Skip to main content

Biotechnology in Neuroregeneration

  • Chapter
  • First Online:
Applications of Biotechnology in Neurology

Abstract

The term “regeneration” is used to describe the sum total of activities leading to the regrowth of cells and tissues of the body. It includes both anatomical and physiological structures; however, structural regeneration does not necessarily lead to restoration of function. The term “functional regeneration” implies recovery of the function that can occur without regeneration by compensatory mechanisms. Regeneration follows damage or loss of cells and tissues that may be the result of trauma or pathological processes resulting in necrosis or apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ang BT, Xu G, Xiao ZC. Therapeutic vaccination for central nervous system repair. Clin Exp Pharmacol Physiol 2006;33:541–5.

    Article  PubMed  CAS  Google Scholar 

  • Buchli AD, Rouiller E, Mueller R, Dietz V, Schwab ME. Repair of the injured spinal cord. A joint approach of basic and clinical research. Neurodegener Dis 2007;4:51–6.

    Article  PubMed  Google Scholar 

  • Celesia GG. Visual plasticity and its clinical applications. J Physiol Anthropol Appl Human Sci 2005;24:23–7.

    Article  PubMed  Google Scholar 

  • Cho Y, Borgens RB. Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 2012;233:126–44.

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Scheff SW. Compensatory synapse growth in aged animals after neuronal death. Mech Ageing Dev 1979;9:103–17.

    Article  PubMed  CAS  Google Scholar 

  • del Rio-Hortega P. Microglia. In: Penfield W, editor. Cytology and cellular pathology of the nervous system. Vol 2. New York: Paul Hoeber, 1932:481–534.

    Google Scholar 

  • Goldstein K. Uber die plastitat des organismus auf grund von erfahrungen am nervenkranken menschen. In: Bethe A, editor. Handbuch der normalen und pathologischen physiologie. Berlin: Springer-Verlag, 1931:1131–74.

    Chapter  Google Scholar 

  • Guo J, Leung KK, Su H, et al. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain. Nanomedicine 2009;5(3):345–51.

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Baumgartner JE, Worth LL, et al. Cell therapies for traumatic brain injury. Neurosurg Focus 2008;24(3–4):E18.

    Article  PubMed  Google Scholar 

  • Hayakawa K, Pham LD, Katusic ZS, Arai K, Lo EH. Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci U S A 2012;109:7505–10.

    Article  PubMed  CAS  Google Scholar 

  • Heinrich C, Blum R, Gascon S, et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 2010;8(5):e1000373.

    Article  PubMed  Google Scholar 

  • Jain KK. The Handbook of Nanomedicine, 2nd ed. Totowa, NJ: Springer-Humana Press, 2012a.

    Book  Google Scholar 

  • Jain KK. Cell therapy for CNS trauma. Mol Biotechnol 2009;42(3):367–76.

    Article  PubMed  CAS  Google Scholar 

  • Kastin AJ, Pan W. Targeting neurite growth inhibitors to induce CNS regeneration. Curr Pharm Des 2005;11:1247–53.

    Article  PubMed  Google Scholar 

  • King-Robson J. Encouraging regeneration in the central nervous system: is there a role for olfactory ensheathing cells? Neurosci Res 2011;69:263–75.

    Article  PubMed  Google Scholar 

  • Klapka N, Muller HW. Collagen matrix in spinal cord injury. J Neurotrauma 2006;23:422–35.

    Article  PubMed  Google Scholar 

  • Li XJ, Du ZW, Zarnowska ED, et al. Specification of motoneurons from human embryonic stem cells. Nature Biotechnol 2005;23:215–21.

    Article  Google Scholar 

  • Liu K, Lu Y, Lee JK, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010;13(9):1075–81.

    Article  PubMed  CAS  Google Scholar 

  • Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010;362(19):1772–83.

    Article  PubMed  CAS  Google Scholar 

  • Maegele M, Schaefer U. Stem cell-based cellular replacement strategies following traumatic brain injury (TBI). Minim Invasive Ther Allied Technol 2008;17:119–31.

    Article  PubMed  Google Scholar 

  • Mitchell SW. Injuries of nerves. Philadelphia: J.B. Lippincott & Co, 1872.

    Google Scholar 

  • Okano H, Okada S, Nakamura M, Toyama Y. Neural stem cells and regeneration of injured spinal cord. Kidney Int 2005;68(5):1927–31.

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Shim YS, Ha Y, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 2005;11:913–22.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal S. Degeneration and regeneration in the nervous system. May RM, translator. New York: Haffner, 1959.

    Google Scholar 

  • Ronsyn MW, Berneman ZN, Van Tendeloo VF, Jorens PG, Ponsaerts P. Can cell therapy heal a spinal cord injury? Spinal Cord 2008;46:532–9.

    Article  PubMed  CAS  Google Scholar 

  • Salinas PC, Price SR. Cadherins and catenins in synapse development. Curr Opin Neurobiol 2005;15:73–80.

    Article  PubMed  CAS  Google Scholar 

  • Seil JT, Webster TJ. Electrically active nanomaterials as improved neural tissue regeneration scaffolds. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:635–47.

    Article  PubMed  CAS  Google Scholar 

  • Shen F, Wen L, Yang X, Liu W. The potential application of gene therapy in the treatment of traumatic brain injury. Neurosurg Rev 2007;30:291–8.

    Article  PubMed  Google Scholar 

  • Shi Y, Kim S, Huff TB, et al. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nat Nanotech 2010;5:80–7.

    Article  PubMed  CAS  Google Scholar 

  • Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5:146–56.

    Article  PubMed  CAS  Google Scholar 

  • Stabenfeldt SE, Irons HR, Laplaca MC. Stem cells and bioactive scaffolds as a treatment for traumatic brain injury. Curr Stem Cell Res Ther 2011;6:208–20.

    Article  PubMed  CAS  Google Scholar 

  • Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC. Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 2009;3:208–17.

    Article  PubMed  CAS  Google Scholar 

  • Thompson WG. Successful brain grafting. NY Med J 1890;51:701.

    Google Scholar 

  • Webber MJ, Kessler JA, Stupp SI. Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 2010;267:71–88.

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Jiang H, Lu D, et al. Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery 2011;68(5):1363–71.

    PubMed  Google Scholar 

  • Yang Y, De Laporte LD, Zelivyanskaya ML, et al. Multiple channel bridges for spinal cord injury: cellular characterization of host response. Tissue Eng Part A 2009;15:3283–95.

    Article  PubMed  CAS  Google Scholar 

  • York GK, Steinberg DA. Hughling Jackson’s theory of cerebral localization. J Hist Neurosci 1994;3:153–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2013). Biotechnology in Neuroregeneration. In: Applications of Biotechnology in Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-272-8_16

Download citation

Publish with us

Policies and ethics