Skip to main content

Augmentation of Cell-Mediated Immunity to Virus

  • Chapter
Cellular Drug Delivery

Abstract

Although most infections due to self-replicating pathogens such as bacteria and fungi can be treated by drug therapy and cleared by subsequent host antibody responses, viral infection may require additional defense mechanisms known as cell-mediated immunity. Unlike bacteria and fungi, virus replication requires host-cell machinery, including mechanisms of DNA, RNA, and protein synthesis. Therefore, after initial viral infection of host cells and tissues, viral RNA or DNA may persist in infected but viable cells. At an opportune time, viral replication is initiated, and the infected host cells are lysed and viral progeny released. These processes are observed clinically as an active, or recurring, viral infection and pathogenesis in the host. Although antibody, or humoral, responses elicited during the first exposure (primary infection) may help clear the reactivated virus, such mechanisms may develop well after severe consequences to the host have occurred. Therefore, it is important to control viral reactivation by selectively eliminating virus-infected cells, which is a specialized function of cell-mediated immunity. In order to elicit a cell-mediated response, select fragments of viral antigens must be presented on the surface of infected cells, along with major histocompatibility complex (MHC) molecules. MHC molecules are polymorphic glycoproteins that bind antigen and mediate migration of the antigen to the cell surface to be presented to immune cells. The induction of cell-mediated responses, which can directly or indirectly kill virus-infected cells, is critical in clearing viral infection from the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simmons A. Clinical manifestations and treatment considerations of herpes simplex virus infection. J Infect Dis 2002;186 (Suppl)1:S71—S77.

    Google Scholar 

  2. Whitley RJ, Roizman B. Herpes simplex viruses: is a vaccine tenable? J Clin Invest 2002; 110: 145–151.

    PubMed  CAS  Google Scholar 

  3. Morrison LA. Vaccines against genital herpes: progress and limitations. Drugs 2002; 62: 1119–1129.

    Article  PubMed  Google Scholar 

  4. Paul WE. Fundamental immunology. New York, Raven Press, 1993:xvii;1490.

    Google Scholar 

  5. Ho RJ, Gibaldi M. Antibodies and derivatives. In: Ho RJ, Gibaldi M, eds. Biotechnology and Biopharmaceuticals. Hoboken, NJ, Wiley-Liss, 2003.

    Chapter  Google Scholar 

  6. Lachmann PJ, Davies A. Complement and immunity to viruses. Immunol Rev 1997; 159: 69–77.

    Article  PubMed  CAS  Google Scholar 

  7. Welsh RM, Lin MY, Lohman BL, Varga SM, Zarozinski CC, Selin LK. Alpha beta and gamma delta T-cell networks and their roles in natural resistance to viral infections. Immunol Rev 1997; 159: 79–93.

    Article  PubMed  CAS  Google Scholar 

  8. Ramshaw IA, Ramsay AJ, Karupiah G, et al. Cytokines and immunity to viral infections. Immunol Rev 1997; 159: 119–35.

    Article  PubMed  CAS  Google Scholar 

  9. Doherty PC, Topham DJ, Tripp RA, et al. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev 1997; 159: 105–117.

    Article  PubMed  CAS  Google Scholar 

  10. Ada GL, Jones PD. The immune response to influenza infection. Curr Top Microbiol Immunol 1986; 128: 1–54.

    Article  PubMed  CAS  Google Scholar 

  11. Ghendon Y. The immune response to influenza vaccines. Acta Virol 1990; 34: 295–304.

    PubMed  CAS  Google Scholar 

  12. Vogel FR. Improving vaccine performance with adjuvants. Clin Infect Dis 2000;30(Suppl)3:5266-S270.

    Google Scholar 

  13. Rao M, Alving CR. Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells. mangala.rao@na.amedd.army.mil. Adv Drug Deliv Rev 2000; 41: 171–188.

    Article  PubMed  CAS  Google Scholar 

  14. Zheng L, Huang XL, Fan Z, et al. Delivery of liposome-encapsulated HIV type 1 proteins to human dendritic cells for stimulation of HIV type 1-specific memory cytotoxic T lymphocyte responses. AIDS Res Hum Retroviruses 1999; 15: 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  15. Ahmad N, Khan MA, Owais M. Liposome mediated antigen delivery leads to induction of CD8+ T lymphocyte and antibody responses against the V3 loop region of HIV gp120. Cell Immunol 2001; 210: 49–55.

    Article  PubMed  CAS  Google Scholar 

  16. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90: 667–680.

    Article  PubMed  CAS  Google Scholar 

  17. Ryan EJ, Daly LM, Mills KH. Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol 2001; 19: 293–304.

    Article  PubMed  CAS  Google Scholar 

  18. Mason HS, Warzecha H, Mor T, Arntzen CJ. Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 2002; 8: 324–329.

    Article  PubMed  CAS  Google Scholar 

  19. Singh M, O’Hagan DT. Recent advances in vaccine adjuvants. Pharm Res 2002; 19: 715–728.

    Article  PubMed  CAS  Google Scholar 

  20. Brayden DJ, Baird AW. Microparticle vaccine approaches to stimulate mucosal immunisation. Microbes Infect 2001; 3: 867–876.

    Article  PubMed  CAS  Google Scholar 

  21. Miller RL, Gerster JF, Owens ML, et al. Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol 1999; 21: 1–14.

    Article  PubMed  CAS  Google Scholar 

  22. Hengge UR, Benninghoff B, Ruzicka T, Goos M. Topical immunomodulators-progress towards treating inflammation, infection, and cancer. Lancet Infect Dis 2001; 1: 189–198.

    Article  PubMed  CAS  Google Scholar 

  23. Miller RL, Tomai MA, Harrison CJ, Bernstein DI. Immunomodulation as a treatment strategy for genital herpes: review of the evidence. Int Immunopharmacol 2002; 2: 443–451.

    Article  PubMed  CAS  Google Scholar 

  24. Rudy SJ. Imiquimod (Aldara): modifying the immune response. Dermatol Nurs 2002; 14: 268–270.

    PubMed  Google Scholar 

  25. Fynan EF, Webster RG, Fuller DH, et al. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci USA 1993; 90: 11478–11482.

    Article  PubMed  CAS  Google Scholar 

  26. Ellis RW. Technologies for the design, discovery, formulation and administration of vaccines. Vaccine 2001; 19: 2681–2687.

    Article  PubMed  CAS  Google Scholar 

  27. Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR. Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 2000; 6: 1403–1406.

    Article  PubMed  CAS  Google Scholar 

  28. Buchan GS, Young SL, Lockhart EA, et al. Targeting early events in T cell activation to construct improved vaccines. Mol Immunol 2000; 37: 545–552.

    Article  PubMed  CAS  Google Scholar 

  29. Monahan SJ, Salgaller ML. Viral vectors for gene transfer into antigen presenting cells. Curr Opin Mol Ther 1999; 1: 558–564.

    PubMed  CAS  Google Scholar 

  30. Morrow CD, Novak MJ, Ansardi DC, et al. Recombinant viruses as vectors for mucosal immunity. Curr Top Microbiol Immunol 1999; 236: 255–273.

    Article  PubMed  CAS  Google Scholar 

  31. Bramson JL, Wan YH. The efficacy of genetic vaccination is dependent upon the nature of the vector system and antigen. Expert Opin Biol Ther 2002; 2: 75–85.

    Article  PubMed  CAS  Google Scholar 

  32. Foged C, Sundblad A, Hovgaard L. Targeting vaccines to dendritic cells. Pharm Res 2002; 19: 229–238.

    Article  PubMed  CAS  Google Scholar 

  33. Gould-Fogerite S, Mannino RJ, Margolis D. Cochleate delivery vehicles: applications to gene therapy. Drug Deliv Tech 2003; 3: 40–47.

    CAS  Google Scholar 

  34. BenMohamed L, Wechsler SL, Nesburn AB. Lipopeptide vaccines: yesterday, today, and tomorrow. Lancet Infect Dis 2002; 2: 425–431.

    Article  PubMed  CAS  Google Scholar 

  35. Barber BH. The immunotargeting approach to adjuvant-independent subunit vaccine design. Semin Immunol 1997; 9: 293–301.

    Article  PubMed  CAS  Google Scholar 

  36. Guyre PM, Graziano RF, Goldstein J, et al. Increased potency of Fc-receptor-targeted antigens. Cancer Immunol Immunother 1997; 45: 146–148.

    Article  PubMed  CAS  Google Scholar 

  37. Bot AI, Smith DJ, Bot S, et al. Receptor-mediated targeting of spray-dried lipid particles coformulated with immunoglobulin and loaded with a prototype vaccine. Pharm Res 2001; 18: 971–979.

    Article  PubMed  CAS  Google Scholar 

  38. Moingeon P, de Taisne C, Almond J. Delivery technologies for human vaccines. Br Med Bull 2002; 62: 29–44.

    Article  PubMed  Google Scholar 

  39. Eriksson K, Holmgren J. Recent advances in mucosal vaccines and adjuvants. Curr Opin Immunol 2002; 14: 666–672.

    Article  PubMed  CAS  Google Scholar 

  40. Chu RS, Targoni OS, Krieg AM, et al. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Thl) immunity. J Exp Med 1997; 186: 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  41. Krieg AM, Davis HL. Enhancing vaccines with immune stimulatory CpG DNA. Curr Opin Mol Ther 2001; 3: 15–24.

    PubMed  CAS  Google Scholar 

  42. Stern BV, Boehm BO, Tary-Lehmann M. Vaccination with tumor peptide in CpG adjuvant protects via IFN-gamma-dependent CD4 cell immunity. J Immunol 2002; 168: 6099–6105.

    PubMed  CAS  Google Scholar 

  43. Baca-Estrada ME, Foldvari M, Babiuk SL, Babiuk LA. Vaccine delivery: lipid-based delivery systems. J Biotechnol 2000; 83: 91–104.

    Article  PubMed  CAS  Google Scholar 

  44. Brazolot Milian CL, Weeratna R, Krieg AM, CpG DNA can induce strong Thl humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci USA 1998; 95: 15553–15558.

    Google Scholar 

  45. Weeratna RD, Brazolot Milian CL, McCluskie MJ, Davis HL. CpG ODN can re-direct the Th bias of established Th2 immune responses in adult and young mice. FEMS Immunol Med Microbiol 2001; 32: 65–71.

    Google Scholar 

  46. Gallichan WS, Woolstencroft RN, Guarasci T, et al. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol 2001; 166: 3451–3457.

    PubMed  CAS  Google Scholar 

  47. Kersten GF, Crommelin DJ. Liposomes and ISCOMS as vaccine formulations. Biochim Biophys Acta 1995; 1241: 117–138.

    Article  PubMed  Google Scholar 

  48. Lian T, Bui T, Ho RJ. Formulation of HIV-envelope protein with lipid vesicles expressing ganglioside GM1 associated to cholera toxin B enhances mucosal immune responses. Vaccine 1999; 18: 604–611.

    Article  PubMed  CAS  Google Scholar 

  49. Mandal M, Lee KD. Listeriolysin 0-liposome-mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection. Biochim Biophys Acta 2002; 1563: 7–17.

    Article  PubMed  CAS  Google Scholar 

  50. Bui T, Dykers T, Hu SL, Faltynek CR, Ho RJ. Effect of MTP-PE liposomes and interleukin7 on induction of antibody and cell-mediated immune responses to a recombinant HIV-envelope protein. J Acquir Immune Defic Syndr 1994; 7: 799–806.

    PubMed  CAS  Google Scholar 

  51. Ho RJ, Burke RL, Merigan TC. Antigen-presenting liposomes are effective in treatment of recurrent herpes simplex virus genitalia in guinea pigs. J Virol 1989; 63: 2951–2958.

    PubMed  CAS  Google Scholar 

  52. Ho RJ, Burke RL, Merigan TC. Physical and biological characterization of antigen presenting liposome formulations: relative efficacy for the treatment of recurrent genital HSV-2 in guinea pigs. Antiviral Res 1990; 13: 187–199.

    Article  PubMed  CAS  Google Scholar 

  53. Ho RJ, Burke RL, Merigan TC. Liposome-formulated interleukin-2 as an adjuvant of recombinant HSV glycoprotein gD for the treatment of recurrent genital HSV-2 in guinea-pigs. Vaccine 1992; 10: 209–213.

    Article  PubMed  CAS  Google Scholar 

  54. Ho RJ, Burke RL, Merigan TC. Disposition of antigen-presenting liposomes in vivo: effect on presentation of herpes simplex virus antigen rgD. Vaccine 1994; 12: 235–242.

    Article  PubMed  CAS  Google Scholar 

  55. Ambrosch F, Wiedermann G, Jonas S, et al. Immunogenicity and protectivity of a new liposomal hepatitis A vaccine. Vaccine 1997; 15: 1209–1213.

    Article  PubMed  CAS  Google Scholar 

  56. Gluck R, Metcalfe IC. New technology platforms in the development of vaccines for the future. Vaccine 2002;20(Suppl 5):B 10-B16.

    Google Scholar 

  57. Evans TG, McElrath MJ, Matthews T, et al. QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immunization in humans. Vaccine 2001; 19: 2080–2091.

    Article  PubMed  CAS  Google Scholar 

  58. Kersten GF, Crommelin DJ. Liposomes and ISCOMs. Vaccine 2003; 21: 915–920.

    Article  PubMed  CAS  Google Scholar 

  59. Behboudi S, Morein B, Villacres-Eriksson MC. Quillaja saponin formulations that stimulate proinflammatory cytokines elicit a potent acquired cell-mediated immunity. Scand J Immunol 1999; 50: 371–377.

    Article  PubMed  CAS  Google Scholar 

  60. Morein B, Villacres-Eriksson M, Lovgren-Bengtsson K. Iscom, a delivery system for parenteral and mucosal vaccination. Dev Biol Stand 1998; 92: 33–39.

    PubMed  CAS  Google Scholar 

  61. Hilleman MR, Woodhour AF, Friedman A, Phelps AH. Studies for safety of adjuvant 65. Ann Allergy 1972; 30: 477–483.

    PubMed  CAS  Google Scholar 

  62. Hilleman MR, Woodhour A, Friedman A, Weibel RE, Stokes J, Jr. The clinical application of adjuvant 65. Ann Allergy 1972; 30: 152–158.

    PubMed  CAS  Google Scholar 

  63. Ott G, Barchfeld GL, Chernoff D, Radhakrishnan R, van Hoogevest P, Van Nest G. MF59. Design and evaluation of a safe and potent adjuvant for human vaccines. Pharm Biotechnol 1995; 6: 277–296.

    Article  PubMed  CAS  Google Scholar 

  64. Graham BS, Keefer MC, McElrath MJ, et al. Safety and immunogenicity of a candidate HIV-1 vaccine in healthy adults: recombinant glycoprotein (rgp) 120. A randomized, double-blind trial. NIAID AIDS Vaccine Evaluation Group. Ann Intern Med 1996; 125: 270–279.

    PubMed  CAS  Google Scholar 

  65. Bernstein DI, Schleiss MR, Berencsi K, et al. Effect of previous or simultaneous immunization with canarypox expressing cytomegalovirus (CMV) glycoprotein B (gB) on response to subunit gB vaccine plus MF59 in healthy CMV-seronegative adults. J Infect Dis 2002; 185: 686–690.

    Article  PubMed  CAS  Google Scholar 

  66. Keefer MC, Graham BS, McElrath MJ, et al. Safety and immunogenicity of Env 2–3, a human immunodeficiency virus type 1 candidate vaccine, in combination with a novel adjuvant, MTP- PE/MF59. NIAID AIDS Vaccine Evaluation Group. AIDS Res Hum Retroviruses 1996; 12: 683–693.

    Article  PubMed  CAS  Google Scholar 

  67. Byars NE, Nakano G, Welch M, et al. Improvement of hepatitis B vaccine by the use of a new adjuvant. Vaccine 1991; 9: 309–318.

    Article  PubMed  CAS  Google Scholar 

  68. Byars NE, Allison AC, Harmon MW, Kendal AP. Enhancement of antibody responses to influenza B virus haemagglutinin by use of a new adjuvant formulation. Vaccine 1990; 8: 49–56.

    Article  PubMed  CAS  Google Scholar 

  69. Murphey-Corb M, Martin LN, Davison-Fairburn B, et al. A formalin-inactivated whole SIV vaccine confers protection in macaques. Science 1989; 246: 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  70. Byars NE, Fraser-Smith EB, Pecyk RA, et al. Vaccinating guinea pigs with recombinant glycoprotein D of herpes simplex virus in an efficacious adjuvant formulation elicits protection against vaginal infection. Vaccine 1994; 12: 200–209.

    Article  PubMed  CAS  Google Scholar 

  71. Dong P, Brunn C, Ho RJ. Cytokines as vaccine adjuvants. Current status and potential applications. Pharm Biotechnol 1995; 6: 625–643.

    Article  PubMed  CAS  Google Scholar 

  72. Ho RJ, Merigan TC. Interleukin-2: A potentially useful vaccine adjuvant. In: Spriggs DR, Koff WC, eds. Topics in Vaccine Ajuvant Research. Boca Raton, FL, CRC Press, 1991.

    Google Scholar 

  73. Hazama M, Mayumi-Aono A, Asakawa N, et al. Adjuvant-independent enhanced immune responses to recombinant herpes simplex virus type 1 glycoprotein D by fusion with biologically active interleukin-2. Vaccine 1993; 11: 629–636.

    Article  PubMed  CAS  Google Scholar 

  74. Wiryana P, Bui T, Faltynek CR, Ho RJ. Augmentation of cell-mediated immunotherapy against herpes simplex virus by interleukins: comparison of in vivo effects of IL-2 and IL-7 on adoptively transferred T cells. Vaccine 1997; 15: 561–563.

    Article  PubMed  CAS  Google Scholar 

  75. Mitsuyasu R. Immune therapy: non-highly active antiretroviral therapy management of human immunodeficiency virus-infected patients. J Infect Dis 2002; 185 (Suppl 2): S115 - S122.

    Article  PubMed  CAS  Google Scholar 

  76. Gherardi MM, Ramirez JC, Esteban M. Towards a new generation of vaccines: the cytokine IL-12 as an adjuvant to enhance cellular immune responses to pathogens during prime-booster vaccination regimens. Histol Histopathol 2001; 16: 655–667.

    PubMed  CAS  Google Scholar 

  77. van der Meide PH, Villinger F, Ansari AA, et al. Stimulation of both humoral and cellular immune responses to HIV-1 gp120 by interleukin-12 in Rhesus macaques. Vaccine 2002; 20: 2296–2302.

    Article  PubMed  Google Scholar 

  78. Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA 2001; 98: 11539–11544.

    Article  PubMed  CAS  Google Scholar 

  79. Lauterslager TG, Florack DE, van der Wal TJ, et al. Oral immunisation of naive and primed animals with transgenic potato tubers expressing LT-B. Vaccine 2001; 19: 2749–2755.

    Article  PubMed  CAS  Google Scholar 

  80. Jones DH, Clegg JC, Farrar GH. Oral delivery of micro-encapsulated DNA vaccines. Dev Biol Stand 1998; 92: 149–155.

    PubMed  CAS  Google Scholar 

  81. Vajdy M, O’Hagan DT. Microparticles for intranasal immunization. Adv Drug Deliv Rev 2001; 51: 127–141.

    Article  PubMed  CAS  Google Scholar 

  82. Sasaki S, Sumino K, Hamajima K, et al. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J Virol 1998; 72: 4931–4939.

    PubMed  CAS  Google Scholar 

  83. Newman MJ, Wu JY, Gardner BH, et al. Saponin adjuvant induction of ovalbumin-specific CD8+ cytotoxic T lymphocyte responses. J Immunol 1992; 148: 2357–2362.

    PubMed  CAS  Google Scholar 

  84. Wu JY, Gardner BH, Murphy CI, et al. Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol 1992; 148: 1519–1525.

    PubMed  CAS  Google Scholar 

  85. Newman MJ, Munroe KJ, Anderson CA, et al. Induction of antigen-specific killer T lymphocyte responses using subunit SIVmac251 gag and env vaccines containing QS-21 saponin adjuvant. AIDS Res Hum Retroviruses 1994; 10: 853–861.

    PubMed  CAS  Google Scholar 

  86. Yamamoto H, Miller MD, Tsubota H, et al. Studies of cloned simian immunodeficiency virus-specific T lymphocytes. gag-specific cytotoxic T lymphocytes exhibit a restricted epitope specificity. J Immunol 1990; 144: 3385–3391.

    PubMed  CAS  Google Scholar 

  87. Windon RG, Chaplin PJ, McWaters P, et al. Local immune responses to influenza antigen are synergistically enhanced by the adjuvant ISCOMATRIX. Vaccine 2001; 20: 490–497.

    Article  PubMed  CAS  Google Scholar 

  88. Sjolander S, Drane D, Davis R, Beezum L, Pearse M, Cox J. Intranasal immunisation with influenza-ISCOM induces strong mucosal as well as systemic antibody and cytotoxic T-lymphocyte responses. Vaccine 2001; 19: 4072–4080.

    Article  PubMed  CAS  Google Scholar 

  89. Mohamedi SA, Heath AW, Jennings R. A comparison of oral and parenteral routes for therapeutic vaccination with HSV-2 ISCOMs in mice; cytokine profiles, antibody responses and protection. Antiviral Res 2001; 49: 83–99.

    Article  PubMed  CAS  Google Scholar 

  90. Simms JR, Heath AW, Jennings R. Use of herpes simplex virus (HSV) type 1 ISCOMS 703 vaccine for prophylactic and therapeutic treatment of primary and recurrent HSV-2 infection in guinea pigs. J Infect Dis 2000; 181: 1240–1248.

    Article  PubMed  CAS  Google Scholar 

  91. Polakos NK, Drane D, Cox J, et al. Characterization of hepatitis C virus core-specific immune responses primed in rhesus macaques by a nonclassical ISCOM vaccine. J Immunol 2001; 166: 3589–3598.

    PubMed  CAS  Google Scholar 

  92. Qiao M, Murata K, Davis AR, et al. Hepatitis C virus-like particles combined with novel adjuvant systems enhance virus-specific immune responses. Hepatology 2003; 37: 52–59.

    Article  PubMed  CAS  Google Scholar 

  93. Guan XJ, Wu YZ, Jia ZC, et al. Construction and characterization of an experimental ISCOMS-based hepatitis B polypeptide vaccine. World J Gastroenterol 2002; 8: 294–297.

    PubMed  CAS  Google Scholar 

  94. Marx PA, Pedersen NC, Lerche NW, et al. Prevention of simian acquired immune deficiency syndrome with a formalin-inactivated type D retrovirus vaccine. J Virol 1986; 60: 431–435.

    PubMed  CAS  Google Scholar 

  95. Zhou S, Liao X, Li X, et al. Poly-D,L-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. J Control Release 2003; 86: 195–205.

    Article  PubMed  CAS  Google Scholar 

  96. Moss B. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 1996; 93: 11341–11348.

    Article  PubMed  CAS  Google Scholar 

  97. Paoletti E. Applications of pox virus vectors to vaccination: an update. Proc Natl Acad Sci USA 1996; 93: 11349–11353.

    Article  PubMed  CAS  Google Scholar 

  98. Davis AR, Kostek B, Mason BB, et al. Expression of hepatitis B surface antigen with a recombinant adenovirus. Proc Natl Acad Sci USA 1985; 82: 7560–7564.

    Article  PubMed  CAS  Google Scholar 

  99. Xiang ZQ, Yang Y, Wilson JM, Ertl HC. A replication-defective human adenovirus recombinant serves as a highly efficacious vaccine carrier. Virology 1996; 219: 220–227.

    Article  PubMed  CAS  Google Scholar 

  100. Tubulekas I, Berglund P, Fleeton M, Liljestrom P. Alphavirus expression vectors and their use as recombinant vaccines: a minireview. Gene 1997; 190: 191–195.

    Article  PubMed  CAS  Google Scholar 

  101. Lundstrom K. Alphavirus vectors for gene therapy applications. Curr Gene Ther 2001; 1: 19–29.

    Article  PubMed  CAS  Google Scholar 

  102. Manning WC, Paliard X, Zhou S, et al. Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J Virol 1997; 71: 7960–7962.

    PubMed  CAS  Google Scholar 

  103. Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18: 19–39.

    Article  PubMed  CAS  Google Scholar 

  104. Clark KR, Johnson PR. Gene delivery of vaccines for infectious disease. Curr Opin Mol Ther 2001; 3: 375–384.

    PubMed  CAS  Google Scholar 

  105. Crotty S, Miller CJ, Lohman BL, et al. Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. J Virol 2001; 75: 7435–7452.

    Article  PubMed  CAS  Google Scholar 

  106. Monath TP. Prospects for development of a vaccine against the West Nile virus. Ann NY Acad Sci 2001; 951: 1–12.

    Article  PubMed  CAS  Google Scholar 

  107. Russmann H, Shams H, Poblete F, Fu Y, Galan JE, Donis RO. Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 1998; 281: 565–568.

    Article  PubMed  CAS  Google Scholar 

  108. Killeen K, Spriggs D, Mekalanos J. Bacterial mucosal vaccines: Vibrio cholerae as a live attenuated vaccine/vector paradigm. Curr Top Microbiol Immunol 1999; 236: 237–254.

    Article  PubMed  CAS  Google Scholar 

  109. Medina E, Guzman CA. Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine 2001; 19: 1573–1580.

    Article  PubMed  CAS  Google Scholar 

  110. Lieberman J, Frankel FR. Engineered Listeria monocytogenes as an AIDS vaccine. Vaccine 2002; 20: 2007–2010.

    Article  PubMed  CAS  Google Scholar 

  111. Lindberg AA. The history of live bacterial vaccines. Dev Biol Stand 1995; 84: 211–219.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Woodahl, E.L., Ho, R.J.Y. (2004). Augmentation of Cell-Mediated Immunity to Virus. In: Lu, D.R., Øie, S. (eds) Cellular Drug Delivery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-745-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-745-1_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-455-5

  • Online ISBN: 978-1-59259-745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics