach space. For given u, x0 ∈ K, let
{xn} be generated by the algorithm:

xn+1 = αnu + (1 − αn)Snxn, n ≥ 0. (6.35)

Assume that (i) lim αn = 0; (i)
∑

αn = ∞. Then, {xn} converges strongly
to a fixed point of S.

Remark 6.37. Theorem 6.35 is a significant improvement of Theorem HKX
in the sense that the recursion formula (6.27) is simpler and requires less
computation at each stage than the recursion formula (6.35). Moreover, the
requirement that E be also uniformly convex imposed in Theorem HKX is
dispensed with in Theorem 6.35. Furthermore, Theorem 6.35 is proved in the
framework of the more general real Banach spaces with uniformly Gâteaux
differentiable norms.
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6.7.2 The Case of Non-self Mappings

Definition 6.38. Let K be a nonempty subset of a Banach space E. For
x ∈ K, the inward set of x, IKx, is defined by IKx := {x + α(u − x) : u ∈
K,α ≥ 1}. A mapping T : K → E is called weakly inward if Tx ∈ cl[IK(x)]
for all x ∈ K, where cl[IK(x)] denotes the closure of the inward set. Every
self-map is trivially weakly inward.

Definition 6.39. Let K ⊆ E be closed convex and Q be a mapping of E
onto K. Then Q is said to be sunny if Q(Qx + t(x − Qx)) = Qx for all
x ∈ E and t ≥ 0. A mapping Q of E into E is said to be a retraction if
Q2 = Q. If a mapping Q is a retraction, then Qz = z for every z ∈ R(Q),
range of Q. A subset K of E is said to be a sunny nonexpansive retract of
E if there exists a sunny nonexpansive retraction of E onto K and it is said
to be a nonexpansive retract of E if there exists a nonexpansive retraction
of E onto K. If E = H, the metric projection PK is a sunny nonexpansive
retraction from H to any closed convex subset of H.

Remark 6.40. We note that, if T : K → E is weakly inward, then F (T ) =
F (QT ), where Q is a sunny nonexpansive retraction of E onto K. In fact,
clearly, F (T ) ⊆ F (QT ). We show F (QT ) ⊆ F (T ). Suppose this is not the
case. Then there exists x ∈ F (QT ) such that x /∈ F (T ). But, since T is
weakly inward there exists u ∈ K, such that Tx = x + λ(u − x) for some
λ > 1 and u 
= x. Observe that if u = x then Tx = x, a contradiction, since
x /∈ F (T ). As Q is sunny nonexpansive, we have Q

[
QTx+ t(Tx−QTx)

]
= x

for all t ≥ 0. But QTx = x so that Q
[
tTx + (1− t)x

]
= x for all t ≥ 0. Since

T is weakly inward, there exists t0 ∈ (0, 1) such that u := t0Tx + (1 − t0)x,
and since u ∈ K, Qu = u. This implies u = Qu = x, a contradiction, since
x 
= u. Therefore, F (QT ) ⊆ F (T ), which implies that F (QT ) = F (T ).

We now prove the following convergence theorem.

Theorem 6.41. (Chidume et al., [184]) Let K be a nonempty closed convex
subset of a real Banach space E which has a uniformly Gâteaux differentiable
norm, and T : K → E be a nonexpansive mapping satisfying weakly inward
condition with F (T ) 
= ∅. Assume K is a sunny nonexpansive retract of E
with Q as the sunny nonexpansive retraction. Assume that {zt} converges
strongly to a fixed point z of QT as t → 0, where for 0 < t < 1, zt is the
unique element of K which satisfies zt = tx+(1− t)QTzt. Let {αn} be a real
sequence in (0, 1) which satisfies the following conditions: (i) lim

n→∞
αn = 0, (ii)

∞∑
n=1

αn = ∞, and either (iii)
∞∑

n=1
|αn−αn−1| < ∞, or (iii)∗ lim

n→∞
|αn−αn−1|

αn
=0.

For fixed u, x0 ∈ K, let the sequence {xn} be defined iteratively by

xn+1 := αnu + (1 − αn)QTxn, n ≥ 0. (6.36)

Then, {xn}∞n=0 converges strongly to a fixed point of T .
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Proof. Let x∗ ∈ F (T ). One easily shows by induction that ||xn − x∗|| ≤
max{||x0−x∗||, ||u−x∗||} for all integers n ≥ 0, and hence {xn} and {QTxn}
are bounded. But this implies from (6.36) that

||xn+1 − QTxn|| = αn||u − QTxn|| → 0 as n → ∞. (6.37)

Furthermore, for some constant M > 0,

||xn+1 − xn|| = ||(αn − αn−1)(u − QTxn−1) + (1 − αn)(QTxn − QTxn−1)||
≤ M |αn−1 − αn| + (1 − αn)||xn − xn−1||.

We consider two cases.
Case 1. Condition (iii)∗ is satisfied. Then, ||xn+1 −xn|| ≤ (1−αn)||xn −

xn−1|| + σn, where σn := αnβn and βn := (|αn − αn−1|M/αn) so that σn =
o(αn).

Case 2. Condition (iii) is satisfied. Then, ||xn+1 − xn|| ≤ (1 − αn)||xn −
xn−1||+σn, where σn := M |αn −αn−1| so that

∞∑
n=1

σn < ∞. In either case, a

lemma of [511] (see, Exercises 6.1, Problem 8) yields that ||xn+1 − xn|| → 0
as n → ∞. Combining this with (6.36), we obtain that ||xn − QTxn|| → 0
as n → ∞. For each integer n ≥ 0, let tn ∈ (0, 1) be such that tn → 0 and
||xn−QTxn||

tn
→ 0. Let ztn

∈ K be the unique fixed point of the contraction
mapping Ttn

given by Ttn
x := tnu + (1 − tn)QTx, x ∈ K. Then, ztn

− xn =
tn(u−xn.)+ (1− tn)(QTztn

−xn). Moreover, using inequality (4.4), we have

||ztn
− xn||2

≤ (1 − tn)2||QTztn
− xn||2 + 2tn〈u − xn, j(ztn

− xn)〉
≤ (1 − tn)2(||QTztn

− QTxn|| + ||QTxn − xn||)2 + 2tn(||ztn
− xn||2

+〈u − ztn
, j(ztn

− xn)〉)
≤ (1 + t2n)||ztn

− xn||2 + ||QTxn − xn||(2||ztn
− xn|| + ||QTxn − xn||)

+ 2tn〈u − ztn
, j(ztn

− xn)〉,

and hence,

〈u − ztn
, j(xn − ztn

)〉 ≤ tn
2
||ztn

− xn||2 +
||QTxn − xn||

2tn

×(2||ztn
− xn|| + ||QTxn − xn||).

Since {xn}, {ztn
} and {Txn} are bounded and ||xn−QTxn||

tn
→ 0 as n → ∞,

it follows from the last inequality that

lim sup
n→∞

〈u − ztn
, j(xn − ztn

)〉 ≤ 0. (6.38)
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Moreover, we have that

〈u − ztn
, j(xn − ztn

)〉 = 〈u − z, j(xn − z)〉 + 〈u − z, j(xn − ztn
)

−j(xn − z)〉 + 〈z − ztn
, j(xn − ztn

)〉. (6.39)

But, by hypothesis, ztn
→ z ∈ F (QT ) as n → 0 and by Remark 6.40 we have

that QTz = z = Tz. Thus, 〈z − ztn
, j(xn − ztn

)〉 → 0 as n → ∞ (since {xn}
is bounded). Also, 〈u − z, j(xn − ztn

) − j(xn − z)〉 → 0 as n → ∞ (since j is
norm-to-w∗ uniformly continuous on bounded subsets of E). Therefore, we
obtain from (6.38) and (6.39) that lim sup

n→∞
〈u − z, j(xn − z)〉 ≤ 0. Now from

(6.36), we get xn+1 − z = αn(u − z) + (1 − αn)(QTxn − z). It follows that

||xn+1 − z||2 ≤ (1 − αn)2||QTxn − z||2 + 2αn〈u − z, j(xn+1 − z)〉
≤ (1 − αn)||xn − z||2 + σn,

where σn := 2αn〈u−z, j(xn+1−z)〉 so that lim sup
n→∞

σn ≤ 0. Thus, (see Exercise

6.1, Problem 8), {xn} converges strongly to a fixed point z of T . �

Remark 6.42. In [453], Shioji and Takahashi proved that if E is a uniformly
convex Banach space whose norm is uniformly Gâteaux differentiable, and T
is self-map of K ⊆ E with F (T ) := {x ∈ K : Tx = x} 
= ∅, and T satisfies
the following condition: ||Tnx − Tny|| ≤ kn||x − y|| ∀ x, y ∈ K,n ∈ N for
some sequence {kn}, kn ≥ 1, lim kn = 1, then the sequence {xn} defined
iteratively by u, x0 ∈ K arbitrary,

xn = αnu + (1 − αn)
1

n + 1

n∑
j=0

T jxn, n ≥ N0,

for N0 sufficiently large, converges strongly to Pu, where P is the sunny
nonexpansive retract from K onto F (T ) and {αn} satisfies the following con-
ditions: 0 ≤ αn ≤ 1, lim αn = 0,

∑
αn = ∞ and

∑((
1 − αn

)( 1
n + 1

n∑
j=0

kj

)2

− 1
)

< ∞.

The two authors [450] had earlier established the same result in Hilbert space
for the iterative scheme, x0, u ∈ K arbitrary,

yn = βnu +
(1 − βn)
n + 1

n∑
j=0

T jxn; xn+1 = αnu +
(1 − αn)

n + 1

n∑
j=0

T jyn.

In these results, αn and βn are real sequences satisfying appropriate
conditions.
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Finally, we have the following Theorem which holds in uniformly convex
Banach spaces.

Theorem 6.43. (Xu, [511]). Let E be a uniformly convex Banach space, K
a nonempty closed convex subset of E, T : K → K a nonexpansive mapping
with F (T ) 
= ∅. Assume that E has a Fréchet differentiable norm or satisfies
Opial’s condition. With an initial x0 ∈ K, let {xn} be defined by xn+1 := (1−
αn)Tnxn +αnu, n ≥ 0, where {αn} ⊂ [0, 1] satisfies the following conditions:

(i) lim αn = 0; (ii)
∑

αn = ∞, and Tn is defined by Tnx :=
(

1
n

)n−1∑
j=1

T jx.

Then, {xn} converges weakly to some x∗ ∈ F (T ).

EXERCISES 6.1

1. Verify the assertions made in Example 6.4.
2. Prove Theorem 6.7, i.e., suppose M is a metric space and T : M → M

is continuous and asymptotically regular at x0 in M . Then, any cluster
point of {Tn(x0)} is a fixed point of T .

3. Prove Proposition 6.27.
4. (a) Find an example of a complete metric space (E, ρ) and a mapping

f : E → E such that ρ(f(x), f(y)) < ρ(x, y) ∀ x, y ∈ E, and f has no
fixed points.
Hint: Consider (E, ρ) ≡ (IR, ρ) where ρ is the usual metric and f(x) =
�n (1 + ex).

(b) Prove that if the Contraction Mapping Principle applies to fn where
n is a positive integer, then f has a unique fixed point.

(c) Let (E, ρ) be a complete metric space and f, g : E → E be functions.
Suppose f is a contraction and f(g(x)) = g(f(x)) ∀ x ∈ E. Prove that
g has a fixed point but that such a fixed point need not be unique.

5. Let E = C[0, 1] with “sup” norm and let K = {f ∈ C[0, 1] : f(0) = 0,
f(1) = 1, 0 ≤ f(x) ≤ 1}. For each f ∈ K define ϕ : K → C[0, 1] by
(ϕf)(x) = xf(x). Prove: (a) K is nonempty, closed, convex and bounded;
(b) ϕ maps K into K; (c) ϕ is nonexpansive; (d) ϕ has no fixed points.

6. (a) State the Contraction Mapping Principle.
(b) Let (E, ρ) be a complete metric space and T : E → E a contraction
map with constant k < 1. Define the sequence {xn} inductively by
xn+1 = Txn, n = 1, 2, . . . , x0 ∈ E. If x∗ is the unique fixed point of T ,

prove: (i) xn → x∗ as n → ∞; (ii) ρ(xn, x∗) ≤ kn

1 − k
ρ(x1, x0).

7. Let C[0, 1] be endowed with the “sup” metric. Define T : C[0, 1] →
C[0, 1] by (Tf)(t) =

∫ t

0
f(s)ds, f ∈ C[0, 1], t ∈ [0, 1]. Prove:

(a) T is not a contraction map;
(b) T 2 is a contraction map.



84 6 Iterative Method for Fixed Points of Nonexpansive Mappings

(Note: “sup” metric ρ is given by ρ(f, g) = sup
0≤t≤1

|f(t) − g(t)|).

(c) Does T have a fixed point?
8. Let {an} be a sequence of nonnegative real numbers satisfying the following

relation:
an+1 ≤ (1 − αn)an + σn, n ≥ 0,

where (i) 0 < αn < 1; (ii)
∞∑

n=1
αn = ∞. Suppose,

∞∑
n=1

σn < ∞. Prove that

an → 0 as n → ∞.

6.8 Historical Remarks

Remark 6.44. If the constant vector u in the Halpern-type recursion formula
(6.25) is replaced with f(xn), where f : K → K is a strict contraction,
an iteration method involving the resulting formula is called the viscosity
method. We make the following remarks concerning this method.

• The recursion formula with f(xn) involves more computation at each stage
of the iteration than that with u and does not result in any improvement
in the speed or rate of convergence of the scheme. Consequently, from the
practical point of view, it is undesirable.

• When a Theorem has been proved using a Halpern-type recursion for-
mula with a constant vector, say u, the proof of the same Theorem with
u replaced by f(xn), the so-called viscosity method, generally does not
involve any new ideas or method. Such a proof is generally an unnecessary
repetition of the proof when the vector u is used.

• The so-called viscosity method may be useful in other iteration processes.
But for the approximation of fixed points of nonexpansive and related
operators, there seems to be no justification for studying it.

Let I = [a, b] and let T be a self-map of I and suppose T has a unique fixed
point in I. Mann [319] proved that the iteration process: x0 ∈ I,

xn+1 = (1 − cn)xn + cnTxn,with cn =
1

n + 1
(6.40)

converges to the fixed point. Franks and Marzec [225] proved that the unique-
ness assumption was unnecessary. Rhoades ([415], Theorem 1) extended the
Franks and Marzec result to: 0 ≤ cn ≤ 1,

∑
cn = ∞. Outlaw and Groetcsh

[378] obtained convergence for a nonexpansive mapping T of a convex com-
pact subset of the complex plane. Groetsch [242] generalized the method for
nonexpansive mappings on uniformly convex Banach spaces. Dotson [212]
also used the method for quasi-nonexpansive mappings on strictly convex
Banach spaces.
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The concept of uniform asymptotic regularity was introduced by Edelstein
and O’Brian in [218] where they also proved that, on any normed linear space
E, and on any bounded convex subset K ⊂ E, Sλ is uniformly asymptoti-
cally regular. Results on the asymptotic regularity of Sλ were first obtained
by Browder and Petryshyn [52]. They proved that if E is uniformly convex
and T : K → K is a nonexpansive self-mapping of K, where K is a nonempty
closed convex and bounded subset of E, then Sλ is asymptotically regular.
As is easily seen, Sλ(x∗) = x∗ is equivalent to Tx∗ = x∗, so that prob-
lems pertaining to the existence and location of fixed points for T reduce
to similar problems for Sλ, where, by the result of Edelstein and O’Brian
cited above, Sλ can be assumed to be uniformly asymptotically regular. The-
orem 6.3 is the well known Browder-Göhde-Kirk theorem [42, 238, 283].
Theorem 6.7 and Proposition 6.8 are due to Edelstein and O’Brian [218];
Example 6.10 is due to Genel and Lindenstrauss [228]. Part (i) of Corollary
6.19 was originally proved by Petryshyn [381] for uniformly convex Banach
spaces and part (ii) was first proved by Browder and Petryshyn [51] again,
for uniformly convex Banach spaces. Edelstein and O’Brian [218] extended
these results to arbitrary normed linear spaces for the sequence {Sn

λ}, defined
by (6.2).

A consequence of a result of Browder and Petryshyn [51] shows that if T
is asymptotically regular and (I − T ) is demiclosed, then any weak cluster
point of {Tn(x0)} is a fixed point of T . It is also known that in an Opial
space, (I − T ) is always demiclosed for any nonexpansive self-map T of a
nonempty closed convex and bounded subset K. Edelstein and O’Brian [218]
then proved that in an Opial space E, if K ⊂ E is weakly compact and
convex and T is a self-mapping of K, then for any x0 ∈ K, the sequence
{Sn

λ (x0)} converges weakly to a fixed point of T . This result is a generalization
of an earlier result of Opial [366] who had proved the same result under
the assumption that E is uniformly convex and has a weakly continuous
duality map. It is pertinent to mention here that Gossez and Lami Dozo [241]
have shown that for any normed linear space E, the existence of a weakly
continuous duality map implies that E satisfies Opial’s condition which in
turn implies that E has normal structure, (see e.g., Brodskii and Mil’man,
[38] for definition), but that none of the converse implications hold.

Theorems 6.14, 6.15 and 6.16 were proved by Edelstein and O’Brian [218]
where the sequence {xn} is defined by (6.2). Theorem 6.15 was proved by
Ishikawa for the more general sequence defined by (6.3). But then, while
this result is somewhat stronger than the result of Edelstein and O’Brian in
the sense that it involves the more general Mann iterates, the theorems of
Edelstein and O’Brian are stronger in the sense that uniform asymptotic reg-
ularity is proved. Theorems 6.14, 6.15 and 6.16 unify these results of Ishikawa
and those of Edelstein and O’Brian. The theorems are due to Chidume [87]
who used a method which seems simpler and totally different from those of
Ishikawa and, Edelstein and O’Brian. Finally, the results of Sections 6.3 to
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6.5 together with Example 6.23 and Example 6.28 are also due to Chidume
[87, 93]. Theorem 6.41 is due to Chidume et al. [184].

Strong convergence theorems for a generalization of nonexpansive map-
pings (relatively weak nonexpansive mappings) can be found in Zegeye and
Shahzad [548].




