Skip to main content

Disruption of Feedback Regulation of Thyroid Hormone Synthesis/Secretion and Brain Development

  • Chapter
  • First Online:
Thyroid Hormone Disruption and Neurodevelopment

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 984 Accesses

Abstract

The hypothalamic–pituitary–thyroid axis plays a central role in the regulation of thyroid hormone homeostasis. The hypothalamus arises from diencephalon and the hormone-producing nuclei have neuronal origin. The anterior and intermediate lobes of the pituitary gland originate from the oral ectoderm, whereas the posterior lobe is derived from the neural ectoderm. Hypothalamic TRH stimulates pituitary TSH, and TSH stimulates the production of thyroid hormone. Conversely, thyroid hormone suppresses TRH and TSH. Impairment of TRH signaling or TSH signaling results in central hypothyroidism. Central hypothyroidism is much less common compared to primary hypothyroidism. Congenital central hypothyroidism is induced by several disorders including tumors, developmental defects, and gene mutations. Patients with congenital central hypothyroidism can suffer from mental retardation, poor verbal skills, attention deficits, and motor weakness, similarly to those with congenital primary hypothyroidism. In addition to the effect of hypothyroidism, the defects in TRH signaling or TSH signaling might disturb the development of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe E, Marians RC, Yu W et al (2003) TSH is a negative regulator of skeletal remodeling. Cell 115(2):151–162

    Article  CAS  PubMed  Google Scholar 

  • Anderson GW (2008) Thyroid hormone and cerebellar development. Cerebellum 7(1):60–74

    Article  CAS  PubMed  Google Scholar 

  • Arafah BM, Prunty D, Ybarra J et al (2000) The dominant role of increased intrasellar pressure in the pathogenesis of hypopituitarism, hyperprolactinemia, and headaches in patients with pituitary adenomas. J Clin Endocrinol Metab 85(5):1789–1793

    CAS  PubMed  Google Scholar 

  • Beck-Peccoz P, Amr S, Menezes-Ferreira MM et al (1985) Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin-releasing hormone. N Engl J Med 312(17):1085–1090

    Article  CAS  PubMed  Google Scholar 

  • Braverman LE, Cooper D (2012) The thyroid, 10th edn. LWW, Philadelphia

    Google Scholar 

  • Chin WW, Maloof F, Habener JF (1981) Thyroid-stimulating hormone biosynthesis. Cellular processing, assembly, and release of subunits. J Biol Chem 256(6):3059–3066

    Article  CAS  PubMed  Google Scholar 

  • ClĂ©ment K, Vaisse C, Lahlou N et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392(6674):398–401

    Article  PubMed  Google Scholar 

  • Collu R, Tang J, CastagnĂ© J et al (1997) A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab 82(5):1561–1565

    CAS  PubMed  Google Scholar 

  • Dasen JS, O’Connell SM, Flynn SE et al (1999) Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 97(5):587–598

    Article  CAS  PubMed  Google Scholar 

  • Dattani MT, Martinez-Barbera JP, Thomas PQ et al (1998) Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 19(2):125–133

    Article  CAS  PubMed  Google Scholar 

  • Gage PJ, Suh H, Camper SA (1999) The bicoid-related Pitx gene family in development. Mamm Genome 10(2):197–200

    Article  CAS  PubMed  Google Scholar 

  • Gershengorn MC, Osman R (1996) Molecular and cellular biology of thyrotropin-releasing hormone receptors. Physiol Rev 76(1):175–191

    Article  CAS  PubMed  Google Scholar 

  • Guitelman M, Garcia Basavilbaso N, Vitale M et al (2013) Primary empty sella (PES): a review of 175 cases. Pituitary 16(2):270–274

    Article  CAS  PubMed  Google Scholar 

  • Hashida T, Yamada M, Hashimoto K et al (2002) A novel TRH-PFTAIRE protein kinase 1 pathway in the cerebellum: subtractive hybridization analysis of TRH-deficient mice. Endocrinology 143(7):2808–2811

    Article  CAS  PubMed  Google Scholar 

  • Kastin AJ, Ehrensing RH, Schalch DS et al (1972) Improvement in mental depression with decreased thyrotropin response after administration of thyrotropin-releasing hormone. Lancet 2(7780):740–742

    Article  CAS  PubMed  Google Scholar 

  • Kempers MJ, van Tijn DA, van Trotsenburg AS et al (2003) Central congenital hypothyroidism due to gestational hyperthyroidism: detection where prevention failed. J Clin Endocrinol Metab 88(12):5851–5857

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Hara Y, Pineau T et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Koromilas C, Liapi C, Schulpis KH et al (2010) Structural and functional alterations in the hippocampus due to hypothyroidism. Metab Brain Dis 25(3):339–354

    Article  CAS  PubMed  Google Scholar 

  • Kosugi S, Okajima F, Ban T et al (1992) Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin (TSH) receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J Biol Chem 267(34):24153–24156

    Article  CAS  PubMed  Google Scholar 

  • Lamonerie T, Tremblay JJ, LanctĂ´t C et al (1996) Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 10(10):1284–1295

    Article  CAS  PubMed  Google Scholar 

  • Laurent E, Mockel J, Van Sande J et al (1987) Dual activation by thyrotropin of the phospholipase C and cyclic AMP cascades in human thyroid. Mol Cell Endocrinol 52(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Lechan RM, Wu P, Jackson IM et al (1986) Thyrotropin-releasing hormone precursor: characterization in rat brain. Science 231(4734):159–161

    Article  CAS  PubMed  Google Scholar 

  • Li S, Crenshaw EB III, Rawson EJ et al (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347(6293):528–533

    Article  CAS  PubMed  Google Scholar 

  • Machinis K, Pantel J, Netchine I et al (2001) Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet 69(5):961–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mailman RB, Frye GD, Mueller RA et al (1978) Thyrotropin-releasing hormone reversal of ethanol-induced decreases in cerebellar cGMP. Nature 272(5656):832–833

    Article  CAS  PubMed  Google Scholar 

  • Marians RC, Ng L, Blair HC et al (2002) Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc Natl Acad Sci U S A 99(24):15776–15781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melmd S (ed) (2010) The pituitary, 3rd edn. Elsevier, Philadelphia

    Google Scholar 

  • Miyai K (2007) Congenital thyrotropin deficiency—from discovery to molecular biology, postgenome and preventive medicine. Endocr J 54(2):191–203

    Article  CAS  PubMed  Google Scholar 

  • Moore KL, Persaud TVN, Torchia MG (2011) The developing human, 9th edn. Elsevier, Philadelphia

    Google Scholar 

  • Netchine I, Sobrier ML, Krude H et al (2000) Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 25(2):182–186

    Article  CAS  PubMed  Google Scholar 

  • Neumann S, Raaka BM, Gershengorn MC (2010) Constitutively active thyrotropin and thyrotropin-releasing hormone receptors and their inverse agonists. Methods Enzymol 485:147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabeler R, Mittag J, Geffers L et al (2004) Generation of thyrotropin-releasing hormone receptor 1-deficient mice as an animal model of central hypothyroidism. Mol Endocrinol 18(6):1450–1460

    Article  CAS  PubMed  Google Scholar 

  • Refetoff S, Dumitrescu AM (2007) Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab 21(2):277–305

    Article  CAS  PubMed  Google Scholar 

  • Regal M, Páramo C, Sierra SM (2001) Prevalence and incidence of hypopituitarism in an adult Caucasian population in northwestern Spain. Clin Endocrinol (Oxf) 55(6):735–740

    Article  CAS  PubMed  Google Scholar 

  • Rizzoti K, Brunelli S, Carmignac D et al (2004) SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 36(3):247–255

    Article  CAS  PubMed  Google Scholar 

  • Scheithauer BW, Kovacs K, Randall RV et al (1985) Pituitary gland in hypothyroidism. Histologic and immunocytologic study. Arch Pathol Lab Med 109(6):499–504

    CAS  PubMed  Google Scholar 

  • Serfozo Z, de Vente J, Elekes K (2009) Thyroid hormone level positively regulates NOS and cGMP in the developing rat cerebellum. Neuroendocrinology 89(3):337–350

    Article  CAS  PubMed  Google Scholar 

  • Sheng HZ, Moriyama K, Yamashita T et al (1997) Multistep control of pituitary organogenesis. Science 278(5344):1809–1812

    Article  CAS  PubMed  Google Scholar 

  • Shibusawa N, Hashimoto K, Yamada M (2008) Thyrotropin-releasing hormone (TRH) in the cerebellum. Cerebellum 7(1):84–95

    Article  CAS  PubMed  Google Scholar 

  • Shupnik MA, Chin WW, Habener JF et al (1985) Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. J Biol Chem 260(5):2900–2903

    Article  CAS  PubMed  Google Scholar 

  • Shupnik MA, Greenspan SL, Ridgway EC (1986) Transcriptional regulation of thyrotropin subunit genes by thyrotropin-releasing hormone and dopamine in pituitary cell culture. J Biol Chem 261(27):12675–12679

    Article  CAS  PubMed  Google Scholar 

  • Smits G, Campillo M, Govaerts C et al (2003) Glycoprotein hormone receptors: determinants in leucine-rich repeats responsible for ligand specificity. EMBO J 22(11):2692–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobue I, Yamamoto H, Konagaya M et al (1980) Effect of thyrotropin-releasing hormone on ataxia of spinocerebellar degeneration. Lancet 1(8165):418–419

    Article  CAS  PubMed  Google Scholar 

  • Sornson MW, Wu W, Dasen JS (1996) Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384(6607):327–333

    Article  CAS  PubMed  Google Scholar 

  • Sugrue ML, Vella KR, Morales C et al (2010) The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology 151(2):793–801

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lu X, Gershengorn MC (2003) Thyrotropin-releasing hormone receptors—similarities and differences. J Mol Endocrinol 30(2):87–97

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zupan B, Raaka BM et al (2009) TRH-receptor-type-2-deficient mice are euthyroid and exhibit increased depression and reduced anxiety phenotypes. Neuropsychopharmacology 34(6):1601–1608

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi K, Miyai K, Notomi T et al (1992) Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat Genet 1(1):56–58

    Article  CAS  PubMed  Google Scholar 

  • Treier M, Rosenfeld MG (1996) The hypothalamic-pituitary axis: co-development of two organs. Curr Opin Cell Biol 8(6):833–843

    Article  CAS  PubMed  Google Scholar 

  • van Tijn DA, de Vijlder JJ, Verbeeten B Jr et al (2005) Neonatal detection of congenital hypothyroidism of central origin. J Clin Endocrinol Metab 90(6):3350–3359

    Article  PubMed  Google Scholar 

  • Wu W, Cogan JD, Pfäffle RW et al (1998) Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet 18(2):147–149

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Mori M (2008) Mechanisms related to the pathophysiology and management of central hypothyroidism. Nat Clin Pract Endocrinol Metab 4(12):683–694

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Saga Y, Shibusawa N et al (1997) Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc Natl Acad Sci U S A 94(20):10862–10867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Shibusawa N, Ishii S et al (2006) Prolactin secretion in mice with thyrotropin-releasing hormone deficiency. Endocrinology 147(5):2591–2596

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Schimpf BA, Rohde AD et al (2007) Thyrotropin-releasing hormone receptor 1-deficient mice display increased depression and anxiety-like behavior. Mol Endocrinol 21(11):2795–2804

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang J, Ju BG et al (2007) Signaling and epigenetic regulation of pituitary development. Curr Opin Cell Biol 19(6):605–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoeller RT, Rovet J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16(10):809–818

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumiyasu Ishii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ishii, S., Yamada, M. (2016). Disruption of Feedback Regulation of Thyroid Hormone Synthesis/Secretion and Brain Development. In: Koibuchi, N., Yen, P.M. (eds) Thyroid Hormone Disruption and Neurodevelopment. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3737-0_5

Download citation

Publish with us

Policies and ethics