Skip to main content

Natural Compounds in Retinal Diseases

  • Chapter
  • First Online:
Studies on Retinal and Choroidal Disorders

Abstract

Because of the widespread use of natural compounds, it is of value to describe a few examples of evidence supporting their effects in retinal diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and retinitis pigmentosa. Epidemiological studies showed the potential of the antioxidants lutein and zeaxanthin in the prevention and/or treatment of AMD. Omega-3 fatty acids, such as docosahexaenoic acid and eicosapentaenoic acid, are thought to play protective roles against ischemia-, light-, oxygen-, inflammatory-, and age-associated pathology of the vascular and neural retina. Some compounds such as curcumin, caffeic acid phenethyl ester, and sulforaphane have demonstrated antioxidative and anti-inflammatory efficacy for retinal disorders in experimental studies conducted in cell cultures and/or in animal models. Further investigations are needed to decipher the molecular basis of related pharmacological efficacy before we move to clinical evaluation. In addition, vitamins appear to offer some protection for several retinal disorders, but this is still a controversial area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495

    PubMed  Google Scholar 

  2. Shah CA (2008) Diabetic retinopathy: a comprehensive review. Indian J Med Sci 62:500–519

    PubMed  Google Scholar 

  3. Madsen-Bouterse SA, Kowluru RA (2008) Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord 9:315–327

    PubMed  CAS  Google Scholar 

  4. Head KA (1999) Natural therapies for ocular disorders, part one: diseases of the retina. Altern Med Rev 4:342–359

    PubMed  CAS  Google Scholar 

  5. Sandberg MA, Brockhurst RJ, Gaudio AR, Berson EL (2005) The association between visual acuity and central retinal thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci 46:3349–3354

    PubMed  Google Scholar 

  6. Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58:100–110

    PubMed  CAS  Google Scholar 

  7. Krishnadev N, Meleth AD, Chew EY (2010) Nutritional supplements for age-related macular degeneration. Curr Opin Ophthalmol 21:184–189

    PubMed  Google Scholar 

  8. Ma L, Lin XM (2010) Effects of lutein and zeaxanthin on aspects of eye health. J Sci Food Agric 90:2–12

    PubMed  CAS  Google Scholar 

  9. Demmig-Adams B, Adams WW 3rd (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    PubMed  CAS  Google Scholar 

  10. Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD, Menendez E, Vidal I, Wang W (1997) Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res 64:211–218

    PubMed  CAS  Google Scholar 

  11. Johnson EJ, Neuringer M, Russell RM, Schalch W, Snodderly DM (2005) Nutritional manipulation of primate retinas III: effects of lutein or zeaxanthin supplementation on adipose tissue and retina of xanthophyll-free monkeys. Invest Ophthalmol Vis Sci 46:692–702

    PubMed  Google Scholar 

  12. Sundelin SP, Nilsson SE (2001) Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radic Biol Med 31:217–225

    PubMed  CAS  Google Scholar 

  13. Kim SR, Nakanishi K, Itagaki Y, Sparrow JR (2006) Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res 82:828–839

    PubMed  CAS  Google Scholar 

  14. Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE (2001) Macular pigment in donor eyes with and without AMD: a case–control study. Invest Ophthalmol Vis Sci 42:235–240

    PubMed  CAS  Google Scholar 

  15. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42:439–446

    PubMed  CAS  Google Scholar 

  16. Trieschmann M, Beatty S, Nolan JM, Hense HW, Heimes B, Austermann U, Fobker M, Pauleikhoff D (2007) Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: the LUNA study. Exp Eye Res 84:718–728

    PubMed  CAS  Google Scholar 

  17. Nolan JM, Stack J, O’Donovan O, Loane E, Beatty S (2007) Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp Eye Res 84(1):61–74

    PubMed  CAS  Google Scholar 

  18. LaRowe TL, Mares JA, Snodderly DM, Klein ML, Wooten BR, Chappell R (2008) Macular pigment density and age-related maculopathy in the carotenoids in age-related eye disease study. An ancillary study of the women’s health initiative. Ophthalmology 115(876–883):e871

    Google Scholar 

  19. Parisi V, Tedeschi M, Gallinaro G, Varano M, Saviano S, Piermarocchi S (2008) Carotenoids and antioxidants in age-related maculopathy Italian study: multifocal electroretinogram modifications after 1 year. Ophthalmology 115(324–333):e322

    Google Scholar 

  20. Moeller SM, Parekh N, Tinker L, Ritenbaugh C, Blodi B, Wallace RB, Mares JA (2006) Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the carotenoids in age-related eye disease study (CAREDS): ancillary study of the women’s health initiative. Arch Ophthalmol 124:1151–1162

    PubMed  CAS  Google Scholar 

  21. SanGiovanni JP, Chew EY, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, Seddon JM, Sperduto RD (2007) The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case–control study: AREDS report no. 22. Arch Ophthalmol 125:1225–1232

    PubMed  CAS  Google Scholar 

  22. Tan JS, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P (2008) Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains eye study. Ophthalmology 115:334–341

    PubMed  Google Scholar 

  23. Dagnelie G, Zorge IS, McDonald TM (2000) Lutein improves visual function in some patients with retinal degeneration: a pilot study via the internet. Optometry 71:147–164

    PubMed  CAS  Google Scholar 

  24. Aleman TS, Duncan JL, Bieber ML, de Castro E, Marks DA, Gardner LM, Steinberg JD, Cideciyan AV, Maguire MG, Jacobson SG (2001) Macular pigment and lutein supplementation in retinitis pigmentosa and usher syndrome. Invest Ophthalmol Vis Sci 42:1873–1881

    PubMed  CAS  Google Scholar 

  25. Bahrami H, Melia M, Dagnelie G (2006) Lutein supplementation in retinitis pigmentosa: PC-based vision assessment in a randomized double-masked placebo-controlled clinical trial [NCT00029289]. BMC Ophthalmol 6:23

    PubMed  Google Scholar 

  26. Adackapara CA, Sunness JS, Dibernardo CW, Melia BM, Dagnelie G (2008) Prevalence of cystoid macular edema and stability in oct retinal thickness in eyes with retinitis pigmentosa during a 48-week lutein trial. Retina 28:103–110

    PubMed  Google Scholar 

  27. Agbaga MP, Mandal MN, Anderson RE (2010) Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res 51:1624–1642

    PubMed  CAS  Google Scholar 

  28. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24:87–138

    PubMed  CAS  Google Scholar 

  29. Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29:263–271

    PubMed  CAS  Google Scholar 

  30. Bazan NG (2008) Neurotrophins induce neuroprotective signaling in the retinal pigment epithelial cell by activating the synthesis of the anti-inflammatory and anti-apoptotic neuroprotectin D1. Adv Exp Med Biol 613:39–44

    PubMed  CAS  Google Scholar 

  31. Daemen FJ (1973) Vertebrate rod outer segment membranes. Biochim Biophys Acta 300:255–288

    PubMed  CAS  Google Scholar 

  32. Stone WL, Farnsworth CC, Dratz EA (1979) A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Exp Eye Res 28:387–397

    PubMed  CAS  Google Scholar 

  33. Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131

    PubMed  CAS  Google Scholar 

  34. Lin DS, Anderson GJ, Connor WE, Neuringer M (1994) Effect of dietary N-3 fatty acids upon the phospholipid molecular species of the monkey retina. Invest Ophthalmol Vis Sci 35:794–803

    PubMed  CAS  Google Scholar 

  35. SanGiovanni JP, Mehta S (2009) Variation in lipid-associated genes as they relate to risk of advanced age-related macular degeneration. World Rev Nutr Diet 99:105–158

    PubMed  CAS  Google Scholar 

  36. Seddon JM, Cote J, Rosner B (2003) Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol 121:1728–1737

    PubMed  Google Scholar 

  37. Seddon JM, Rosner B, Sperduto RD, Yannuzzi L, Haller JA, Blair NP, Willett W (2001) Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol 119:1191–1199

    PubMed  CAS  Google Scholar 

  38. Cho E, Hung S, Willett WC, Spiegelman D, Rimm EB, Seddon JM, Colditz GA, Hankinson SE (2001) Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr 73:209–218

    PubMed  CAS  Google Scholar 

  39. Smith W, Mitchell P, Leeder SR (2000) Dietary fat and fish intake and age-related maculopathy. Arch Ophthalmol 118:401–404

    PubMed  CAS  Google Scholar 

  40. Heuberger RA, Mares-Perlman JA, Klein R, Klein BE, Millen AE, Palta M (2001) Relationship of dietary fat to age-related maculopathy in the third national health and nutrition examination survey. Arch Ophthalmol 119:1833–1838

    PubMed  CAS  Google Scholar 

  41. Chong EW, Kreis AJ, Wong TY, Simpson JA, Guymer RH (2008) Dietary omega-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis. Arch Ophthalmol 126:826–833

    PubMed  Google Scholar 

  42. SanGiovanni JP, Chew EY, Agron E, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, Seddon JM, Klein R, Sperduto RD (2008) The relationship of dietary omega-3 long-chain polyunsaturated fatty acid intake with incident age-related macular degeneration: AREDS report no. 23. Arch Ophthalmol 126:1274–1279

    PubMed  Google Scholar 

  43. Augood C, Chakravarthy U, Young I, Vioque J, de Jong PT, Bentham G, Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Vingerling JR, Fletcher AE (2008) Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular age-related macular degeneration. Am J Clin Nutr 88:398–406

    PubMed  CAS  Google Scholar 

  44. Chong EW, Robman LD, Simpson JA, Hodge AM, Aung KZ, Dolphin TK, English DR, Giles GG, Guymer RH (2009) Fat consumption and its association with age-related macular degeneration. Arch Ophthalmol 127:674–680

    PubMed  CAS  Google Scholar 

  45. Tan JS, Wang JJ, Flood V, Mitchell P (2009) Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the Blue Mountains eye study. Arch Ophthalmol 127:656–665

    PubMed  CAS  Google Scholar 

  46. Sangiovanni JP, Agron E, Meleth AD, Reed GF, Sperduto RD, Clemons TE, Chew EY (2009) {omega}-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the age-related eye disease study. Am J Clin Nutr 90:1601–1607

    PubMed  CAS  Google Scholar 

  47. SanGiovanni JP, Chew EY, Clemons TE, Davis MD, Ferris FL 3rd, Gensler GR, Kurinij N, Lindblad AS, Milton RC, Seddon JM, Sperduto RD (2007) The relationship of dietary lipid intake and age-related macular degeneration in a case–control study: AREDS Report No. 20. Arch Ophthalmol 125:671–679

    PubMed  CAS  Google Scholar 

  48. Converse CA, Hammer HM, Packard CJ, Shepherd J (1983) Plasma lipid abnormalities in retinitis pigmentosa and related conditions. Trans Ophthalmol Soc U K 103(Pt 5):508–512

    PubMed  Google Scholar 

  49. Bazan NG, Scott BL, Reddy TS, Pelias MZ (1986) Decreased content of docosahexaenoate and arachidonate in plasma phospholipids in usher’s syndrome. Biochem Biophys Res Commun 141:600–604

    PubMed  CAS  Google Scholar 

  50. Anderson RE, Maude MB, Lewis RA, Newsome DA, Fishman GA (1987) Abnormal plasma levels of polyunsaturated fatty acid in autosomal dominant retinitis pigmentosa. Exp Eye Res 44:155–159

    PubMed  CAS  Google Scholar 

  51. Gong J, Rosner B, Rees DG, Berson EL, Weigel-DiFranco CA, Schaefer EJ (1992) Plasma docosahexaenoic acid levels in various genetic forms of retinitis pigmentosa. Invest Ophthalmol Vis Sci 33:2596–2602

    PubMed  CAS  Google Scholar 

  52. Hoffman DR, Uauy R, Birch DG (1993) Red blood cell fatty acid levels in patients with autosomal dominant retinitis pigmentosa. Exp Eye Res 57:359–368

    PubMed  CAS  Google Scholar 

  53. Hoffman DR, Locke KG, Wheaton DH, Fish GE, Spencer R, Birch DG (2004) A randomized, placebo-controlled clinical trial of docosahexaenoic acid supplementation for X-linked retinitis pigmentosa. Am J Ophthalmol 137:704–718

    PubMed  CAS  Google Scholar 

  54. Hoffman DR, Birch DG (1995) Docosahexaenoic acid in red blood cells of patients with X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 36:1009–1018

    PubMed  CAS  Google Scholar 

  55. Schaefer EJ, Robins SJ, Patton GM, Sandberg MA, Weigel-DiFranco CA, Rosner B, Berson EL (1995) Red blood cell membrane phosphatidylethanolamine fatty acid content in various forms of retinitis pigmentosa. J Lipid Res 36:1427–1433

    PubMed  CAS  Google Scholar 

  56. Maude MB, Anderson EO, Anderson RE (1998) Polyunsaturated fatty acids are lower in blood lipids of usher’s type I but not usher’s type II. Invest Ophthalmol Vis Sci 39:2164–2166

    PubMed  CAS  Google Scholar 

  57. Hoffman DR, Birch DG (1998) Omega 3 fatty acid status in patients with retinitis pigmentosa. World Rev Nutr Diet 83:52–60

    PubMed  CAS  Google Scholar 

  58. Anderson RE, Maude MB, Narfstrom K, Nilsson SE (1997) Lipids of plasma, retina, and retinal pigment epithelium in Swedish briard dogs with a slowly progressive retinal dystrophy. Exp Eye Res 64:181–187

    PubMed  CAS  Google Scholar 

  59. Aguirre GD, Acland GM, Maude MB, Anderson RE (1997) Diets enriched in docosahexaenoic acid fail to correct progressive rod-cone degeneration (prcd) phenotype. Invest Ophthalmol Vis Sci 38:2387–2407

    PubMed  CAS  Google Scholar 

  60. Anderson RE, Maude MB, Bok D (2001) Low docosahexaenoic acid levels in rod outer segment membranes of mice with rds/peripherin and P216L peripherin mutations. Invest Ophthalmol Vis Sci 42:1715–1720

    PubMed  CAS  Google Scholar 

  61. Anderson RE, Maude MB, McClellan M, Matthes MT, Yasumura D, LaVail MM (2002) Low docosahexaenoic acid levels in rod outer segments of rats with P23H and S334ter rhodopsin mutations. Mol Vis 8:351–358

    PubMed  CAS  Google Scholar 

  62. Anderson RE, Maude MB, Alvarez RA, Acland GM, Aguirre GD (1991) Plasma lipid abnormalities in the miniature poodle with progressive rod-cone degeneration. Exp Eye Res 52:349–355

    PubMed  CAS  Google Scholar 

  63. Anderson RE, Maude MB, Nilsson SE, Narfstrom K (1991) Plasma lipid abnormalities in the abyssinian cat with a hereditary rod-cone degeneration. Exp Eye Res 53:415–417

    PubMed  CAS  Google Scholar 

  64. Anderson RE, Maude MB, Acland G, Aguirre GD (1994) Plasma lipid changes in PRCD-affected and normal miniature poodles given oral supplements of linseed oil. Indications for the involvement of n-3 fatty acids in inherited retinal degenerations. Exp Eye Res 58:129–137

    PubMed  CAS  Google Scholar 

  65. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, Hayes KC, Johnson CA, Anderson EJ, Gaudio AR, Willett WC, Schaefer EJ (2004) Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol 122:1306–1314

    PubMed  CAS  Google Scholar 

  66. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, Hayes KC, Johnson CA, Anderson EJ, Gaudio AR, Willett WC, Schaefer EJ (2004) Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol 122:1297–1305

    PubMed  CAS  Google Scholar 

  67. Hodge WG, Barnes D, Schachter HM, Pan YI, Lowcock EC, Zhang L, Sampson M, Morrison A, Tran K, Miguelez M, Lewin G (2006) The evidence for efficacy of omega-3 fatty acids in preventing or slowing the progression of retinitis pigmentosa: a systematic review. Can J Ophthalmol 41:481–490

    PubMed  Google Scholar 

  68. Martin RE, Ranchon-Cole I, Brush RS, Williamson CR, Hopkins SA, Li F, Anderson RE (2004) P23H and S334ter opsin mutations: increasing photoreceptor outer segment n-3 fatty acid content does not affect the course of retinal degeneration. Mol Vis 10:199–207

    PubMed  CAS  Google Scholar 

  69. Li F, Marchette LD, Brush RS, Elliott MH, Le YZ, Henry KA, Anderson AG, Zhao C, Sun X, Zhang K, Anderson RE (2009) DHA does not protect ELOVL4 transgenic mice from retinal degeneration. Mol Vis 15:1185–1193

    PubMed  CAS  Google Scholar 

  70. Li F, Marchette LD, Brush RS, Elliott MH, Davis KR, Anderson AG, Anderson RE (2010) High levels of retinal docosahexaenoic acid do not protect photoreceptor degeneration in VPP transgenic mice. Mol Vis 16:1669–1679

    PubMed  CAS  Google Scholar 

  71. Grunberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, Estevez V, Nakanishi K (1988) Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44:230–232

    PubMed  CAS  Google Scholar 

  72. Su ZZ, Grunberger D, Fisher PB (1991) Suppression of adenovirus type 5 E1A-mediated transformation and expression of the transformed phenotype by caffeic acid phenethyl ester (CAPE). Mol Carcinog 4:231–242

    PubMed  CAS  Google Scholar 

  73. Su ZZ, Lin J, Grunberger D, Fisher PB (1994) Growth suppression and toxicity induced by caffeic acid phenethyl ester (CAPE) in type 5 adenovirus-transformed rat embryo cells correlate directly with transformation progression. Cancer Res 54:1865–1870

    PubMed  CAS  Google Scholar 

  74. Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93:9090–9095

    PubMed  CAS  Google Scholar 

  75. Sud’ina GF, Mirzoeva OK, Pushkareva MA, Korshunova GA, Sumbatyan NV, Varfolomeev SD (1993) Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329:21–24

    PubMed  Google Scholar 

  76. Laranjinha J, Vieira O, Madeira V, Almeida L (1995) Two related phenolic antioxidants with opposite effects on vitamin E content in low density lipoproteins oxidized by ferrylmyoglobin: consumption vs regeneration. Arch Biochem Biophys 323:373–381

    PubMed  CAS  Google Scholar 

  77. Kimura Y, Okuda H, Okuda T, Hatano T, Agata I, Arichi S (1985) Studies on the activities of tannins and related compounds from medicinal plants and drugs. VII. Effects of extracts of leaves of artemisia species, and caffeic acid and chlorogenic acid on lipid metabolic injury in rats fed peroxidized oil. Chem Pharm Bull(Tokyo) 33:2028–2034

    CAS  Google Scholar 

  78. Zheng ZS, Xue GZ, Grunberger D, Prystowsky JH (1995) Caffeic acid phenethyl ester inhibits proliferation of human keratinocytes and interferes with the EGF regulation of ornithine decarboxylase. Oncol Res 7:445–452

    PubMed  CAS  Google Scholar 

  79. Turkoz Y, Er H, Borazan M, Yilmaz H, Mizrak B, Parlakpinar H, Cigremis Y (2004) Use of caffeic acid phenethyl ester and cortisone may prevent proliferative vitreoretinopathy. Mediators Inflamm 13:127–130

    PubMed  CAS  Google Scholar 

  80. Yilmaz A, Yildirim O, Tamer L, Oz O, Cinel L, Vatansever H, Degirmenci U, Kanik A, Atik U (2005) Effects of caffeic acid phenethyl ester on endotoxin-induced uveitis in rats. Curr Eye Res 30:755–762

    PubMed  CAS  Google Scholar 

  81. Shi Y, Wu X, Gong Y, Qiu Y, Zhang H, Huang Z, Su K (2010) Protective effects of caffeic acid phenethyl ester on retinal ischemia/reperfusion injury in rats. Curr Eye Res 35:930–937

    PubMed  CAS  Google Scholar 

  82. Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    PubMed  CAS  Google Scholar 

  83. Lee SR, Im KJ, Suh SI, Jung JG (2003) Protective effect of green tea polyphenol (−)-epigallocatechin gallate and other antioxidants on lipid peroxidation in gerbil brain homogenates. Phytother Res 17:206–209

    PubMed  CAS  Google Scholar 

  84. Katiyar S, Elmets CA, Katiyar SK (2007) Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair. J Nutr Biochem 18:287–296

    PubMed  CAS  Google Scholar 

  85. Nagai K, Jiang MH, Hada J, Nagata T, Yajima Y, Yamamoto S, Nishizaki T (2002) (−)-Epigallocatechin gallate protects against no stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 956:319–322

    PubMed  CAS  Google Scholar 

  86. Xie D, Liu G, Zhu G, Wu W, Ge S (2004) (−)-Epigallocatechin-3-gallate protects cultured spiral ganglion cells from H2O2-induced oxidizing damage. Acta Otolaryngol 124:464–470

    PubMed  CAS  Google Scholar 

  87. Buttemeyer R, Philipp AW, Schlenzka L, Mall JW, Beissenhirtz M, Lisdat F (2003) Epigallocatechin gallate can significantly decrease free oxygen radicals in the reperfusion injury in vivo. Transplant Proc 35:3116–3120

    PubMed  Google Scholar 

  88. Morley N, Clifford T, Salter L, Campbell S, Gould D, Curnow A (2005) The green tea polyphenol (−)-epigallocatechin gallate and green tea can protect human cellular DNA from ultraviolet and visible radiation-induced damage. Photodermatol Photoimmunol Photomed 21:15–22

    PubMed  CAS  Google Scholar 

  89. Skrzydlewska E, Ostrowska J, Farbiszewski R, Michalak K (2002) Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain. Phytomedicine 9:232–238

    PubMed  CAS  Google Scholar 

  90. Yokozawa T, Nakagawa T, Kitani K (2002) Antioxidative activity of green tea polyphenol in cholesterol-fed rats. J Agric Food Chem 50:3549–3552

    PubMed  CAS  Google Scholar 

  91. Zhang B, Osborne NN (2006) Oxidative-induced retinal degeneration is attenuated by epigallocatechin gallate. Brain Res 1124:176–187

    PubMed  CAS  Google Scholar 

  92. Siu AW, Lau MK, Cheng JS, Chow CK, Tam WC, Li KK, Lee DK, To TS, To CH, Do CW (2008) Glutamate-induced retinal lipid and protein damage: the protective effects of catechin. Neurosci Lett 432:193–197

    PubMed  CAS  Google Scholar 

  93. Zhang B, Rusciano D, Osborne NN (2008) Orally administered epigallocatechin gallate attenuates retinal neuronal death in vivo and light-induced apoptosis in vitro. Brain Res 1198:141–152

    PubMed  CAS  Google Scholar 

  94. Costa BL, Fawcett R, Li GY, Safa R, Osborne NN (2008) Orally administered epigallocatechin gallate attenuates light-induced photoreceptor damage. Brain Res Bull 76:412–423

    PubMed  Google Scholar 

  95. Osborne NN (2008) Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. Prog Brain Res 173:339–352

    PubMed  CAS  Google Scholar 

  96. Chan CM, Huang JH, Chiang HS, Wu WB, Lin HH, Hong JY, Hung CF (2010) Effects of (−)-epigallocatechin gallate on RPE cell migration and adhesion. Mol Vis 16:586–595

    PubMed  CAS  Google Scholar 

  97. Alex AF, Spitznas M, Tittel AP, Kurts C, Eter N (2010) Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol, and curcumin on proliferation of human retinal pigment epithelial cells in vitro. Curr Eye Res 35:1021–1033

    PubMed  CAS  Google Scholar 

  98. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    PubMed  Google Scholar 

  99. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    PubMed  CAS  Google Scholar 

  100. Shishodia S, Chaturvedi MM, Aggarwal BB (2007) Role of curcumin in cancer therapy. Curr Probl Cancer 31:243–305

    PubMed  Google Scholar 

  101. Rao CV (2007) Regulation of COX and LOX by curcumin. Adv Exp Med Biol 595:213–226

    PubMed  Google Scholar 

  102. Corson TW, Crews CM (2007) Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell 130:769–774

    PubMed  CAS  Google Scholar 

  103. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    PubMed  CAS  Google Scholar 

  104. Donoso LA, Kim D, Frost A, Callahan A, Hageman G (2006) The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 51:137–152

    PubMed  Google Scholar 

  105. Kern TS (2007) Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res 2007:95103

    PubMed  Google Scholar 

  106. Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV, Anderson RE (2009) Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med 46:672–679

    PubMed  CAS  Google Scholar 

  107. Kowluru RA, Kanwar M (2007) Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab (Lond) 4:8

    Google Scholar 

  108. Cos P, De Bruyne T, Hermans N, Apers S, Berghe DV, Vlietinck AJ (2004) Proanthocyanidins in health care: current and new trends. Curr Med Chem 11:1345–1359

    PubMed  CAS  Google Scholar 

  109. Steigerwalt R, Belcaro G, Cesarone MR, Di Renzo A, Grossi MG, Ricci A, Dugall M, Cacchio M, Schonlau F (2009) Pycnogenol improves microcirculation, retinal edema, and visual acuity in early diabetic retinopathy. J Ocul Pharmacol Ther 25:537–540

    PubMed  CAS  Google Scholar 

  110. Rohdewald P (2002) A review of the French maritime pine bark extract (pycnogenol), a herbal medication with a diverse clinical pharmacology. Int J Clin Pharmacol Ther 40:158–168

    PubMed  CAS  Google Scholar 

  111. Schonlau F, Rohdewald P (2001) Pycnogenol for diabetic retinopathy. A review. Int Ophthalmol 24:161–171

    PubMed  CAS  Google Scholar 

  112. Nishioka K, Hidaka T, Nakamura S, Umemura T, Jitsuiki D, Soga J, Goto C, Chayama K, Yoshizumi M, Higashi Y (2007) Pycnogenol, french maritime pine bark extract, augments endothelium-dependent vasodilation in humans. Hypertens Res 30:775–780

    PubMed  CAS  Google Scholar 

  113. Grimm T, Chovanova Z, Muchova J, Sumegova K, Liptakova A, Durackova Z, Hogger P (2006) Inhibition of NF-kappaB activation and MMP-9 secretion by plasma of human volunteers after ingestion of maritime pine bark extract (pycnogenol). J Inflamm (Lond) 3:1

    Google Scholar 

  114. Grimm T, Schafer A, Hogger P (2004) Antioxidant activity and inhibition of matrix metalloproteinases by metabolites of maritime pine bark extract (pycnogenol). Free Radic Biol Med 36:811–822

    PubMed  CAS  Google Scholar 

  115. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    PubMed  CAS  Google Scholar 

  116. King RE, Kent KD, Bomser JA (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact 151:143–149

    PubMed  CAS  Google Scholar 

  117. Packer L, Kraemer K, Rimbach G (2001) Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 17:888–895

    PubMed  CAS  Google Scholar 

  118. Ghibu S, Richard C, Vergely C, Zeller M, Cottin Y, Rochette L (2009) Antioxidant properties of an endogenous thiol: alpha-lipoic acid, useful in the prevention of cardiovascular diseases. J Cardiovasc Pharmacol 54:391–398

    PubMed  CAS  Google Scholar 

  119. Bartlett HE, Eperjesi F (2008) Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt 28:503–523

    PubMed  Google Scholar 

  120. Singh U, Jialal I (2008) Alpha-lipoic acid supplementation and diabetes. Nutr Rev 66:646–657

    PubMed  Google Scholar 

  121. Obrosova IG, Minchenko AG, Marinescu V, Fathallah L, Kennedy A, Stockert CM, Frank RN, Stevens MJ (2001) Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia 44:1102–1110

    PubMed  CAS  Google Scholar 

  122. Kowluru RA, Kowluru A, Chakrabarti S, Khan Z (2004) Potential contributory role of H-Ras, a small G-protein, in the development of retinopathy in diabetic rats. Diabetes 53:775–783

    PubMed  CAS  Google Scholar 

  123. Abiko T, Abiko A, Clermont AC, Shoelson B, Horio N, Takahashi J, Adamis AP, King GL, Bursell SE (2003) Characterization of retinal leukostasis and hemodynamics in insulin resistance and diabetes: role of oxidants and protein kinase-C activation. Diabetes 52:829–837

    PubMed  CAS  Google Scholar 

  124. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49:1006–1015

    PubMed  CAS  Google Scholar 

  125. Jain SK, Lim G (2000) Lipoic acid decreases lipid peroxidation and protein glycosylation and increases (Na(+) + K(+))- and Ca(++)-ATPase activities in high glucose-treated human erythrocytes. Free Radic Biol Med 29:1122–1128

    PubMed  CAS  Google Scholar 

  126. Kowluru RA, Odenbach S (2004) Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes 53:3233–3238

    PubMed  CAS  Google Scholar 

  127. Lin J, Bierhaus A, Bugert P, Dietrich N, Feng Y, Vom Hagen F, Nawroth P, Brownlee M, Hammes HP (2006) Effect of R-(+)-alpha-lipoic acid on experimental diabetic retinopathy. Diabetologia 49:1089–1096

    PubMed  CAS  Google Scholar 

  128. Arivazhagan P, Panneerselvam C (2004) Alpha-lipoic acid increases Na + K + ATPase activity and reduces lipofuscin accumulation in discrete brain regions of aged rats. Ann N Y Acad Sci 1019:350–354

    PubMed  CAS  Google Scholar 

  129. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403

    PubMed  CAS  Google Scholar 

  130. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    PubMed  CAS  Google Scholar 

  131. Gao X, Talalay P (2004) Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci USA 101:10446–10451

    PubMed  CAS  Google Scholar 

  132. Tanito M, Masutani H, Kim YC, Nishikawa M, Ohira A, Yodoi J (2005) Sulforaphane induces thioredoxin through the antioxidant-responsive element and attenuates retinal light damage in mice. Invest Ophthalmol Vis Sci 46:979–987

    PubMed  Google Scholar 

  133. Kong L, Tanito M, Huang Z, Li F, Zhou X, Zaharia A, Yodoi J, McGinnis JF, Cao W (2007) Delay of photoreceptor degeneration in tubby mouse by sulforaphane. J Neurochem 101:1041–1052

    PubMed  CAS  Google Scholar 

  134. Yang LP, Zhu XA, Tso MO (2007) Role of NF-kappaB and MAPKs in light-induced photoreceptor apoptosis. Invest Ophthalmol Vis Sci 48:4766–4776

    PubMed  Google Scholar 

  135. Muniz A, Villazana-Espinoza ET, Hatch AL, Trevino SG, Allen DM, Tsin AT (2007) A novel cone visual cycle in the cone-dominated retina. Exp Eye Res 85:175–184

    PubMed  CAS  Google Scholar 

  136. Perlman I, Barzilai D, Haim T, Schramek A (1983) Night vision in a case of vitamin A deficiency due to malabsorption. Br J Ophthalmol 67:37–42

    PubMed  CAS  Google Scholar 

  137. Kemp CM, Jacobson SG, Faulkner DJ, Walt RW (1988) Visual function and rhodopsin levels in humans with vitamin A deficiency. Exp Eye Res 46:185–197

    PubMed  CAS  Google Scholar 

  138. Fuchs A (1959) White spots of the fundus combined with night blindness and xerosis (uyemura’s syndrome). Am J Ophthalmol 48:101–103

    PubMed  CAS  Google Scholar 

  139. Zheng JZ, Xiao WJ, Liu SL, Xi JB, Wang XS (1987) Vitamin A metabolism in primary retinitis pigmentosa. Metab Pediatr Syst Ophthalmol 10:99–102

    PubMed  CAS  Google Scholar 

  140. Massoud WH, Bird AC, Perkins ES (1975) Plasma vitamin A and beta-carotene in retinitis pigmentosa. Br J Ophthalmol 59:200–204

    PubMed  CAS  Google Scholar 

  141. Jacobson SG, Cideciyan AV, Wright E, Wright AF (2001) Phenotypic marker for early disease detection in dominant late-onset retinal degeneration. Invest Ophthalmol Vis Sci 42:1882–1890

    PubMed  CAS  Google Scholar 

  142. Ayyagari R, Mandal MN, Karoukis AJ, Chen L, McLaren NC, Lichter M, Wong DT, Hitchcock PF, Caruso RC, Moroi SE, Maumenee IH, Sieving PA (2005) Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation. Invest Ophthalmol Vis Sci 46:3363–3371

    PubMed  Google Scholar 

  143. Sibulesky L, Hayes KC, Pronczuk A, Weigel-DiFranco C, Rosner B, Berson EL (1999) Safety of <7,500 RE (<25,000 IU) vitamin A daily in adults with retinitis pigmentosa. Am J Clin Nutr 69:656–663

    PubMed  CAS  Google Scholar 

  144. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761–772

    PubMed  CAS  Google Scholar 

  145. Meister A (1994) Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269:9397–9400

    PubMed  CAS  Google Scholar 

  146. Sinclair AJ, Girling AJ, Gray L, Lunec J, Barnett AH (1992) An investigation of the relationship between free radical activity and vitamin C metabolism in elderly diabetic subjects with retinopathy. Gerontology 38:268–274

    PubMed  CAS  Google Scholar 

  147. Rema M, Mohan V, Bhaskar A, Shanmugasundaram KR (1995) Does oxidant stress play a role in diabetic retinopathy. Indian J Ophthalmol 43:17–21

    PubMed  CAS  Google Scholar 

  148. Ceriello A, Quatraro A, Giugliano D (1992) New insights on non-enzymatic glycosylation may lead to therapeutic approaches for the prevention of diabetic complications. Diabet Med 9:297–299

    PubMed  CAS  Google Scholar 

  149. Davie SJ, Gould BJ, Yudkin JS (1992) Effect of vitamin C on glycosylation of proteins. Diabetes 41:167–173

    PubMed  CAS  Google Scholar 

  150. Cox BD, Butterfield WJ (1975) Vitamin C supplements and diabetic cutaneous capillary fragility. Br Med J 3:205

    PubMed  CAS  Google Scholar 

  151. Herrera E, Barbas C (2001) Vitamin E: action, metabolism and perspectives. J Physiol Biochem 57:43–56

    CAS  Google Scholar 

  152. Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    PubMed  CAS  Google Scholar 

  153. Stoyanovsky DA, Goldman R, Darrow RM, Organisciak DT, Kagan VE (1995) Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Curr Eye Res 14:181–189

    PubMed  CAS  Google Scholar 

  154. Taylor HR, Tikellis G, Robman LD, McCarty CA, McNeil JJ (2002) Vitamin E supplementation and macular degeneration: randomised controlled trial. BMJ 325:11

    PubMed  CAS  Google Scholar 

  155. Christen WG, Glynn RJ, Chew EY, Buring JE (2010) Vitamin E and age-related macular degeneration in a randomized trial of women. Ophthalmology 117:1163–1168

    PubMed  Google Scholar 

  156. Age-Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119:1417–1436

    Google Scholar 

  157. van Leeuwen R, Boekhoorn S, Vingerling JR, Witteman JC, Klaver CC, Hofman A, de Jong PT (2005) Dietary intake of antioxidants and risk of age-related macular degeneration. JAMA 294:3101–3107

    PubMed  Google Scholar 

  158. Moriarty-Craige SE, Adkison J, Lynn M, Gensler G, Bressler S, Jones DP, Sternberg P Jr (2005) Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. Am J Ophthalmol 140:1020–1026

    PubMed  CAS  Google Scholar 

  159. West S, Vitale S, Hallfrisch J, Munoz B, Muller D, Bressler S, Bressler NM (1994) Are antioxidants or supplements protective for age-related macular degeneration. Arch Ophthalmol 112:222–227

    PubMed  CAS  Google Scholar 

  160. Christen WG (1999) Antioxidant vitamins and age-related eye disease. Proc Assoc Am Physicians 111:16–21

    PubMed  CAS  Google Scholar 

  161. Teikari JM, Laatikainen L, Virtamo J, Haukka J, Rautalahti M, Liesto K, Albanes D, Taylor P, Heinonen OP (1998) Six-year supplementation with alpha-tocopherol and beta-carotene and age-related maculopathy. Acta Ophthalmol Scand 76:224–229

    PubMed  CAS  Google Scholar 

  162. Christen WG, Manson JE, Glynn RJ, Gaziano JM, Chew EY, Buring JE, Hennekens CH (2007) Beta carotene supplementation and age-related maculopathy in a randomized trial of US physicians. Arch Ophthalmol 125:333–339

    PubMed  CAS  Google Scholar 

  163. Kowluru RA, Chan PS (2007) Oxidative stress and diabetic retinopathy. Exp Diabetes Res 2007:43603

    PubMed  Google Scholar 

  164. Kowluru RA, Tang J, Kern TS (2001) Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes 50:1938–1942

    PubMed  CAS  Google Scholar 

  165. Kowluru RA, Koppolu P, Chakrabarti S, Chen S (2003) Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res 37:1169–1180

    PubMed  CAS  Google Scholar 

  166. Kowluru RA, Koppolu P (2002) Diabetes-induced activation of caspase-3 in retina: effect of antioxidant therapy. Free Radic Res 36:993–999

    PubMed  CAS  Google Scholar 

  167. Mayer-Davis EJ, Bell RA, Reboussin BA, Rushing J, Marshall JA, Hamman RF (1998) Antioxidant nutrient intake and diabetic retinopathy: the San Luis Valley diabetes study. Ophthalmology 105:2264–2270

    PubMed  CAS  Google Scholar 

  168. Millen AE, Klein R, Folsom AR, Stevens J, Palta M, Mares JA (2004) Relation between intake of vitamins C and E and risk of diabetic retinopathy in the atherosclerosis risk in communities study. Am J Clin Nutr 79:865–873

    PubMed  CAS  Google Scholar 

  169. Chen J, Stahl A, Hellstrom A, Smith LE (2011) Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr 23(2):173–178

    PubMed  Google Scholar 

  170. Hittner HM, Godio LB, Rudolph AJ, Adams JM, Garcia-Prats JA, Friedman Z, Kautz JA, Monaco WA (1981) Retrolental fibroplasia: efficacy of vitamin E in a double-blind clinical study of preterm infants. N Engl J Med 305:1365–1371

    PubMed  CAS  Google Scholar 

  171. Hittner HM, Rudolph AJ, Kretzer FL (1984) Suppression of severe retinopathy of prematurity with vitamin E supplementation. Ultrastructural mechanism of clinical efficacy. Ophthalmology 91:1512–1523

    PubMed  CAS  Google Scholar 

  172. Hittner HM, Speer ME, Rudolph AJ, Blifeld C, Chadda P, Holbein ME, Godio LB, Kretzer FL (1984) Retrolental fibroplasia and vitamin E in the preterm infant—comparison of oral versus intramuscular: oral administration. Pediatrics 73:238–249

    PubMed  CAS  Google Scholar 

  173. Hittner HM, Kretzer FL (1983) Vitamin E and retrolental fibroplasia: ultrastructural mechanism of clinical efficacy. Ciba Found Symp 101:165–185

    PubMed  CAS  Google Scholar 

  174. Finer NN, Peters KL, Schindler RF, Grant GD (1983) Vitamin E and retrolental fibroplasia: prevention of serious ocular sequelae. Ciba Found Symp 101:147–164

    PubMed  CAS  Google Scholar 

  175. Finer NN, Schindler RF, Grant G, Hill GB, Peters K (1982) Effect of intramuscular vitamin E on frequency and severity of retrolental fibroplasia. A controlled trial. Lancet 1:1087–1091

    PubMed  CAS  Google Scholar 

  176. Raju TN, Langenberg P, Bhutani V, Quinn GE (1997) Vitamin E prophylaxis to reduce retinopathy of prematurity: a reappraisal of published trials. J Pediatr 131:844–850

    PubMed  CAS  Google Scholar 

  177. Kretzer FL, Mehta RS, Johnson AT, Hunter DG, Brown ES, Hittner HM (1984) Vitamin E protects against retinopathy of prematurity through action on spindle cells. Nature 309:793–795

    PubMed  CAS  Google Scholar 

  178. Farrell PM (1979) Vitamin E deficiency in premature infants. J Pediatr 95:869–872

    PubMed  CAS  Google Scholar 

  179. Phelps DL, Rosenbaum AL, Isenberg SJ, Leake RD, Dorey FJ (1987) Tocopherol efficacy and safety for preventing retinopathy of prematurity: a randomized, controlled, double-masked trial. Pediatrics 79:489–500

    PubMed  CAS  Google Scholar 

  180. Johnson L, Bowen FW Jr, Abbasi S, Herrmann N, Weston M, Sacks L, Porat R, Stahl G, Peckham G, Delivoria-Papadopoulos M et al (1985) Relationship of prolonged pharmacologic serum levels of vitamin E to incidence of sepsis and necrotizing enterocolitis in infants with birth weight 1,500 grams or less. Pediatrics 75:619–638

    PubMed  CAS  Google Scholar 

  181. Johnson L, Quinn GE, Abbasi S, Gerdes J, Bowen FW, Bhutani V (1995) Severe retinopathy of prematurity in infants with birth weights less than 1250 grams: incidence and outcome of treatment with pharmacologic serum levels of vitamin E in addition to cryotherapy from 1985 to 1991. J Pediatr 127:632–639

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawajes A. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yu, M., Anderson, R.E., Mandal, N.A. (2012). Natural Compounds in Retinal Diseases. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_21

Download citation

Publish with us

Policies and ethics