Skip to main content

Long-Term Ex Situ Conservation of Biological Resources and the Role of Biological Resource Centers

  • Protocol
Book cover Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 368))

Abstract

The establishment and maintenance of biological resource centers (BRCs) requires careful attention to implementation of reliable preservation technologies and appropriate quality control to ensure that recovered cultures and other biological materials perform in the same way as the originally isolated culture or material. There are many types of BRC that vary both in the kinds of material they hold and in the purposes for which the materials are provided. All BRCs are expected to provide materials and information of an appropriate quality for their application and work to standards relevant to those applications. There are important industrial, biomedical, and conservation issues that can only be addressed through effective and efficient operation of BRCs in the long term. This requires a high degree of expertise in the maintenance and management of collections of biological materials at ultra-low temperatures, or as freezedried material, to secure their long-term integrity and relevance for future research, development, and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polge, C., Smith, A. U., and Parkes, S. (1949) Revival of spermatozoa after dehydration at low temperatures. Nature (London) 164, 166.

    Article  Google Scholar 

  2. Sakai, A. (1966) Survival of plant tissues at super-low temperatures. IV. Cell survival with rapid cooling and rewarming. Plant Physiol. 41, 1050–1054.

    Article  CAS  Google Scholar 

  3. Mutetwa, S. M. and James, E. R. (1984) Cryopreservation of plasmodium chabaudi. II. Cooling and warming rates. Cryobiology 21, 552–558.

    Article  CAS  Google Scholar 

  4. Stacey, G. N., Byrne, E., and Hawkins, J. R. (in press) DNA fingerprinting and characterisation of animal cell lines. In: Methods in Biotechnology, vol. 8, Animal Cell Biotechnology: Methods and Protocols, 2nd ed., (Poertner, R., ed.), Humana Press, Totowa, NJ.

    Google Scholar 

  5. Hebert, P. D., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003) Biological identifications through DNA barcodes. Proc. Biol. Sci. US 270, 313–321.

    Article  CAS  Google Scholar 

  6. Bingen, E. H., Denamur, E., and Elion, J. (1994) Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clin. Microbiol. Rev. 7, 311–327.

    CAS  Google Scholar 

  7. Stacey, G. N. (2002) Standardisation of cell lines. Dev. Biologicals 111, 259–272.

    CAS  Google Scholar 

  8. Hay, R. J. (1988) The seed stock concept and quality control for cell lines. Anal. Biochem. 171, 225–237.

    Article  CAS  Google Scholar 

  9. Stacey, G. N. (2004) Validation of cell culture media components. Human Fertility 7, 113–118.

    Article  Google Scholar 

  10. Harding, K. (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25, 3–22.

    Google Scholar 

  11. Stacey, G. N., Benson, E. E., and Lynch, P. T. (1999) Plant gene-banking: agriculture, biotechnology, and conservation. Agro-Food-Industry Hi-Tech. 10, 9–14.

    Google Scholar 

  12. Stacey, A. and Stacey, G. N. (2000) Routine quality control testing for cell cultures. In: Methods in Molecular Medicine, vol. 24, Antiviral Methods and Protocols, (Kinchington, D. and Schinazi, R. E, eds.), Humana Press, Totowa, NJ, pp. 27–40.

    Google Scholar 

  13. McLean, C. (2000) Contamination detection in animal cell culture. In: Encyclopedia of Cell Technology, (Spier, R., editor in chief), Wiley Interscience, New York, NY, pp. 586–609.

    Google Scholar 

  14. World Federation for Culture Collections (1999) Guidelines for the establishment and operation of collections of cultures of microorganisms, 2nd ed., 1999 (ISBN 92-9109-0433).

    Google Scholar 

  15. Coecke, S., Balls, M., Bowe, G., et al. (2005) Guidance on good cell culture practice. A report of the second ECVAM task force on good cell culture practice. ATLA 33, 1–27.

    Google Scholar 

  16. Budapest Treaty Regulations (1977) Budapest Treaty on the International Recognition of the Deposit of microorganisms for the Purposes of Patent Procedure. 277(E), World Intellectual Property Organisation, Geneva, Switzerland, 1981.

    Google Scholar 

  17. EU (2004) Directive 2004/23/EC of the European Parliament and the Council of 31 March 2004 on setting standards of quality and safety for the donation, processing, preservation, storage and distribution of human tissues and cells. Official Journal of the European Union, L102; 48–58.

    Google Scholar 

  18. World Health Organization expert committee on biological standardization and executive board (ECBS) (2005) Requirements for the use of animal cells as in vitro substrates for the production of biologicals. Technical Report Series 927, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  19. ICH (1997) Human medicines evaluation unit: ICH topic Q 5 D-quality of biotechnological products: derivation and characterisation of cell substrates used for production of biotechnological/biological products. European Agency for the Evaluation of Medicinal Products, ICH Technical Co-ordination, London, 1997. (http://www.eudra.org/emea.html).

    Google Scholar 

  20. OECD (2004) Draft advisory document of the OECD working group on the application of GLP principles to in vitro studies. OECD, Paris, France, pp. 18.

    Google Scholar 

  21. Stacey, G. N. (2004) Cell line banks in biotechnology and regulatory affairs. In: Life in the Frozen State, (Fuller, B., Benson E. E., and Lane, N., eds.), CRC Press LLC, Boca Ranton, FL.

    Google Scholar 

  22. Rudge, R. H. (1991) Maintenance of bacteria by freeze-drying. In: Maintenance of microorganisms and cell cultures, 2nd ed., (Kirsop, B. E. and Doyle, A., eds.), Academic Press, London, UK, pp. 31–44.

    Google Scholar 

  23. Hubalek, Z. and Kockova-Kratochvilova, A. (1982) Long term preservation of yeast cultures in liquid nitrogen. Folia Microbiologia 27, 242–244.

    Article  CAS  Google Scholar 

  24. Smith, D. and Onions, A. H. S. (1994) The Preservation and Maintenance of Living Fung, 2nd ed. CAB International, Wallingford, UK.

    Google Scholar 

  25. Day, J. G., Watanabe, M. M., Morris, G. J., Fleck, R.A., and McLellan, M. R. (1997) Long-term viability of preserved eukaryotic algae. J. Appl. Phycol. 9, 121–127.

    Article  Google Scholar 

  26. Walters, C., Wheeler, L., and Stanwood, P. (2004) Longevity of cryogenically stored seeds. Cryobiology 48, 229–244.

    Article  Google Scholar 

  27. Broxmeyer, H. E., Srour, E. E, Hangoc, G., Cooper, S., Anderson, S. A., and Bodine, D. M. (2003) High-efficiency recovery of functional hematopoietic pro-genitor and stem cells from human cord blood cryopreserved for 15 years. Proc. Natl. Acad. Sci. USA 100, 5645–5650.

    Article  Google Scholar 

  28. Spurr, E. E., Wiggins, N. E., Marsden, K. A., Lowenthal, R. M., and Ragg, S. J. (2002) Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5–14 years) cryostorage. Cryobiology 44, 210–217.

    Article  Google Scholar 

  29. Leibo, S. P., Semple, M. E., and Kroetsch, T. G. (1994) In-vitro fertilization of oocytes by 37-year-old cryopreserved bovine spermatozoa. Theriogenology 42, 1257–1262.

    Article  Google Scholar 

  30. Rofeim, O. and Gilbert, B. R. (2005) Long-term cryopreservation of human spermatozoa. Fertility and Sterility 84, 536–537.

    Article  Google Scholar 

  31. Horne, G., Atkinson, A. D., Pease, E. H. E., Logue, J. P., Brison, D. R., and Lieberman, B. A. (2004) Live birth with semen cryopreserved for 21 years prior to cancer treatment. Human Reproduction 19, 1448–1449.

    Article  CAS  Google Scholar 

  32. Chern, H. T. and Scharp, D. W. (1995) Successful long-term cryopreservation of highly purified canine islets. Eur. Surgical Res. 27, 167–175.

    Article  CAS  Google Scholar 

  33. Salamon, S. and Vissier, D. (1974) Fertility after surgical insemination with frozen boar semen. Aus. J. Biol. Sci. 27, 499–504.

    CAS  Google Scholar 

  34. Fogarty, N. M., Maxwell, W. M. C., Eppleston, J., and Evans, G. (2000) The viability of transferred sheep embryos after long-term cryopreservation. Repro. Fert. Dev. 12, 31–37.

    Article  CAS  Google Scholar 

  35. Tedder, R. S., Zuckerman, M. A., Goldstone, A. H., et al. (1995) Hepatitis B transmission from a contaminated cryopreservation tank. Lancet 346, 137–140.

    Article  CAS  Google Scholar 

  36. Fountain, D., Ralston, M., Higgins, N., et al. (1997) Liquid nitrogen freezers: a potential source of microbial contamination of hematopoietic stem cell components. Transfusion 37, 585–591.

    Article  CAS  Google Scholar 

  37. Glenister, P. H., Whittingham, D. G., and Lyon, M. F. (1984) Further studies on the effect of radiation during storage of frozen 8-cell mouse embryos at-196 degrees J. Reprod. Fert. 70, 229–234.

    Article  CAS  Google Scholar 

  38. Stacey, G. N. (1999) Control of contamination in cell and tissue banks. CryoLetters 20, 141–146.

    Google Scholar 

  39. Streit, S., Bock, F., Pirk, W., and Tautz, J. (2003) Automatic life-long monitoring of individual insect behaviour now possible. Zoology (Jena) 106, 169–171.

    Google Scholar 

  40. Kirkwood, T. B. L. (1984) Design and analysis of accelerated degradation tests for the stability of biological standards, III Principles of design. J. Biol. Stand. 12, 215–224.

    Article  CAS  Google Scholar 

  41. Ratajczak, M. Z., Kegnow, D. A., Kuczynski, W. I., Ratajczak, J., and Gewitz, A. M. (1994) The storage of cells from different tumor lines in a mechanical freezer at −80 degrees Comparison to cryopreservation in liquid nitrogen. Mater. Med. Pol. 26, 69–72.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stacey, G.N., Day, J.G. (2007). Long-Term Ex Situ Conservation of Biological Resources and the Role of Biological Resource Centers. In: Day, J.G., Stacey, G.N. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology™, vol 368. Humana Press. https://doi.org/10.1007/978-1-59745-362-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-362-2_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-377-0

  • Online ISBN: 978-1-59745-362-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics