Skip to main content

Using SAAS-CNV to Detect and Characterize Somatic Copy Number Alterations in Cancer Genomes from Next Generation Sequencing and SNP Array Data

  • Protocol
  • First Online:
Copy Number Variants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1833))

Abstract

Somatic copy number alterations (SCNAs) are profound in cancer genomes at different stages: oncogenesis, progression, and metastasis. Accurate detection and characterization of SCNA landscape at genome-wide scale are of great importance. Next-generation sequencing and SNP array are current technology of choice for SCNA analysis. They are able to quantify SCNA with high resolution and meanwhile raise great challenges in data analysis. To this end, we have developed an R package saasCNV for SCNA analysis using (1) whole-genome sequencing (WGS), (2) whole-exome sequencing (WES) or (3) whole-genome SNP array data. In this chapter, we provide the features of the package and step-by-step instructions in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zack TI, Schumacher SE, Carter SL et al (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45(10):1134–1140. https://doi.org/10.1038/ng.2760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kim TM, Xi R, Luquette LJ et al (2013) Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes. Genome Res 23(2):217–227. https://doi.org/10.1101/gr.140301.112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang K, Lim HY, Shi S et al (2013) Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology 58(2):706–717. https://doi.org/10.1002/hep.26402

    Article  PubMed  CAS  Google Scholar 

  4. Torrecilla S, Sia D, Harrington AN et al (2017) Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma. J Hepatol 67(6):1222–1231. https://doi.org/10.1016/j.jhep.2017.08.013

    Article  PubMed  Google Scholar 

  5. Uzilov AV, Ding W, Fink MY et al (2016) Development and clinical application of an integrative genomic approach to personalized cancer therapy. Genome Med 8(1):62. https://doi.org/10.1186/s13073-016-0313-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Gusnanto A, Wood HM, Pawitan Y et al (2012) Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics 28(1):40–47. https://doi.org/10.1093/bioinformatics/btr593

    Article  PubMed  CAS  Google Scholar 

  7. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20(2):207–211. https://doi.org/10.1038/2524

    Article  PubMed  CAS  Google Scholar 

  8. Peiffer DA, Le JM, Steemers FJ et al (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16(9):1136–1148. https://doi.org/10.1101/gr.5402306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Campbell PJ, Stephens PJ, Pleasance ED et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40(6):722–729. https://doi.org/10.1038/ng.128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chiang DY, Getz G, Jaffe DB et al (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6(1):99–103. https://doi.org/10.1038/nmeth.1276

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Z, Hao K (2015) SAAS-CNV: a joint segmentation approach on aggregated and allele specific signals for the identification of somatic copy number alterations with next-generation sequencing data. PLoS Comput Biol 11(11):e1004618. https://doi.org/10.1371/journal.pcbi.1004618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kim HY, Choi JW, Lee JY et al (2017) Gene-based comparative analysis of tools for estimating copy number alterations using whole-exome sequencing data. Oncotarget 8(16):27277–27285. https://doi.org/10.18632/oncotarget.15932

    Article  PubMed  PubMed Central  Google Scholar 

  13. Core Team R (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  14. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498. https://doi.org/10.1038/ng.806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang NR, Siegmund DO, Ji H et al (2010) Detecting simultaneous changepoints in multiple sequences. Biometrika 97(3):631–645. https://doi.org/10.1093/biomet/asq025

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cibulskis K, Lawrence MS, Carter SL et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219. https://doi.org/10.1038/nbt.2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Koboldt DC, Zhang Q, Larson DE et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22(3):568–576. https://doi.org/10.1101/gr.129684.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Hao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Z., Hao, K. (2018). Using SAAS-CNV to Detect and Characterize Somatic Copy Number Alterations in Cancer Genomes from Next Generation Sequencing and SNP Array Data. In: Bickhart, D. (eds) Copy Number Variants. Methods in Molecular Biology, vol 1833. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8666-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8666-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8665-1

  • Online ISBN: 978-1-4939-8666-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics