Skip to main content

Photoactivation of Actin in Mouse Oocyte

  • Protocol
  • First Online:
Mouse Oocyte Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1818))

Abstract

Development of fluorescence distribution assays like FRAP (fluorescence recovery after photobleaching) or photoactivation has had a great impact in studying intracellular protein dynamics. In particular, the cytoskeleton field largely benefited from these techniques, with lots of new information provided about the dynamics and organization of actin networks whithin cells.

In mouse oocyte, actin photoactivation has been very useful to determine the dynamics of different actin structures involved in meiotic divisions, including a cytoplasmic meshwork and a subcortical actin layer.

Here, we describe a method, actin photoactivation, to determine the dynamics of the actin cytoplasmic meshwork and the subcortical actin layer during the first meiotic division in the mouse oocyte, that could be adapted to other actin structures or other stages of meiotic divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam V, Berardozzi R, Byrdin M et al (2014) Phototransformable fluorescent proteins: future challenges. Curr Opin Chem Biol 20:92–102

    Article  PubMed  CAS  Google Scholar 

  2. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  PubMed  CAS  Google Scholar 

  4. Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445–450

    Article  PubMed  CAS  Google Scholar 

  5. Theriot JA, Mitchison TJ (1991) Actin microfilament dynamics in locomoting cells. Nature 352:126–131

    Article  PubMed  CAS  Google Scholar 

  6. Abella JVG, Galloni C, Pernier J et al (2016) Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat Cell Biol 18:76–86

    Article  PubMed  CAS  Google Scholar 

  7. Burnette DT, Manley S, Sengupta P et al (2011) A role for actin arcs in the leading-edge advance of migrating cells. Nat Cell Biol 13:371–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Fritzsche M, Lewalle A, Duke T et al (2013) Analysis of turnover dynamics of the submembranous actin cortex. Mol Biol Cell 24:757–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Frost NA, Shroff H, Kong H et al (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67:86–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Higashida C, Kiuchi T, Akiba Y et al (2013) F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat Cell Biol 15:395–405

    Article  PubMed  CAS  Google Scholar 

  11. Honkura N, Matsuzaki M, Noguchi J et al (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–729

    Article  PubMed  CAS  Google Scholar 

  12. Kiuchi T, Ohashi K, Kurita S et al (2007) Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J Cell Biol 177:465–476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kiuchi T, Nagai T, Ohashi K et al (2011) Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol 193:365–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lai FPL, Szczodrak M, Block J et al (2008) Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J 27:982–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vitriol EA, McMillen LM, Kapustina M et al (2015) Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep 11:433–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Burkel BM, von Dassow G, Bement WM (2007) Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil Cytoskeleton 64:822–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Azoury J, Lee KW, Georget V et al (2008) Spindle positioning in mouse oocytes relies on a dynamic meshwork of actin filaments. Curr Biol 18:1514–1519

    Article  PubMed  CAS  Google Scholar 

  18. Azoury J, Lee KW, Georget V et al (2011) Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development 138:2903–2908

    Article  PubMed  CAS  Google Scholar 

  19. Chaigne A, Campillo C, Gov NS et al (2013) A soft cortex is essential for asymmetric spindle positioning in mouse oocytes. Nat Cell Biol 15:958–966

    Article  CAS  PubMed  Google Scholar 

  20. Verlhac MH, Kubiak JZ, Clarke HJ et al (1994) Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 120:1017–1025

    PubMed  CAS  Google Scholar 

  21. Reis A, Chang H-Y, Levasseur M et al (2006) APCcdh1 activity in mouse oocytes prevents entry into the first meiotic division. Nat Cell Biol 8:539–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dumont J, Verlhac M-H (2013) Using FRET to study RanGTP gradients in live mouse oocytes. Methods Mol Biol 957:107–120

    Article  PubMed  CAS  Google Scholar 

  23. Belin BJ, Goins LM, Mullins RD (2014) Comparative analysis of tools for live cell imaging of actin network architecture. BioArchitecture 4:189–202

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Almonacid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Almonacid, M. (2018). Photoactivation of Actin in Mouse Oocyte. In: Verlhac, MH., Terret, ME. (eds) Mouse Oocyte Development. Methods in Molecular Biology, vol 1818. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8603-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8603-3_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8602-6

  • Online ISBN: 978-1-4939-8603-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics