Skip to main content

The Application of the Mössbauer Effect for Probing Electronic Properties of the Pressure-Induced Mott Transition

  • Chapter
Frontiers of High-Pressure Research

Part of the book series: NATO ASI Series ((NSSB,volume 286))

Abstract

The problem of the Mott insulator1 and its transition into a metallic state (the Mott transition) is considered to be one of the most serious challenges to the prevailing concepts of solid state physics. At present it remains an unsolved problem. The subject of Mott insulators began in 1937 when De Boer and Verwey2 presented their experimental results on the electrical conductivity of transition-metal (TM) oxides (the oxides of Ni, Co, Mn and Fe). The fact that the majority of these oxides were insulators did not fit the conventional Bloch-Wilson band picture. Assuming the compounds were highly ionic would imply partially filled 3d bands and therefore be metallic! In discussion that followed Peierls suggested that the Coulomb repulsion was responsible for the 3d-electron localization. The TM-oxides such as NiO, CoO and MnO are classic examples of Mott insulators (MI). The phenomenological aspects of a MI can be described as follows: It is an antiferromagnetic insulator whose local moments persist unchanged above TN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Brandow, Int. J. of Quant. Chem., Symp. No. 10:417 (1976).

    Article  CAS  Google Scholar 

  2. J.H. de Boer and E. J.W. Verwey, Proc. Roy. Soc. (London) 49:59 (1937).

    Article  Google Scholar 

  3. J.A. Wilson, in: The Metallic and Nonmetallie States of Matter, P.P. Edwards and C.N.R. Rao, eds., Taylor and Francis, London (1985), p215.

    Google Scholar 

  4. N.F. Mott, Adv. Phys. 21:785 (1972).

    Article  CAS  Google Scholar 

  5. The cuprate high temperature superconductors are examples of metals that have gone through a MT by alloying of the MI CuO.

    Google Scholar 

  6. M.P. Pasternak, R.D. Taylor, A. Chen, C. Meade, L.M. Falicov, A. Giesekus, R. Jeanloz and P.Y. Yu, Phys. Rev. Lett. 65:790 (1990).

    Article  CAS  Google Scholar 

  7. R.W.G. Wyckoff, Crystal Structures, Vol. I, Interscience, New York (1963).

    Google Scholar 

  8. L.G. Van Uitert, H. J. Williams, R.D. Sherwood and J. J. Rubin, J. Appl. Phys. 36:1029 (1965).

    Article  CAS  Google Scholar 

  9. S.R. Kuindersma, J.P. Sanchez and C. Haas, Physica 111B:231, (1981).

    Google Scholar 

  10. M. Pasternak, S. Bupkshpan and T. Sonnino, Solid State Comm. 16:871 (1975).

    Article  CAS  Google Scholar 

  11. J.M. Friedt, J.P. Sanchez and G.K. Shenoy, J. Chem. Phys. 65:5093 (1976).

    Article  CAS  Google Scholar 

  12. M.P. Pasternak and R.D. Taylor, Hyperfine Interact. 47:415 (1989).

    Article  Google Scholar 

  13. R.D. Taylor and M.P. Pasternak, Hyperfine Interact. 53:159 (1990).

    Article  CAS  Google Scholar 

  14. A. Jayaraman, Rev. Mod. Phys. 55:65 (1983).

    Article  CAS  Google Scholar 

  15. This Hamiltonian is for a combined quadrupole-magnetic interaction, appropriate for an axially symmetric efg and for μHhy>>e2qQ/41(2I−1).

    Google Scholar 

  16. E. Sterer and M.P. Pasternak, private communication.

    Google Scholar 

  17. G.A. Sawatzky and F. Van der Woude, J. Physique. (Paris), Colloque C6, 35:47 (1974).

    Google Scholar 

  18. F, Keffer, T. Oguchi, W. O’Sullivan and Y. Yamashita, Phys. Rev. 115:1553 (1959).

    Article  CAS  Google Scholar 

  19. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, p.761 (1970).

    Google Scholar 

  20. J. Owen and J.H.M. Thorley, Rep. Prog. Phys. 29:675 (1966).

    Article  CAS  Google Scholar 

  21. W. Low and M. Weger, Phys. Rev. 118:1119 (1960).

    Article  CAS  Google Scholar 

  22. J. Hubbard, Proc. Roy. Soc. (London), A276:238 (1963).

    Google Scholar 

  23. J. Hubbard, Proc. Roy. Soc. (London), A281:401 (1964).

    Google Scholar 

  24. S.L. Ruby and G.K. Shenoy, in Mössbauer Isomer Shifts, G.K. Shenoy and F.E. Wagner, ed., North Holland, Amsterdam (1978), pp 617.

    Google Scholar 

  25. M. Van der Heyden, M.P. Pasternak and G. Langouche, J. Phys. Chem. Solids, 46:1221 (1985).

    Article  Google Scholar 

  26. J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 55:418 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pasternak, M.P., Taylor, R.D., Jeanloz, R. (1991). The Application of the Mössbauer Effect for Probing Electronic Properties of the Pressure-Induced Mott Transition. In: Hochheimer, H.D., Etters, R.D. (eds) Frontiers of High-Pressure Research. NATO ASI Series, vol 286. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2480-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2480-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2482-7

  • Online ISBN: 978-1-4899-2480-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics