Skip to main content

Ultrasound in the Neurointensive Care Unit

  • Chapter
Ultrasound in the Intensive Care Unit

Part of the book series: Respiratory Medicine ((RM))

  • 3537 Accesses

Abstract

Bedside ultrasound plays an important role in the neurointensive care unit. Patients with aneurysmal subarachnoid hemorrhage (aSAH) are at risk for cerebral vasospasm and delayed cerebral ischemia (DCI). The use of transcranial Doppler to detect and monitor vasospasm is well established. Transcranial color-coded sonography (TCCS) permits B-mode imaging of cerebral parenchyma and duplex imaging of intracranial vessels. The use of TCCS permits angle correction for more accurate determination of mean cerebral blood flow velocities (mCBFV). Measured mCBFV greater than 200 cm/s is highly suggestive of severe vasospasm with the consequent risk for cerebral infarction. Other recognized applications for TCCS include confirmation of brain death and assessment of recanalization following thrombolysis for ischemic stroke. Distension of the optic nerve sheath (ONS) identified on ocular ultrasound may be useful for the detection of raised intracranial pressure (ICP), with an ONS diameter ≥0.50 cm predicting ICP > 20 mmHg in the ventilated patient. The use of B-mode imaging of cerebral parenchyma to detect intracerebral hematomas, measure midline shift, and monitor lateral ventricle size in hydrocephalus is under investigation. The use of bedside echocardiography in aSAH patients may be useful for the identification of a Takotsubo pattern of cardiomyopathy as well as for titration of hemodynamic augmentation therapy for DCI. The use of thoracic ultrasound in aSAH may be useful for the detection and monitoring of neurogenic as well as cardiogenic pulmonary edema through the presence of B-lines. Other applications of ultrasound in the neuroICU include assessment of shock, the BLUE protocol for acute respiratory failure, eFAST in trauma, detection of deep venous thrombosis, and performance of bedside procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E, Wechsler LR, Newell DW, Gomez CR, Babikian VL, Lefkowitz D, Goldman RS, Armon C, Hsu CY, Goodin DS, Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: transcranial Doppler ultrasonography: report of the therapeutics and technology assessment subcommittee of the American academy of neurology. Neurology. 2004;62(9):1468–81.

    Article  CAS  PubMed  Google Scholar 

  2. Geeraerts T, Launey Y, Martin L, Pottecher J, Vigué B, Duranteau J, Benhamou D. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med. 2007;33(10):1704–11. Epub 2007 Aug 1.

    Article  PubMed  Google Scholar 

  3. Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15(2):201–4.

    Article  PubMed  Google Scholar 

  4. Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care. 2008;12(3):R67. Epub 2008 May 13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moretti R, Pizzi B, Cassini F, Vivaldi N. Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit Care. 2009;11(3):406–10.

    Article  PubMed  Google Scholar 

  6. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15(3):506–15.

    Article  PubMed  Google Scholar 

  7. Krejza J, Swiat M, Pawlak MA, Oszkinis G, Weigele J, Hurst RW, Kasner S. Suitability of temporal bone acoustic window: conventional TCD versus transcranial color-coded duplex sonography. J Neuroimaging. 2007;17(4):311–4.

    Article  PubMed  Google Scholar 

  8. Wijnhoud AD, Franckena M, van der Lugt A, Koudstaal PJ, Dippel ED. Inadequate acoustical temporal bone window in patients with a transient ischemic attack or minor stroke: role of skull thickness and bone density. Ultrasound Med Biol. 2008;34(6):923–9. doi:10.1016/j.ultrasmedbio.2007.11.022. Epub 2008 Feb 20.

    Article  PubMed  Google Scholar 

  9. Alexandrov AV, Neumyer MM. Practical models of cerebral hemodynamics and waveform recognition. In: Alexandrov A, editor. Cerebrovascular ultrasound in stroke prevention and treatment. 1st ed. Elmsford: Blackwell publishing; 2004. p. 66.

    Chapter  Google Scholar 

  10. Lysakowski C, Walder B, Costanza MC, Tramer MR. Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke. 2001;32:2292–8.

    Article  CAS  PubMed  Google Scholar 

  11. Sviri GE, Ghodke B, Britz GW, Douville CM, Haynor DR, Mesiwala AH, Lam AM, Newell DW. Transcranial Doppler grading criteria for basilar artery vasospasm. Neurosurgery. 2006;59(2):360–6; discussion 360–6.

    Article  PubMed  Google Scholar 

  12. Rajajee V, Fletcher JJ, Pandey AS, Gemmete JJ, Chaudhary N, Jacobs TL, Thompson BG. Low pulsatility index on transcranial Doppler predicts symptomatic large-vessel vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2012;70(5):1195–206; discussion 1206.

    Article  PubMed  Google Scholar 

  13. Nedelmann M, Stolz E, Gerriets T, Baumgartner RW, Malferrari G, Seidel G, Kaps M, TCCS Consensus Group. Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke. Stroke. 2009;40(10):3238–44.

    Article  PubMed  Google Scholar 

  14. Connolly Jr ES, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT, Hoh BL, Kirkness CJ, Naidech AM, Ogilvy CS, Patel AB, Thompson BG, Vespa P, American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.

    Article  PubMed  Google Scholar 

  15. Diringer MN, Bleck TP, Claude Hemphill 3rd J, Menon D, Shutter L, Vespa P, Bruder N, Connolly Jr ES, Citerio G, Gress D, Hänggi D, Hoh BL, Lanzino G, Le Roux P, Rabinstein A, Schmutzhard E, Stocchetti N, Suarez JI, Treggiari M, Tseng MY, Vergouwen MD, Wolf S, Zipfel G, Neurocritical Care Society. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care. 2011;15(2):211–40.

    Article  PubMed  Google Scholar 

  16. Fisher CM, Roberson GH, Ojemann RG. Cerebral vasospasm with ruptured saccular aneurysm: the clinical manifestations. Neurosurgery. 1977;1:245–8.

    Article  CAS  PubMed  Google Scholar 

  17. Haley Jr EC, Kassell NF, Torner JC. The international cooperative study on the timing of aneurysm surgery: the North American experience. Stroke. 1992;23:205–14.

    Article  PubMed  Google Scholar 

  18. Longstreth Jr WT, Nelson LM, Koepsell TD, van Belle G. Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in King County, Washington. Neurology. 1993;43:712–8.

    Article  PubMed  Google Scholar 

  19. Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N, Connolly ES, Mayer SA. Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke. 2009;40:1963–8.

    Article  PubMed  Google Scholar 

  20. Carrera E, Schmidt JM, Oddo M, Fernandez L, Claassen J, Seder D, Lee K, Badjatia N, Connolly Jr ES, Mayer SA. Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2009;65:316–23.

    Article  PubMed  Google Scholar 

  21. Dankbaar JW, Rijsdijk M, van der Schaaf IC, Velthuis BK, Wermer MJ, Rinkel GJ. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009;51:813–9.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stolz E, Gerriets T, Fiss I, Babacan SS, Seidel G, Kaps M. Comparison of transcranial color-coded duplex sonography and cranial CT measurements for determining third ventricle midline shift in space-occupying stroke. AJNR Am J Neuroradiol. 1999;20(8):1567–71.

    CAS  PubMed  Google Scholar 

  23. Becker G, Bogdahn U, Strassburg HM, Lindner A, Hassel W, Meixensberger J, Hofmann EJ. Identification of ventricular enlargement and estimation of intracranial pressure by transcranial color-coded real-time sonography. Neuroimaging. 1994;4(1):17–22.

    Article  CAS  Google Scholar 

  24. Kukulska-Pawluczuk B, Książkiewicz B, Nowaczewska M. Imaging of spontaneous intracerebral hemorrhages by means of transcranial color-coded sonography. Eur J Radiol. 2012;81(6):1253–8.

    Article  PubMed  Google Scholar 

  25. Guidance for industry and FDA staff – information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers. 2008. http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm070856.htm

  26. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):1059–68.

    Article  PubMed  Google Scholar 

  27. Hansen HC, Lagrèze W, Krueger O, Helmke K. Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure – an experimental ultrasound study. Acta Ophthalmol. 2011;89(6):e528–32.

    Article  PubMed  Google Scholar 

  28. Rajajee V, Fletcher JJ, Rochlen LR, Jacobs TL. Comparison of accuracy of optic nerve ultrasound for the detection of intracranial hypertension in the setting of acutely fluctuating vs stable intracranial pressure: post-hoc analysis of data from a prospective, blinded single center study. Crit Care. 2012;16(3):R79.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hravnak M, Frangiskakis JM, Crago EA, Chang Y, Tanabe M, Gorcsan 3rd J, Horowitz MB. Elevated cardiac troponin I and relationship to persistence of electrocardiographic and echocardiographic abnormalities after aneurysmal subarachnoid hemorrhage. Stroke. 2009;40(11):3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hinson HE, Sheth KN. Manifestations of the hyperadrenergic state after acute brain injury. Curr Opin Crit Care. 2012;18(2):139–45.

    Article  PubMed  Google Scholar 

  31. van der Bilt IA, Hasan D, Vandertop WP, Wilde AA, Algra A, Visser FC, Rinkel GJ. Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology. 2009;72(7):635.

    Article  PubMed  Google Scholar 

  32. Lee VH, Connolly HM, Fulgham JR, Manno EM, Brown Jr RD, Wijdicks EF. Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an underappreciated ventricular dysfunction. J Neurosurg. 2006;105(2):264.

    Article  PubMed  Google Scholar 

  33. Baumann A, Audibert G, McDonnell J, Mertes PM. Neurogenic pulmonary edema. Acta Anaesthesiol Scand. 2007;51:447.

    Article  CAS  PubMed  Google Scholar 

  34. Lichtenstein DA, Mezière GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134(1):117–25. Epub 2008 Apr 10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leung JM, Levine EH. Left ventricular end-systolic cavity obliteration as an estimate of intraoperative hypovolemia. Anesthesiology. 1994;81(5):1102–9.

    Article  CAS  PubMed  Google Scholar 

  36. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6. Epub 2004 Mar 18.

    PubMed  Google Scholar 

  37. Joseph M, Ziadi S, Nates J, Dannenbaum M, Malkoff M. Increases in cardiac output can reverse flow deficits from vasospasm independent of blood pressure: a study using xenon computed tomographic measurement of cerebral blood flow. Neurosurgery. 2003;53(5):1044–51; discussion 1051–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatakrishna Rajajee M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rajajee, V. (2015). Ultrasound in the Neurointensive Care Unit. In: Jankowich, M., Gartman, E. (eds) Ultrasound in the Intensive Care Unit. Respiratory Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1723-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1723-5_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1722-8

  • Online ISBN: 978-1-4939-1723-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics