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Preface to the First Edition

We wrote this book to introduce undergraduates to some interesting ideas in algebraic
geometry and commutative algebra. Until recently, these topics involved a lot of abstract
mathematics and were only taught in graduate school. But in the 1960s, Buchberger and
Hironaka discovered new algorithms for manipulating systems of polynomial equations.
Fueled by the development of computers fast enough to run these algorithms, the last two
decades have seen a minor revolution in commutative algebra. The ability to compute
efficiently with polynomial equations has made it possible to investigate complicated
examples that would be impossible to do by hand, and has changed the practice of much
research in algebraic geometry. This has also enhanced the importance of the subject
for computer scientists and engineers, who have begun to use these techniques in a
whole range of problems.
It is our belief that the growing importance of these computational techniques

warrants their introduction into the undergraduate (and graduate) mathematics cur-
riculum. Many undergraduates enjoy the concrete , almost nineteenth-century, flavor
that a computational emphasis brings to the subject. At the same time, one can do some
substantial mathematics, including the Hilbert Basis Theorem, Elimination Theory, and
the Nullstellensatz.
The mathematical prerequisites of the book are modest : the students should have had

a course in linear algebra and a course where they learned how to do proofs . Examples
of the latter sort of course include discrete math and abstract algebra. It is important to
note that abstract algebra is not a prerequisite. On the other hand, if all of the students
have had abstract algebra, then certain parts of the course will go much more quickly.
The book assumes that the students will have access to a computer algebra system.

Appendix C describes the features of AXIOM, Maple, Mathematica, and REDUCE that
are most relevant to the text. We do not assume any prior experience with a computer.
However, many of the algorithms in the book are described in pseudocode, which may
be unfamiliar to students with no background in programming. Appendix B contains a
careful description of the pseudocode that we use in the text.
In writing the book, we tried to structure the material so that the book could be used

in a variety of courses, and at a variety of different levels. For instance, the book could
serve as a basis of a second course in undergraduate abstract algebra, but we think that
it just as easily could provide a credible alternative to the first course . Although the
book is aimed primarily at undergraduates, it could also be used in various graduate
courses , with some supplements. In particular, beginning graduate courses in algebraic
geometry or computational algebra may find the text useful. We hope, of course, that

vii



viii Preface to theFirst Edition

mathematicians and colleagues in other disciplines will enjoy reading the book as much
as we enjoyed writing it.
The first four chapters form the core of the book. It should bepossible to cover them

in a 14-week semester, and there may besome time left over at the end to explore other
parts of the text. The follows chart explains the logical dependence of the chapters:

See the table of contents for a description of what is covered in each chapter. As the
chart indicates, there are a variety of ways to proceed after covering the first four
chapters. Also, a two-semester course could be designed that covers the entire book.
For instructors interested in having their students do an independent project, we have
included a list of possible topics in Appendix D.
It is a pleasure to thank the New England Consortium for Undergraduate Science

Education (and its parent organization, the Pew Charitable Trusts) for providing the
major funding for this work. The project would have been impossible without their
support. Various aspects of our work were also aided by grants from IBM and the Sloan
Foundation, the Alexander von Humboldt Foundation, the Department of Education's
FIPSE program, theHoward Hughes Foundation, and the National Science Foundation.
We are grateful for their help.
We also wish to thank colleagues and students at Amherst College, George Ma-

son University, Holy Cross College, Massachusetts Institute of Technology, Mount
Holyoke College, Smith College, and the University of Massachusetts who partici-
pated in courses based on early versions of the manuscript. Their feedback improved
the book considerably. Many other colleagues have contributed suggestions, and we
thank you all.
Corrections, comments and suggestions for improvement are welcome!

November 1991 David Cox
John Little
Donal 0'Shea



Preface to the Second Edition

In preparing a new edition of Ideals , Varieties, and Algorithms, our goal was to cor-
rect some of the omissions of the first edition while maintaining the readability and
accessibility of the original. The majors changes in the second edition are as follows:
• Chapter 2: A better acknowledgement ofBuchberger's contributions and an improved
proof of the Buchberger Criterion in §6.

• Chapter 5: An improved bound on the number of solutions in §3 and a new §6 which
completes the proof of the Closure Theorem begun in Chapter 3.

• Chapter 8: A complete proof of the Projection Extension Theorem in §5 and a new
§7 which contains a proof of Bezout's Theorem.

• Appendix C: a new section on AXIOM and an update on what we say about Maple,
Mathematica, and REDUCE.

Finally, we fixed some typographical errors, improved and clarified notation, and
updated the bibliography by adding many new references.
We also want to take this opportunity to acknowledge our debt to the many people

who influenced us and helped us in the course of this project. In particular, we would
like to thank:
• David Bayer and Monique Lejeune-Jalabert, whose thesis BAYER (1982) and notes

LEJEUNE-JALABERT (1985) first acquainted us with this wonderful subject.
• Frances Kirwan, whose book KIRWAN (1992) convinced us to include Bezout's
Theorem in Chapter 8.

• Steven Kleiman, who showed us how to prove the Closure Theorem in full generality.
His proof appears in Chapter 5.

• Michael Singer, who suggested improvements in Chapter 5, including the new
Proposition 8 of §3.

• Bernd Sturmfels, whose book STURMFELS (1993) was the inspiration for Chapter 7.
The re are also many individuals who found numerous typographical errors and gave us
feedback on various aspects of the book. We are grateful to you all!
As with the first edition, we welcome comments and suggestions, and we pay $1 for

every new typographical error.

October 1996 David Cox
John Little
Donal 0'Shea
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Geometry, Algebra, and Algorithms

This chapter will introduce some of the basic themes of the book . The geometry we are
interested in concerns affine varieties, which are curves and surfaces (and higher di-
mensional objects) defined by polynomial equations. To understand affine varieties, we
will need some algebra. and in particular, we will need to study ideals in the polynomial
ring k[xi • . . . , x,,]. Finally, we will discuss polynomials in one variable to illustrate the
role played by algorithms.

§1 Polynomials and Affine Space

To link algebra and geometry. we will study polynomials over a field.We all know what
polynomials are, but the term field may be unfamiliar. The basic intuition is that a field
is a set where one can define addition, subtraction. multiplication. and division with the
usual properties. Standard examples are the real numbers lR and the complex numbers
<C, whereas the integers 7L are not a field since division fails (3 and 2 are integers, but
their quotient 3/2 is not). A formal definition of field may be found in Appendix A.
One reason that fields are important is that linear algebra works over any field. Thus,

even if your linear algebra course restricted the scalars to lie in lR or <C, most of the
theorems and techniques you learned apply to an arbitrary field k. In this book, we will
employ different fields for different purposes. The most commonly used fields will be:
• The rational numbers <Q: the field for most of our computer examples.
• The real numbers lR: the field for drawing pictures of curves and surfaces.
• The complex numbers <C: the field for proving many of our theorems.
On occasion, we will encounter other fields, such as fields of rational functions (which
will be defined later). There is also a very interesting theory of finite fields-see the
exercises for one of the simpler examples.
We can now define polynomials .The reader certainly is familiar with polynomials in

one and two variables, but we will need to discuss polynomials in n variables XI, • • • , X"
with coefficients in an arbitrary field k.We start by defining monomials .

Definition 1. Amonomial in X\ , ••• • XII is a product of the form
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where all of the exponents a I •. . .• all are nonnegative integers. The total degree of
this monomial is the sum al + .. . + all'

We can simplify the notation for monomials as follows: let a = (al •. ..• a ll) be an
n-tuple of non-negative integers. Then we set

When a = (0. .. .. 0). note that XU = I . We also let lal = etl + .. . + all denote the
total degree of the monomial XU.

Definition 2. A polynomial f in XI • • • . • XII with coefficients in k is a finite linear
combination (with coefficients in k) ofmonomials. We will write a polynomial f in the
form

where the sum is over a finite number of n-tuples a = (al •...• all)' The set of all
poLynomials in XI • • • • • XII with coefficients in k is denoted k[xi • . . . •XII]'

When dealing with polynomials in a small number of variables, we will usually
dispense with subscripts. Thus, polynomials in one. two. and three variables lie in k[x],
k[x. y] and k[x. y . z). respectively. For example,

3f = 2x 3i z + - y3Z3 - 3xyz + i
2

is a polynomial in <Q[x. y. d .We will usually use the letters f. g. h, p, q , r to refer to
polynomials.
We will use the following terminology in dealing with polynomials.

Definition 3. Let f = 1:u auxu be a polynomial in k[xi • . . . , XII]'
(i) We call all the coefficient of the monomial xu .
(ii) Ifau =1= O. then we call allx ua term of f.
(iii) The total degree of f. denoted deg(f), is the maximum let Isuch that the coefficient

au is nonzero.

As an example, the polynomial f = 2x 3y2z + ~ y3Z3 - 3xyz + y2given above has
four terms and total degree six. Note that there are two terms of maximal total degree,
which is something that cannot happen for polynomials of one variable. In Chapter 2,
we will study how to order the terms of a polynomial.
The sum and product of two polynomials is again a polynomial. We say

that a polynomial f divides a polynomial g provided that g = fh for some
h E k[X I •••• , x,,].
One can show that, under addition and multiplication. k[xi • . . . • X II] satisfies all of the

field axioms except for the existence of multiplicative inverses (because, for example.
1/XI is not a polynomial). Such a mathematical structure is called a commutative ring
(see Appendix A forthe full definition). and forthis reason we will referto k[xi • . . . . XII]
as a polynomial ring.
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The next topic to consider is affine space.

Definition 4. Given a field k and a positive integer n , we define the n-dimensional
affine space over k to be the set

k" = {(al, . .. , all ) : at, .. . . a; E k} .

For an example of affine space, consider the case k = JR . Here we get the familiar
space JRII from calculus and linear algebra. In general, we call k l = k the affine line
and k2 the affine plane.
Let us next see how polynomials relate to affine space . The key idea is that a

polynom ial I = Laaaxa E k[XI, . . . , XII] gives a function

I : k" ~ k

defined as follows: given (at , ... , all) E k", replace every Xi by a, in the expres-
sion for I . Since all of the coefficients also lie in k, this operation gives an element
I(a" . . . , all) E k. The ability to regard a polynomial as a function is what makes it
possible to link algebra and geometry.
This dual nature of polynomials has some unexpected consequences. For example,

the question "is I = O?"now has two potential meanings : is I the zero polynomial",
which means that all of its coefficients aa are zero, or is I the zero function", which
means that.j'(c. . .. ,all) = 0 for all (a" . . . ,all) E k". The surprising fact is that
these two statements are not equivalent in general. For an example of how they can
differ, consider the set consisting of the two elements 0 and 1. In the exercises, we will
see that this can be made into a field where I + 1 = O. This field is usually called lF2•
Now consider the polynomial x2 - X = x(x - I) E lF2[x ]. Since this polynomial
vanishes at 0 and I, we have found a nonzero polynomial which gives the zero function
on the affine space lF~ . Other examples will be discussed in the exercises.
However, as long as k is infinite, there is no problem.

Proposition 5. Let k be an infinite field , and let I E k[XI , .. . ,XII] ' Then I = 0 in
k[XI, ... , XII] if and only if I : k" ~ k is the zero function.

Proof. One direction of the proof is obvious since the zero polynomial clearly gives
the zero function . To prove the converse, we need to show that if IEat, . . . , all ) = 0
for all (a" . . . , all) E k", then I is the zero polynomial. We will use induction on the
number of variables n.
When n = I , it is well known that a nonzero polynomial in k[x] of degree m has at

most m distinct roots (we will prove this fact in Corollary 3 of §5). For our particular
I E k[x] , we are assuming I(a) = 0 for all a E k. Since k is infinite, this means that
I has infinitely many roots, and, hence, I must be the zero polynomial.
Now assume that the converse is true for n - I, and let I E k[x" ... , XII] be a

polynomial that vanishes at all points of k". By collecting the various powers of XII' we
can write I in the form

N

1= L gi(Xt, . . . , XII_I)X;"
i=O



4 I. Geometry, Algebra, and Algorithms

where gi E k[Xl , ... , xII- d. We will show that each gi is the zero polynomial in n - I
variables, which will force f to be the zero polynomial in k[X I , . . . , x,,].
If we fix (a l , ... ,a,,_I ) E k"-l , we get the polynomial f ta« , . .. , a,,-I, x,,) E

k[x,,]. By our hypothe sis on f , this vanishes for every a" E k. It follows from the case
n = I that f ta«, . . . , a,,_I , x,,) is the zero polynomial ink[x,,].Using the above formula
for f, we see that the coefficients of f (a l , , a,,-l , x,,) are gi (ai , . .. , a,,- d , and thus,
gi (ai , . . . , a,,_I ) = 0 for all i, Since (ai , , a,,_ I) was arbitrarily chosen in k,,-I, it
follows that each gi E k[XI , .. . , xlI-d gives the zero function on k" - I. Our inductive
assumption then implies that each gi is the zero polynomial in k[X I , . . . , xII- d . This
forces f to be the zero polynomial in k[ xi • . . . , XII ] and completes the proof of the
proposition. 0

Note that in the statement of Proposition 5, the assertion "f = 0 in k[Xl • . . . , x,,]"
means that f is the zero polynom ial, i.e.• that every coefficient of f is zero. Thus, we
use the same symbol "0" to stand for the zero element of k and the zero polynomial in
k[x i • . . . , x,,]. The context will make clear which one we mean.
As a corollary. we see that two polynomials are equal precisely when they give the

same function on affine space.

Corollary 6. Let k be an infinite field. and let f , g E k[XI , . . . , XII ]. Then f = g in
k[x l • . . . • XII ] ifand only if f : k" - k and g : k" - k are the same fu nction.

Proof. To prove the nontrivial direction. suppose that f , g E k[Xl , . . .• x,,] give the
same function on k" . By hypothesis, the polynomial f - g vanishes at all points of k" .
Proposition 4 then implies that f - g is the zero polynomial. This proves that f = g
ink [xl , ... ,XII] . 0

Finally, we need to record a special property of polynomi als over the field of complex
numbers <C.

Theorem 7. Every nonconstant polynomial f E <C[x] has a root in <C.

Proof. This is the Fundamental Theorem of Algebra , and proofs can be found in most
introductory texts on complex analysis (although many other proofs are known). 0

We say that a field k is algebra ically closed if every nonconstant polynomial in k[x]
has a rbot in k. Thus 1R is not algebra ically closed (what are the roots of x 2 + I?),
whereas the above theorem asserts that <C is algebraically closed. In Chapter 4 we will
prove a powerful generalization of Theorem 7 called the Hilbert Nullstellensatz.

EXERCISES FOR §l

I. Let 1F2 = (0, I}, and define addition and multiplication by 0 + 0 = I + 1 = 0, 0 + I =
I + 0 = 1,0 ·0 = O· 1 = 1 · 0 = 0 and 1 . 1 = I. Explain why 1F2 is a field. (You need
not check the associative and distributive properties. but you should verify the existence of
identities and inverses, both additive and rnultiplicative.)

2. Let 1F2 be the field from Exercise 1.
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a. Consider the polynomial g(x , y) = x 2y + y2x E IF2[x , yl . Show that g(x , y) = 0 for
every (x , y) E IF~ , and explain why this does not contradict Proposition 5.

b. Find a nonzero polynomial in IF2[x, y, zl which vanishes at every point of IF~ . Try to find
one involv ing all three variables.

c. Find a nonzero polynomial in IF2[x" . . . , x"l which vanishes at every point of lFi . Can
you find one in which all of XI , .. . • x" appear?

3. (Requires abstract algebra). Let p be a prime number. The ring of integers modulo p is a field
with p elements, which we will denote IFp •
a. Explain why IFp - 101 is a group under multiplication.
b. Use Lagrange's Theorem to show that aP- 1 = I for all a E IFp - [01 .
c. Prove that a" = a for all a E IFp »Hint: Treat the cases a = 0 and a t- 0 separately.
d. Find a nonzero polynornial F yjx] which vanishes at every point of IFp • Hint: Use part c.

4. (Requires abstract algebra.) Let F be a finite field with q elements. Adapt the argument of
Exercise 3 to prove that x" - x is a nonzero polynomial in F[x I which vanishes at every point
of F. This shows that Proposition 5 fails for all finite fields.

5. In the proof of Proposition 5, we took f E k[xi • . . . • x; I and wrote it as a polynomial in x;
with coefficients in k[XI, .. .• x,,_II. To see what this looks like in a specific case , consider
the polynomial

f(x, y, z) = xSlz ., x 4/ + l + x 2z - y3 Z + xy + 2x - 5z + 3.

a. Write f as a polynomial in x with coefficients in k[y, zl.
b. Write f as a polynomial in y with coeffic ients in k[x, z].
c. Write f as a polynomial in z with coefficients in k[x , y ].

6. Inside of CC". we have the subset 7L", which consists of all points with integer coordinates.
a. Prove that if f E CC[X I, .. . •x, I vanishes at every point of 7L" , then f is the zero

polynomial. Hint: Adapt the proof of Proposition 5.
b. Let f E CC[x" . . . , x"l, and let M be the largest power of any variable that appears in f .

Let 7L~+ 1 be the set of points of 7L", all coordinates of which lie between I and M + I.
Prove that if f vanishes at all points of 7L~+ I ' then f is the zero polynomial.

§2 Affine Varieties

We can now define the basic geometric object of the book.

Deflnltion.L Let k be a field. and let fl • . . . • I, be polynomials in k[xi • . . . , XII] '
Then we set

VUh ... , fs) = {(al, ... , all) E k" : h(al • .. .• all) = Ofor all t ~ i ~ s} .

We call VU,. . .. , fs) the affinevarietydefined by fl • . . . , f s.

Thus, an affine variety VUI , , fs) C k" is the set of all solutions of the system
of equations fl (XI • • • • , XII) = = fs (XI , . .. , XII ) = O. We will use the letters V,
W, etc. to denote affine varieties. The main purpose of this section is to introduce the
reader to lots of examples, some new and some familiar. We will use k = lR so that we
can draw pictures .
We begin in the plane lR2 with the variety V(x 2 + l - I), which is the circle of

radius 1 centered at the origin:
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y

x

The conic sections studied in analytic geometry (circles. ellipses. parabolas, and hyper-
bolas) are affine varieties. Likewise, graphs of polynomial functions are affine varieties
[the graph of Y = f(x) is V(y - f(x))]. Although not as obvious, graphs of rational
functions are also affine varieties. For example. consider the graph of y = X )..-I:

30 Y

-10

-20

It is easy to check that this is the affine variety V(xy - x 3 + I).
Next, let us look in 3-dimensional space ]R3. A nice affine variety is given by

paraboloid of revolution V(z - x2 - y2) , which is obtained by rotating the parabola
z = x2 about the z-axis (you can check this using polar coordinates). This gives us the
picture:
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Youmay also be familiar with the cone V(Z2 - x 2 _ y2) :

A much more complicated surface is given by V(x 2 - y2 z2 + Z3):

In these last two examples. the surfaces are not smooth everywhere : the cone has a
sharp point at the origin. and the last example intersects itself along the whole y-axis .
These are examples of singular points. which will be studied later in the book.
An interesting example of a curve in ]R3 is the twisted cubic. which is the variety
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V (y - X 2, Z - x 3) . For simplicity, we will confine ourselves to the portion that lies in
the first octant. To begin, we draw the surfaces y = x2 and z = x3 separately:

-- I -
I;

k
y

o

)'= x2

Then their intersection gives the twisted cubic:

.1.:-. ------3
o

o

The Twisted Cubic

Notice that when we had one equation in IR2, we got a curve , which is a I-dimensional
object. A similar situation happens in IR3: one equation in IR3 usually gives a surface,
which has dimens ion 2. Again , dimension drops by one. But now consider the twisted
cubic : here, two equations in IR3 give a curve, so that dimension drops by two. Since
each equation imposes an extra constraint, intuition suggests that each equation drops
the dimension by one. Thus, if we started in IR4,one would hope that an affine variety
defined by two equations would be a surface. Unfortunately, the notion of dimension
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is more subtle than indicated by the above examples. To illustrate this, consider the
variety V(xz , yz) . One can easily check that the equations xz = yz = a define the
union of the (x, y) -plane and the z-axis :

x

y

"

---------,, ---------- ---:, - - -- - - -- - ---- --~-------
" ,, ., ,,

··,,·

Hence, this variety consists of two pieces which have different dimensions, and one of
the pieces (the plane ) has the "wrong" dimension according to the above intuition.
We next give some examples of varieties in higher dimensions. A familiar case comes

from linear algebra. Namely, fix a field k, and consider a system of m linear equations
in n unknowns X I • • • • , x; with coefficients in k:

(I)

The solutions of these equations form an affine variety in k", which we will call a
linear variety. Thus, lines and planes are linear varieties, and there ate examples of
arbitrarily large dimension. In linear algebra. you learned the method of row reduction
(also called Gaussian elimination), which gives an algorithm for finding all solutions
of such a system of equations. In Chapter 2, we will study a generalization of this
algorithm which applies to systems of polynomial equations.
Linear varieties relate nicely to our discussion of dimension. Namely, if V C k" is

the linear variety defined by (1), then V need not have dimension n - m even though
V is defined by m equations. In fact, when V is nonempty, linear algebra tells us that
V has dimension n - r, where r is the rank of the matrix (aij) . So for linear varieties,
the dimension is determined by the number of independent equations. This intuition
applies to more general affine varieties, except that the notion of " independent" is more
subtle.
Some complicated examples in higher dimensions come from calculus. Suppose, for

example, that we wanted to find the minimum and maximum values of f (x, y , z) =
x3 + 2xyz - Z2 subject to the constraint g(x . y, z) = x 2 + y2 + Z2 = 1. The method
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ofLagrange multipliers states that Vf = AVg at a local minimum or maximum [recall
that the gradient of f is the vector of partial derivatives V f = (fr, f,·, f:)]. This gives
us the following system of four equations in four unknowns, x, y , Z. A, to solve:

(2)

3x2 + 2yz = 2xA ,

2x z = 2y>.. ,

2xy - 2z = 2ZA,

x 2 + l + Z2 = I.

These equations define an affine variety in JR4, and our intuition concerning dimension
leads us to hope it consists of finitely many points (which have dimension 0) since it
is defined by four equations. Students often find Lagrange multipliers difficult because
the equations are so hard to solve. The algorithms of Chapter 2 will provide a powerful
tool for attacking such problems. In particular, we will find all solutions of the above
equations.
We should also mention that affine variet ies can be the empty set. For example, when

k = JR, it is obvious that V(x 2+ y2 + I) = 0 since x 2+ y2 = -I has no real solutions
(although there are solut ions when k = <C). Another example is V (xy , xy - I) , which
is empty no matter what the field is, for a given x and y cannot satisfy both x y =0 and
xy = 1. In Chapter 4 we will study a method for determining when an affine variety
over <C is nonempty.
To give an idea of some of the applications of affine varieties. let us consider a simple

example from robotics . Suppose we have a robot arm in the plane consist ing of two
linked rods of lengths I and 2, with the longer rod anchored at the origin:

(z.w)

The "state" of the arm is completely described by the coordinates (x , y) and (z, w)
indicated in the figure. Thus the state can be regarded as a 4-tuple (x, y , z. w) E JR4.
However, not all 4-tuples can occur as states of the arm. In fact, it is easy to see that the
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subset of possible states is the affine variety in JR4 defined by the equations

x2 + l = 4,

(x - d + (y - W)2 = 1.

Notice how even larger dimensions enter quite easily : if we were to consider the same
arm in 3-dimensional space, then the variety of states would be defined by two equations
in JR6. The techniques to be developed in this book have some important applications
to the theory of robotics.
So far, all of our drawings have been over JR . Later in the book, we will consider

varieties over ce. Here , it is more difficult (but not impossible) to get a geometric idea
of what such a variety looks 'like.
Finally, let us record some basic properties of affine varieties .

Lemma2. If V, W C k" are affine varieties, then so are V U Wand V n w.

Proof. Suppose that V = V(/1, . . . , f,) and W = V(g I, .. . , g,). Then we claim
that

V n W = V(/r , ... , f" gl, . . . , g,)

V U W = V(f;gj : 1 s i s s, 1 s j :::: t) .

The first equality is trivial to prove: being in V n W means that both fl' .. . , fs and
gl, . . . , g, vanish, which is the same as fl' . .. , f" gl' , g, vanishing.
The second equality takes a little more work. If (a I , , all) E V , then all of the f; 's

vanish at this point, which implies that all of the f; g j 's also vanish at (a I, .. . , a,,) ,Thus,
V C V(f;gj) ,andW C V(f;gj)followssimilarly.ThisprovesthatVUW C VCf;gj).
Going the other way, choose (a I, . . . , all) E V(f; g j) . If this lies in V, then we are done,
and if not, then f;o(al, ... , all) :f: 0 for some io· Since f;"gj vanishes at (aI , . . . , all)
for all i. the gj'S must vanish at this point, proving that (ai, . . ', ' all) E W . This shows
that V(f;gj) C V U W . 0

This lemma implies that finite intersections and unions of affine varieties are again
affine varieties . It turns out that we have already seen examples of unions and intersec-
tions. Concerning unions, consider the union of the (x, y)-plane and the z-axis in affine
3-space. By the above formula, we have

V(z) U Vex, y) = V(zx , zy),

This, of course, is one of the examples discussed earlier in the section. As for
intersections, notice that the twisted cubic was given as the intersection of two surfaces.
The examples given in this section lead to some interesting questions concerning

affine varieties. Suppose that we have fl' , f , E k[XI , .. . , XII]' Then:
• (Consistency) Can we determine if V(/1, , f,) :f: 0 , i.e., do the equations fl =
. . . = f , = 0 have a common solution?

• (Finiteness) Can we determine if V(/1, .. . , f ,) is finite, and if so, can we find all
of the solutions explicitly?

• (Dimension) Can we determine the "dimension" of V(/1, ... , f,)?
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The answer to these questions is yes, although care must be taken in choosing the
field k that we work over. The hardest is the one concerning dimension, for it involves
some sophisticated concepts. Nevertheless, we will give complete solutions to all three
problems.

EXERCISES FOR §2

1. Sketch the following affine varieties in IR2:
a. V (x 2 + 4y2 + 2x - 16y + 1).
b. V(x2 _ y2).
c. V (2x + Y - I, 3x - y + 2).
In each case, does the variety have the dimens ion you would intuitively expect it to have?

2. In IR2 , sketch V(y2 - x(x - l)(x - 2» . Hint: For which x 's is it possible to solve for y?
How many y 's correspond to each x? What symmetry does the curve have?

3. In the plane IR2, draw a picture to illustrate

V(x2+ y2 - 4) n V(xy - I) = V(x2+ y2 - 4, xy - 1),

and determine the points of intersection. Note that this is a special case of Lemma 2.
4. Sketch the following affine varieties in IR3:

a. V(x 2 + y2 + Z2 - I) .
b. V(x 2 + y2 - 1).
c. V(x + 2, y - 1.5. z).
d. V(xz2 - xy ). Hint: Factor x z2 - xy ,
e. V (x 4 - 2;X, x 3 - yx) .
f . V (x 2 + y2 + Z2 _ I , x 2 + y2 + (z - 1)2 - I).
In each case. does the variety have the dimension you would intuitively expect it to have?

5. Use the proof of Lemma 2 to sketch V«x - 2)(x2 - y), y (x 2 - y), (z + 1)(x 2 - y)) in
IR3 • Hint: This is the union of what two varieties?

6. Let us show that all finite subsets of k" are affine varieties.
a. Prove that a single point (a I, . . . , a,,) E k" is an affine variety.
b. Prove that every finite subset of k" is an affine variety. Hint: Lemma 2 will be useful.

7. One of the prett iest examples from polar coordinates is the four-leaved rose

This curve is defined by the polar equation r =sin(2B). We will show that this curve is an
affine variety.
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a. Using r2 = x2+ y2, X = r cos(O) and y = r sin(O), show that the four-leaved rose is
contained in the affine variety V«x2 + y2)3 - 4X2y2). Hint: Use an identity for sin(20).

b. Now argue carefully that V«x2 + y2)3 - 4X2y2) is contained in the four-leaved rose .
This is trickier than it seems since r can be negative in r = sin(20).

Combining parts a and b, we have proved that the four-leaved rose is the affine variety
V«x2 + y2)3 _ 4X2y2).

8. It can take some work to show that something is not an affine variety . For example, consider
the set

x = (x,x) : x E lR,x '" I} C 1R2,

which is the stra ight line x = y with the point (I, I) removed. To show that X is not an affine
variety, suppose that X = V(/1, . . . , Is) ' Then each Ii vanishes on X, and if we can show
that Ii also vanishes at (I , I), we will get the desired contradiction. Thus, here is what you
are to prove : if I E lR[x , y] vanishes on X, then 1(1, I) = O. Hint: Let g(t) = f tt , r) ,
which is a polynomiallR[t]. Now apply the proof of Proposition 5 of §I .

9. Let R = (x, y) E 1R2 : y > O} be the upper half plane. Prove that R is not an affine
variety.

10. Let 7L." C <C" consist of those points with integer coordinates. Prove that 7L." is not an affine
variety. Hint : See Exercise 6 from §1.

II . So far, we have discussed varieties over IR or <C. It is also possible to consider varieties over
the field lQ, although the questions here tend to be much harder. For example, let n be a
positive integer, and consider the variety FII C lQ2defined by

x" + y" = 1.

Notice that there are some obv ious solutions when x or y is zero . We call these trivial
solutions. An interesting question is whether or not there are any nontrivial solutions.
a. Show that FlI has two trivial solutions if n is odd and four trivial solutions if n is even.
b. Show that FII has a nontrivial solution for some n ::: 3 if and only if Fermat's Last

Theorem is false .
Fermat's Last Theorem states that, for n ::: 3, the equation

x" + y" = Z"

has no solutions where .r , y, and z are nonzero integers. The general case of this conjecture
was proved by Andrew Wiles in 1994 using some very sophisticated number theory. The
proof is extremely difficult.

12. Find a Lagrange multipliers problem in a calculus book and write down the corresponding
system of equations. Be sure to use an example where one wants to find the minimum or
maximum of a polynomial function subject to a polynomial constraint. This way the equations
define an affine variety, and try to find a problem that leads to complicated equations. Later
we will use Groebner basis methods to solve these equaticns.

13. Consider a robot arm in 1R2 that consists of three arms of lengths 3, 2, and I, respectively.
The arm of length 3 is anchored at the origin, the arm of length 2 is attached to the free end
of the arm of length 3, and the arm of length I is attached to the free end of the arm of length
2. The "hand" of the robot arm is attached to the end of the arm of length I.
a. Draw a picture of the robot arm.
b. How many variables does it take to determine the "state" of the robot arm?
c. Give the equations for the variety of possible states.
d. Using the intuitive notion ofdimension discussed in this section, guess what the dimension

of the variety of states should be.
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14. This exercise will study the possible "hand" positions of the robot arm described in
Exercise 13.
a. If (u . v) is the position of the hand. explain why u2 + v2 ::: 36.
b. Suppose we "lock" the joint between the length 3 and length 2 arms to form a stra ight

angle. but allow the other joint to move freely . Draw a picture to show that in these
configurations. (u . v) can beany point of the annulus 16 ::: u2 + v2 ::: 36.

c. Draw a picture to show that (u, v) can be any point in the disk u2+ v2 ::: 36. Hin t: These
positions can be reached by puning the second joint in a fixed, special pos ition.

15. In Lemma 2. we showed that if V and W are affine varieties. then so are their union V U W
and intersection V n W. In this exercise we will study how other set-theoretic operations
affect affine varieties.
a. Prove that finite unions and intersections ofaffine varieties are again affine varieties. Hint:

Induction.
b. Give an example to show that an infinite union of affine varieties need not be an affine

variety. Hint: By Exercises 8-10. we know some subsets of k" that are not affine varieties.
Surprisingly, an infinite intersection of affine varieties is still an affine variety. This is a
consequence of the Hilbert Basis Theorem, which will be discussed in Chapters 2 and 4.

c. Give an example to show that the set-theoretic difference V - W of two affine varieties
need not be an affine variety.

d. Let V C k" and W C k'" be two affine varieties. and let

V x W = {(Xl, • • •• Xn • YI •. , . • Ym) E k":" :

(x" ... , xn) E V, (YI . ... , Ym ) E W}

be their cartesian product. Prove that V x W is an affine variety in k"?" , Hint: If V is
defined by fl • . . . , Is E k[xi • . . . ; x; I, then we can regard f l • . , .• Is as polynomials in
k[x , • . , .• Xn • YI • ... , Y", I. and similarly for W. Show that this gives defining equations
for the cartesian product.

§3 Parametrizations of Affine Varieties

In this section, we will discuss the problem of describing the points of an affine variety
V(fl, . ... I,). This reduces to 'asking whether there is a way to "write down" the
solutions of the system of polynomial equations 11 = . .. = i , = o. When there are
finitely many solutions, the goal is simply to list them all. But what do we do when there
are infinitely many? As we wiIl see, this question leads to the notion of parametrizing
an affine variety.
To get started, let us look at an example from linear algebra. Let the field be JR, and

consider the system of equations

(1)
x+y+z=l,
x + 2y - z = 3.

GeometricaIly, this represents the line in JR3 which is the intersection of the planes
x + y + z = I and x + 2y - z = 3. It follows that there are infinitely many solutions.
Todescribe the solutions,we use row operations on equations (I) to obtain the equivalent
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equations

x + 3z = -I,
Y - 2z = 2.

Letting z = t , where t is arbitrary, this implies that all solutions of (I) are given by

(2)
x = -I - 3t,

y = 2 + 2t ,

z = t

as t varies over JR. We call t a parameter, and (2) is, thus, a parametrization of the
solutions of (I).
To see if the idea of parametrizing solutions can be applied to other affine varieties,

let us look at the example of the unit circle

(3) x 2 + l = 1.

A common way to parametrize the circle is using trigonometric functions:

x = cos(t),

Y = sin(t).

y=

x=
(4)

There is also a more algebraic way to parametrize this circle:

I - t 2

1 + t2 '
2t

I + t2 •

You should check that the points defined by these equations lie on the circle (3). It is
also interestinf to note that this parametrization does not describe the whole circle:
since x = ~ can never equal -I , the point (-:-1 , 0) is not covered. At the end of the
section, we will explain how this parametrization was obtained .
Notice that equations (4) involve quotients of polynomials. These are examples of

rational functions , and before we can say what it means to parametrize a variety, we
need to define the general"notion of rational funct ion.

Definition 1. Let k be a field . A rational function in tl, .. . , tm with coefficients in
k is a quotient fig OfMO polynomials f, g E k[tl, ... , tml, where g is not the zero
polynomial. Furthermore, two rationalfunctions fig and hik are equal, provided that
kf = gh in k[tl, . .. , tm ). Finally, the set of all rational functions in tl, . . . , tm with
coefficients in k is denoted k(tl , . .. , tm).

It is not difficult to show that addition and multiplication of rational functions are
well defined and that k(t l , . .. , tm ) is a field . We will assume these facts without proof.
Now suppose that we are given a variety V = V(fl, ... , f s) c k" . Then a

rational parametric representation of V consists of rational functions rl, .. . .r; E
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k(tl • . . . , tm ) such that the points given by

XI = rl(tl, . .. , tm ) ,

X2 = r2(tJ, . .• , tm ) ,

X" = r,,(tl • . . . • tm )

lie in V. We also require that V be the "smallest" variety containing these points. As
the example of the circle shows. a parametrization may not cover all points of V. In
Chapter 3, we will give a more precise definition of what we mean by "smallest."
In many situat ions, we have a parametrization of a variety V. where rl , .. , , r ll are

polynomials rather than rational functions. This is what we call apolynomial parametric
representation of V .
By contrast, the original defining equations fl' = . . . = Is = 0 of V are called an

implicit representation of V. In our previous examples , note that equations (1) and (3)
are implicit representations of varieties. whereas (2) and (4) are parametric.
One of the main virtues of a parametric representation of a curve or surface is that it

is easy to draw on a computer. Given the formulas for the parametrization. the computer
evaluates them for various values of the parameters and then plots the resulting points.
For example , in §2 we viewed the surface V(x 2 - y2z2 + Z3):

This picture was not plotted using the implicit representation x 2 - y2Z2 + Z3 = O.
Rather, we used the parametric representation given by

X = t(u2 - t2) ,

(5)

There are two parameters t and u since we are describing a surface, and the above
picture was drawn using t , u in the range -1 :'5 t, u :'5 1. In the exercises , we will
derive this parametrization and check that it covers the entire surface V(x2 - y2z2+Z3).
At the same time, it is often useful to have an implicit representation of a variety.

For example, suppose we want to know whether or not the point (1,2, -1) is on the
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above surface. If all we had was the parametrization (5) , then, to decide this question,
we would need to solve the equations

I = t(u 2 - t2 ) ,

2 = u,

-I = u2 - t 2

for t and u.On the other hand, if we have the implicit representation x2-lZ2+z? = 0,
then it is simply a matter of plugging into this equation. Since

it follows that (1, 2, -I) is not on the surface [and, consequently, equations (6) have
no solution] .
The desirability of having both types of representations leads to the following two

questions:
• (Parametrization) Does every affine variety have a rational parametric representation?
• (lmplicitization) Given a parametric representation of an affine variety, can we find
the defining equations (i.e ., can we find an implicit representation)?

The answer to the first question is no. In fact, most affine varieties cannot be parametrized
in the sense described here. Those that can are called unirational . In general, it is difficult
to tell whether a given variety is unirational or not. The situation for the second question
is much nicer. In Chapter 3, we will see that the answer is always yes: given a parametric
representation, we can always find the defining equations.
Let us look at an example of how implicitization works . Consider the parametric

representation

(7)
x = 1 + t ,

Y = 1+ t 2 •

This describes a curve in the plane, but at this point, we cannot be sure that it lies on
an affine variety. To find the equation we are looking for, notice that we can solve the
first equation for t to obtain

t=x-l.

Substituting this into the second equation yields

y = I + (x - 1)2 = x 2 - 2x + 2.

It follows that the parametric equations (7) describe the affine varietyV(y _x2+2x - 2).
In the above example, notice that the basic strategy was to eliminate the variable t

so that we were left with an equation involving only x and y. This illustrates the role
played by elimination theory, which will be studied in much greater detail in Chapter 3.
We will next discuss two examples of how geometry can be used to parametrize

varieties. Let us start with the unit circle x 2 + l = I, which was parametrized in (4)
via

I - t 2
x=

1 + t 2 '
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2t
Y = 1 + t2'

To see where this parametrization comes from. notice that each nonvertical line through
(-1.0) will intersect the circle in a unique point (x , y) :

y

(-1.0)

(x ,y)

x

Each nonvertical line also meets the y-axis, and this is the point (0. t) in the above
picture.
This gives us a geometric parametrization of the circle: given t , draw the line con-

necting (-1,0) to (0, t), and let (x, y) be the point where the line meets x 2 + y2 = I.
Notice that the previous sentence really gives a parametrization: as t runs from -00 to
00 on the vertical axis, the corresponding point (x, y) traverses all of the circle except
for the point (-1 , 0).
It remains to find explicit formulas for x and y in terms of t. To do this, consider the

slope of the line in the above picture. We can compute the slope in two ways, using
either the points (-1 ,0) and (0, r), or the points (-1 ,0) and (x , y ). This gives us the
equation

which simplifies to become

t-O
0-(-1)

y -O
x-(-I)'

t = y
x+l

Thus, y = t(x + 1). Ifwe substitute this into x 2 + y2 = 1, we get

x 2 + t2(x + 1)2 = 1,

which gives the quadratic equation

(8) (l + t 2 )x 2 + 2t 2x + t2 "- 1 = O.

This equation gives the x-coordinates of where the line meets the circle, and it is
quadratic since there are two points of intersection. One of the points is - 1, so that
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x + 1 is a factor of (8). It is now easy to find the other factor, and we can rewrite (8) as

Since the x-coordinate we want is given by the second factor, we obtain

1 - t 2
x= -- .

1+ t 2

Furthermore, y = t (x + 1) easily leads to

it
Y = I + t2

(you should check this), and we have now derived the parametrization given earlier.
Notice how the geometry tells us exactly what portion of the circle is covered .
For our second example , let us consider the twisted cubic V(y - x2 , Z - x3) from

§2. This is a curve in 3-dimensional space, and by looking at the tangent lines to the
curve, we will get an interesting surface. The idea is as follows. Given one point on the
curve, we can draw the tangent line at that point:

Now imagine taking the tangent lines for all points on the twisted cubic. This gives us
the following surface:

This picture shows several of the tangent lines. The above surface is called the tangent
surface of the twisted cubic.
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To convert this geometric description into something more algebraic, notice that
setting x = t in Y - x2 = Z - x 3 = 0 gives us a parametrization

x = t ,

Y = t 2 ,

Z = t3

of the twisted cubic. Wewill write this as r (r) = (t, t2, t 3). Now fix a particular value
of t , which gives us a point on the curve. From calculus, we know that the tangent
vector to the curve at the point given by rtr) is r'(t) = (I, 2t, 3t 2). It follows that the
tangent line is parametrized by

r (r) + ur'(t) = (r, t 2, t 3) + u(1 , 2t , 3t 2 ) = (t + u , t 2 + 2tu, t 3 + 3t 2u) ,

where u is a parameter that moves along the tangent line. If we now allow t to vary,
then we can parametrize the entire tangent surface by

x = t + u,
y = t2 + 2tu ,

Z = t 3 + 3t 2u .

The parameters t and u have the following interpretations: t tells where we are on the
curve, and u tells where we are on the tangent line. This parametrization was used to
draw the picture of the tangent surface presented earlier.
A final question concerns the implicit representation of the tangent surface: how

do we find its defining equation? This is a special case of the implicitization problem
mentioned earlier and is equivalent to eliminating t and u from the above parametric
equations. In Chapters 2 and 3, we will see that there is an algorithm for doing this,
and, in particular, we will prove that the tangent surface to the twisted cubic is defined
by the equation

We will end this section with an example from Computer Aided Geometric Design
(CAGD). When creating complex shapes like automobile hoods or airplane wings,
design engineers need curves and surfaces that are varied in shape, easy to describe .
and quick to draw. Parametric equations involving polynomial and rational functions
satisfy these requirements, and there is a large body of literature on this topic.
For simplicity, let us suppose that a design engineer wants to describe a curve in the

plane. Complicated curves are usually created by joining together simpler pieces, and
for the pieces to join smoothly, the tangent directions must match up at the endpoints .
Thus, for each piece. the designer needs to control the following geometric data:
• the start ing and ending points of the curve;
• the tangent directions at the starting and ending points .
The Bezler cubic, introduced by Renault auto designer P. Bezier, is especially well
suited for this purpose . A Bezier cubic is given parametrically by the equations

x = (1 - t)3 xo + 3t(1 - t)2 X1+ 3t\1 - t)X2 + t 3X3,

Y = (1 - t)3 yO+ 3t(1 - t)2 Y1+ 3t 2( 1 - t)Y2 + t 3Y3
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for 0 :::: t :::: I, where xo, Yo.Xl. YI . Xl. Yl, X3 , Y3 are constants specified by the design
engineer. We need to see how these constants correspond to the above geometric data.
If we evaluate the above formulas at t = 0 and t = I, then we obtain

(X(O) , yeO)) = (xo. Yo).

(x(l), yell) = (X3 , Y3).

As t varies from 0 to 1. equations (9) describe a curve starting at (xo, Yo) and ending
at (X3. Y3). This gives us half of the needed data. We will next use calculus to find the
tangent directions when t = 0 and 1. We know that the tangent vector to (9) when
t = 0 is (x'(O), leO)) . To calculate x'(O) , we differentiate the first line of (9) to obtain

x' = -3(1 - t)lxO + 3«(1 - t)l - 2t(1 - t»X I + 3(2t(1 - t) - tl)Xl + 3t lX3 .

Then substituting t = 0 yields

x '(O) = -3xo + 3xI = 3(xl - xo) ,

and from here, it is straightforward to show that

(x'(O), y'(O)) = 3(xl - Xo. YI - Yo).

(x' (1). Y' (1)) = 3(X3 - Xl , Y3 - Yl).

Since (XI - Xo, YI - Yo) = (XI, YI) - (Xo, Yo). it follows that (x '(O) , y'(O)) is three
times the vector from (xo, Yo) to (XI, y,) . Hence. by placing (XI. y,). the designer
can control the tangent direction at the beginning of the curve. In a similar way. the
placement of (Xl. Yl) controls the tangent direction at the end of the curve.
The points (xo, yo), (XI. YI), (Xl, Yl) and (X3, Y3) are called the control points of the

Bezier cubic. They are usually labelled Po, Pl. P2 and P3, and the convex quadrilateral
they determine is called the control polygon. Here is a picture of a Bezier curve together
with its control polygon:

.--- --- - ------,,,,,,,,,,,,,,,,,,

--- --- ----- ---- ---~,
I,,

I
I
I
I
I
I
I
I
I
I
I
I

In the exercises , we will show that a Bezier cubic always lies inside its control polygon.
The data determining a Bezier cubic is. thus. easy to specify and has a strong ge-

ometric meaning . One issue not resolved so far is the length of the tangent vectors
(x '(O), y'(O)) and (x'(I), y'(1». According to (10) , it is possible to change the points
(XI. YI) and (Xl, Yl) without changing the tangent directions. For example, if we keep
the same directions as in the previous picture. but lengthen the tangent vectors. then we
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get the following curve:

.- ----,,,,,,,,,,,,,,,,,,,,,,
,,,,,
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,,,,,
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Thus, increasing the velocity at an endpoint makes the curve stay close to the tangent line
for a longer distance . With practice and experience. a designer can become proficient
in using Bezier cubics to create a wide variety of curves. It is interest ing to note that
the designer may never be aware of equations (9) that are used to describe the curve .
Besides CAGD, we should mention that Bezier cubics are also used in the page

description language PostScript. The curveto command in PostScript has the coordi-
nates of the control points as input and the Bezier cubic as output. This is how the above
Bezier cubics were drawn--each curve was specified by a single curveto instruction
in a PostScript file.

EXERCISES FOR §3

I. Parametrize all solutions of the linear equations

x + 2y - 2z + w = -I.
x + Y+ z - w = 2.

2. Use a trigonometric identity to show that

x = cos(r),
y = cos(2t)

parametrizes a portion of a parabola . Indicate exactly what portion of the parabola is covered.
3. Given IE k[x). find a parametrization ofV(y - I(x» .
4. Cons ider the parametric representation

t
x=

1+ t'
I

y=I- i2 .
a. Find the equation of the affine variety determined by the above parametric equations.
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b. Show that the above equat ions parametrize all points of the variety found in part a except
forthe point (I, I).

5. This problem will be concerned with the hyperbola x2 - y2 = I .

2

a. Just as trigonometric functions are used to parametrize the circle , hyperbolic functions
are used to parametrize the hyperbola. Show that the point

x = cosh(t) ,

Y = sinh(t)

always lies on x 2 - y2 = I . What portion of the hyperbola is covered?
b. Show that a straight line meets a hyperbola in 0, I, or 2 points, and illustrate your answer

with a picture . Hint: Consider the cases x = a and y = mx + b separately.
c. Adapt the argument given at the end of the section to derive a parametrization of the

hyperbola. Hint: Cons ider nonvertical lines through the point (- I , 0) on the hyperbola.
d. The parametrization you found in part c is undefined for two values of t . Explain how

this relates to the asymptotes of the hyperbola.
6. The goal of this problem is to show that the sphere x2 + y2+ Z2 = I in 3-dimensional space

can be parametrized by

2u
x= u2 + v2 + I '

2v
y = u2 + v2 + I '

u2 + v2 _. I
z= u2 + v2 + I .

The idea is to adapt the argument given at the end of the sect ion to 3 dimensional space .
a. Given a point (u, v, 0) in the xy-plane, draw the line from this point to the "north pole"

(0,0, I) of the sphere , and let (x , y, z) be the other point where the line meets the sphere.
Draw a picture to illustrate this, and argue geometrically that mapping (u , v) to (x , y, z)
gives a parametrization of the sphere minus the north pole.

b. Show that the line connecting (0,0,1) to (u , v, 0) is parametrized by (tu, t v , 1- t), where
t is a paramete r that moves along the line.
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c. Substitutex = tu , y = tvand z = l-tintotheequationforthespherex2+ y2+ z2 = I.
Use this to derive the formulas given at the beginning of the problem.

7. Adapt the argument of the previous exercise to parametrize the "sphere" x~ + . ..+ x; = I
in n-d imensional affine space . Hint: There will be n - I parameters.

8. Consider the curve defined by y2 = cx 2 - x J • where c is some constant. Here is a picture
of the curve when c > 0:

c x

Our goal is to parametrize this curve .
a. Show that a line will meet this curve in either O. I. 2, or 3 points. Illustrate your answer

with a picture . Hint: Let the equation of the line be either x = a or y =m x + b.
b. Show that a nonverticalline through the origin meets the curve in exactly one other point

when m2 =I: c. Draw a picture to illustrate this, and see if you can come up with an
intuitive explanation of why this happens.

c. Nowdraw the vertical line x = 1.Given a point (I, r) on this line, draw the line connecting
(I, t) to the origin. This will intersect the curve in a point (x , y). Draw a picture to illustrate
this, and argue geometrically that this gives a parametrization of the entire curve.

d. Show that the geometric description from part c leads to the parametrization

x = c - t 2 ,

Y = r(c - t2 ) .

9. The strophoid is a curve that was studied by various mathematicians. including Isaac Barrow
(I 63{}--1677), Jean Bernoulli (1667-1748), and Maria Agnesi (1718-1799). A trigonometric
parametrization is given by

x = a sin(t),

y =a tan(t)(1 + sin(t» .

where a is a constant. Ifwe Jet t vary in the range -4.5 ~ r ~ 1.5, we get the picture shown
at the top of the next page.
a. Find the equation in x and y that describes the strophoid. Hint: If you are sloppy, you

will get the equation (a2 - X2)y2 = x 2(a + x)2. To see why this is not quite correct. see
what happens when x = -a.
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b. Find an algebraic parametrization of the strophoid .

-a a x

10. Around 180 B.C., Diocles wrote the book On Burning-Glasses, and one of the curves he
considered was the cissoid . He used this curve to solve the problem of the duplication of the
cube (see part c below). The cissoid has the equat ion y2(a + x ) = (a - X)3, where a is a
constant. This gives the following curve in the plane:

-a a x

a. Find an algebraic parametrization of the cissoid.
b. Diocles described the cissoid using the following geometric construc tion. Given a circle

of radius a (which we will take as centered at the origin) , pick x between a and -a, and
draw the line L connecting (a, 0) to the point P = (-x, Ja 2 - x2) on the circle . This
determ ines a point Q = (x , y) on L:
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-a a

Prove that the cissoid is the locus of all such points Q.
c. The duplicat ion of the cube is the classical Greek problem of trying to construct -ifi

using ruler and compass . It is known that this is impossible given just a ruler and compass .
Diodes showed that if in addition, you allow the use of the cissoid, then one can construct
-ifi. Here is how it works. Draw the line connecting (-a, 0) to (0, a/2). This line will
meet the cissoid at a point (x, y). Then prove that

which shows how to construct -ifi using ruler, compass and cissoid .
II . In this problem, we will derive the parametrization

x = t(u2 - ( 2),

of the surface x 2 - y 2Z2 + Z3 = 0 considered in the text.
a. Adapt the formulas in part d of Exercise 8 to show that the curve x 2 = cz2 - Z3 is

parametrized by

Z = c - t 2,

x=t(c-t2) .

b. Now replace the c in part a by y2, and explain how this leads to the above parametrization
of x2 - i z2 + zJ = O.

c. Explain why this parametrization covers the entire surface V(x 2 - y2Z2 + zJ). Hint: See
part c of Exercise 8.

12. Consider the variety V =V(y - x 2 , Z - x 4) C IRJ.
a. Draw a picture of V.
b. Parametrize V in a way similar to what we did with the twisted cubic .
c. Parametrize the tangent surface of V.

13. The general problem of finding the equation of a parametrized surface will be studied in
Chapters 2 and 3. However, when the surface is a plane, methods from calculus or linear



x::;

y=

§3. Parametrizations of Affine Varieties 27

algebra can be used. For example, consider the plane in 1R3 parametrized by

x = 1+ u - v,

Y = u + 2v,

z=-I-u+ v.

Find the equation of the plane determined this way.Hint: Let the equation of the plane beax+
by + cz = d .Then substitute in the above parametrization to obtain a system of equat ions
for a, b, c, d . Another way to solve the problem would be to write the parametrization in
vector form as (I , 0, -I) + u(l , I, -I) + v( -1,2, I) . Then one can get a quick solution
using the cross product .

14. This problem deals with convex sets and will be used in the next exercise to show that a
Bezier cubic lies within its control polygon. A subset C C IR2 is convex if for all P, Q E C,
the line segment join ing P to Q also lies in C.
a. If P = (:.) and Q = C) lie in a convex set C, then show that

when 0 < t < 1.
b. If Pi = ( ::) iies in a convex set C for I :5 i :5 n, then show that

wherever t l , . . . , tn are nonnegative numbers such that L;'=I t, = 1.Hint: Use induction
onn .

15. Let a Bezier cubic be given by

x = (I - t)3XO+ 3t(l - t)2X1+ 3t2(1 - t) X2+ t3X3'

Y = (I - t)3 yO+ 3t(l - t)2 YI + 3t 2(1 - t) Y2 + t 3Y3 .

a. Show that the above equations can be written in vector form

b. Use the previous exercise to show that a Beziercubic always lies inside its control polygon.
Hint: In the above equations, what is the sum of the coefficients ?

16. One disadvantage of Bezier cubics is that curves like circles and hyperbo las cannot be
described exactly by cubics. In this exercise, we will discuss a method similar to example
(4) for parametrizing conic sections. Our treatment is based on BALL (1987) .

A con ic section is a curve in the plane defined by a second degree equation of the form
ax 2 + bx y + cy2 + dx + ey + f = O. Conic sections include the familiar examples of
circles , ellipses, parabolas, and hyperbolas. Now consider the curve parametrized by

(I - t)2 XI + 2t(l - t)WX2 + t2X3
(I - t)2 + 2t(1 - t)w + t 2

(I - t)2YI + 2t(l - t)WY2 + t 2Y3

(I - t)l + 2t(1 - t)w + t2

for 0 :5 t < 1. The constants w , x .. Yl , Xl , Y2, X3 , Y3 are specified by the design engineer,
and we will assume that W ::: O. In Chapter 3, we will show that these equations parametrize a
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conic section. The goal of this exercise is to give a geometric interpretation for the quantities
w. XI, YI , X2. Y2, Xl. Yl·
a. Show that our assumption w ~ 0 implies that the denominator in the above formulas

never vanishes.
b. Evaluate the above formulas att = 0 and t = 1. This should tell you what XI, YI. Xl. Yl

mean.
c. Now compute (x'(O), y'(O» and (x'(L), y'(I» . Use this to show that (X2. Y2) is the in-

tersection of the tangent lines at the start and end of the curve. Explain why (XI. YI).
(X2. Y2), and (X3. Y3) are called the control points of the curve.

d. Define the control polygon (it is actually a triangle in this case). and prove that the curve
defined by the above equations always lies in its control polygon. Hint: Adapt the argument
of the previous exercise. This gives the following picture:

(X,oY,) .,
/

/
/

/
/

/
/

/
/

/
/

(X,.Y,)

It remains to explain the constant w. which is called the shape factor. A hint should come
from the answer to part c, for note that w appears in the formulas for the tangent vectors
when t = 0 and 1. So w somehow controls the "velocity." and a larger w should force the
curve closer to (X2, Y2). In the last two parts of the problem, we will determine exactly
what w does .

e. Prove that

1
~ ( I (XI) 1 (X3)) W (X2)"2 YI +"2 Y3 + 1+ W Y2

Use this formula to show that (x( ~ ). y( ~ » lies on the line segment connecting (X2. Y2)
to the midpoint of the line between (XI. yt> and (X3, Y3)'

/
/

/
/

/
/

/
/

/
/

/

f. Notice that (x( ~ ), Y( ~ » divides this line segment into two pieces. say of lengths a and
b as indicated in the above picture. Then prove that
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a
W = b'

so that w tells us exactly where the curve crosses this line segment. Hint: Use the distance
formula.

17. Use the formulas of the previous exercise to parametrize the arc of the circle x 2 + y2 = 1
from (1, 0) to (0, 1). Hint: Use part f of Exercise 16 to show that w = 1/../2.

§4 Ideals

We next define the basic algebraic object of the book.

Definition 1. A subset I C k[x" . .. , XII] is an ideal if it satisfies :
(i) °E I.
(ii) If f, gEl, then f + gEl.
(iii) Iff E I and h E k[Xl , . . . , XII), then hf E I .

The goal of this section is to introduce the reader to some naturally occurring ideals
and to see how ideals relate to affine varieties. The real importance of ideals is that they
will give us a language for computing with affine varieties.
The first natural example of an ideal is the ideal generated by a finite number of

polynomials.

Definition 2. Let fl , . . . , f s be polynomials in k[Xl, ... , xn ]. Then we set

(fl, . . . , fs) ={t hi ], : hI, .. . , h.. E k[XI, ... , XII)} .
1=1

The crucial fact is that (fl, ... , f s ) is an ideal.

Lemma 3. If fl, . . . , j , E k[XI, . .. ,XII ), then (fl, ... ,fs ) is an ideal of
k[XI, ... , XII]' We will call (fl, . . . , j,) the ideal generated by f1, .. . , fs.

Proof. First,°E (fl, ... , I,) since°= :E:=IO. .fi. Next, suppose that f = :E!=IP;fi
and g = :Ei'= Iq,fi, and let h E k[XI, . . . , XII) ' Then the equations

s

f + g = ~)Pi .+- q;)fi,
; = 1
s

hf = L(hpi)fi
;=1

complete the proof that (flo . . . , fs) is an ideal. o

The ideal (fl, .. . I j,) has a nice interpretation in terms of polynomial equations.
Given fl , . . . , j, E k[XI, . . . , XII), we get the system of equations
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11=0,

Is = O.
From these equations, one can derive others using algebra . For example, if we multiply
the first equation by hiE k[xi • . . . • x" 1, the second by h2 E k[Xl • . . . : x" J, etc., and
then add the resulting equations, we obtain

htfl + h2f2 + .. .+ hsfs = 0,

which is a consequence of our original system. Notice that the left-hand side of
this equation is exactly an element of the ideal (fl , .. . , I.). Thus, we can think
of (fl, .. . , Is) as consisting of all "polynomial consequences" of the equations
II = h = . . . = I, = O.
To see what this means in practice , consider the example from §3 where we took

x = 1+ t,

Y = 1 + t 2

and eliminated t to obtain

y = x2 - ix + 2

[see the discussion following equation (7) in §3). Let us redo this example using the
above ideas. We start by writing the equations as

x-I - t = 0,
Y - 1 - t 2 = O.

To cancel the t terms, we multiply the first equation by x-I + t and the second by
-1 :

(x - 1)2 - t 2 = 0,

-y + 1 + t 2 = 0,

and then add to obtain

(x - 1)2 - Y+ 1 = x 2 - 2x + 2 - y = O.

In terms of the ideal generated by equations (I), we can write this as

x2 - 2x +2 - y = (x - 1+ t)(x - 1 - t) + (-I)(y - 1 - t 2) E (x - 1 - t , Y - 1- t 2).

Similarly, any other "polynomial consequence" of (1) leads to an element of this ideal.
We say that an ideal! is finitely generated if there exist I I, . .. • I. E k[XI, . ..• x;1

such that 1 = (f, .. . . , I.). and we say that II . ... , Is are a bas is of I. InChapter 2,
we will prove the amazing fact that every ideal of k[XI , .. .• x"1is finitely generated
(this is known as the Hilbert Basis Theorem). Note that a given ideal may have many
different bases . InChapter 2, we will show that one can choose an especially useful
type of basis , called a Groebner basis.
There is a nice analogy with linear algebra that can be made here. The definition of an

ideal is similar to the definition of a subspace: both have to be closed under addition and
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multiplication. except that, for a subspace. we multiply by scalars. whereas for an ideal.
we multiply by polynomials. Further. notice that the ideal generated by polynomials
fl, . . . , f s is similar to the span of a finite number of vectors VI, •• • • vs. In each case.
one takes linear combinations. using field coefficients for the span and polynomial
coefficients for the ideal generated. Relations with linear algebra are explored further
in Exercise 5.
Another indication of the role played by ideals is the following proposition. which

shows that a variety depends only on the ideal generated by its defining equations.

Proposition 4. If fl • . . . ,fs and g" ... , g, are bases of the same ideal in
k[x , • . . . •XII], so that (fl, . ..• f s) = (g" . . . , g,), then V(f" ... , fs) = V(gl'
. . . , g,).

Proof. The proof is very straightforward and is left as an exercise. o
As an example. consider the variety V(2x2 + 3y2 - 11, x2 - y2 - 3). It is easy to

show that (2x 2+3y2 .- 11, x2 - y2 - 3) = (x2 - 4, y2 - I) (see Exercise 3). so that

V(2x2 +3l- 11, x 2 -l- 3) = V(x 2 - 4.l- 1) = {(±2. ±1)}

by the above proposition. Thus , by changing the basis of the ideal, we made it easier
to determine the variety.
The ability to change the basis without affecting the variety is very important. Later

in the book. this will lead to the observation that affine varieties are determined by
ideals , not equations. (In fact. the correspondence between ideals and varieties is the
main topic of Chapter 4.) From a more practical point of view. we will also see that
Proposition 4, when combined with the Groebner bases mentioned above, provides a
powerful tool for understanding affine varieties.
We will next discuss how affine varieties give rise to an interesting class of ideals.

Suppose we have an affine -variety V = V(f, • . .0 • , f,) C k" defined by fl ; . . .• f s E
k[xi • . . . • XII]' We know that fl , .. . , i, vanish on V. but are these the only ones? Are
there other polynomials that vanish on V? For example. consider the twisted cubic
studied in §2. This curve is defined by the vanishing of y - x 2 and z - x 3• From the
parametrization (r, t2• t3) discussed in §3. we see that z - xy and y2 - xz are two more
polynomials that vanish on the twisted cubic. Are there other such polynomials? How
do we find them all?
To study this question, we will consider the set of all polynomials that vanish on a

given variety.

Definition 5. Let V C k" be an affine variety. Then we set

I(V) = {f E k[XI •. . . , XII] : f(al, . . . • all) = 0 for all (al • ... , all) E V}.

The crucial observation is that I(V) is an ideal.

Lemma 6. If V C k" is an affine variety, then I( V) C k[XI , • . . •XII] is an ideal. We
will call I( V) the ideal of V .
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Proof. It is obvious that 0 E I(V) since the zero polynomial vanishes on all of
k", and so, in particular it vanishes on V. Next. suppose that / . g E I(V) and
h E k[Xl, . .. , XII]' Let (al • . .. , all) be an arbitrary point of V. Then

. f(a, .. . , all) + g(al ," " all) = 0 + 0 = 0,

hia«, . . . • all)/(al, .. . , all) = h(aJ, . . . , all)' 0 = 0,
and it follows that I(V) is an ideal. 0

For an example of the ideal of a variety, consider the variety {(O, 0) J consisting of
the origin in k2• Then its ideal I( {(O, O)}) consists of all polynomials that vanish at the
origin, and we claim that

I«((O,O)}) = (x .y).

One direction of proof is trivial, for any polynomial of the form A(x, y)x + B(x, y)y
obviously vanishes at the origin. Going the other way, suppose that / = L i.jaijXi yj
vanishes at the origin . Then aoo = /(0,0) = 0 and, consequently,

F = aoo+ 2.: aijxiyj
i·N O.O

= 0 + (2.:... aijX
i_ 1y j) X + (2.:aOjyj-l) .}' E (x, y) .

L J J>O
, >0

Our claim is now proved.
For another example , consider the case when V is all of k", Then I(kn ) consists of

polynomials that vanish everywhere. and. hence, by Proposition 5 of §l. we have

I(k") = {OJ when k is infinite .

(Here, "0" denotes the zero polynomial in k[xt , ...• XII]') Note that Proposition 5 of
§1 is equivalent to the above statement. In' the exercises, we will discuss what happens
when k is a finite field.
For a more interest ing example, consider the twisted cubic V = V(y - x 2 , Z - x 3) C

!R3. We claim that

I(V) = (y - x 2 , Z - x 3 ) .

To prove this, we will first show that given a polynomial/ E !R[x, y, el.we can write
/ in the form

(2)

where h J .h: E !R[x, y. zland r is a polynomial in the variable x alone. First consider
the case when / is a monomial xayfJz".Then the binomial theorem tells us

xayfJ zY = xa(x2+ (y - x 2»fJ(x 3+ (z _ x 3»Y

.= xa(x 2/3 + terms involving y - x 2)(x 3y + terms involving z - x 3),

and multiplying this out shows that

x" yfJz" = hi (y - x 2) + h2(z - x 3) + xa+2fJ+3y
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for some polynomials hi, hz E IR[x, y, zl . Thus , (2) is true in this case . Since an
arbitrary f E IR[x, y, zl is an IR-linear combination of monomials, it follows that (2)
holds in general.
We can now prove I( V) = (y - x 2 , Z - x 3 ) . First, by the definition of the twisted

cubic V, we have y - xz, Z - x 3 E I(V), and since I(V) is an ideal, it follows that
hI (y - xz) + hz(z - x3) E I(V). This proves that (y - xZ, z - x3) C I(V) .To prove
the opposite inclusion, let f E I(V) and let

f = hi (y - x2 ) + hz(z - x3) + r
be the decomposition given by (2). To prove that r is zero, we will use the
parametrization (r, t Z, t3) of the twisted cubic. Since f vanishes on V, we obtain

0= f(t , t2 , t 3) = 0 + 0 + ret)
(recall that r is a polynomial in x alone). Since t can be any real number, r E IR[x]
must be the zero polynomial by Proposition 5 of §I . But r = 0 shows that f has the
desired form , and I(V) = (y - x Z, z - x 3) is proved.
What we did in (2) is reminiscent of the division of polynomials, except that we

are dividing by two polynom ials instead of one. In fact, (2) is a special case of the
generalized division algorithm to be studied in Chapter 2.
A nice corollary of the above example is that given a polynomial f E IR[x, y, sl.

we have f E (y - x Z, z - x 3) if and only if f(t, t2 , t 3) is identically zero. This
gives us an algorithm for deciding whether a polynomial lies in the ideal. However,
this method is dependent on the parametrization (t, tZ, t3) . Is there a way of deciding
whether f E (y - x Z, z - x 3) without using the parametrization? In Chapter 2, we
will answer this question positively using Groebner bases and the generalized division
algorithm .
The example of the twisted cubic is very suggestive .We started with the polynomials

y - x 2 and z - x 3 , used them to define an affine variety, took all functions vanishing
on the variety, and got back the ideal generated by the two polynomials. It is natural to
wonder if this happens in general. So take f l' . .. , fs E k[XI , . . . , XII]' This gives us

polynomials variety ideal
f l' . .. ,fs --+ VUI, . .. , fs) --+ I(VUI , ... , fs»,

and the natural question to ask is whether I(VUt, . .. , I,» = UJ, . .. , f s}? The
answer, unfortunately, is not always yes. Here is the best answer we can give at this
point.

Lemma 7. If f l' .. . , f, E k[XI , .. . , XII], then (flo ... ,fs) C I(VUI, ... , f s»,
although equality need not occur.

Proof. Let f E (fl, . . · , I,). which means that f = "Ei'=lhih for some polynomi-
als hi, . . . , h, E k[X I, . . . , XII] ' Since flo . · ., f s vanish on VUI, . .. , f s), so must
"Ef=lhik Thus , f vanishes on VUI, . . . , fs). ·which proves f E I(VUI , , I,» .
For the second part of the lemma. we need an example where I (VU" fs» is

strictly larger than (fl, . . .• Is) .We will show that the inclusion

(x2 , i) C I(V(xz, i»
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is not an equality. We first compute I(V(x2 • y2» . The equations x 2 = y2 = 0 imply
that V(x2, y2) = {(O, O)}. But an earlier example showed that the ideal of {(O, O)} is
(x , y), so that I(V(x2 , y2» = {x , y }. To see that this is strict ly larger than (x2, y2),
note that x fj. (x2, y2) since for polynomials of the form hl(x , y) x 2 + h2(x, y )y2,
every monomial has total degree at least two. 0

For arbitrary fields, the relationship between (fl , . . . , f s) and I(VU, , ... , fs» can
be rather subtle (see the exercises for some examples). However, over an algebraically
closed field like <C. there is a straightforward relat ion between these ideals. Th is will
be explained when we prove the Nullstellensatz in Chapter 4.
Although for a general field, I(V(fI .. . . , i,» may not equal (fl , . . . , fs), the ideal

of a variety always contains enough information to determine the variety uniquely.

Proposition 8. Let V and W be affine varieties in k" . Then:
(i) V C W ifand only ifl(V) :J I(W).
(ii) V = W ifand only ifl(V) = I(W).

Proof. We leave it as an exercise to show that (ii) is an immediate consequence of (i),
To prove (i), first suppose that V C W. Then any polynomial vanishing on W must
vanish on V, which proves I(W) C I(V). Next, assume that I (W) C I(V). We know
that W is the variety defined by some polynomials g l, . .. ,g, E k[XI, ...• XII]' Then
gl, .. . , g, E I(W) C I(V) , and hence the gi 'S vanish on V . Since W consists of all
common zeros of the gi 's , it follows that V C W. 0

There is a rich relationship between ideals and affine varieties; the material presented
so far is just the tip of the iceberg. We will explore this relation further in Chapter 4.
In particular, we will see that theorems proved about ideals have strong geometric
implications. For now, let us list three questions we can pose concerning ideals in
k[XI , . . . , XII]:
• (Ideal Description) Can every ideal I C k[xt , . . . • XII] be written as (fl' . .. , fs)
for some fv , . .. , f s E k[xt • . . . , XII ]?

• (Ideal Membership) If f" ...• i , E k[xi • . . . , XII], is there an algorithm to decide
whether a given f E k[ xl • . . . , XII'] lies in (fl• . . . , I ,) ?

• (Nullstellensatz) Given fl • . . . • f s E k[XI, .. .• XII], what is the exact relation
between (fl . ... , I,) and I(VU! • . .. , i ,»?

In the chapters that follow, we will solve these problems completely (and we will explain
where the name Nullstellensatz comes from), although we will need to be careful about
which field we are working over.

EXERCISES FOR §4

I. Considerthe equations

x 2 + i - [ = O.

x y - 1= 0

which describe the intersection of a circle and a hyperbola.
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a. Use algebra to eliminate y from the above equations.
b. Show how the polynomial found in part a lies in (x2 + y2 - I , xy - I) . Your answer

should be similar to what we did in (I). Hint: Multiply the.second equation by xy + I.
2. Let 1 C k[X I , . . . , x,,) be an ideal, and let f ., . .. ,f, E k[XI, ... , x,,]. Prove that the

following statements are equivalent:
(i) [v . , f. E I .
(ii) (fl , , f,) C I.
This fact is useful when you want to show that one ideal is contained in another.

3. Use the previous exercise to prove the following equalities of ideals in k[x , y] :
a. (x + y , x - y) = (x , y) .
b. (x + xy, Y + xy ; x2, y2) = (x, y).
c. (2x2+ 3y2 - II , x 2 - i - 3) = (x 2 - 4, y2 - I) .
This illustrates that the same ideal can have many different bases and that different bases
may have different numbers of elements.

4. Prove Proposition 4.
5. Show that V(x + xy . y + xy, x2, y2) = V(x, y) . Hint: See Exercise 3.
6. The word "basis" is used in various ways in mathematics. In this exercise, we will see that

"a basis of an ideal," as defined in this section, is quite different from "a basis of a subspace,"
which is studied in linear algebra.
a. First, consider the ideal 1 = (x) c k[x]. As an ideal, 1 has a basis consisting of the one

element x . But 1 can also be regarded as a subspace of k[x], which is a vector space over
k. Prove that any vector space basis of lover k is infinite. Hint: It suffices to find one
basis that is infinite. Thus, allowing x to bemultiplied by elements of k[x] instead of just
k is what enables (x) to have a finite basis.

b. In linear algebra, a basis must span and be linearly independent over k, whereas for
an ideal, a basis is concerned only with spanning-s-there is no mention of any sort of
independence. The reason is that once we allow polynomial coefficients, no independence
is possible. To see this, consider the ideal (x, y) c k[x, y ). Show that zero can bewritten
as a linear combination of y and x with nonzero polynomial coefficients.

c. More generally, suppose that fl' . . . , f , is the basis of an ideal 1 C k[XI, .. . ,xo]' If
s ~ 2 and f i 1= 0 for all i , then show that for any i and j , zero can bewritten as a linear
combination of Ii and Ii with nonzero polynomial coefficients.

d. A consequence of the lack of independence is that when we write an element f E
(flo . . . , I.) as f = L !=lhi Ii. the coefficients h, are not unique. As an example. consider
f = x 2+xy+ y2 E (x , y) . Express f as a linear combination of x and y in two different
ways . (Even though the h, 's are not unique. one can measure their lack of uniqueness.
This leads to the interesting topic of syzygies.)

e. A basis fl, . . . , I, of an ideal 1 is said to beminimal if no proper subset of fl, .. . , fs
is a basis of I . For example. x, x 2 is a basis of an ideal, but not a minimal basis since
x generates the same ideal. Unfortunately. an ideal can have minimal bases consisting
of different numbers of elements. To see this, show that x and x + x2, x2 are minimal
bases of the same ideal of k[x) . Explain how this contrasts with the situation in linear
algebra.

7. Show that I (V(z" , v") = (x, y) for any positive integers n and m,
8. The ideal I(V) of a variety has a special property not shared by all ideals . Specifically, we

define an ideal 1 to beradical if whenever a power [" of a polynomial f is in I, then f itself
is in I . More succinctly. 1 is radical when f E 1 if and only if ['0 E 1 for some positive
integer m.
a. Prove that I(V) is always a radical ideal.
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b. Prove that (x2, y2) is not a radical ideal. This implies that (x2, yZ) :j:. I(V) for any variety
V C k2•

Radical ideals will play an important role in Chapter 4. In particular, the Nullstellensatz will
imply that there is a one-to-one correspondence between varieties in <C" and radical ideals
in <C[Xt, . . . , x,,] .

9. Let V = V(y - x 2 , Z - x 3 ) be the twisted cubic . In the text, we showed that I(V)
(y - x 2 , Z - x 3 ) .
a. Use the parametrization of the twisted cubic to show that y2 - xz E I(V) .
b. Use the argument given in the text to express y2 - xz as a combination of y - x2 and

l - x 3•
10. Use the argument given in the discussion of the twisted cubic to show that I(V(x - y» =

(x - y) . Your argument should be valid for any infinite field k.
II . Let V C IR3 be the curve parametrized by (I, 13, 14) .

a. Prove that V is an affine variety .
b. Adapt the method used in the case of the twisted cubic to determine I(V) .

12. Let V C IR3 be the curve parametrized by (/ 2 , 13, ( 4) .
a. Prove that V is an affine variety .
b. Determine I(V) .
This problem is quite a bit more challenging than the previous one-figuring out the proper
analogue of equation (2) is not easy. Once we study the division algorithm in Chapter 2, this
exercise will become much easier.

13. In Exercise 2 of §1, we showed that x2y + y2X vanishes at all points of!F~ . More generally,
let 1 C !F2[x, y] be the ideal of all polynomials that vanish at all points of !F~. The goal of
this exercise is to show that 1 = (x2 - X , y2 - y).
a. Show that (x 2 - X. yZ - y) c I .
b. Show that every I E !F2[x, y] can be written as I = A (x2 - x) + B(y2 - y) +

axy + bx + cy + d, where A, B E !F2[x , y] and a, b, c, d E !F2.Hint: Write I in the
form Li Pi(x) yi and use the division algorithm (Proposition 2 of §5) to divide each Pi
by X Z - x. From this. you can write 1= A(x2 - x) + ql (y)x + qz(y) . Now divide q,
and q: by y2 - y. Again. this argument will become vastly simpler once we know the
division algorithm from Chapter 2.

c. Show that axy + bx + cy + d e I if and only if a = b = c = d = O.
d. Using parts band c, complete the proof that 1 = (x2 - x, y2 - y) .
e. Express x2y + yZx as a combination of x2 - x and y2 - y . Hint: Remember that

2 = I + I = 0 in !F2.
14. This exercise is concerned with Proposition 8.

a. Prove that part (ii) of the proposition follows from part (i).
b. Prove the following corollary of the proposition: if V and W are affine varieties in k"•

then V ~ W if and only if I(V) ~ I(W).
15. In the text. we defined I(V) for a variety V C k" . We can generalize this as follows : if

S C k" is any subset. then we set

I(S) = [f E k[Xlo .. . ,x,,) : I(al, . . . ,a,J = 0 for all (al> . .. , all) E S}.

a. Prove that I (S) is an ideal.
b. Let X = {(a , a) E IR2 : a :j:. I}. By Exercise 8 of §2. we know that X is not an affine

variety . Determine I(X). Hint: What you proved in Exercise 8 of §2 will be useful. See
also Exercise 10 of this section.

c. Let 'lL" be the points of <C" with integer coordinates. Determine 1('lL"). Hint: See
Exercise 6 of §I.
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§5 Polynomials of One Variable

In this section, we will discuss polynomials of one variable and study the division
algorithm from high school algebra. This simple algorithm has some surpris ingly deep
consequences-for example, we will use it to determine the structure of ideals of k[x]
and to explore the idea ofa greatest common divisor.The theory developed will allow us
to solve , in the special case of polynomials in k[x] ,most of the problems raised in earlier
sections. We will also begin to understand the important role played by algorithms.
By this point in their mathematics careers, most students have already seen a variety

of algorithms, although the term "algorithm" may not have been used. Informally,
an algorithm is a specific set of instructions for manipulating symbolic or numerical
data. Examples are the differentiation formulas from calculus and the method of row
reduction from linear algebra. An algorithm will have inputs, which are objects used
by the algorithm, and outputs , which are the results of the algorithm. At each stage of
execution, the algorithm must specify exactly what the next step will be.
When we are studying an algorithm, we will usually present it in "pseudocode,"

which will make the formal structure easier to understand. Pseudocode is similar to the
computer language Pascal, and a brief discussion is given in Appendix B. Another rea-
son for using pseudocode is that it indicates how the algorithm could be programmed on
a computer. We should also ment ion that most of the algorithms in this book are imple-
mented in computer algebra systems such as AXIOM, Macsyma, Maple, Mathematica,
and REDUCE. Appendix C has more details concerning these programs.
We begin by discussing the division algorithm for polynomials in k[x] . A crucial

component of this algorithm is the notion of the "leading term" of a polynomial in one
variable. The precise definition is as follows .

Definition 1. Given a nonzero polynomial f E k[x], let

where a, E k and ao =I 0 (thus , m = deg(f»). Then we say that aoxm is the leading
term of f, written LT(f) = aoxm •

For example, if f = 2x 3 - 4x + 3, then LT(f) = 2x 3 • Notice also that if f and g
are nonzero polynomials, then

(1) deg(f) =:: deg(g) <===> LT(f) divides LT(g).

We can now describe the division algorithm.

Proposition 2 (The Division Algorithm). Let k be a field and let g be a nonzero
polynomial in k[x]. Then every f E k[x] can be written as

f = qg + r,

where q , r E k[x], and either r = 0 or deg(r) < deg(g) . Furthermore, q and rare
unique , and there is an algorithm for finding q and r.
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Proof. Here is the algorithm for finding q and r , presented in pseudocode:

Inputg,f
Output q, r
q := 0; r := f
WHILE r -# 0 AND LT(g) divides LT(r) DO

q := q + LT(r)/LT(g)
r := r - (LT(r)/LT(g»g

The WHILE .. . DO statement means to do the indented operations until the expression
between the WHILE and DO becomes false. The statements q := ... and r := . ..
indicate that we are defining or redefining the values of q and r . Both q and r are
variables in this algorithm-they change value at each step. We need to show that the
algorithm terminates and that the final values of q and r have the required properties .
(For a fuller discussion of pseudocode, see Appendix B.)
To see why this algorithm works, first note that f = qg + r holds for the initial

values of q and r , and that whenever we redefine q and r , the equality f = qg + r
remains true. This is because of the identity

f = qg + r = (q + LT(r)/LT(g»g + (r - (LT(r)/LT(g»g).

Next, note that the WHILE . .. DO statement terminates when " r -# 0 and LT(g) divides
LT(r)" is false, i.e., when either r = 0 or LT(g) does not divide LT(r). By (I), this last
statement is equivalent to deg(r) < deg(g). Thus, when the algorithm terminates , it
produces q and r with the required properties.
We are not quite done; we still need to show that the algorithm terminates , i.e., that

the expression between the WHILE and DO eventually becomes false (otherw ise, we
would be stuck in an infinite loop). The key observat ion is that r - (LT(r )/LT(g»g is
either 0 or has smaller degree than r. To see why, suppose that

r = aoxm+ + am, LT(r) = aoxm,
g = boxk + + bk, LT(g) = boxk,

and suppose that m ::: k , Then

r - (LT(r)/LT(g)g = (aoxm+ ...) - (ao/bo)xm-k(boxk + .. '),
and it follows that the degree of r must drop (or the whole expression may vanish).
Since the degree is finite, it can drop at most finitely many times, which proves that the
algorithm terminates.
To see how this algorithm corresponds to the process learned in high school, consider

the following partially completed division :

.!.x22;.-. _

2x + I Jx 3 + 2x 2 + X + I

x 3 + .!.x22
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Here,fandg are given by f = x3+2x2+x+ 1andg = 2x+1,and, more importantly,
the current (but not final) values of q and r are q= !x 2 and r = ~ x 2 + X + 1. Now
notice that the statements

q := q + LT(r)jLT(g),

r := r - (LT(r)jLT(g»g

in the WffiLE . . . DO loop correspond exactly to the next step in the above division.
The final step in proving the proposition is to show that q and r are unique. So

suppose that f = qg + r = q'g + r' where both rand r' have degree less than g
(unless one or both are 0). If r #- r', then deg(r' - r) < deg(g). On the other hand,
since

(2) (q - q')g = r' - r,

we would have q - q' i= 0, and consequently,

deg(r ' - r) = deg«q - q')g) = deg(q - q') + deg(g) ::: deg(g) .

This contradiction forces r = r', and then (2) shows that q = q'. This completes the
proof of the proposition. 0

Most computer algebra systems implement the above algorithm (with some
modifications-see DAVENPORT, SIRET, and TOURNIER (1988)] for dividing polynomials .
A useful corollary of the division algorithm concerns the number of roots of a

polynomial in one variable.

Corollary 3. lfk is afield and f E k[x] is a nonzero polynomial. then f has at most
deg(f) roots in k.

Proof. We will use induction on m = deg(f). When m = 0, f is a nonzero constant ,
and the corollary is obviously true. Now assume that the corollary holds for all poly-
nomials of degree m - I, and let f have degree m. If f has no roots in k, then we are
done. So suppose a is a root in k. If we divide f by x - a, then Proposition 2 tells
us that f = q (x - a) + r , where r E k since x - a has degree one. To determine
r, evaluate both sides at x = a, which gives 0 = f(a) = q(a)(a - a) + r = r . It
follows that f = q(x - a) . Note also that q has degree m - I.
We claim that any root of f other than a is also a root of q. To see this, let b i= a be

a root of f . Then 0 = f(b) = q(b)(b - a) implies that q(b) = 0 since k is a field.
Since q has at most m - I roots by our inductive assumption, f has at most m roots in
k. 0

Corollary 3 was used to prove Proposition 5 in §I , which states that I(k") = 10}
whenever k is infinite. This is an example of how a geometric fact can be the consequence
of an algorithm .
We can also use Proposition 2 to determine the structure of all ideals of k(x) .
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Corollary 4. If k is a field. then every ideal ofk[x] can be written in the form (f) for
some f E k[x] . Furthermore. f is unique up to multiplication by a nonzero constant
in k.

Proof. Take an ideal I C k[x]. If I = {O} , then we are done since I = {O}. Otherwise,
let f be a nonzero polynomial of minimum degree contained in I. We claim that
{f} = I . The inclusion {f} C I is obvious since I is an ideal. Going the other way,
take gEl. By division algorithm (Proposition 2), we have g =qf + r , where either
r = 0 or deg(r) < deg{f). Since I is an ideal, qf E I and, thus, r = g - qf E I . If
r were not zero, then deg(r) < deg(f), which would contradict our choice of f .Thus,
r = 0, so that g = qf E (f). This proves that I = {f} .
To study uniqueness, suppose that (f) = {g}. Then f E {g} implies that f = hg

for some polynomial h. Thus,

(3) deg(f) = deg(h) + deg(g),

so that deg(f) > deg(g) . The same argument with f and g interchanged shows
deg{f) :::: deg(g), and it follows that deg(f) = deg(g). Then (3) implies that
deg(h) = 0, so that h is a nonzero constant. 0

In general , an ideal generated by one element is called a principal ideal. In view of
Corollary 4, we say that k[x] is a principal ideal domain, abbreviated PID.
The proof of Corollary 4 tells us that the generator of an ideal in k[x1is the nonzero

polynomial of minimum degree contained in the ideal. This description is not useful in
practice, for it requires that we check the degrees of all polynomials (there are infinitely
many) in the ideal. Is there a better way to find the generator? For example, how do we
find a generator of the ideal

{x4 - I, x 6 - I} C k[x]?

The tool needed to solve this problem is the greatest common divisor.

Definition 5. A greatest common divisor ofpolynomials f, g E k[x] is a polynomial
h such that:
(i) h divides f and g.
(ii) If p is another polynomial which divides f and g . then p divides h .
When h has these properties, we write h = GCD(f, g) .

Here are the main properties of GCDs.

Proposition 6. Let f, g E k[x). Then:
(i) GCD (f, g) exists and is unique up to multiplication by a nonzero constant in k .
(ii) GCD (f, g) is a generator of the ideal {f, g}.
(iii) There is an algorithm for finding GCD(f, g).

Proof. Consider the ideal {f, g} . Since every ideal of k[x) is principal (Corollary 4),
there exists h E k[x) such that {f, g} = {h} . We claim that h is the GCDof f, g.
To see this, first note that h divides f and g since f , g E {h }. Thus, the first part of
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Definition 5 is satisfied. Next, suppose that p E k[x] divides f and g. This means that
f = Cp and g = Dp for some C, D E k[x]. Since h E (f, g), there are A, B such
that Af + Bg = h. Substituting, we obtain

h = Af + Bg = ACp + BDp = (AC + BD)p,

which shows that p divides h. Thus, h = GCD(f, g) .
This proves the existence of the GCD. To prove uniqueness, suppose that h' was

another GCD of f and g. Then, by the second part of Definition 5, h and h' would each
divide the other. This easily implies that h is a nonzero constant multiple of h' , Thus,
part (i) of the corollary is proved, and part (ii) follows by the way we found h in the
above paragraph.
The existence proof just given is not useful in practice. It depends on our ability to

find a generator of (f, g). As we noted in the discussion following Corollary 4, this
involves checking the degrees of infinitely many polynomials. Fortunately, there is a
classic algorithm, known as the Euclidean Algorithm, which computes the GCD of two
polynomials in k[x] . This is what part (iii) of the proposition is all about.
We will need the following notation. Let t. g E k[x], where g =f. 0, and write

f = qg + r, where q and r are as in Proposition 2. Then we set r = remainder(f, g) .
We can now state the Euclidean Algorithm for finding GCD(f, g):

Input: f , g
Output: h
h := f
s := g
WHILE s =f. 0 DO

rem := remainder(h, s)
h :'= s
s := rem

To see why this algorithm computes the GCD, write f = qg + r as in Proposition 2.
We claim that

(4) GCD(f, g) = GCD(f - qg. g) = GCD(r, g) .

To prove this, by part (ii) of the proposition, it suffices to show that the ideals (f, g)
and (f - qg, g) are equal. We will leave this easy argument as an exercise.
We can write (4) in the form

GCD(f, g) = GCD(g , r).

Notice that deg(g) > deg(r) or r = O. If r =f. 0, we can make things yet smaller by
repeating this process. Thus, we write g = q'r + r' as in Proposition 2, and arguing as
above, we obtain

GCD(g , r) = GCD(r, r") ,

where deg(r) > deg(r') or r' = O. Continuing in this way, we get

(5) GCD(f, g) = GCD(g, r) = GCD(r, r') = GCD(r', r") = . " ,
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where either the degrees drop

deg(g) > deg(r) > deg(r ') > deg(r") > . . . ,

or the process terminates when one of r, r', r", .: . becomes O.
We can now explain how the Euclidean Algorithm works.The algorithm has variables

h and s , and we can see these variables in equation (5): the values of h are the first
polynomial in each GCD, and the values of s are the second, You should check that in
(5), going from one GCD to the next is exactly what is done in the WHILE . . . DO loop
of the algorithm. Thus, at every stage of the algorithm, GCD(h , s ) = GCD(f, g).
The algorithm must terminate because the degree of s keeps dropping, so that at some

stage, s = O. When this happens, we have GCD(h, 0) =GCD(f, g), and since (h, 0)
obviously equals (h), we have GCD (h, 0) = h. Combining these last two equations,
it follows that h = GCD(f, g) when s = O. This proves that h is the GCD of f and g
when the algorithm terminates, and the proof of Proposition 6 is now complete. 0

We should mention that there is also a version of the Euclidean Algorithm for finding
the GCD of two integers. Most computer algebra systems have a command for finding
the GCD of two polynomials (or integers) that uses a modified form of the Euclidean
Algorithm [see DAVENPORT, SIRET, and TOURNIER (1988) for more details].

For an example of how the Euclidean Algorithm works, let us compute the GCD of
x4 - 1 and x6 f 1. First ; we use the division algorithm:

x 4 - 1 = 0(x6 - I) + x 4 - I,

x 6 - 1 = X 2(X4 - 1) + x 2 - I ,

x 4 - 1 = (x 2 + l)(x 2 - 1) + O.

Then, by equation (5), we have

GCD(x4 - I, x 6 - 1) = GCD(x6 - I , x 4 - 1)

= GCD(x4 - I , x 2 - 1) = GCD(x 2 - 1; 0) = x 2 - 1.

Note that this GCD computation answers our earlier question of finding a generator for
the ideal (x 4 - I , x 6 - 1). Namely, Proposition 6 and GCD(x4 - I, x 6 - I) = x 2 - 1
imply that

At this point, it is natural to ask what happens for an ideal generated by three or
more polynomials. How do we find a generator in this case? The idea is to extend the
definition of GCD to more than two polynomials.

Definition 7, A greatest common divisor of polynomialsfv, . . . , f s E k[x] is a
polynomial h such that:
(i) h divides [v - . . . , t,.
(ii) If p is another polynomial which divides fl' . .. • f s' then p divides h.
When h has these properties , we write h = GCD(fI, ... , f s)'

Here are the main properties of these GCDs.
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Proposition 8. Let II ... . • I, E k[x). where s ::: 2. Then:
(i) GCD(f, , ...• I,) exists and is unique up to multiplication by a nonzero constant

in k .
(ii) GCD(fI, . . . . I,) is a generator ofthe ideal (fl , .. . , I,).
(iii) lIs::: 3, then GCD(f\ , ... , I,) = GCD(f" GCD(f2• . . . , I,))·
(iv) There is an algorithm lor finding GCD(f, , . .. , I,).

Proof. The proofs of parts (i) and (ii) are similar to the proofs given in Proposition 6
and will be omitted. To prove part (iii). let h = GCD(h . . . . , I,). We leave it as an
exercise to show that

(f" h) = (fI, h. ... , I,)·
By part (ii) of this proposition. we see that

(GCD(f, , h)) = (GCD(f, . . . . , I,)) .

Then GCD(fI. h) = GCD(fI , .. . , I,) follows from the uniqueness part of
Corollary 4, which proves what we want.
Finally, we need to show that there is an algorithm for finding GCD(f, . . . . , I,).The

basic idea is to combine part (iii) with the Euclidean Algorithm. For example, suppose
that we wanted to compute the GCD of four polynomials II. h. h. 14. Using part (iii)
of the proposition twice, we obtain

(6)
GCD(f,. h. fJ, 14) = GCD(f, , GCD(f2. fJ, 14))

= GCD(f,. GCD(f2 , GCD(fJ, 14))) .
Then if we use the Euclidean Algorithm three times [once for each GCD in the second
line of (6)], we get the GCD offI, h. 13. 14. In the exercises, you will be asked to
write pseudocode for an algorithm that implements this idea for an arbitrary number of
polynomials . Proposition 8 is proved. 0

The GCD command in most computer algebra systems only handles two polynomi-
als at a time. Thus , to work with more than two polynomials, you will need to use the
method described in the proof of Proposition 8. For an example, consider the ideal

(x 3 - 3x +2.x4 - l.x 6 -I) C k[x].

We know that GCD(x3 - 3x + 2. x 4 - 1. x 6 - I) is a generator. Furthermore, you can
check that

GCD(x3 -3x + 2. x 4-I , x6 _ 1) = GCD(x3 - 3x + 2, GCD(x4 - 1,x 6 - 1))

=GCD(x3 - 3x + 2. x 2 - I) = x-I.

It follows that

(x 3 - 3x + 2. x 4 - I . x 6 - I) = (x - 1).

More generally, given I I, , I , E k[x], it is clear that we now have an algorithm for
finding a generator of (f, , I,).
For another application of the algorithms developed here. consider the ideal mem-

bership problem from §4: given II, . ... I s E k [x], is there an algorithm for deciding
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whether a given polynomial I E k[x ] lies in the ideal (fl, ... , I,)? The answer is yes,
and the algorithm is easy to describe. The first step is to use GCDs to find a generator h
of (II, . .. , I,)· Then, since I E (fl, .. . , I,) is equivalent to I E (h), we need only
use the division algorithm to write I = qh + r, where deg(r) < deg(h) . It follows
that I is in the ideal if and only if r = O. For example, suppose we wanted to know
whether

We saw above that x - I is a generator of this ideal so that our question can be rephrased
as whether

x 3 + 4x 2 + 3x - 7 E (x - I)?

Dividing, we find that

x 3 + 4x 2 + 3x - 7 = (x 2 + 5x + 8)(x - I) + I

and it follows that x 3+ 4x 2 + 3x - 7 is not in the ideal (x 3 - 3x +2, x 4 - I, x 6 - I). In
Chapter 2, wewill solve the ideal membership problem for polynomials in k[XI , . .. , x,,]
using a similar strategy: we will first find a nice basis of the ideal (called a Groebner
basis) and then we will use a generalized division algorithm to determine whether or
not a polynomial is in the ideal.
In the exercises, we will see that in the one-variable case, other problems posed in

earlier sections can be solved algorithmically using the methods discussed here .

EXERCISES FOR §5

1. Over the complex numbers ee, Corollary 3 can be stated in a stronger form. Namely, prove
that if I E ee[x) is a polynomial of degree n > 0, then I can be written in the form
I = c(x - ad . . . (x - a,,), where c, a\, .. . ,an E ee and c i- O. Hint: Use Theorem 7 of
§I . Note that this result holds for any algebraically closed field.

2. Although Corollary 3 is simple to prove, it has some interesting consequences. For example,
consider the n x n Vandermonde determinant determined by ai , . . . , a" in a field k:

(

I al a: .. . a;'-I)
2 II-II a2 a2 . . , a2

det . . . . '. .. .. .. .
1 all a,; a~-1

Prove that this determinant is nonzero when the aj's are dist inct. Hint: If the determinant is
zero, then the columns are linearly dependent. Show that the coefficients of the linear relation
determine a polynomial of degree ~ n - I which has n roots . Then use Corollary 3.

3. The fact that every ideal of k[x] is principal (generated by one element) is special to the
case of polynomials in one variable. In this exercise we will see why. Namely, consider the
ideal! = (x, y) c k[x , y) . Prove that! is not a principal ideal. Hint: If x = Is- where
I, g E k[x, y), then prove that I org is a constant. It follows that the treatment of GCDs
given in this section applies only to polynomials in one variable. GCDs can be computed for
polynomials of 2: 2 variables, but the theory involved is more complicated [see DAVENPORT,
SIRET, and TOURNIER (1988), §4.1.2].

4. If h is the GCD of I, g E k[xl, then prove that there are polynomials A, B E k[x) such that
AI + Bg = h.
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5. If f, g E k[x], then prove that (f - qg , g) = (], go) for any q in k[x] . This will prove
equation (4) in the text .

6. Given ft, . . . , f s E k[xl , let h = GCD(h . . . , ! ,). Then use the equality (h ) =
(12. . .. , f s) to show that (f" h) = (f" 12. . . . , ! ,). This equality is used in the proof
of part (iii) of Proposition 8.

7. If you are allowed to compute the GCD of only two polynomials at a time (which is true for
most computer algebra systems), give pseudocode for an algorithm that computes the GCD
of polynomials flo .. . , [, E k[x], where s > 2. Prove that your algorithm works. Hint:
See (6) . This will complete the proof of part (iv) of Proposition 8.

8. Use a computer algebra system to compute the following GCDs:
a. GCD(x 4 + x 2 + I, x 4 - x 2 - 2x - I , x 3 - I).
b. GCD(x 3 + 2x 2 - X - 2, x 3 - 2x 2 - X + 2, x 3 - x 2 - 4x + 4) .

9. Use the method descr ibed in the text to decide whether x 2 - 4 E (x 3 + x 2 - 4x - 4, x 3 -
x 2 .; 4x + 4, x 3 - 2x 2 - X + 2).

10. Give pseudocode for an algorithm that has input [, g E k[x] and output h , A, B E k[x]
where h = GCD(f, g) and Af + Bg = h . Hint: The idea is to add variables A, B, C, D
to the algorithm so that Af + Bg = h and Cf + Dg = s remain true at every step of the
algorithm. Note that the initial values of A , B, C, D are 1,0,0, I, respectively. You may find
it useful to let quotient(f. g) denote the quotient of f on division by g, i.e .• if the division
algorithm yields f = qg + r , then q = quotient(f, g).

II . In this exercise we will study the one-variable case of the consistency problem from §2.
Given fl • . . . • Is E k[x]. this asks if there is an algorithm to decide whether V(fl, . . .• f s)
is nonempty. We will see that the answer is yes when k = <C.
a. Let f E <C[x] be a nonzero polynomial. Then use Theorem 6 of §I to show that V(f) = 0

if and only if f is constant.
b. If f l' . .. , ! , E <C[x]. prove V(fl , . . . • f s) = 0 if and only if GCD(f" . ..• f s) = I.
c. Describe (in words. not pseudocode) an algorithm for determining whether or not
V(f" . . . • f s) is nonempty.

When k = IR, the consistency problem is much more difficult. It requ ires giving an algorithm
that tells whether a polynomial f E IR[x] has a real root.

12. Thi s exercise will study the one-variable case of the Nullstellensatz problem from §4. which
asks for the relation between I(V(ft , . . . • f s) and (ft, ..... f s) when f lo . . .• f s E <C[x].
By using GCDs. we can reduce to the case of a single generator. So . in this problem, we will
explicitly determine I(V(n) when f E <C[x] is a nonconstant polynomial. Since we are
working over the complex numbers, we know by Exercise I that f factors completely, i.e.,

f = c(x - al)" .. . (x - a,)".

where al •. . . • a, E <C are distinct and c E <C - {O}. Define the polynomial

fred = c(x - al) ' " (x - a,).

Note that f and fred have the same roots. but their multiplicities may differ. In particular,
all roots of fred have multiplicity one. It is common to call fred the reduced or square-free
part of f . To explain the latter name. notice that fred is the square-free factor of f oflargest
degree.
a. Show that V(f) = (al • . . . . ad .
b. Show that I(V(f» = (fred).
Whereas part b describes I(V(f)), the answer is not completely satisfactory because we
need to factor f completely to find f"d' In Exercises 13. 14. and 15 we will show how to
determine f "d without any factoring.
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13. In this exercise we will study the formal derivat ive of a polynom ial f = aox" + a\x n- \ +
.. . + an_IX + an E CC[x]. The formal derivative is defined by the usual formulas from
calculus: f' = naoxn- J+ (n - l)al x"- 2 + ...+ an- I + O. Prove that the following rules
of differentiation apply:

(a/)' = a]' when a E CC.

(f+g)'=f'+g'.

(fg)' = f'g + Is'.
14. In this exercise . we will use the different iation propert ies of Exercise 13 to compute

GCD(f. f') when f E CC[x].
a. Supposethatf = (x-a)'hinCC[x].whereh(a) i= O.Thenprovethatf' = (x-a)'-Ihs.

where hiE CC[x] does not vanish at a. Hint: Use the product rule.
b. Let f = c(x - al)" . . . (x - a,)" be the factorization of f .where al • . . . • a/ are distinct.

Prove that f' is a product f' = (x - ad,,-I . . . (x - a, )',-I H. where H E CC[x] is a
polynomial vanishing at none of al • . . . • ai ,

c. Prove that GCD(f. f') = (x - adq - I • • • (x - a/)',-I .
15. This exercise is concerned with the square-free part fud of a polynomial f E CC[x]. which

is defined in Exercise 12.
a. Use Exercise 14 to prove that fud is given by the formula

ft.: = GCD(f. f')

The virtue of this formula is that it allows us to find the square-free part without factoring
f .Th is allows for much quicker computations.

b. Use a computer algebra system to find the square-free part of the polynomial

XII _ x lO+ 2xB - 4x7 + 3x5 - 3x 4 + x 3 + 3x2 - x-I.

16. Use Exerci ses 12 and 15 to describe (in words. not pseudocode) an algorithm whose in-
put consists of polynomials fl • . . . • f . E CC[x] and whose output cons ists of a basis of
I(V(fI•. . . • f ,». It ismuch more difficult to construct such an algorithm when deal ing with
polynomials of more than one variable.

17. Find a basis for the ideall(V(xs - 2x 4 + 2x2 - X. x 5 - x 4 - 2x3 + 2x 2 + X - I» .
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Groebner Bases

§1 Introduction

In Chapter 1, we have seen how the algebra of the polynomial rings k[x l• . . . , x,,] and
the geometry of affine algebraic varieties are linked. In this chapter. we will study the
method of Groebner bases, which will allow us to solve problems about polynomial
ideals in an algorithmic or computational fashion . The method of Groebner bases is
also used in several powerful computer algebra systems to study specific polynomial
ideas that arise in applications. In Chapter 1. we posed many problems concerning the
algebra of polynomial ideals and the geometry of affine varieties. In this chapter and
the next. we will focus on four of these problems.

Problems
a. The Ideal Descript ion Problem: Does every ideal I c k[XI , . . . • x 1l 1have a finite

generating set? In other words, can we write I = (fl . . . . , !.) for some /; E
k[Xh . . . , x,,]?

b. The Ideal Membership Problem: Given I .E k[x l•. .. • x" l and an ideal I =
(fl .. . . • ! .). determine if I E I. Geometrically, this is closely related to the
problem of determining whether V(fl, . . . . I s) lies on the variety V(f).

c. The Problem of Solving Polynom ial Equations: Find all common solutions in k" of
a system of polynomi al equat ions

fl(x l, . . . • x,,) = .. . = I s(xI • . . .• x,,) = O.

Of course. this is the same as asking for the points in the affine variety V(fJ •... , Is).
d. The Implicitization Problem: Let V be a subset of k" given parametrically as

XI = 81(11 • .. • , tm),

If the 8i are polynomials (or rational functions) in the variables tl : then V will be an
affine variety or part of one. Find a system of polynomial equations (in the Xi) that
define the variety.

47
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Some comments are in order. Problem (a) asks whether every polynomial ideal has
a finite description via generators. Many of the ideals we have seen so far do have such
descriptions-indeed, the way we have specified most of the ideals we have studied
has been to give a finite generating set. However, there are other ways of constructing
ideals that do not lead directly to this sort of description. The main example we have
seen is the ideal of a variety, I(V). It will be useful to know that these ideals also have
finite descriptions. On the other hand, in the exercises, we will see that if we allow
infinitely many variables to appear in our polynomials, then the answer to (a) is no.
Note that problems (c) and (d) are, so to speak. inverse problems. In (c), we ask for

the set of solutions of a given system of polynomial equations. In (d) , on the other hand,
we are given the solutions, and the problem is to find a system of equations with those
solutions.
To begin our study of Groebner bases, let us consider some special cases in which

you have seen algorithmic techniques to solve the problems given above .

Example 1. When n = I, we solved the ideal description problem in §5 of Chapter
I. Namely, given an ideal J C k[x), we showed that J = (g) for some g E k[x) (see
Corollary 4 of Chapter I, §5). So ideals have an especially simple description in this
case.
We also saw in §5 of Chapter 1 that the solution of the Ideal Membership Problem

follows easily from the division algorithm: given f E k[x1, to check whether f E I =
(g), we divide g into f :

f = e :g + r ,

where q , r E k[x) and r = 0 or deg(r) < deg(g). Then we proved that f E J if
and only if r = O. Thus, we have an algorithmic test for ideal membership in the case
n=l.

Example 2. Next , let n (the number of variables) be arbitrary, and consider the problem
of solv ing a system of polynomial equations:

all x\ + .. . + al"x" + b, = 0,

(I )

where each polynomial is linear (total degree I),
For example, consider the system

2xI + 3X2 - X3 = 0,
XI + X2 - I = 0,

XI + X3 - 3 = O.

We row-reduce the matrix of the system to reduced row echelon form:
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The form of this matrix shows that X3 is a free variable, and setting X3 = t (any element
of k) , we have

Xl = -t + 3,

X2 = t - 2,

X3 = t.

These are parametric equations for a line L in k3• The original system of equations (2)
presents L as an affine variety.
In the general case, one performs row operations on the matrix of (I)

until it is in reduced row echelon form (where the first nonzero entry on each row is I,
and all other entries in the column containing a leading I are zero). Then we can find all
solutions of the original system (I) by substituting values for the free variables in the
reduced row echelon form system . In some examples there may be only one solution, or
no solutions. This last case will occur, for instance, if the reduced row echelon matrix
contains a row (0 · . · 0 I), corresponding to the inconsistent equation 0 = 1.

Example 3. Once again, take n arbitrary, and consider the subset V of k" parametrized
by

(3)

We see that V is an affine linear subspace of k" since V is the image of the mapping
F : k'" -+ k" defined by

This is a linear mapping, followed by a translation. Let us consider the implicitization
problem in this case. In other words, we seek a system of linear equations [as in (I)J
whose solutions are the points of V.
For example, consider the affine linear subspace V C k4 defined by

XI = tl + ti + I,

X2 = t) - tz + 3,

X3 = 2tl - 2,

X4 = t . + 2t2 - 3.
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We rewrite the equations by subtracting the Xi terms from both sides and apply the row
reduction algorithm to the corresponding matrix:

I
-1
o
2

-I
o
o
o

o
-I
o
o

o
o

-1
o

o
o
o
-I

-1)-3
2
3

(where the coefficients of the Xi have been placed after the coefficients of the tj in each
row). We obtain the reduced row echelon form:

(

I 0 0 0
o I 0 0
o 0 I 0
000 I

-1/2
1/4

-1/4
-3/4

o
-1/2
-1/2
1/2

Because the entries in the first two columns of rows 3 and 4 are zero, the last two rows
of this matrix correspond to the following two equations with no tj terms:

XI - (l/4)X3 - (1/2)X4 - 3 = 0,
X2 - (3/4)X3 + (l/2)X4 - 3 = O.

(Note that this system is also in reduced row echelon fonn.) These two equations define
V in z".

The same method can be applied to find implicit equations for any affine linear
subspace V given parametrically as in (3) : one computes the reduced row echelon form
of (3), and the rows involving only XI, • • • , XII give the equations for V. We, thus, have
an algorithmic solution to the irnplicitization problem in this case.
Our goal in this chapter will be to develop extensions of the methods used in these

examples to systems ofpolynomial equations of any degrees in any number of variables.
What we will see is that a sort of "combination" of row-reduction and div ision of
polynomials-the method of Groebner bases mentioned at the outset-allows us to
handle all these problems.

EXERCISES FOR §I

I. Determine whether the given polynomial is in the given ideal I C lR[xI using the method of
Example 1.
a. [(x) = x 2 - 3x + 2, I = (x - 2).
b. [ (x) = x 5 - 4x + I, I = (x 3 - x 2 + x ).
c. [ (x) = x 2 - 4x + 4, 1= (x 4 - 6x 2 + 12x - 8, 2x3 - IOx2 + 16x - 8).
d. [(x) = x 3 - 1, 1= (x9 - I , x 5 + x 3 - x 2 - I) .

2. Find a parametrizationof the affinevariety definedby each of the following sets of equations:
a. In 1R3 or ([:3:

2x + 3y - z = 9,
x - y = I ,

3x+7y-2z= 17.
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XI + X2 - X3 - X4 = 0,

XI - X2 + X3 = O.

y - X 3 = 0,

Z - X S = O.

3. Find implicit equations for the affine varieties parametr ized as follows .
a. In IR3 or ([;3:

XI = t - 5,

X2 = 2t + I,

X3 = -t + 6.

XI = 2t - 5u ,

X2 = t + 2u,
X4 = -t + u,

Xs = t + 3u.

X = t ,

4. Let X I , X2, X3 , . . . be an infinite collection of independent variables indexed by the narural
numbers . A polynomial with coefficients in a field k in the Xi is a finite linear combination
of (finite) monomials<'...<'.Let R denote the set of all polynomials in the Xi . Note that
we can add and multiply elements of R in the usual way. Thus. R is the polynomial ring
k[XI' X2, . • .J in infinitely many variables .
a. Let J = (X I , X2, X3 , .•. ) be the set of polynomials of the form X,,!I + .. .+ x ,.,!"" where

f j E R. Show that J is an ideal in the ring R.
b. Show, arguing by contradiction, that I has no finite generating set. Hint: It is not enough

only to consider subsets of {x; : i ::: I}.
5. In this problem you will show that all polynomial parametric curves in k2 are contained in

affine algebraic varieties.
a. Show that the number of distinct monomials x·yf of total degree :5 m in k[x, y] is equal

to (m + I)(m + 2)/2. [Note: This is the binomial coefficient ("';2) .]
b. Show that if f(t) and g(t) are polynomials of degree :5 n in t, then for m large enough.

the "monomials"

[f(t)ng(t)] f

with e + f :5 m form a linearly dependent set in k[t] .
c. Deduce from part b that if C : X = f(t), y = g(t) is any polynomial parametric curve in

k 2, then C is contained in V(F) for some F E k[x, y].
d. Generalize parts a, b, and c of this problem to show that any polynomial parametric surface
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x = 1(1, u). y = g(I, u). z = btt , U)

is contained in an algebraic surface V(F), where FE k[x . y, zl .

§2 Orderings on the Monomials in k[Xh' .. ,xn]

If we examine in detail the division algorithm in k[x] and the row-reduction (Gaussian
elimination) algorithm for systems of linear equations (or matrices) , we see that a notion
of ordering ofterms in polynomials is a key ingredient of both (though this is not often
stressed). For example, in dividing f(x) = x 5 - 3x 2 + I by g(x) = x 2 - 4x + 7 by
the standard method, we would:
• Write the terms in the polynomials in decreasing order by degree in x.
• At the first step, the leading term (the term of highest degree) in f is x 5 = x 3 . x 2 =
x 3·(Ieading term in g) .Thus, we would subtract x 3 •g (x) from f to cancel the leading
term, leaving x 4 - 7x 3 - 3x 2 + 1.

• Then, we would repeat the same process on f(x) - x 3 • g(x), etc., until we obtain
a polynomial of degree less than 2.

For the division algorithm on polynomials in one variable , then , we are dealing with
the degree ordering on the one-variable monomials:

(1) ... > X",+l > XIII > . . . > x 2 > X > 1.

The success of the algorithm depends on working systematically with the leading terms
in f and g , and not removing terms "at random" from f using arbitrary terms from g .
Similarly, in the row-reduction algorithm on matrices , in any given row, we system-

atically work with entries to the left first-leading entries are those nonzero entries
farthest to the left on the row. On the level of linear equations, this is expressed by
ordering the variables XI , .. . , XII as follows :

(2) XI > X2 > ... > x.:

We write the terms in our equations in decreasing order. Furthermore, in an echelon
form system, the equations are listed with their leading terms in decreasing order. (In
fact, the precise definition of an echelon form system could be given in terms of this
ordering-see Exercise 8.)
From the above evidence, we might guess that a major component of any extension

of division and row-reduction to arbitrary polynomials in several variables will be an
ordering on the terms in polynomials in k[XI, . . . , XII]' In this section, we will discuss
the desirable properties such an ordering should have, and we will construct several
different examples that satisfy our requirements. Each of these orderings will be useful
in different contexts.
First, we note that we can reconstruct the monomial XU = X~' • . . x~" from the

n-tuple of exponents a = (ai, .. . , a ll ) E Z~o. This observation establishes a one-to -
one correspondence between the monomials-in k[XI, ... , XII] and 'Z~o. Futhermore,
any ordering> we establish on the space 'Z~o will give us an ordering-on monomials:
if a > f3 according to this ordering, we will-also say that XU > x fJ •
There are many different ways to define orderings on Z~o. For our purposes, most

of these orderings will not be useful , however, since we wilt want our orderings to be
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"compatible" with the algebraic structure of polynomial rings.
To begin, since a polynomial is a sum of monomials, we would like to be able to

arrange the terms in a polynomial unambiguously in descending (or ascending) order.
To do this, we must be able to compare every pair of monomials to establish their
proper relative positions. Thus, we will require that our orderings be linear or total
orderings. This means that for every pair of monomials XU and x f3 , exactly one of the
three statements

should be true.
Next, we must take into account the effect of the sum and product operations on

polynomials. When we add polynomials, after combining like terms, we may simply
rearrange the terms present into the appropriate order, so sums present no difficulties.
Products are more subtle, however. Since multiplication in a polynomial ring distributes
over addition, it suffices to consider what happens when we multiply a monomial times
a polynomial. If doing this changed the relative ordering of terms, significant problems
could result in any process similar to the division algorithm in k[xl, in which we must
identify the "leading" terms in polynomials. The reason is that the leading term in the
product could be different from the product of the monomial and the leading term of
the original polynomial.
Hence, we will require that all monomial orderings have the following additional

property. If XU > x f3 and x Y is any monomial, then we require that XU x Y > x f3x Y • In
terms of the exponent vectors, this property means that if ex > f3 in our ordering on
Z~o' then, for all y E Z~o ' ex + y > f3 + y.
With these considerations in mind, we make the following definition.

Definition 1. A monomial ordering on k[XI ' • • • , XII l is any relation> on Z :o' or
equivalently, any relation on the set ofmonomials xu, ex E Z:o' satisfying: -
(i) > is a total (or linear) ordering on Z:o' -
(ii) If ex > f3 and y E Z~o. then ex + y .; f3 + y.
(iii) > is a well-ordering on Z:o' This means that every nonempty subset ofZ~o has

a smallest element under ; . -

The following lemma will help us understand what the well-ordering condition of
part (iii) of the definition means.

Lemma 2. An order relation> on Z:o is a well-ordering if and only if every strictly
decreasing sequence in Z~o -

ex(l) > a(2) > a(3) > .. .

eventually terminates.

Proof. We will prove this in contrapositive form: > is not a well-ordering if and only
if there is an infinite strictly decreasing sequence in Z:o'
If> is not a well-ordering, then some nonempty subset S C Z:o has no least element.

Now pick a(l) E S. Since a(I) is notthe least element, we can find a(l) > a(2) in S.
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Then a(2) is also not the least element. so that there is a(2) > a(3) in S. Continu ing
this way. we get an infinite strictly decreasing sequence

a(l ) > a(2) > a(3) > ... .

Conversely. given such an infinite sequence, then (a(l) , a(2) , a (3), . . .} is a nonempty
subset of Z~o with no least element, and thus, > is not a well-ordering . 0

The importance of this lemma will become evident in the sections to follow. It will
be used to show that various algorithms must terminate because some term strictly
decreases (with respect to a fixed monomial order) at each step of the algorithm.
In §4. we will see that given parts (i) and (ii) in Definition I, the well-ordering

condition of part (iii) is equivalent to a :::: 0 for all a E Z~o'

For a simple example of a monomial order. note that the-usual numerical order

.. · > m + l > m > · ·· > 3 > 2 > 1 > 0

on the elements of Z~o satisfies the three conditions of Definition I. Hence, the degree
ordering (1) on the monomials in k[x] is a monomial ordering .
Our first example of an ordering on n-tuples will be lexicographic order (or lex order,

for short) .

Definition 3 (Lexicographic Order). Leta = (al • . . .• a,,)andfJ = (fJl , . .. , fJ,.) E
Z~o' We say a >/ex fJ if, in the vector difference a - fJ E Z", the left-most nonzero
entry is positive . We will write x a >/ex x fJ ifa >/ex fJ.

Here are some examples :
a. (1.2,0) > /e,t (0,3,4) since a - fJ = (I , -I , -4).
b. (3,2,4) >/e.t (3,2, 1) since a - fJ = (0, 0, 3).
c. The'variables XI •• ••• X" are ordered in the usual way [see (2)] by the lex ordering :

(I , O. . . . • 0) >/ex (0. I, 0, . . . . 0) >/ex .. . >/ex (0, . . . 0, I),

so XI >/ex X2 >Iex . . . >Iex X" .

In practice, when we work with polynom ials in two or three variables , we will call
the variables x, y, z rather than XI, X2, X3. We will also assume that the alphabetical
order X > Y > z on the variables is used to define the lexicographic ordering unless
we explicitly say otherwise.
Lex order is analogous to the ordering of words used in dictionaries (hence the name).

We can view the entries of an n-tuple a E :z~o as analogues of the letters in a word.
The letters are ordered alphabetically: -

a> b > . .. > y > Z.

Then, for instance.

arrow >/ex arson

since the third letter of "arson" comes after the third letter of "arrow" in alphabetical
order, whereas the first two letters are the same in both. Since all elements a E :z~o

have length n, this analogy only applies to words with a fixed number of letters. -
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For completeness, we must check that the lexicographic order satisfies the three
conditions of Definition 1.

Proposition 4. The lex orderingon Z~o is a monomialordering.

Proof. (i) That >Iex is a total ordering follows directly from the definition and the fact
that the usual numerical order on Z?;o is a total ordering.
(ii) If a >Iex -f3 , then we have that the leftmost nonzero entry in a - f3, say ak - 13k> is

positive . Butr" ·xY = x"+Y and r/' ·x Y = xP+Y.Then in (a+ y) - (13 + y) = a - 13,
the left-most nonzero entry is again ak - 13k > O.
(iii) Suppose that >Iex were not a well-ordering. Then by Lemma 2, there would be

an infinite strictly descending sequence

a(1) > Iex a(2) >/ex a(3) >Iex . ..

of elements of Z~o.We will show that this leads to a contradiction.
Consider the first entrie s of the vectors a(i) E Z~o ' By the definition of the lex

order, these first entries form a nonincreasing sequence of nonnegative integers . Since
Z?;o is well-ordered, the first entries of the a(i) must "stabilize" eventualIy. That is,
there exists a k such that all the first components of the a(i) with i ::: k are equal.
Beginning at a(k), the second and subsequent entries come into play in determining

the lex order. The second entries of a(k), a(k + I), . . . form a nonincreasing sequence.
By the same reasoning as before , the second entries "stabilize" eventually as well.
Continuing in the same way, we see that for some I, the a(i) , a(l + 1), . .. all are equal.
This contradicts the fact that a(l) > a(l + I). 0

It is important to realize that there are many lex orders, corresponding to how the
variables are ordered . So far, we have used lex order with XI > X2 > . .. > XII' But
given any ordering of the variables XI , ... , XII' there is a corresponding lex order. For
example , if the variables are X and y , then we get one lex order with x > y and a second
with y > x . In the general case of n variables, there are n! lex orders. In what folIows,
the phrase " lex order" will refer to the one with XI > . . . > XII unless otherwise stated .
In lex order, notice that a variable dominates any monomial involving only smalIer

variables, regardless of its total degree . Thus, for the lex order with X > Y > Z, we
have x > lex y5Z3. For some purposes, we may also want to take the total degrees of
the monomials into account and order monomials of bigger degree first. One way to do
this is the graded lexicographic order (or grlex order) .

Definition 5 (Graded Lex Order). Let a, 13 E Z~o' We say a >grlex 13 if
11 "

lal = La; > 1131 = L 13;, or lal = 1131 and a >Iex 13 ·
;= 1 ; = 1

We see that grlex orders by total degree first, then "breaks ties" using lex order. Here
are some examples:
a. (1,2,3) >gr/ex (3,2,0) since 1(1, 2, 3)1 = 6 > 1(3,2,0)1 = 5.
b. (1,2,4) > grlex (1,1, 5) since 1(1, 2, 4)1 = 1(1, 1,5)1 and (1, 2, 4) >Iex (1, 1,5).
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c. The variables are ordered according to the lex order, i.e., XI > grlex •• • > grlex XII'

We will leave it as an exercise to show that the grlex ordering satisfies the three condi-
tions of Definition I. As in the case of lex order, there are n! grlex orders on n variables,
depending on how the variables are ordered .
Another (somewhat less intuitive) order on monomials is the graded reverse lexico-

graphical order (or grevlex order). Even though this ordering "takes some getting used
to," it has recently been shown that for some operations, the grevlex ordering is the
most efficient for computations.

Definition 6 (Graded Reverse Lex Order). Let a, fJ E Z~o' We say a > grevltx fJ if
II II

lal = L a, > IfJ l = L e; or [o] = IfJl
i= J i = 1

and, in a - fJ E Z ", the right-most nonzero entry is negative.

Like grlex, grevlex orders by total degree , but it "breaks ties" in a different way. For
example :
a. (4,7,1) > grevltx (4,2,3) since 1(4,7, 1)1 = 12> 1(4,2,3)1 = 9.
b. (1,5,2) > grevlex (4, 1,3) since 1(1,5, 2)1= 1(4, 1,3)1and o - fJ = (-3,4, -1) .

You will show in the exercises that the grevlex ordering gives a monomial ordering.
Note also that lex and grevlex give the same ordering on the variables. That is,

(1 ,0, . . . ,0) > gret'ltx (0 , I, . . . ,0) > gre vlex . . . > gre vle.r (0, . . . ,0, 1)

or

XI > grevlex Xl > gre vlex . . , >grevlex XII'

Thus, grevlex is really different from the grlex order with the variables rearranged (as
one might be tempted to believe from the name).
To explain the relation between grlex and grevlex , note that both use total degree

in the same way. To break a tie, grlex uses lex order, so that it looks at the left-most
(or largest) variable and favors the larger power. In contrast, when grevlex finds the
same total degree, it looks at the right-most (or smallest) variable and favors the smaller
power. In the exercises, you will check that this amounts to a "double-reversal" of lex
order. For example,

542
X vz >grlex X yz ,

since both monomials have total degree 7 and x 5yZ >/ex X 4y z2. In this case, we also
have

542
X YZ > gre vltx X yz ,

but for a different reason: x 5yz is larger because the smaller variable z appears to a
smaller power.
As with lex and grlex, there are n! grevlex orderings corresponding to how the n

variables are ordered.
There are many other monomial orders besides the ones considered here. Some of

these will be explored in the exercises to §4.Most computer algebra systems implement
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lex order, and most also allow other orders, such as grlex and grevlex. Once such an
order is chosen, these systems allow the user to specify any of the n! orderings of the
variables. As we will see in §8 of this chapter and in later chapters, this facility becomes
very useful when studying a variety of questions.
Wewill end this section with a discussion of how a monomial ordering can be applied

to polynomials. If f = La aaxa is a polynomial in k[x} , ... , XII] and we have selected
a monomial ordering>, then we can order the monomials of f in an unambiguous way
with respect to >. For example, let f = 4xlz + 4z2 - 5x 3 + 7X2Z2 E k[x, y, z].
Then:
a. With respect to the lex order, we would reorder the terms of f in decreasing order

as

f = -5x3 + 7X2Z2 + 4x y2Z + 4;:2 .

b. With respect to the grlex order, we would have

f = 7x 2Z2 + 4xlz - 5x 3 + 4z2 •

c. With respect to the grevlex order, we would have

f = 4xlz + 7X2Z2 - 5x 3 + 4z2•

We will use the following terminology.

Definition 7. Let f = La aaxa be a nonzero polynomial in k[x}, . . . , XII] and let>
be a monomial order.
(i) The multidegree of f is

multideg(f) = max(a E Z~o aa =1= 0)

(the maximum is taken with respect to ».
(ii) The leading coefficient of f is

Lc(f) = amultideg(j) E k.

(iii) The leading monomial of f is
LM(f) = xmullideg(f)

(with coefficient 1).
(iv) The leading term of f is

LT(!) = LC(!) . LM(f).

To illustrate, let f = 4xlz + 4z2 - 5x 3+ 7X2Z2 as before and let> denote the lex
order. Then

multideg(f) = (3, 0, 0),

LC(f) = -5,
LM(f) = x 3 ,

LT(!) = -5x3•

In the exercises , you will show that the multidegree has the following useful
properties .
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Lemma 8. Let f, g E k[XI, . . . , x,,] be nonzero polynomials. Then:
(i) multideg(fg) == multideg(f) + multideg(g) .
(ii) Iff + g ::j:. O. then multideg(f + g) :::: max(multideg(f) , mulridegtgj).
If, in addition. multideg(f) ::j:. multideg(g). then equality occurs.

From now on, we will assume that one particular monomial order has been selected,
and that leading terms, etc., will be computed relat ive to that order only.

EXERCISES FOR §2

I. Rewrite each of the following polynomials, ordering the terms using the lex order, the grlex
order, and the grevlex order, giving LM(f), LT(f), and mult ideg(f) in each case .
a. f i» , y , z) = 2x + 3y + z+ x2 - Z2 + Xl.
b. f(x , y, z) = 2X2y8 - 3xSyz· + xyzl - xy· .

2. Each of the following polynomials is written with its monomials ordered according to (ex-
actly ) one of lex, grlex, or grevlex order. Determine which monomial order was used in each
case .
a. f(x, y, z) = 7X2y4Z - 2xy6 + X2y2.
b. ftx, y , z) = xy3z + xy2Z2+ x2zJ•
c. f(x, y , z) = x4ysz + 2X3y2z - 4x y2Z4.

3. Repeat Exercise I when the variables are ordered z > y > x .
4. Show that grlex is a monomial order according to Definition I.
5. Show that grevlex is a monomial order according to Defin ition I .
6. Another monomial order is the inverse lexicographic or invlex order defined by the

follow ing: for a , fJ E Z :o ' a >;.."1,., P if and only if, in a - p, the right -most nonzero
entry is pos itive. Show that invlex is equ ivalent to the lex order with the variables permuted
in a certain way. (Which permutation?)

7. Let> be any monomi al order.
a. Show that a ~ 0 for all a E Z : o'
b. Show that if x a divides x li, then-a ~ fJ. Is the converse true?
c. Show that if a E Z :o ' then a is the smallest element of a + Z :o '

8. Wr ite a precise definit ion of what it means for a system of linear equations to be in echelon
form , using the ordering given in equation (2).

9. In this exercise, we will study grevlex in more detail. Let »,..",,, be the order given in Exercise
6, and define >,;..ules to be the reversal of this ordering, i.e., for a , fJ E Z~o '

a > rin ldc.t f3 <==> f3 > in vkr a.

Notice that rinvlex is a "double reversal" of lex, in the sense that we first reverse the order
of the variables and then we reverse the ordering itself.
a. Show that a >grrv'n fJ if and only if lal > IfJl, or lal = IfJl and a > ';'/L'lrx fJ .
b. Is rinvlex a monomial ordering according to Definition I? If so, prove it; if not, say which

properties fail.
10. In Z~o with the usual ordering. between any two integers, there are only a finite number of

other integers. Is this necessarily true in Z~o for a monomial order? It it true for the grlex
order?

I I. Let> be a monom ial order on k(x, • . . . , x..I.
a. Let f E k[X I , , x..I and let m be a monomial. Show that LT(m . f) = m . LT(f).
b. Let f , g E k[x " ,xnl. Is LT(f . g ) necessarily the same as LT(f) · LT(g)?
c. If fi, g; E k(Xi , . . . , xn I, I ~ i ~ s , is LM(L;~ , fig;) necessarily equal to

LM(fi) . L'o1(gi) for some i?



§3. A Division Algorithm in k[Xb ... , x,,] 59

12. Lemma 8 gives two properties of the multidegree.
a. Prove Lemma 8. Hint: The arguments used in Exercise I I may be relevant.
b. Suppose that multideg(f) - multideg(g) and f + g =/: O.Give examples to show that

multideg(f + g) mayor may not equal max(multideg(f) , multideg'(gj) ,

§3 A Division Algorithm in k[Xh ••• ,xn ]

In §1, we saw how the division algorithm could be used to solve the ideal membership
problem for polynomials of one variable. To study this problem when there are more
variables, we will formulate a division algorithm for polynomials in k[XI , . .. , XII]
that extends the algorithm for k[x]. In the general case, the goal is to divide I E
k[XI, ... , XII] by II, . . . ,j, E k[x" . . . , x,.] , As we will see, this means expressing
I in the form

I = adl + .. .+ a.], + r,
where the "quotients" aI , . . . , as and remainder r lie in k[Xl, . .. , XII]' Some care will
be needed in deciding how to characterize the remainder. This is where we will use
the monomial orderings introduced in §2. We will then see how the division algorithm
applies to the ideal membership problem.
The basic idea of the algorithm is the same as in the one-variable case: we want to

cancel the leading term of I (with respect to a fixed monomial order) by multiplying
some f; by an appropriate monomial and subtracting. Then this monomial becomes a
term in the corresponding ai.Rather than state the algorithm in general , let us first work
through some examples to see what is involved.

Example 1. We will first divide I = xy2 + 1 by II = xy + I and h = y + I,
using lex order with X > y. We want to employ the same scheme as for division of
one-variable polynomials, the difference being that there are now several divisors and
quotients. Listing the divisors II, h and the quotients aI, a2 vertically, we have the
following setup:

xy + 1 Jxy2+ 1
y+l

The leading terms LT(fI) = xy and LT(f2) = Y both divide the leading term LT(f) =
xy2. Since II is listed first, we will use it. Thus, we divide xy into xy2, leaving y , and
then subtract y . II from I:

a2 :

xy + 1
y + 1

j xl +1
xl + y

-y + 1
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Nowwe repeat the same process on -y+ I. This time wemust use h since LT(f,) = xy
does not divide LT(-y + I) = -yoWe obtain

xy + I
y+1

y

- I

r;T+T
Vxy2 + Y

-y+1
-y-I

2

Since LT(f,) and LT(h) do not divide 2, the remainder is r = 2 and we are done. Thus,
we have written I = xl + I in the form

xl + I = Y . (xy + I) + (-I) . (y + I) + 2.

Example 2. In this example , we will encounter an unexpected subtlety that can occur
when dealing with polynomials of more than one variable. Let us divide I = x 2y +
xy2 + y2 l'Y II = xy - I and h = y2 - I. As in the previous example. we will use
lex order with x > y. The first two steps of the algorithm go as usual, giving us the
following partially completed division (remember that when both leading terms divide,
we use I,):

xy - I
y2 _ I

xy2 + X + y2

xl-y

x + y2 + Y

Note that neither LT(I,) = xy nOrLT(h) = y2 divides LT(X + y2 + y) = x. However,
x + y2 + Y is not the remainder since LT(h) divides y2. Thus, if we move x to the
remainder, we can continue dividing. (This is something that never happens in the one-
variable case: once the leading term of the divisor no longer divides the leading term
of what is left under the radical, the algorithm terminates.)
To implement this idea, we create a remainder column r , to the right of the radical,

where we put the terms belonging to the remainder. Also , we call the polynomial under
the radical the intermediate dividend. Then we continue dividing until the intermediate
dividend is zero. Here is the next step, where we move x to the remainder column (as
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indicated by the arrow):

x+y
r

x y - I
y2-1

xy2 + X + y2
xy2 _ Y

x + y2 + Y
y2 + Y x

Now we continue dividing. If we can divide by LT(f\) or LT(h)' we proceed as usual,
and if neither divides, we move the leading term of the intermediate dividend to the
remainder column . Here is the rest of the division:

xy - I
y2 _ I

xy2 + X + y2

xl-y

x + y2 + Y

y2 + Y
y2 _ I

y + I
--I

o

r

---+ x+y

---+ x+y+1

Thus, the remainder is x + Y + l , and we obtain

(1) x 2y +xl + l = (x + y) , (xy - I) + I . (l- I) + x + Y + 1.

Note that the remainder is a sum of monomials, none ofwhich is divisible by the leading
terms LT(fI) or LT(h).
The above example is a fairly complete illustration .of how the division algorithm

works. It also shows us what property we want the remainder to have: none of its terms
should be divisible by the leading terms of the polynomials by which we are dividing.
We can now state the general form of the division algorithm.

Theorem 3 (Division Algorithm in k[XI, • . . , XIID. Fix a monomial order> on Z~o.
and let F = (fl •.. . , f s) be an ordered s-tuple ofpolynomials in k[xi • . . . ,XII]' Thtm
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every I E k[Xl . . . . , X,,] can be written as

I = ad, + ... + as I s + r,

where a., r E k[XI , . ' " X,,] , and either r = 0 or r is a linear combination. with
coefficients in k, ofmonomiaLs, none ofwhich is divisibLe by any ofLT(fI) ' . .. , LT(fs) .
We will caLL r a remainder 01 f on division by F. Furthermore, if a, /; =1= 0, then we
have

multideg(f) ::: rnultldeg(c, /;).

Proof. We prove the existence of ai, . .. ,as and r by giving an algorithm for their
construction and showing that it operates correctly on any given input. We recommend
that the reader review the division algorithm in k[x] given in Proposition 2 of Chapter
I, §5 before studying the following generalization:

Input: [v, ... , I; f
Output: al • . . . , as , r

al := 0; . . . ; as := 0; r := 0
p:= I
WHILE p =1= 0 DO

i:= I
divisionoccurred := false
WHILE i ~ sAND divisionoccurred = false DO

IF LT(/;) divides LT(p) THEN
a, := a, + LT(p)/LT(/;)
P := P - (LT(p)/LT(/;»/;
divisionoccurred := true

ELSE
i := i + I

IF divisionoccurred = false THEN
r := r + LT(p)
P := P - LT(p)

We can relate this algorithm to the previous example by noting that the variable p
represents the intermediate dividend at each stage, the variable r represents the column
on the right-hand side, and the variables a" ... , as are the quotients listed above the
radical. Finally, the boolean variable "divisionoccurred" tells us when some LT(f;)
divides the leading term of the intermediate dividend. You should check that each time
we go through the main WHILE ... DO loop, precisely one of two things happens:
• (Division Step) If some LT(/;) divides LT(p), then the algorithm proceeds as in the
one-variable case.

• (Remainder Step) If no LT(/;) divides LT(p), then the algorithm adds LT(p) to the
remainder.

These steps correspond exactly to what we did in Example 2.
To prove that the algorithm works, we will first show that

(2) f = alfl + ... + ads + p + r
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holds at every stage . This is clearly true for the initial values of al • . . .• a,. p, and r.
Now suppose that (2) holds at one step of the algorithm. If the next step is a Division
Step. then some LT(f;) divides LT(p), and the equality

a.], + P = (ai + LT(p)/LT(f;»f; + (p - (LT(p)/LT(fi»f;)

shows that a, f; + P is unchanged. Since all other variables are unaffected. (2) remains
true in this case . On the other hand. if the next step is a Remainder Step, then p and r
will be changed, but the sum p + r is unchanged since:

p + r = (p - LT(p» + (r + LT(p».

As before , equality (2) is still preserved.
Next, notice that the algorithm comes to a halt when p = O. In this situation. (2)

becomes

! = aJ/, + .. . + a../, + r.

Since terms are added to r only when they are divisible by none of the LT(f;), it follows
that al • .. . , as and r have the desired properties when the algorithm terminates.
Finally, we need to show that the algorithm does eventually terminate. The key

observation is that each time we redefine the variable p , either its multidegree drops
(relative to our term ordering) or it becomes O. To see this, first suppose that during a
Division Step, p is redefined to be

, LT(p)
P = P - LT(f;) f;.

By Lemma 8 of §2, we have

(
LT(P») LT(p)LT --f; = --LT(/;) = LT(p).
LT(f;) LT(f;)

so that p and (LT(p)/LT(f;»!i have the same leading term. Hence, their difference
pi must have strictly smaller multidegree when p' t= O. Next. suppose that during a
Remainder Step. p is redefined to be

pi = P _ LT(p).

Here, it is obvious that multideg(p') < multideg(p) when p' t= O. Thus, in either
case, the multidegree must decrease. If the algorithm never terminated, then we would
get an infinite decreasing sequence of multidegrees. The well-ordering property of>.
as stated in Lemma 2 of §2, shows that this cannot occur. Thus p = 0 must happen
eventually, so that the algorithm terminates after finitely many steps.
It remains to study the relation between multideg(f) and multidegfc, f;). Every term

in a, is of the form LT(p)/LT(fi) for some value of the variable p. The algorithm
starts with p = ! , and we just finished proving that the multidegree of p decreases.
This shows that LT(p) ~ LT(f), and then it follows easily [using condition (ii) of the
definition of a monomial order] that multidegtc, f;) ~ multideg(f) when a, f; t= 0
(see Exercise 4). This completes the proof of the theorem. 0
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The algebra behind the division algorithm is very simple (there is nothing beyond
high school algebra in what we did), which makes it surprising that this form of the
algorithm was first isolated and exploited only within the past 30 years.
We will conclude this section by asking whether the division algorithm has the same

nice properties as the one-variable version. Unfortunately, the answer is not pretty-the
examples given below will show that the division algorithm is far from perfect. In fact ,
the algorithm achieves its full potential only when coupled with the Groebner bases
studied in §§5 and 6.
A first important property of the division algorithm in k[x] is that the remainder is

uniquely determined. To see how this can fail when there is more than one variable,
consider the following example.

Example 4. Let us divide I = x2y + xl + y2 by II = y2 - I and h = xy - 1.
We will use lex order with x > y. This is the same as Example 2, except that we have
changed the order of the divisors. For practice, we suggest that the reader should do the
divis ion. You should get the following answer:

y2 _ I
xy - 1

r

This shows that

xy2+ X + y2

xl-x

2x + y2
--y-2

i-I
--I

o

-+ 2x

-+ x+y

-+ 2x + 1

(3) x2y + xl + l = (x + 1) . (l- I) + x . (xy - 1) + 2x + 1.

If you compare this with equation (I), you will see that the remainder is different from
what we got in Example 2.
This shows that the remainder r is not uniquely characterized by the requirement that

none of its terms be divisible by LT(/I), .. . , LT(f,) . The situation is not completely
chaot ic: if we follow the algorithm precisely as stated [most importantly, testing LT(p)
for divisibility byLT(/I), LT(h), . . . in that order] , then c., . . . , as andr are uniquely
determined. (See Exercise 11 for a more detailed discussion of how to characterize the
output of the algorithm.) However, Examples 2 and 4 show that the ordering of the
s-tuple of polynomials (/1, .. . , Is) definitely matters, both in the number of steps the
algorithm will take to complete the calculation and in the results. The a, and r can
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change if we simply rearrange the 1;. (The a, and r may also change if we change the
monomial ordering , but that is another story.)
One nice feature of the division algorithm in k[x] is the way it solves the ideal

membership problem-recall Example I from §l. Do we get something similar for
several variables? One implication is an easy corollary of Theorem 3: if after division
of I by F = (fJ, . . . , !,) we obtain a remainder r = 0, then

I = adl + ... + as!"
so that I E (fJ, . . . ,!,).Thusr = 0 is a sufficient condition for ideal membership.
However, as the following example shows, r = 0 is not a necessary condition for being
in the ideal.

Example 5. Let II = xy + I, h = y2 - 1 E k[x, y] with the lex order. Dividing
I = xy2 - x by F = (f" h), the result is

xl- x = y . (xy + I) + o·(l- 1) + (-x - y).

With F = (h, II), however, we have

xl- x = x . (l- I) + O· (xy + I) + O.

The second calculation shows that I E (fl , h) .Then the first calculation shows that
even if I E (fJ, h), it is still possible to obtain a nonzero remainder on division by
F = (fl, h)·
Thus, we must conclude that the division algorithm given in Theorem 3 is an imper-

fect generalization of its one-variable counterpart. To remedy this situation, we tum to
one of the lessons learned in Chapter 1. Namely, in dealing with a collect ion of polyno-
mials II , .. . , !, E k[x" . . . , x,,], it is frequently desirable to pass to the ideal 1 they
generate. This allows the possibility of going from II . . . . , j, to a different generating
set for I . So we can still ask whether there might be a "good" generating set for I. For
such a set, we would want the remainder r on division by the "good" generators to be
uniquely determined and the condition r = 0 should be equivalent to membership in
the ideal. In §6, we will see that Groebner bases have exactly these "good" properties.

In the exercises, you will experiment with a computer algebra system to try to discover
for yourself what properties a "good" generating set should have. We will give a precise
definition of "good" in §5 of this chapter.

EXERCISES FOR §3

I. Compute the rema inder on division of the given polynomial f by the order set F (by hand) .
Use the grlex order, then the lex order in each case.
a. f=x 7y2+ x3y2-y+1 F=(xy2- x , X - y3).
b. Repeat part a with the order of the pair F reversed .

2. Compute the rema inder on division:
a. f =x/ z2+ xy - y; F = (x - y2,Y - Z3, Z2 - I) .
b. Repeat part a with the order of the set F permuted cyclically.

3. Using a computer algebra system, check your work from Exercises I and 2. (You may need to
consult documentation to learn whether the system you are using has an explicit polynomial
divis ion command or you will need to perform the individual steps of the algorithm yourself.)
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4. If f = aI/I + .. . + a.I, + r is the output of the division algorithm. complete the proof
begun in the text that muitideg(f) ::: multidegtc, fi) when a, fi -# O.

The following problems investigate in greater detail the way the remainder computed by the divi -
sion algorithm depends on the ordering and the form of the r-tuple of divisors F = (fl . . . . • fs) '
You may wish to use a computer algebra system to perform these calculations.

5. We will study the division of f = x 3 - x 2y - x 2z+ x by fl = x2y - z and Iz = xy - l.
a. Compute using grlex order:

rl = remainder of f on division by (fl. Iz).
r2 = remainder of f on division by (f2. fl) '

Your resul ts should be different .Where in the division algorithm did the difference occur?
(You may need to do a few steps by hand here .)

b. Is r = rl - '2 in the ideal (fl . Iz)? If so. find an explicit expression r = A], + Biz. If
not . say why not.

c. Compute the remainder of r on division by (fl . Iz). Why could you have predicted your
answer before doing the division?

d. Find another polynomial g E (fl. Iz) such that the rema inder on division of g by (fl . Iz)
is nonzero. Hint: (xy + 1) . fz = X2y2 - I. whereas y . fl = X2y2 - yz .

e. Does the division algorithm give us a solution for the ideal membership problem for the
ideal (flo Iz)?Explain your answer.

6. Using the grlex order. find an element g of (fl. Iz) = (2x y2 - X. 3x2y - Y - 1) C JR[x. y]
whose remainder on division by (fl. Iz) is nonzero. Hint : You can find such a g where the
remainder is g itself.

7. Answer the que stion of Exercise 6 for (fl . h . 13) = (X'y2 - z. X3y3 - 1. x2y' - 2z) C
JR[x. y. zl , Find two different polynomials g (not constant multiples of each other).

8. Try to formulate a general pattern that fits the examples in Exercises S(c.d). 6. and 7. What
condition on the leading term of the polynomial g = AI fl + ... + A, f, would guarantee
that there was a nonzero remainder on division by (fl • . . .. f s)?What does your condition
imply about the ideal membership problem?

9. The discussion around equation (2) of Chapter I. §4 shows that every polynomial f E
JR[x. y. zl can be written as

f = hl(y - x 2) + h2(z - x J
) + r ,

where' is a polynomial in x alone and V(y - x 2• Z - x3) is the twisted cubic curve in JR3 .
a. Give a proof of this fact using the division algorithm. Hint: You need to specify carefully

the monomial ordering to be used .
b. Use the parametrization of the twisted cubic to show that Z2 - x 4y vanishes at every point

of the twisted cubic.
c. Find an explicit representation

using the div ision algorithm.
10. Let V C JRJ be the curve parametrized by (t. t'", r"), n. m ::: 2.

a. Show that V is an affine variety.
b. Adapt the ideas in Exercise 9 to determine I(V).

11. In this exercise. we will characterize completely the expression
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that is produced by the division algorithm (among all the possible expressions for I of this
form). Let LM(fi ) = x " U) and define

6 1 = a(l ) + Z~O '

6 2 = (a(2 ) + Z~o) - 6"

(

, - I )
6 , = (a(s) + Z~o ) - ~ 6 ; •

X = Z~o - (u6i) .
, = 1

(Note that Z~o is the disjoint union of the 6 ; and X.)
a. Show that-,B E 6 ; if and only if x"I; ) divides x l!. but no x" lj ) with j < i divide s xl! .
b. Show that y E X if and only if no x"U) divides x Y •
c. Show that in the expression I = al I I+ ... + asi , + r computed by the division

algorithm. for every i , every monomial x l! in a, satisfies ,B + aU ) E 6 ; . and every
monomial x Y in r satisfies y E X.

d. Show that there is exactly one expres sion I = a l II+ ... + asIs + r satisfying the
propert ies given in part c.

12. Show that the operation of computing rema inders on division by F = (fl .. ... I,) is linear
overk .That is. if the remainder on division ofg; by F is r io i = 1.2. then. for any c" C2 E k,
the remainder on division of c\ gl + C2g2 is c l r l + C2r2 . Hint: Use Exercise II.

§4 Monomial Ideals and Dickson's Lemma

In this sect ion. we will consider the ideal description problem of §I for the special case
of monomial ideals. Th is will require a careful study of the properties of these ideals.
Our results will also have an unexpected appl icat ion to monomial orderings.
To start. we define monomial ideals in k[xi . . . . •XII] '

Definition 1. An ideal I C k[x , • . . . •XII ] is a monomial ideal if there is a subset
A C Z~o (possibly infinite) such that I consists ofall polynomials which are finite
sums,o{ ihe form L "EAhcx x" . where h" E k[xi • . . . • XII ]' In this case, we write I =
(x" : ex E A) .

An example of a monomial ideal is given by I = (x 4y2 , x 3y4,X2y5 ) C k[x, y] .
More interesting examples of monomial ideals will be given in §5.
We first need to characterize all monomials that lie in a given monomial ideal.

Lemma 2. Let I = (x" : ex E A) be a monomial ideal. Then a monomial x fJ lies in I
ifand only if x fJ is divisible by XCX for some ex E A.

Proof. If x fJ is a multiple of X CX for some ex E A, then x fJ E I by the definition of
ideal. Conversely, if x fJ E I, then x fJ = L :=l hjxcx(i ), where hi E k[Xl, ... , x,J and
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aU) E A. If we expand each hi as a linear combination of monomials, we see that
every term on the right side of the equation is divisible by some xa(i). Hence, the left
side x fJ must have the same property. 0

Note that x fJ is divisible by x a exactly when x fJ = x a . x Y for some y E Z~o. This
is equivalent to f3 = ex + y. Thus, the set

ex + Z~o = {a + y : y E Z~o}

consists of the exponents of all monomials divisible by x a •This observation and Lemma
2 allows us to draw pictures of the monomials in a given monomial ideal. For example,
if I = (x 4y2 , X 3y4, x 2ys), then the exponents of the monomials in I form the set

«4,2) + Z~o) U «3, 4) + Z~o) U «2,5) + Z~o) '

We can visualize this set as the union of the integer points in three translated copies of
the first quadrant in the plane:

n • • .. • •
• • • • •(2.5)

• • • •(3,4)

• • •
• • •(4.2)

m
(m,n) _A"' y"

Let us next show that whether a given polynomial f lies in a monomial ideal can be
determined by looking at the monomials of f.

Lemma3. Let I be a monomial ideal, and let f E k[xl '. ' .. , XII] ' Then the following
are equivalent:
(i) f E t ,
(ii) Every term of f lies in I ,
(iii) f isa k-linear combination ofthe monomials in l .

Proof. The implications (iii) :::} (ii) :::} (i) are trivial. The proof of (i) :::} (iii) is similar
to what we did in Lemma 2 and is left as an exercise. 0

An immediate consequence of part (iii) of the lemma is that a monomial ideal is
uniquely determined by its monomials. Hence, we have the following corollary.
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Corollary 4. Two monomial ideals are the same if and only if they contain the same
monomials.

The main result of this section is that all monomial ideals of k[xl • . . . • XII] are finitely
generated.

Theorem 5 (Dickson's Lemma). A monomial ideal I = (x" : a E A) C
k[xl • . .. • XII] can be written down in the form I = (x"(I) •...• x,,(.I»). where
a(l), . . .• a(s) E A. In particular. I has a finite basis.

Proof. (By induction on n, the number of variables .) If n = I, then I is generated by
the monomials xI' where a E A C 7l.~0. Let fJ be the smallest element of A C 7l.~0.

Then fJ :::: a for all a E A, so that xf divides all other generators xI' From here,
I = (xf) follows easily .
Now assume that n > I and that the theorem is true for n - I. We will write the

variables as XI , . •• , XII-I , y , so that monomials in k[XI, .. . , XII-I, y] can be written
"Ill h ( ) 71."-1 d 77as X y ,were a = al , , an-I E >0 an m E a..~o .

Suppose that I C k[X I, ,XII-I, y] is-a monomial ideal. To find generators for I,
let J be the ideal in k[XI, , xlI-d generated by the monomials x" for which x"ylll ,E
I for some m ~ O. Since J is a monomial ideal in k[x), . . . , XII-d. our inductive
hypothesis implies that finitely many of the x" 's generate J. say J = (x,,(1)• . . . • x"(.<»).
The ideal J can be understood as the "projection" of I into k[Xl, . .. •XII-d.
For each i between I and s, the definition of J tells us that x,,(i) ylll ' E I for some

m, ~ O. Let m be the largest of the mi.Then . for each k between 0 and m - I. consider
the ideal Jk C k[XI, .. . • xlI-d generated by the monomials x fJ such that xfJl E I.
One can think of Jk as the "slice" of I generated by monomials containing y exactly
to the kth power. Using our inductive hypothesis again. lk has a finite generating set of
monomials, say Jk = (x",( I), .. . , x"d.ld) .
We claim that I is generated by the monomials in the following list:

from J : x,,(I)ym , . .. • x"(.I)ym,

from Jo : x"u(') , • • • • x"o(.Iu) ,

from J, : x",(I)y • . . . , x"' (.")y,

First note that every monomial in I is divisible by one on the list. To see why. let
x" yP E I. If p ~ m, then x" yP is divisible by some x,,(i) ylll by the construction of
J . On the other hand. if p :::: m - I. then x"yP is divisible by some x"p(j)yP by the
construction of Jp • It follows from Lemma 2 that the above monomials generate an
ideal having the same monomials as I . By Corollary 4. this forces the ideals to be the
same, and our claim is proved.
To complete the proof of the theorem. we need to show that the finite set of gener-

ators can be chosen from a given set of generators for the ideal. If we switch back to
writing the variables as XI, ••• , XII' then our monomial ideal is I = (x" : a E A) C
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k[XI , . . . , XII]' We need to show that 1 is generated by finitely many of the x a 's, where
a E A. By the previous paragraph, we know that 1 = (x tl(l ) • . . . , x tl(S)) for some
monomials x tl(i ) in l. Since x tl(i) E 1 = (x a : a E A), Lemma 2 tells us that
each x tl(i ) is divisible by x aU) for some a(i ) E A. From here , it is easy to show that
1 = (x a( l) • • • • , x a(S)) (see Exercise 6 for the details). This completes the proof. 0

To better understand how the proofofTheorem 5 works, let us apply it to the ideall =
(x 4y2 , x 3y4, x 2y5 ) discussed earlier in the section. From the picture of the exponents,
youcanseethatthe "projection"isJ = (x 2 ) C k[x] .Sincex2y5 E l ,wehavem = 5.
Then we get the "slices" Ji, 0 ~ k ~ 4 = m - I, generated by monomials containing
l :

Jo = J1 = {OJ,

h = h = (x 4 ) .

J4 = (x3 ) .

These "slices" are easy to see using the picture of the exponents. Then the proof of
Theorem 5 gives 1 = (x 2y5 , x 4y2, x 4y3 , X3y4).
Theorem 5 solves the ideal description for monomial ideals, for it tells that such an

ideal has a finite basis. This, in turn, allows us to solve the ideal membership problem
for monomial ideals. Namely, if 1 = (xa(l ), ... , xa (S»), then one can easily show
that a given polynomial f is in 1 if and only if the remainder of f on division by
x a( I ), . . . , xa Co) is zero . See Exercise 9 for the details.

We can also use Dickson's Lemma to prove the following important fact about
monomial orderings in k[Xl , . .. , XII ]'

Corollary 6. Let> be a relation on ~:o satisfying:
(i) > is a total ordering on ~:o ' -
(ii) if a > fJ and y E ~:o. then a + y > fJ + y.
Then> is well-ordering if and only ifa ~ 0 for all a E Z~o '

Proof. =>: Assuming> is a well-ordering, let ao be the smallest element of ~:o' It
suffices to show ao ~ O. This is easy: if 0 > ao, then by hypothesis (ii) , we can add ao
to both sides to obtain ao > 2ao, which is impossible since ao is the smallest element
of~:o'

<=:: Assuming that a ~ 0 for all a E Z:o' let A C Z'~O be nonempty. We need
to show that A has a smallest element. Since I = (x a :- a E A) is a monomial
ideal, Dickson 's Lemma gives us a(I), . . . , a(s) E A so that J = (Xa(I ), . . . ,xa(S)).
Relabeling if necessary, we can assume that a(l) < a(2) < . . . < a(s). We claim
that a (I) is the smallest element of A. To prove this, take a EA. Then xa E 1 =
(x a( I ) , . . . , xa Co)), so that by Lemma 2, xa is divisible by some x a(i) •This tells us that
a = a(i) + y for some y E ~~o. Then y ~ 0 and hypothesis (ii) imply that

a = a(i) + y ~ a(i) + 0 = a(i) ~ a(l) .

Thus, a( I) is the least element of A. o
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As a result of this corollary, the definition of monomial ordering given in Defini-
tion 1 of §2 can be simplified. Conditions (i) and (ii) in the definition would be
unchanged, but we could replace (ii i) by the simpler condition that ex ~ 0 for all
ex E Z~o. This makes it much easier to verify that a given ordering is actually a
monomial ordering. See Exercises 10-12 for some examples.

EXERCISES FOR §4

1. Let 1 C k(x) , . . . , x,,] be an ideal with the property that for every f = Lu cux u E I ,
every monomial XU appearing in f is also in I . Show that 1 is a monomial ideal.

2. Complete the proof of Lemma 3 begun in the text.
3. Let 1 = (x 6 , x 2yl , x y7) C k(x , y] .

a. In the (m , n)-plane, plot the set of exponent vectors (m , n) of monomials x'" y" appearing
in elements of I .

b. If we apply the division algorithm to an element f E k(x , y] , using the generators of 1
as divisors, what terms can appear in the remainder?

4. Let 1 C k (x , y] be the monomial ideal spanned over k by the monomials x lJ corresponding
to j3 in the shaded region below:

n •
•

(3 .6)

(5 ,4 )

•
•

•

•
•

6.0)

(lII. n ) +--+ x"' .V"
m

a. Use the method given in the proof of Theorem 5 to find an ideal basis for I.
b. Is your basis as small as possible, or can some j3 's be deleted from your basis, yielding a

smaller set that generates the same ideal?
5. Suppose that 1 = (xu : a E A) is a monomial ideal, and let S be the set of all exponents

that occur as monomials of I . For any monomial order>, prove that the smallest element of
S with respect to > must lie in A.

6. Let 1 = (XU : a E A) be a monomial ideal, and assume that we have a finite basis
1 = (xlJ(I), .. . , x IJ1J»). In the proof of Dickson 's Lemma, we observed that each x lJli ) is
divisible by x u li ) for some a U) E A. Prove that 1 = (XU m

, •• • , x U 1S»).
7. Prove that Dickson's Lemma (Theorem 5) is equivalent to the following statement : given a

subset A C ~:o ' there are finitely many elements a(\ ), ... ,a(s) E A such that for every
a E A, there exists some i and some y E Z:o such that a = a (i) + y .

8. A basis (xu(I), . .. , x u l ' )} for a monomial ideal 1 is said to beminimal if no x u (i) in the basis
divides another xu1j ) for i f:. j.
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a. Prove that every monomial ideal has a minimal basis.
b. Show that every monomial ideal has a unique minimal basis .

9. If I = (xa (J) • • • • • x a l ' )) is a monomial ideal, prove that a polynomial f is in I if and only
if the remainder of f on divis ion by Xa (I ), •• • ,xa l ' ) is zero. Hint: Use Lemmas 2 and 3.

10. Suppose we have the polynomial ring k[xlo . ..• x"' Ylo . .. • y",]. Let us define a monomial
order > ", i teJ on this ring that mixes lex order for X I , • . • , x"' with grlex order for YI, . .. • y",.
If we write monomials in the n + m variables as xa ylJ , where a E :if.: o and f3 E :if.~o ' then
we define - -

Use Corollary 6 to prove that > /IIi teJ is a monomial order. Th is is an example of what is
called a product order. It is clear that many other monomial orders can be created by this
method.

II . In this exercise we will investig ate a special case of a weight order. Let U = (u I , • •• , un)
be a vector in JR" such that u I • . . • , u" are posit ive and linearly independent over lQ.We say
that u is an independent weight vector. Then . for a , fl E :if.~o' define

a >u fl <==? u . a > u . fl.
where the centered dot is the usual dot product of vectors . We call >u the weight order
determined by u.
a. Use Corollary 6 to prove that >u is a monomial order. Hint : Where does your argument

use the linear independence of u I , .. . , un?
b. Show that u = (I, ../2) is an independent weight vector, so that >u is a weight order on

:if.;o ·
c. Show that u = (I, ../2, .;3) is an independent weight vector, so that >u is a weight order

on :if.;o '
12. Another important weight order is constructed as follows . Let u = (U lo . . . , u,,) be in :if.: o'

and fix a monomial order >0 (such as >1." or > '''''1'') on :if.: o' Then, for a , fl E :if.:o'
define a > u.e fl if and only if - -

u . a > u . fl or u · a = u . fl and a >0 fl.
We call >u.a the weight order determined by u and > 0'

a. Use Corollary 6 to prove that >u,a is a 'monomial order.
b. Find u E :if.:o so that the weight order >u.l•.r is the gradlex order> sradtes -
c. In the definition of >u.a , the order > " is used to break ties, and it turns out that ties will
always occur in this case. More precisely, prove that given u E :if.: o' there are a =I fl in
:if.: o such that u . a = u . fl.Hint: Consider the linear equation u ~al + ... + u"a" = 0
over lQ. Show that there is a nonzero integer solution (a lo . .. • a,,). and then show that
(al • . . . •a,,) = a - fl for some a, fl E ':if.'~o ·

d. A useful example of a weight order is the -elimination order introduced by BAYER and
STtLLMAN (1987b). Fix an integer I .:::: i .:::: n and let u = (I • ... , I, 0•. . . ,0), where
there are ii 's and n - i O's. Then the ith elimination order > i is the weight order
>u....vt r s- Prove that > i has the following property: if XO is a monomial in which one
of x. , .. . ,Xi appears, then XO » , x lJ for any monomial involving only Xi +l... . ,Xn.
Elimination orders play an important role in elimination theory , which we will study in
the next chapter.

The weight orders described in Exercises II and 12 are only special cases of weight orders . In
general. to determine a weight order, one starts with a vector U I E JRn, whose entries may not be
linearly independent over lQ. Then a > fl if UI . a > U I . fl. But to break ties, one uses a second
weight vector U2 E JR". Thus, a > fl also holds if UI . a = UI . fl and U2 • a > U2 • fl. If there
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are still ties (when U J • a = U J • {3 and U2 • a = U2 . {3). then one uses a third weight vector UJ.

and so on. It can be proved that every monomial order on Z : o arises in this way. For a detailed
treatment of weight orders and their relation to monomial orders. consult ROBBIANO (1986).

§5 The Hilbert Basis Theorem and Groebner Bases

In this section, we will give a complete solution of the ideal description problem from
§1. Our treatment will also lead to ideal bases with "good" properties relat ive to the
division algorithm introduced in §3. The key idea we will use is that once we choose a
monomial ordering, each f E k[XI , .. . , x.,I has a unique leading term LT(f) . Then ,
for any ideal I , we can define its ideal of leading terms as follows.

Definition 1. Let I C k[xi • . . . • x,,] be an ideal other than {O} .
(i) We denote by LT(l) the set of leading terms ofelements of IThus,

LT(l) = (ex " : there exists f E I with LT(f) = ex" }.

(ii) We denote by (LT(l )} the ideal generated by the elements ofLT(l),.

We have already seen that leading terms play an important role in the division algo-
rithm. This brings up a subtle but important point concerning (LT(l)} . Namely, if we are
given a finite generating set for I . say I = (fl, . . . • I,),then (LT(fI) , .. . • LT(j, )} and
(LT(l)} may be different ideals. It is true that LT( fi ) E LT(l ) C (LT(l)} by definition,
which implies (LT(fI), . .. . LT(j,)} C (LT(l)} . However, (LT(l)} can be strictly larger.
To see this, cons ider the following example.

Example 2. Let I = (fl, h), where f l = x 3 - 2x y and h = x 2y - 2y2 + x, and
use the grlex ordering on monomi als in k[x . y ). Then

x· (x 2 y - 2l + x) - y . (x 3 - 2x y ) = x 2 •

so that x 2 E I. Thus , x 2 = LT(X2) E (LT(l )}. However x 2 is not divisible by LT(fI ) =
x 3 or LT(h) = x 2y. so that x 2 if. (LT(fd, LT(h» by Lemma 2 of §4.
In the exercises to §3, you computed other examples of ideals I = (fl , . .. , I,),

where (LT(l )} was strictly bigger than (LT(fI) • . . .• LT(j, )}. The exercises at the end
of the section will explore what this implies about the ideal membership problem.
We will now show that (LT(l)} is a monomial ideal. This will allow us to apply the

results of §4. In particular, it will follow that (LT(l)} is generated by finitely many
leading terms.

Proposition 3. Let I C k[x l• . . . • x,, ] be an ideal.
(i) (LT(l )} is a monomial ideal.
(ii) There are gi •. . . ,g, E I such that (LT{l)} = (LT(g d • . . . , LT(g/ )}.

Proof. (i) The leading monomials LM(g ) of elements g El - {O} generate the mono-
mial ideal (LM(g) : g E l - {OJ} . Since LM(g) and LT(g ) differ by a nonzero constant,
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this ideal equals (LT(g) : g e I - (OJ) = (LT(l») (see Exercise 4). Thus, (LT(l») is a
monomial ideal.
(ii) Since (LT(I») is generated by the monomials LM(g) for gEl - (OJ, Dick-

son's Lemma from §4 tells us that (LT(I») = (LM(g», ... , LM(g(») for finitely many
gl , ... , g, E I . Since LM(gi) differs from LT(gi) by a nonzero constant, it follows that
(LT(I») = (LT(gl), . .. , LT(g(») . This completes the proof. 0

We can now use Proposition 3 and the division algorithm to prove the existence of a
finite generating set of every polynomial ideal , thus giving an affirmative answer to the
ideal description problem from §I. Let I C k[XI, ... , XII] be any ideal and consider the
associated ideal (LT(l») as in Definition I . As always, we have selected one particular
monomial order to use in the division algorithm and in computing leading terms .

Theorem 4 (Hilbert Basis Theorem). Every ideal I C k[XI , .. . , XII] has a finite
generating set. That is. I = (gl ' . . . , g,) for some gl, . . . ,gs E I .

Proof. If I = [O] , we take our generating set to be {OJ, which is certainly finite. If
I contains some nonzero polynomial, then a generating set g" . .. ,g, for I can be
constructed as follows. By Proposition 3, there are gl . . .. , g, E I such that (LT(l») =
(LT(gl), . . . LT(gl») ' We claim that I = (gl,"" g,) .
It is clear that (gl • . . . , g,) C I since each gi E I . Conversely, let f E I be any

polynomial. If we apply the division algorithm from §3 to divide f by (gl, ... , g,),
then we get an expres sion of the form

f = algI + . . . + a.g, + r

where every term in r is divisible by none ofLT(g,) , ... , LT(g(). We claim that r = O.
To see this , note that

r = f - algi - . .. - a,g , E I.

If r ¥O, then LT(r) E (LT(/») = (LT(g,), . . . LT(gl»), and by Lemma 2 of §4, it
follows that LT(r) must be divisible by some LT(gi). This contradicts what it means to
be a remainder, and, consequently, r must be zero . Thus,

f = algi + .. . + algI + 0 E (gl, . . . , g,),

which shows that I C (g I , .. . , g,) . This completes the proof. o

In addition to answering the ideal description question, the basis {gt , ... , g,} used
in the proof of Theorem 4 has the special property that (LT(I») = (LT(g» •... , LT(g( »).
As we saw in Example 2, not all bases of an ideal behave this way. We will give these
special bases the follow ing name .

Definition S. Fix a monomial order.A finite subset G = {gl' . . . , g,} ofan ideal I is
said to be a Groebner basis (or standard basis) if

(LT(g,), .. . , LT(gl») = (LT(/») .
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Equivalently, but more informally, a set {g" .. . , g, l c r is a Groebner basis of 1 if
and only if the leading term of any element of 1 is divisible by one of the LT(g;) (this
follows from Lemma 2 of §4--see Exercise 5). The proof of Theorem 4 also establishes
the following result.

Corollary 6. Fix a monomial order. Then every ideal 1 C k[x, . . . . , XII] other than
{Ol has a Groebner basis . Furthermore. any Groebner basis for an ideal 1 is a basis of
I.

Proof. Given a nonzero ideal, the set G = {g, • . . .• g,I constructed in the proof
of Theorem 4 is a Groebner basis by definition. For the second claim, note that if
(LT(l)} = (LT(g,) •. . . , LT(g,)}, then the argument given in Theorem 4 shows that
1 = (U, .. .• gs}, so that G is a basis for I. (A slightly different proof is given in
Exercise 6.) 0

In §6 we will study the properties of Groebner bases in more detail, and, in particular,
we will see how they give a solution of the ideal membership problem . Groebner bases
are the "good" generating sets we hoped for at the end of §3.
For some examples of Groebner bases, first consider the ideal 1 from Example 2,

which had the basis {f" hI = {x3 - 2xy,x2y - 2y2 + x]. Then {!J, hI is not
a Groebner basis for 1 with respect to grlex order since we saw in Example 2 that
x2 E (LT(l)}, but x2 f/. (LT(f,), LT(h)} . In §7 we will learn how to find a Groebner
basis of I .
Next, consider the ideal J = ($1, g2} = (x + z, Y - z). We claim that g, and

s: form a Groebner basis using lex order in IR[x. y , z]. Thus, we must show that the
initial form of every nonzero element of J lies in the ideal (LT(g1) . LT(g2)} = (x , y} .
By Lemma 2 of §4, this is equivalent to showing that the initial fonn of any nonzero
element of J is divisible by either x or y.
To prove this, consider any f = Ag1+ Bg2 E J . Suppose on the contrary that f is

nonzero and LT(f) is divisible by neither x nor y. Then by the definition of lex order,
f must be a polynomial in z alone . However, f vanishes on the linear subspace L =
V(x+z,y-z) C lR3sincef E J .Itiseasytocheckthat(x,y, z) = (-t,t ,t) E L
for any real number t, The only polynomial in z alone that vanishes at all of these points
is the zero polynomial, which is a contradiction. It follows that (g" g2} is a Groebner
basis for J. In §6, we will learn a more systematic way to detect when a basis is a
Groebner basis.
Note, by the way, that the generators for the ideal J come from a row echelon matrix

of coefficients :

(~ ~ -~)
This is no accident: for ideals generated by linear polynomials, a Groebner basis for lex
order is determined by the row echelon form of the matrix made from the coefficients
of the generators (see Exercise 9).
Groebner bases for ideals in polynomial rings were introduced in 1965 by B. Buch-

berger and named by him in honor of W. Grabner (1899-1980), Buchberger's thesis
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adviser. The closely related concept of "standard bases" for ideals in power series rings
was discovered independently in 1964 by H. Hironaka. As we will see later in this chap-
ter. Buchberger also developed the fundamental algorithms for working with Groebner
bases. We will use the English form "Groebner bases," since this is how the command
is spelled in some computer algebra systems.
We conclude this section with two applications of the Hilbert Basis Theorem. The

first is an algebraic statement about the ideals in k[xl • . . . • x,J. An ascending chain
of ideals is a nested increasing sequence:

II C h C 13 C . . . .

For example. the sequence

(I )

forms a (finite) ascending chain of ideals. If we try to extend this chain by including
an ideal with' further generatorts), one of two alternatives will occur. Cons ider the
ideal (Xl •...• X". f) where I E k[XI , .. . •x"l. If I E (Xl • .. . • x,,). then we obtain
(XI • . . . • x,,) again and nothing has changed. If, on the other hand.! f. (XI • •.• , x,,).
then we claim (XI • . . . • X". f) = k[xl • .... x"l. We leave the proof of this claim
to the reader (Exercise II of this section) . As a result. the ascending chain (I) can
be continued in only two ways , either by repeating the last ideal ad infinitum or by
appending k[xi • . . . , x,,] and then repeating it ad infinitum. In either case. the ascending
cha in will have "stabilized" after a finite number of steps , in the sense that all the
ideals after that point in the chain will be equal. Our next result shows that the same
phenomenon occurs in every ascending chain of ideals in k[ xi . . . . •x"l.

Theorem 7 (The Ascending Chain Condition). Let

II C 12 C 13 C . . .

be an ascending chain ofideals in k[x i • . . . • x; [. Then there exists an N ::: I such that

IN = IN+I = IN+2 = ....

Proof. Given the ascending chain II C 12 C 13 C .. " consider the set I = U~I I;.
We begin by showing that I is also an ideal in k[xi • . . . , x"l.First. 0 E I since oE I;
for every i. Next, if I, gEl, then. by definition. I E I., and g E Ij for some i and j
(poss ibly different). However. since the ideals I; form an ascending chain . if we relabel
so that i :::: i . then both I and g are in I j • Since I j is an ideal. the sum I + g E I j •
hence. E I. Similarly. if I E I and r E k[xi • . . . •x"l. then I E I; for some i, and
r . I E I, C I . Hence, I is an ideal.
By the Hilbert Basis Theorem. the ideal I must have a finite generating set: I =

(fl .... , j ,) .But each of the generators is contained in some one of the l ), say I; E I j ;
for some i.. i = I .. . .. s. We take N to be the maximum of the j i . Then by the
definition of an ascending chain /; E IN for all i. Hence we have

I = (fl . .. .. I s) C IN C IN+I C ... C I .

As a result the ascending chain stabilizes with IN.All the subsequent ideals in the chain
are equal. 0
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The statement that every ascending chain of ideals in k[XI , . . . , XII] stabilizes is often
called the ascending chain condition, or ACC for short . In Exercise 12 of this section ,
you will show that if we assume the ACC as hypothesis, then it follows that every
ideal is finitely generated. Thus, the ACC is actually equivalent to the conclusion of
the Hilbert Basis Theorem. We will use the ACC in a crucial way in §7, when we give
Buchberger's algorithm for constructing Groebner bases. We will also use the ACC in
Chapter 4 to study the structure of affine varieties.
Our second consequence of the Hilbert Basis Theorem will be geometric. Up to this

point, we have considered affine varieties as the sets of solutions of specific finite sets
of polynomial equations:

V(fl , ... , f s) = {(al , ... , all) E k" : fita« , . .. , all) = 0 for all il.
The Hilbert Basis Theorem shows that, in fact, it also makes sense to speak of the affine
variety defined by an ideal I C k[x), ... , XII]'

Definition 8. Let I C k[XI , . .. ,XII] be an ideal. We will denote by V(I) the set

V(I) = {(al , " " all) E k" : f ta« , . . . , all) = Ofor all f E I}.

Even though a nonzero ideal I always contains infinitely many different polynomials,
the set V(I) can still be defined by a finite set of polynomial equations.

Proposition 9. V(I) is an affine variety. In particular, if I = (fl, . .. , f,), then
V(I) = V(fl , . . . , f s) .

Proof. By the Hilbert Basis Theorem, I = (fl, . . . , f ,) for some finite generating set.
We claim that V(I) = V(f), ... , I,). First , since the fi E I, if f(al," " all) = 0
for all f E I, then fi(al, . . . ,all) = 0, so V(l) C V(fl' . . . , I ,), On the other hand,
let (a\, .. . , all) E V(fl," " I ,) and let f E I. Since I = (fl," " I ,),we can
write

s
f = Lh;f;

;=1
for some h, E k[x ), . . . , xn ]. But then

,
f(al ," " all) = L h;(al," " all)f;(a\, . .. , an)

;=1
s

= Lh;(a\, . . . ,all)·O=O.
;=1

Thus, V(fl , .. . , I,) C V(I) and, hence , they are equal. o

The most important consequence of this proposition is that varieties are determined
by ideals. For example, in Chapter I, we proved that V(fl, . . . , f s) = V (g I , . . . , gs)
whenever (fl, . . . , I, ) = (gl , . .. , g,) (see Proposition 4 of Chapter 1, §4). This
proposition is an immediate corollary ofProposition 9. The relation between ideals and
varieties will be explored in more detail in Chapter 4.
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In the exercises. we will exploit Proposition 9 by showing that by using the right
generating set for an ideal J, we can gain a better understanding of the variety V(l).

EXERCISES FOR §5

1. Let I = (glo g2. g3) c !R[x . y. z}, where g . = xi - x z + y. g2 = x y - Z2 and
gJ = X - YZ4. Us ing the lex order. give an example of gEl such that LT(g) rt
(LT(gd . LT(g2). LT(g3»).

2. For the ideals and generators given in Exercises 5. 6. and 7 of §3. show that (LT(/») is strictly
bigger than (LT(fI) . . . . • LT(f,»). Hint: Th is should follow directly from what you did in
those exercises.

3. To generalize the situation of Exercises I and 2. suppose that I = (f) ... . , Is) is an ideal
such that (LT(fd .. .. , LT(f,») is strictly smaller than (LT(/») .
a. Prove that there is some I E I whose remainder on division by II. . . . . Is is nonzero.

Hint : First show that LT(f) rt (LT(fI), " " LT(f,») for some I E I . Then use Lem-
ma 2 of §4.

b. What does part a say about the ideal membership problem?
c. How does part a relate to the conjecture you were asked to make in Exercise 8 of §3?

4. Iff c k[x) , ... ,xn)isanideal,provethat(LT(g) : g E I-{OJ) = (LM(g): g E I-{O}).
5. Let I be an ideal of k[x) • . . . • xn ) . Show that G = {gl , . . . • g,} C I is a Groebner basis of

I if and only if the leading term of any element of I is divisible by one of the LT(gi) .
6. Corollary 6 asserts that a Groebner basis is a basis. i.e.• if G = (g) • . . . , g,} C I satisfies

(LT(/ ») =; (LT(gil . . . . , LT(g,»). then I = (g lo . . . • g,) . We gave one proof of this in the
proof of Theorem 4. Complete the following sketch to give a second proof. If I E I . then
divide I by (gl' . . . • g,) . At each step of the division algorithm. the leading term of the
polynom ial under the radical will be in (LT(/» ) and, hence. will be divisible by one of the
LT(g i ). Hence . terms are never added to the rema inder. so that I = L :=I ai g, when the
algorithm term inates .

7. Ifwe use grlex order with x > Y > Z, is {X 4y2 - Z5. x 3i - I. X 2y4 - 2z} a Groebner bas is
for the ideal generated by these polynomials? Why or why not?

8. Repeat Exercise 7 for I = (x - Z2, Y - Z3) using the lex order. Hint: The difficult part of
this exercise is to determine exactly which polynomials are in (LT(/» ),

9. Let A = (a ij) be an m x n matrix with real entries in row echelon form and let J C
!R{XI, . . . , x n ) be an ideal generated by the linear polynomials L~=I a~jxj for I ~ i ~ m ,
Show that the given generators form a Groebner basis for J with respect to a suitable
lexicographic order. Hint: Order the var iables corresponding to the lead ing I's before the
other variables.

10. Let I C k{xio ... , xn) be a principal ideal (that is. I is generated by asingle I E I-see
§5 of Chapter I). Show that any finite subset of I containing a generator for I is a Groebner
basis for I .

11. Let I E k{x lo . . . , xn). If I rt (XI, ... , xn). then show (x) • . . . • x,,, I ) = k[x) • . . . • xn).
12. Show that if we take as hypothes is that every ascending chain of ideals in k[x) • . . . • x,,)

stabilizes, then the conclusion of the Hilbert Basis Theorem is a consequence. Hint:
Argue by contradiction, assuming that some ideal I C k[XI, . .. , xn ) has no finite gen -
erating set. The arguments you gave in Exercise 12 should not make any special use
of properties of polynomials. Indeed. it is true that in any commutative ring R. the two
statements,
(i) every ideal I c R is finitely generated.
(ii ) every ascending chain of ideals of R stabilizes.
are equivalent.
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13. Let

be a descending chain of affine varieties. Show that there is some N ::: I such that VN =
VN+ 1 = V.v+2 = . . .. Hint: Use Exerci se 14 of Chap ter I. §4.

14. Let flo 12 E k[ x J, . . . , x,,1 be an infinite collection of polynomi als and let I
(fl . 12 ) be the ideal they generate. Prove that there is an integer N such that I
(fl• . . .• [s) .Hint: Use f l. 12. . . . to create an ascend ing chain of ideals.

15. Given polynomi als f l. [: • . . . E k[ x i • . . . • x, J. let V(fl. 12 . . . .j c k" be the solutions of
the infinite system of equa tions fl = 12 = .. . = O. Show that there is some N such that
V(fJ, h. . .. ) = V(fl • . .. • I»).

16. In Chapter I . §4. we defined the ideal I (V ) of a variety V C k". In this section. we defined
the variety of any ideal (see Definit ion 8). In particular. this means that V(I(V» is a variety.
Prove that V(I( V» = V . Hint: See the proof of Lemma 7 of Chapter I . §4.

17. Cons ider the variety V = V(x2 - y. Y + x2 - 4) C ([;2. Note that V = V(l). where
I = (x 2 - y , Y + x 2 - 4).
a. Prove that I = (x 2 - y , x 2 - 2).
b. Using the bas is from part a. prove that V(l) = {(±../2. 2)}.
One reason why the second basis made V easier to understand was that x 2 - 2 could be
fa ctored.This impl ied that V "split" into two pieces . See Exercise 18 for a general statement.

18. When an ideal has a basis where some of the elements can be factored. we can use the
factorization to help understand the variety.
a. Showthat if g E k[XI• .. . , x"Jfac torsasg = glg2.thenforany f. V(f. g) = V(f. gdU

V(f. g2).
b. Show that IR3 , V(y - x 2• XZ - yZ) = V(y - x 2 , X Z - x").
c. Use part a to describe and/or sketch the variety from part b.

§6 Properties of Groebner Bases

As shown in §5, every nonzero ideall C k [XI , . .. • XII ] has a Groebner basis. In this
section, we will study the properties of Groebner bases and learn how to detect when
a given basis is a Groebner basis. We begin by showing that the undesirable' behavior
of the division algorithm in k[XI , .. . •XII] noted in §3 does not occur when we divide
by the elements of a Groebner basis.
Let us first prove that the remainder is uniquely determined when we divide by a

Groebner basis.

Proposition 1. Let G = {gl , .. .• s.l be a Groebner basis for an ideal I C
k[xi • . . . • XII ] and let f E k[ xi • . . . , XII]' Then there is a unique r E k[xl • . . . , XII]
with the following two properties:
(i) No term of r is divisible by any ofLT (gl )' . ..• LT(g , ).
(ii) There is g E l such that f = g + r .
In particular. r is the remainder on division of f by G no matter how the elements of
G are listed when using the division algorithm .
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Proof. The division algorithm gives f = algi + + a.g, + r, where r satisfies
(i). We can also satisfy (ii) by setting g = algI + + a.g, E I. This proves the
existence of r .
To prove uniqueness, suppose that f = gl + rl = g2 + ri satisfy (i) and (ii).

Then r i - rl = gl - g2 E I, so that if ri t= rl, then LT(r2 - rl) E (LT(l)} =
(LT(g l) , .. . • LT(g,)}. By Lemma 2 of §4, it follows that LT(r2 - rl) is divisible
by some LT(gi). This is impossible since no term of rl , ri is divisible by any of
LT(gl) , . .. , LT(g,). Thus r2 - rl must be zero, and uniqueness is proved.
The final part of the proposition follows from the uniqueness of r. 0

The remainder r is sometimes called the normalform of f, and its uniqueness prop-
erties will be explored in Exercises I and 4. In fact, Groebner bases can be characterized
by the uniqueness of the remainder-see Theorem 5.35 of BECKER and WEISPFENNING
(1993) for this and other conditions equivalent to being a Groebner basis.
Although the remainder r is unique, even for a Groebner basis, the "quotients" a,

produced by the division algoithm f = algI + ... + gIg, + r can change if we list
the generators in a different order. See Exercise 2 for an example.
As a corollary, we get the following criterion for when a polynomiallies in an ideal.

Corollary 2. Let G = {gl, , g5} be a Groebner basis for an ideal 1 C
k[XI , . . . , XII] and let f E k[XI, , XII]' Then f E 1 if and only if the remainder
on division of f by G is zero.

Proof. If the remainder is zero , then we have already observed that f E I. Conversely,
given f E I, then f = f + 0 satisfies the two conditions of Proposition I . It follows
that 0 is the remainder of f on division by G. 0

The property given in Corollary 2 is sometimes taken as the definition of a Groebner
basis, since one can show that it is true if and only if (LT(gl), .. . , LT(g,) } = (LT(l)}
(see Exerc ise 3). For this and similar conditions equivalent to being a Groebner basis,
see Proposition 5.38 of BECKER and WEISPFENNING (1993) .
Using Corollary 2, we get an algorithm for solving the ideal membership problem

from §I provided that we know a Groebner basis G for the ideal in question-we only
need to compute a remainder with respect to G to determine whether f E I . In §7, we
will learn how to find Groebner bases, and we will give a complete solution of the ideal
membership problem in §8.
We will use the following notation for the remainder.

Definition 3. We will write yF for the remainder on division of f by the ordered
s-tuple F = (fl, . ... I f)' If F is a Groebner basis for (f" . . . , f5). then we can
regard F as a set (without any particular order) by Proposition 1.

For instance, with F = (x 2y - y2. x 4y2 -y2) C k[x, y], using the lex order, we
have
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since the division algorithm yields

x 5y = (x 3 + xy)(x2y -l) + o· (x 4l - l )+ xi .
We next will discuss how to tell whether a given generating set of an ideal is a Groeb-

ner basis. As we have indicated, the "obstruction" to (fl, . . . , f sI being a Groebner
basis is the possible occurrence of polynomial combinations of the f; whose leading
terms are not in the ideal generated by the LT(f;). One way this can occur is if the
leading terms in a suitable combination

ax" f; - bx fJ f j

cancel, leaving only smaller terms. On the other hand, ax" f; - bx fJ Ii E I, so its
leading term is in (LT(I)}. You should check that this is what happened in Example
2 of §5. To study this cancellation phenomenon, we introduce the following special
combinations.

Definition 4. Let f, g E k[x), . . . , XII] be nonzero polynomials.
(i) If multideg(f) = a and multideg(g) = fJ, then let Y = (YI , . .. , YII) , where

Yi = maxtco , fJi) for each i .Wecall x Y the least common multiple ofLM(f) and
LM(g), written x Y = LCM(LM(f), LM(g» .

(ii) The S-polynomial of f and g is the combination

x Y x Y
S(f,g) = -- · f - - . g .

LT(f) LT(g)

(Note that we are inverting the leading coefficients here as well.)

For example, let f = X 3y2 - x 2y3 + x and g = 3x 4y + y2 in lR[x , y] with the
grlex order. Then Y = (4, 2) and

X 4y2 x 4y2S(f, g) = _. - . f - - . g
x 3y2 3x 4y

= X • f - (1/3) . y . g

= -x3i + x2 - (l/3)i.

An S-polynomial S(f, g) is "designed" to produce cancellation of leading terms.
In fact, the following lemma shows that every cancellation of ieading terms among
polynomials of the same multidegree results from this sort of cancellation.

Lemma 5. Suppose we have a sum :L:=l c, f; , where c, E k and multideg(f;) = 8 E

7l~ofor all i. Ifmultideg(:L:=1 cif;) < 8, then :L:=I c.], is a linear combination,
with coefficients in k, ofthe S-polynomials S(fj, fdfor I ~ i. k ~ s. Furthermore,
each S(fi, fk) has multidegree < 8.

Proof. Let d, = Le(f;) , so that c.d, is the leading coefficient ofc,f;. Since the c,f; have
multidegree 8 and their sum has strictly smaller multidegree, it follows that :L:=l c.d, =
O.
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Define Pi = f; / d., and note that Pihas leading coefficient I. Consider the telescoping
sum

s sL c,f; =L c.d, P; = Cld, (PI - P2) + (Cl d l + C2d2)(P2 - P3) + .. . +
i = 1 ; = 1

(cld l + . . . + cl_1dl_I)(PI_I - PI) + (c1d l + . . . + c.d.ip,
By assumption. LT(f;) = d;x 8, which implies that the least common multiple ofLM(fj)
and LM(fk) is x 8• Thus

x 8 ~ x 8 ~
(I) S(fJ. fd = LT(fJ) fj - LT(fk) fk = d jx 8 fJ ,-- dkx 8 fk = Pi - Pk·

Using this equation and 'L:=I cid, = 0, the above telescoping sum becomes
sL c. f, = c1dIS(fI, 12) + (c1d1 + C2d2)S(h, f3)

; = 1

+ ... + (c1d l + . . . + cl-ldl_l)S(f,_I , f,) .
which is a sum of the desired form. Since Pj and Pk have multidegree 8 and leading
coefficient I, the difference Pj - Pk has multidegree < 8. By equation (I), the same is
true of S(fJ. fd, and the lemma is proved . 0

When fl ' .. . , i, satisfy the hypothesis of Lemma 5, we get an equation of the form
..L ci f, = L CjkS(fj. ro.

i = 1 j.k
Let us consider where the cancellation occurs . In the sum on the left! every summand
c, f; has multidegree 8, so the cancellation occurs only after adding them up. However,
in the sum on the right, each summand CjkS(fj , fd has multidegree < 8, so that the
cancellation has already occurred. Intuitively, this means that all cancellation can be
'accounted for by S-polynomials.

Using S-polynomials and Lemma 5, we can now prove the following criterion of
Buchberger for when a basis of an ideal is a Groebner basis.

Theorem 6. Let I be a polynomial ideal. Then a basis G = {gl' ... , gs } for I is a
Groebner basis for I if and only if for all pairs i # i , the remainder on division of
S(g;. g j) by G .(listed in some order) is zero.

Proof. =>: If G is a Groebner basis , then since S(g; , g j) E I. the remainder on division
by G is zero by Corollary 2.
{=: Let f E I be a nonzero polynomial. We must show that if the S-polynomials

all have zero remainders on division by G, then LT(f) E (LT(gl), .. . , LT(gr )}. Before
giving the details, let us outline the strategy of the proof.
Given f E I = {gl , ... , gs }, there are polynomials h, E k[xJ, ...• XII] such that

(2)
I

f = Lhigi.
;=1
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From Lemma 8 of §2, it follows that

(3) multideg(f) s maxtmultidegtji, s.».
If equality does not occur, then some cancellation must occur among the leading terms of
(2). Lemma 5 will enable us rewrite this in terms of S-polynomials. Then our assumption
that S-polynomials have zero remainders will allow us to replace the S-polynomials by
expressions that involve less cancellation. Thus , we will get an expression for f that has
less cancellation of leading terms. Continuing in this way, we will eventually find an
expression (2) for f where equal ity occurs in (3). Then multideg(f) = rnultidegta,gi)
for some i, and it will follow that LT(f) is divisible by LT(gi). This will show that
LT(f) E (LT(gd, . . . , LT(gr») , which is what we want to prove .
We now give the details of the proof. Given an expression (2) for f , let m(i) =

multidegtjug»), and define 8 = max(m(l) , . . . , met»~ . Then inequality (3) becomes

mult ideg(f) ::: 8.

Now consider all possible ways that f can be written in the form (2). For each such
expression, we get a possibly different 8. Since a monomial order is a well-ordering,
we can select an expression (2) for f such that 8 is minimal.
We will show that once this minimal 8 is chosen, we have multideg(f) = 8. Then

equality occurs in (3), and as we observed, it follows that LT(f)E (LT(gl), . . . , LT(gr» .
This will prove the theorem.
It remains to show multideg(f) = 8. We will prove this by contradiction. Equality

can fail only when mult ideg(f) < 8. To isolate the terms of multidegree 8,let us write
f in the following form:

(4)
f = L h.g, + L h.g,

m( i)=8 m(i )<8

= L LT(h i)gi + L (hi - LT(hi»gi + L h.g).
m(i )=8 nr(i)=8 m(i) <8

The monomials appearing in the second and third sums on the second line all have
multidegree < 8. Thus, the assumption multideg(f) < 8 means that the first sum also
has multidegree < 8.
Let LT(hi ) = CiXa (i ). Then the first sum L~,(i )=S LT(h i)gi = Lnr(i) =S CiXa(i )gi has

exactly the form described in Lemma 5 with fi = xa(i) g i . Thus Lemma 5 implies that
this sum is a linear combination of the S-polynomials S(xa(j)gj, xa(k) gk) . However,

S xS'
S(xa(j) g ', Xa(k)gd = X x a(j )g . - _~__ xa(k) gk

} Xa(j)LT(g j) } Xa(k)LT(gd

= x 8- YjIS\gj , gd,

where xr» = LMC(LM(gj), LM(gd). Thus there are constants Cjk E k such that

(5) L utth, )gi = L Cj kX8- Yjl S(gj, gk) .
lII(i )=8 j .k

The next step is to use our hypothesis that the remainder of S(gjgk) on division by
gl, . . . , gs is zero . Using the division algorithm, this means that each S-polynomial
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can be written in the form

(6)
t

S(gj, gk) = L = aijkgi,
;= 1

where a;jk E k[XI, . . . , XII]'The division algorithm also tells us that

(7)

for all i , i. k (see Theorem 3 of §3). Intuitively, this says that when the remainder is
zero, we can find an expression for Stg], gd in terms of G where the leading terms do
not all cancel.
To exploit this, multiply the expression for Stg], gd by X 8- Yj l to obtain

t

X
8- YJI S(g j , gk) = L b;jkg; ,

;= 1

where b;jk = x 8-YJ1a;jk. Then (7) and Lemma 5 imply that

(8) multideg(b;jkg;) s multideg(x8- Yj l S(gj, gd) < 8.

If we substitute the above expression for x8- Yj l Sig], gk) into (5), we get an equation

L LT(h;)g; = L CjkX8-YjIS(gj, gk) = L Cjk (L b;jkg;) = L h;g;
m(;)=8 j .k j.k;;

which by (8) has the property that for all i,

mUltideg(h;g;) < 8.

Forthe final step in the proof, substitute Lm(i)=8 LT(h;)g; = L; hig; into equation
(4) to obtain an expression for f as a polynomial combination of the g;'s where all
terms have multidegree < 8. This contradicts the minimality of 8 and completes the
proof of the theorem. 0

Theorem 6 is sometimes called "Buchberger's S-pair criterion" and is one of the
key results about Groebner bases. We have seen that Groebner bases have many nice
properties , but, so far, it has been difficult to determine if a basis of an ideal is a
Groebner basis (the examples we gave in §5 were rather trivial). Using theSvpair
criterion, however, it is now easy to show whether a given basis is a Groebner basis.
Furthermore, in §7, we will see that the S-pair criterion also leads naturally to an
algorithm for computing Groebner bases.
As an example of how to use Theorem 6, consider the ideal I = (y - x 2, Z - x 4)

of the twisted cubic in IR3• We claim that G = {y - x 2 , Z - x 3} is a Groebner basis
for lex order with y > z > x. To prove this, consider the S-polynomial

S(y - x 2 , Z - x 3 ) = yz (y _ x 2 ) _ yz (z _ x 3 ) = -zx2 + yx 3 •
Y z

Using the division algorithm, one finds

-zx 2 + yx 3 = x 3 • (y - x 2 ) + (_x 2 ) • (z - x 3 ) + 0,
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_:_--=-----;,-G
so that S(y - x2 , Z - x 3) = O. Thus, by Theorem 6, G is a Groebner basis for l.
You can also check that G is not a Groebner basis for lex order with x > y > Z (see
Exercise 8).

EXERCISES FOR§6

I. Show that Propos ition I can be strengthened slightly as follows. Fix a monomial ordering
and let I C k[x lo . . , ,xn ] be an ideal. Suppose that f E k[xlo . . . , x,,].
a. Show that f can be wrinen in the form f = g + r , where gEl and no term of r is

divisible by any element of LT(I) .
b. Given two express ions f = g + r = s' + r' as in part a, prove that r = r' , Thus, r is

uniquely determined.
This result shows once a monomial order is fixed, we can define a unique "remainder of f
on division by I." We will exploit this idea in Chapter 5.

2. In §5, we showed that G = {x + z. Y - z} is a Groebner basis for lex order. Let us use this
basis to study the uniqueness of the division algorithm.
a. Divide xy by x + z, Y - z.
b. Now reverse the order and divide xy by y - z. x + z.
Youshould get the same remainder (as predicted by Proposition 1), but the "quotients" should
be different for the two divisions. This shows that the uniqueness of the remainder is the best
one can hope for.

3. In Corollary 2, we showed that if I = {glo . .. , g,} and if G = {glo . . . , g,} is a Groebner
basis for I, thenr = 0 for all f E I . Prove the converse of this statement. Namely, show
that if G is a basis for I with the property thatT = 0 for all f E I , then G is a Groebner
basis for I .

4. Let G and G' be Groebner bases for an ideal I with respect to the same monomial order in
-G -G'

k[XI , . .. , xn ] . Show that f = f for all f 'E k[X I , . . . , x,}, Hence , the remainder on
division by a Groebner basis is even independent of which Groebner basis we use. as long
as we use one particular monomial order. Hint: See Exercise I.

5. Compute S(f, g) using the lex order.
a. f = 4x2z - 7y 2 , g = xYZ2 + 3xz 4•
b. f = x 4y - Z2, g = 3xz2 - y.
c. f = X7y2Z+ 2ixyz, g= 2X7y2z + 4.
d. f = xy + Z3, g = Z2 - 3z.

6. Does S(f, g ) depend on which monomial order is used? Illustrate your assertion with
examples .

7. Prove that multideg(S(f, g» < y, where xY = LCM(LM(f) . LM(g» . Explain why this
inequality is a precise version of the claim that S-polynomials are designed to produce
cancellation.

8. Show that {y - x 2, Z - x 3} is not a Groebner basis for lex order with x > y > z.
9. Using Theorem 6, determine whether the following sets G are Groebner bases for the ideal

they generate. Youmay want to use a computer algebra system to compute the S-polynomials
and remainders .
a. G = {x2 - y, x 3 - z] grlex order.
b. G = {x2 - y, x 3 - z] invlex order (see Exercise 6 of §2).
c. G = {xy2 - XZ+ y. xy - Z2, X - yz"} lex order.

10. Let f , g E k[x \ , . . . , xn ) be polynomials such that LM(f) and LM(g) are relatively prime
monomials and LC(f) = LC(g) = 1.
a. Show that S(f, g) = -(g - LT(g»f + (f - LT(f»g.
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b. Deduce that the leading monomial of S(f, g) is a multiple of either LM(f) or LM(g) in
this case .

I I. Let f , g E k[X I , .. . ,x,,] and x a • x fl be monom ials. Verify that

where

x y = LCM(xaLM(f). xIlLM(g)) .
LCM(LM(f), LM(g»

Be sure to prove that x Y is a monomial.
12. Let 1 C k[XI , . . . ,x,,] be an ideal. and let G be a Groebner basis of I.

a. Show that 7G = gGif and only if f - gEl . Hint: See Exercise I .
b. Deduce that

--G -G Gf+g =f +g .

Hint: Use part a.
c. Deduce that

---G-fG -fG-Gg = . g
We will return to an interesting consequence of these facts in Chapter 5.

§7 Buchberger's Algorithm

In Corollary 6 of §5. we saw that every ideal in k[xt • . . . , x,,] other than {OJ has a
Groebner basis. Unfortunately. the proof given was nonconstructive in the sense that it
did not tell us how to produce the Groebner basis. So we now tum to the question : given
an ideal 1 C k[Xh ... ', XIII. how can we actually construct a Groebner basis for I? To
see the main ideas behind the method we will use. we return to the ideal of Example 2
from §5 and proceed as follows.

Example 1. Consider the ring k[x, yl with grlex order. and let" 1 = (fl,h) =
(x 3 - 2xy , x2y - 2y2 + x). Recall that {f.. h} is not a Groebner basis for 1 since
LT(SUI, 12))= _x2 ¢ (LTU\), LT(h)}·
To produce a Groebner basis. one natural idea is to try first to extend the original

generating set to a Groebner basis by adding more polynomials in I. In one sense. this
adds nothing new, and even introduces an element of redundancy. However, the extra
information we get from a Groebner basis more than makes up for this.
What new generators should we add? By what we have said about the S-polynomials

in §6, the following should come as no surprise. We have SUI, h) = _ x 2 E I, and
its remainder on division by F = U\, h) is - x2 , which is nonzero . Hence, we should
include that remainder in our generating set. as a new generator 13 = _ x 2• If we set
F = Ul , 12, h), we can use Theorem 6 of §6 to test if this new set is a Groebner basis
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for I .We compute

St ]«, h) = h so
---F
SUI, h) = a,
SUI, !J) = (x3 - 2xy) - (-x)(_x2 ) = -2xy, but
---F
SUI,!J) = -2xy # a.

Hence , we must add f4 = -2xy to our generating set. If we let F = U), h, f3 , f4),
then

..".-.,,----,,-F F
SUI, h) = S(fI,!J) = a,
S(f) , f4) = y(x3 - 2xy) - (-1/2)x2(-2xy) = -2xl = yf4, so
---Fsir; f4) = a,
S(h. !J) = (x 2y - 2l + x) - (_y)(_x 2 ) = -2l + x, but
S(h.!J{ = - 2l + x # a.

Thus, we must also add f5 = _2y2 + X to our generating set. Setting F =
{f) , h - !J, f4 , f5), one can compute that

su; h{ = 0 for al1I s i s j s 5.

By Theorem 6 of §6, it follows that a grlex Groebner basis for 1 is given by

{fl, h. h f4, f5} = {x3 - 2xy, x 2y - 2l + x, _x2 , -2xy, -2l + x}.

The above example suggests that in general, one should try to extend a basis F to
a Groebner basis by successively adding nonzero remainders SCi; ,h{ to F. This
idea is a natural consequence of the S-pair criterion from §6 and leads to the follow ing
algorithm due to Buchberger for computing a Groebner basis.

Theorem 2. Let 1 = (fl, ... , f s) # {OJ be a polynomial ideal. Then a Groebner
basis for 1 can be constructed in a finite number ofsteps by the following algorithm:

Input: F = U\, .. . , f,)
Output: a Groebner basis G = (gl, . .. , g/) for I , with F C G

G:= F
REPEAT

G' := G
FOR each pair {p , q), pol q in G' DO

---G'
S := S(p, q)
IF Sola THEN G := G U IS}

UNTIL G = G'

Proof. We begin with some frequently used notation. If G = {g" .. . , gs), then (G)
and (LT(G)} will denote the fol1owing ideals:
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(G) = (g, •... ,gs)

(LT(G)} = (LT(gl), ... , LT(g/)}.

Turning to the proof of the theorem , we first show thatGel holds at every stage of
the algorithm. This is true initially, and whenever we enlarge G, we do so by adding
the remainder S = S(p , q)G ' for p , q E G. Thus , ifGel, then p , q and, hence,
S(p , q) are in I, and since we are dividing by G' C I , we get G U IS} c I .We also
note that G contains the given basis F of I so that G is actually a basis of I .
The algorithm terminates when G = G', which means that S(p , q )G' = 0 for all

p , q E G. Hence G is a Groebner basis of (G) = 1 by Theorem 6 of §6.
It remains to prove that the algorithm terminates. We need to consider what happens

after each pass through the main loop. The set G consists of G' (the old G) together
with the nonzero remainders of S-polynomials of elements of G'. Then

(I) (LT(G')} C (LT(G)}

since G' C G. Furthermore, if G ' =j; G, we claim that (LT(G')} is strictly smaller than
(LT(G)}. To see this, suppose that a nonzero remainder r of an S-polynomial has been
adjoined to G. Since r is a remainder on division by G', LT(r) is not divisible by the
leading terms of elements of G', and, thus, LT(r) f/ (LT(G')}. Yet LT(r) E (LT(G)} ,
which proves.our claim.
By (I), theideals (LT(G')} from successive iterations of the loop form an ascending

chain of ideals in k[XI ' .. . , x"l. Thus, the ACC (Theorem 7 of §5) implies that after
a finite number of iterations the chain will stabilize, so that (LT(G')} = (LT(G)} must
happen eventually . By the previous paragraph, this implies that G' = G, so that the
algorithm must terminate after a finite number of steps. 0

Taken together , the S-pair criterion (Theorem 6 of §6) and the Buchberger algorithm
(Theorem 2 above) provide an algorithmic basis for the theory of Groebner bases .These
contributions of Buchberger are central to the development of the subject. In §8, we
will get our first hints of what can be done with these methods, and a large part of the
rest of the book will be devoted to exploring their ramifications.
We should also point out the algorithm presented in Theorem 2 is only a rudimentary

version of the Buchberger algorithm. It was chosen for what we hope will be its clarity
for the reader, but it is not a very practical way to do the computation. Note (as a
first improvement) that once a remainder S(p, q) G' = 0, that remainder will stay zero
even if we adjoin further elements to the generating set G'. Thus, there is no reason to
recompute those remainders on subsequent passes through the main loop. Indeed, if we
add our new generators Ii one at a time, the only remainders that need to be checked

are S(I;, Ii{ ,where i ::: j - 1. It is a good exercise to revise the algorithm to take
this observation into account. Other improvements of a deeper nature can also be made,
but we will postpone considering them until §9.
Groebner bases computed using the algorithm of Theorem 2 are often bigger than

necessary. We can eliminate some unneeded generators by using the following fact.
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Lemma 3. Let G be a Groebner basis for the polynomial ideal I . Let p E. G be a
polynomial such that LT(p) E (LT(G - (pl)). Then G - {p} is also a Groebner basis
for I .

Proof. We know that (LT(G)} = (LT(l)}. If (LT(p)} E (LT(G - (pl)}, then
LT(G - (p}) = LT(G). By definit ion, iffollows that G - {p} is also a Groebner basis
for I. 0

By adjusting constants to make all leading coefficients I and removing any p with
LT(p) E (LT(G - (pI)} from G , we arrive at what we will call a minimal Groebner
basis .

Definition 4. A minimal Groebner basis for a polynomial ideal 1 is a Groebner basis
G for 1 such that :
(i) LC(p) = 1for all pEG.
(ii) For all pEG, LT(p) f/. (LT(G - (p})}.

Wecan construct a minimal Groebner basis for a given nonzero ideal by applying the
algorithm of Theorem 2 and then using Lemma 3 to eliminate any unneeded generators
that might have been included. To illustrate this procedure, we return once again to the
ideal 1 studied in Example 1. Using grlex order, we found the Groebner basis

f1 = x 3 - 2xy ,
h = x2y - 2y2 + X,

f3 = _x2 ,
!4 = -2xy ,
!5 = _2y2 +x.

Since some of the leading coefficients are different from I, the first step is to multiply
the generators by suitable constants to make this true. Then note that LT(!I) = x 3 =
-x . LT(f3) . By Lemma 3, we can dispense with II in the minimal Groebner basis.
Similarly, since LT(f2) = x2y = -(l/2)x . LT(f4), we can also eliminate h .There
are no further cases where the leading term of a generator divides the leading term of
another generator. Hence ,

/3 = x2 , /4 = xy , /5 = l- (l/2)x
is a minimal Groebner basis for I.
Unfortunately, a given ideal may have many minimal Groebner bases . For example,

in the ideal 1 cons idered above, it is easy to check that

(2) /3 = x 2 + axy, /4 = xy, /5 = l - (l/2)x
is also a minimal Groebner basis, where a E k is any constant. Thus , we can produce
infinitely many minimal Groebner bases (assuming k is infinite) . Fortunately, we can
single out one minimal basis that is better than the others . The definition is as follows .
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Definition 5. A reduced Groebner basisfor a polynomial ideal I is a Groebner basis
G for I such that:
(i) LC(p) = I for all pEG.
(ii) For all pEG, no monomial of p lies in (LT(G - (p})}.

Note that for the Groebner bases given in (2), only the one with a = 0 is reduced .
In general, reduced Groebner bases have the following nice property.

Proposition 6. Let I =f:. {O} be a polynomial ideal. Then, for a given monomial
ordering, / has a unique reduced Groebner basis.

Proof. Let G be a minimal Groebner basis for I. We say that g EGis reduced for G
provided that no monomial of g is in {LT(G - (g})}. Our goal is to modify G until all
of its elements are reduced.
A first observation is that if g is reduced for G, then g is also reduced for any other

minimal Groebner basis of I that contains g and has the same set of leading terms. This
follows because the definition of reduced only involves the leading terms.
Next, given g E G,let g' = gG-(sl and set G' = (G - {g}) U {g'}. We claim that

G' is a minimal Groebner basis for I. To see this, first note that LT(g') = LT(g), for
when we divide g by G - {g}, LT(g) goes to the remainder since it is not divisible by
any element of LT(G - {g}) . This shows that (LT(G')} = (LT(G)}. Since G' is clearly
contained in P, we see that G' is a Groebner basis, and minimality follows, Finally, note
that s' is reduced for G' by construction.
Now, take the elements of G and apply the above process until they are all reduced.

The Groebner basis may change each time we do the process, but our earlier observation
shows that once an element is reduced, it stays reduced since we never change the leading
terms. Thus , we end up with a reduced Groebner basis.
Finally, to prove uniqueness, suppose that G and Gare reduced Groebner bases for

I. Then in particular, G and Gare minimal Groebner bases, and in Exercise 7, we will
showthat this implies they have the same leading terms, i.e.,

LT(G) = LT(G).

Thus, given g E G, there is g E Gsuch that LT(g) = LT(g). If we can show that
g = g, it will follow that G = G, and uniqueness will be proved.
To show g = g, consider g ~ g. This is in l , and since G is a Groebner basis, it

follows that g - gG = O. But we also know LT(g) = LT(g). Hence, these terms cancel
in g - g, and the remaining terms are divisible by none of LT(G) = LT(G) since G and
Gare reduced. This shows that g - gG = g - g, and then g - g = 0 follows, This
completes the proof. 0

Many computer algebra systems implement a version of Buchberger's algorithm
for computing Groebner bases. These systems always compute a Groebner basis whose
elements are constant multiples of the elements in a reduced Groebner basis.This means
that they will give essentially the same answers for a given problem. Thus , answers can
be easily checked from one system to the next.
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Another consequence of the uniqueness in Proposition 6 is that we have an
ideal equality algorithm for seeing when two sets of polynomials {fl , . .. , Is} and
{gl' . . . , gs} generate the same ideal: simply fix a monomial order and compute a re-
duced Groebner basis for (fl, . . . , Is) and (g l , . . . , g,) . Then the ideals are equal if
and only if the Groebner bases are the same.
To conclude this section, we will indicate briefly some of the connections between

Buchberger's algorithm and the row-reduction (Gaussian elimination) algorithm for
systems of linear equations. The interesting fact here is that the row-reduction algo-
rithm is essentially a special case of the general algorithm we have discussed. For
concreteness, we will discuss the special case corresponding to the system of linear
equations

3x 6y 2z = 0,
2x 4y + 4w = 0,
x 2y z w = o.

If we use row operations on the coefficient matrix to put it in row echelon form (which
means that the leading I's have been identified), then we get the matrix

(3)
-2
o
o
-I
I
o

~l)
To get a reduced row echelon matrix, we need to make sure that each leading 1 is the
only nonzero entry in its column . This leads to the matrix

(4) -2 0 2)o I 3
o 0 0

To translate these computations into algebra, let I be the ideal

I = (3x - 6y - Zz, 2x - 4y + 4w , x - 2y - z - w) C k[x , y, z, w]

corresponding to the original system of equations. We will use lex order with x > y >
z > w. Then, in the exercises, you will verify that the linear forms determined by the
row eche lon matrix (3) give a minimal Groebner basis

I = (x - 2y - z - w, z + 3w),

and you will also check that the reduced row echelon matrix (4) gives the reduced
Groebner basis

I = (x - 2y + 2w, z + 3w).

Recall from linear algebra that every matrix can be put in reduced row echelon form
in a unique way. This can be viewed as a special case of the uniqueness of reduced
Groebner bases.
In the exercises, you wil1 also examine the relation between Buchberger's algorithm

and the Euclidean Algorithm for finding the generator for the ideal (f, g) c k[x] .

EXERCISES FOR §7
"",",".".-.."...,.FI. Check that S(f;, Ii) = 0 for all pairs I ::: i < j ::: 5 in Example 1.



92 2. Groebner Bases

2. Use the algorithm given in Theorem 2 to find a Groebner basis for each of the following
ideals. You may wish to use a computer algebra system to compute the S-polynomials
and remainders. Use the lex, then the grlex order in each case , and then compare your
results.
a. 1 = (x 2y - l , x y2 -x) .
b. 1 = (x 2 + y, x 4 + 2x2y + i + 3). [What does your result indicate about the variety

V(l)?]
c. 1 = (x - Z4, Y - Z5).

3. Find reduced Groebner bases for the ideals in Exercise 2 with respect to the lex and the grlex
orders.

4. Use the result of Exercise 7 of §4 to give an alternate proof that Buchberger's algorithm will
always terminate after a finite number of steps.

5. Let G be a Groebner basis of an ideal 1 with the property that LT(g) = I for an g E G.
Prove that G is a minimal Groebner bas is if and only if no proper subset of G is a Groebner
basis.

6. Recall the notion of a minimal basis for a monomial ideal introduced in Exercise 8 of §4.
Show that a Groebner basis G and 1 is minimal if and only if LC(g) = I for allg E G and
LT(G) is a minimal basis of the monomial ideal (LT(l»).

7. Fix a monomial order , and let G and Gbe minimal Groebner bases for the ideal I .
a. Prove that LT(G) = LT(G).
b. Conclude that G and Ghave the same number of elements.

8. Develop an algorithm that produces a reduced Groebner basis (see Definit ion 5) for an ideal
I, given as input an arbitrary Groebner basis for I . Prove that your algorithm works.

9. Consider the ideal

1 = (3x - 6y - Zz, 2x - 4y + 41,11 , x - 2y - z - 1,11) C k[x , y. z. 1,11]

mentioned in the text. We will use lex order with x > Y > z > w.
a. Show that the linear polynomials determined by the row echelon matrix (3) give a minimal

Groebner basis 1 = (x - 2y - z - 1,11, z + 3w).Hint : Use Theorem 6 of §6.
b. Show that the linear polynomials from the reduced row echelon matrix (4) give the reduced

Groebner basis 1 = (x - 2y + 21,11 , z + 31,11).
10. Let A = (aij) be and n x m matrix with entries in k and let f; = ailx, + ...+ a;",X", be

the linear polynomials in k[x" .. . , x",] determined by the rows of A. Then we get the ideal
1 = (/1 • . . . , j,,). We will use lex order with XI > > x"'. Now let B = (bij) be the
reduced row echelon matrix determined by A and let gl , g, be the linear polynomials
coming from the nonzero rows of B (so that t S n). We want to prove that gl , . .. , g, form
the reduced Groebner basis of I .
a. Show that 1 = (gl ....• g,). Hint: Show that the result of applying a row operation to A

gives a matrix whose rows generate the same ideal.
b. Use Theorem 6 of §6 to show that gl, . . . , g, form a Groebner basis of I. Hint : If the

leading 1 in the ith row of B is in the kth column, we can write g; = x: + A, where
A is a linear polynomial involving none of the variables corresponding to leading 1'soIf
g j = XI + B is written similarly, then you need to divide Sig), g j) = x /A - X l B by
gJ , ... • g, . Note that you will use only gi and gj in the division .

c. Explain why gl • . .. , g, is the reduced Groebner basis.
11. Show that the result of applying the Euclidean Algorithm in k[x] to any pair of polynomials
I. g is a reduced Groebner basis for (I. g) (after dividing by a constant to make the leading
coefficient equal to 1). Explain how the steps of the Euclidean Algorithm can be seen as
special cases of the operations used in Buchberger's algorithm.
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§8 First Applications of Groebner Bases

In §I, we posed four problems concerning ideals and varieties. The first was the ideal
description problem, which was solved by the Hilbert Basis Theorem in §5. Let us now
consider the three remain ing problems and see to what extent we can solve them using
Groebner bases.

The Ideal Membership Problem
If we combine Groebner bases with the division algorithm, we get the following ideal
membership algorithm: given an ideal I = (II , .. . , j ,) , we can decide whether a
given polynomial I lies in I as follows. First, using an algorithm similar to Theorem
2 of §7, find a Groebner basis G = {gl, .. . , gs} for I. Then Corollary 2 of §6 implies
that

I EI if and only if yG = O.

Example 1. Let I = (fl, /2) = (xz - y2, x3 - Z2) E <C[x, y, zl, and use the grlex
order. Let I = -4x2l z2 + y 6 + 3z5 •We want to know if I E I.
The generating set given is not a Groebner basis of I because LT(l) also contains

polynomials such as LT(S(f\, /2)) = LT(-X2y2+ Z3) = x 2y2 that are not in the ideal
(LT(fI) , LT(/2)) = (xz, x 3 ) . Hence, we begin by computing a Groebner basis for I.
Using a computer algebra system, we find a Groebner basis

G = (fl, /2 , h, I4' I s) = (x z-l,x3 - Z2 , x2l - Z3 , xl- Z4 , l- Z5).

Note that this is a reduced Groebner basis.
We may now test polynomials for membership in I. For example, dividing I above

by G, we find

I = 0 . I I + 0 . /2 - 4z2h + 0 . I4 + I . I s + o.
Since the remainder is zero, we have I E I .
For another example, consider I = x y - 5z2 + x . Even without completely

computing the remainder on division by G, we can see from the form of the ele-
ments in G that I ¢ I. The reason is that LT(f) = xy is clearly not in the ideal
. 3 2 2 4 6 - G(LT(G)) = (xz, x ,x y , xy , y ). Hence, I i= 0, so that I ¢ I.
This last observation illustrates the way the properties of an ideal are revealed by the

form of the elements of a Groebner basis .

The Problem of Solving Polynomial Equations
Next, we will investigate how the Groebner basis technique can be applied to solve
systems of polynomial equations in several variables. Let us begin by looking at some
specific examples.

Example 2. Consider the equations

x 2 + l + Z2 = I ,
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x = z
in <c3. These equations determine I = (x2 + y2 + Z2 - I, x2+ Z2 - y, X - z) c
<C[x , y , el. and we want to find all points in V(l). Proposition 9 of §5 implies that we
can compute V(l ) using any basis of I . So let us see what happens when we use a
Groebner basis.
Though we have no compelling reason as of yet to do so, we will compute a Groebner

basis on I with respect to the lex order. The basis is

81 = X - Z,

82 = - y + 2z2 ,
83 = Z4+ (1/2)z2 - 1/4.

If we examine these polynomials closely, we find something remarkable. First, the
polynomial 83 depends on z alone, and its roots can be found by first using the quadratic
formula to solve for Z2 , then, taking square roots,

z = ± ~ J±vrs- I .
2

This gives us four values of z. Next , when these values of z are substituted into the
equat ions 82 = 0 and 81 = 0, those two equat ions can be solved uniquely for y and x,
respectively. Thus , there are four solutions altogether of 8' = 82 = 83 = 0, two real
and two complex. Since V(I ) = V (8 1, 82, 83) by Proposition 9 of §5, we have found
all solutions of the original equat ions (I).

Example 3. Next, we will consider the.system of polynom ial equations (2) from Chap-
ter I, §2, obtained by applying Lagrange multipliers to find the minimum and maximum
values of x 3 + 2xyz - Z2 subject to the constraint x? + y2 + Z2 = I:

3x2+ 2yz - 2XA = 0,
2xz - 2yA = 0,

2xy - 2z - 2ZA = 0,

x 2 + l + l - 1 = O.

Again, we follow our general hunch and begin by computing a Groebner basis for the
ideal in lR[x, y, z, A] generated by the left-hand sides of the four equations , using the
lex order with A > x > y > z. We find a Groebner basis:

3 3 167616 6 36717 4 134419 2
A - - x - - yz - 3835 z 590 z 7670 z ,2 2

x2+ l + Z2 - I,

19584 5 1999 3 6403
xy - 3835 z + 295 z 3835 z,
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2 1152 5
xz + yz - 3835 z

(2)
3 2 9216 5 906 3
Y + yz - y - 3835 z + 295 z

2562
3835 z.

l z_ 6912 5 827 3
3835 z + 295 z

3839
3835 z,

3 576 6 1605 4
yz - yz - 59 z + l18 z

11
288 z.

At first glance, this collection of polynomials looks horrendous. (The coefficients of
the elements of Groebner basis can be significantly messier than the coefficients of the
original generating set.) However, on further observation. we see that once again the last
polynomial depends only on the variable z. We have "eliminated" the other variables
in the process of finding the Groebner basis. (Miraculously) the equation obtained by
setting this polynomial equal to zero has the roots

z = O. ±I , ±2/3, ±ffi/8.J2.

If we set z equal to each of these values in tum , the remain ing equat ions can then be
solved for y , x (and A,though its values are essentially irrelevant for our purposes ). We
obtain the following solutions :

z = 0; y = 0; x = ± 1.
z = 0; y = ±I ; x = O.
z = ±I ; y = 0; x = O.
z = 2/3 ; y = 1/3 ; ' x = -2/3.
z = -2/3 ; y = - 1/3; x = - 2/3.

z = ffi /8.J2; y = -3ffi/8.J2;
z = -Jll/8.J2; y = 3ffi/8.J2;

x = -3/8.

x = -3/8.

From here, it is easy to determine the minimum and maximum values .

Examples 2 and 3 indicate that finding a Groebner basis for an ideal with respect to
the lex order simplifies the form of the equations considerably. In particular. we seem
to get equations where the variables are eliminated successively. Also. note that the
order of el imination seems to correspond to the ordering of the variables. For instance.
in Example 3, we had variables A > x > y > z, and if you look back at the Groebner
basis (2), you will see that A is eliminated first, x second , and so on.
A system of equations in this form is easy to solve, especially when the last equation

contains only one variable. We can apply one-variable techniques to try and find its
roots, then substitute back into the other equations in the system and solve for the other
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variables, using a procedure similar to the above examples. The reader should note
the analogy between this procedure for solving polynomial systems and the method of
"back-substitution" used to solve a linear system in triangular form.
We will study the process of elimination of variables from systems of polynomial

equations intensively in Chapter 3. In particular, we will see why lex order gives a
Groebner basis that successively eliminates the variables.

The Implicitization Problem
Suppose that the parametric equations

(3)

define a subset of an algebraic variety V in k". For instance, this will always be the case
if the f i are rational functions in tl , .. . , t«, as we will show in Chapter 3. How can we
find polynomial equations in the Xi that define V? This problem can De solved using
Groebner bases, though a complete proof that this is the case will come only with the
results of Chapter 3.
For simplicity. we will restrict our attention for now to cases in which the f; are

actually polynomials. We can study the affine variety in knr+n defined by equations (3)
or

Xl - fl (tl , ... , tnr) = 0,

XII - J,,(tl • .. . , tnr) = O.

The basic ideal is to eliminate the variables tl, .. . , tnr from these equations:This should
give us the equations for V.
Given what we saw in Examples 2 and 3, it make sense to use a Groebner basis to

eliminate variables. We will take the lex order in k[t'l , . .. , tnr, XI, • • • , XII] defined by
the variable ordering

tl > . . . > till > XI > . . . > XII'

Now suppose we have a Groebner basis of the ideal i = (XI - fl ' .. . , XII - 1,,).
Since we are using lex order, we expect the Groebner basis to have polynomials that
eliminate variables, and tl, . .. , tnr should be eliminated first since they are biggest in
our monomial order. Thus , the Groebner basis for i should contain polynomials that
only involve XI, • •• , XII' These are our candidates for the equations of V.
The ideas just described will be explored in detail when we study elimination theory

in Chapter 3. For now, we will content ourselves with some examples to see how this
process works.
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Example 4. Consider the parametric curve V:

x = t 4 ,

Y = t 3 ,

Z = t2

in (C3. We compute a Groebner basis G of I = (t4 - X , t 3 - y, t2 - z) with respect
to the lex order in (C[t, x , y , zl. and we find .

G = {_t2 + Z, ty - Z2 , t z - y, x - z2,l- Z3}.

The last two polynomials depend only on x, y , z, so they define an affine variety of (C3
containing our curve V. By the intuition on dimensions that we developed in Chapter
I, we would guess that two equations in (C3 would define a curve (a l-dimensional
variety). The remaining question to answer is whether V is the entire intersection of
the two surfaces

Might there be other curves (or even surfaces) in the intersection? We will be able to
show that the answer is no when we have established the general results in Chapter 3.

Example S. Now consider the tangent surface of the twisted cubic in IR3, which we
studied in Chapter I. This surface is parametrized by

x = t + u ,

y = t 2 + 2tu,
z = t 3 + 3t 2u.

We compute a Groebner basis G for this ideal relative to the lex order defined by
t > u > x > y > Z, and we find that G has 6 elements altogether. If you make the
calculation, you will see that only one contains only x , y, z terms :

(4)

The variety defined by this equation is a surface containing the tangent surface to the
twisted cubic . However, it is possible that the surface given by (4) is strictly bigger than
the tangent surface : there may be solutions of (4) that do not correspond to points on
the tangent surface. We will return to this example in Chapter 3.

To summarize our findings in this sect ion, we have seen that Groebner bases and the
division algorithm give a complete solution of the ideal membership problem. Further-
more, we have seen ways to produce solutions of systems of polynomial equations and
to produce equations of parametrically given subsets of affine space. Our success in
the examples given earlier depended on the fact that Groebner bases , when computed
using lex order , seem to eliminate variables in a very nice fashion . In Chapter 3, we will
prove that this is always the case, and we will explore other aspects of what is called
elimination theory.
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EXERCISES FOR §8

In all of the follow ing exercises, a computer algebra system should be used to perform the
necessary calculations , (Most of the calculations would be very arduous if carried out by hand.)
I. Determine whether f = xy3 - Z2+ yS - Z3 is in the ideal! = (_ x 3+ y, x2y - z).
2. Repeat Exercise I for f = x3z - 2y2 and ! = (x z - y, xy + 2z2, Y - z).
3. By the method of Examples 2 and 3, find the points in ceJ on the variety

Vex2 + / + Z2 - I, x2+ / + Z2 - 2x , 2x - 3y - z) .

4. Repeat Exercise 3 for V(x 2y - zJ, 2xy - 4z - I , z - y2, x3 - 4zy).
5. Recall from calculus that a critical point of a differentiable function f (x, y ) is a point where

the partial derivatives ¥r and it vanish simultaneously. When f E lR[x , y ], it follows that
the critical points can be found by applying our techn iques to the system of polynomial
equat ions

af
ax

af = o.ay
To see how this works, consider the function

[ i», y) = (x 2 + / - 4)(x2+ / - I) + (x - 3/2)2 + (y - 3/2)2 .

a. Find all critical points of f(x , y ).
b. Classify your critical points as local maxima, local minima, or saddle points. Hint: Use

the second der ivative test.
6. Fill in the details of Example 5. In particular, compute the required Groebner basis, and

verify that this gives us (up to a constant multiple) the polynomial appearing on the left-hand
side of equation (4).

7. Let the surface S in 1R3 be formed by taking the union of the stra ight lines jo ining pairs of
points on the lines

{ ; : ~ } , {~:~}
z=1 Z = I

with the same parame ter (i.e. , I ) value. (This is a special example of a class of surfaces called
ruled surfaces.)
a. Show that the surface S can be given in the parametric form :

x = UI,

y = 1- u ,
z = u +1- ut .

b. Using the method of ExampIes 4 and 5, find an (implicit) equation of a variety V containing
the surface S.

c. Show V = S (that is, show that every point of the variety V can be obtained by substituting
some values for I, u in the equations of part a). Hint : Try to "solve" the implicit equation
of V for one variable as a function of the other two.

8. Some parametric curves and surfaces are algebraic variet ies even when the given parametriza-
tions involve transcendental functions such as sin and cos . In this problem, we will see that
that the parametric surface T,

x = (2 + cos (t)) cos(u ),

Y = (2 + cosu) sin(u),

z = sin (t) ,
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lies on an affine variety in IR3 •
a. Draw a picture of T. Hint: Use cylindrical coordinates.
b. Let a = cos(t), b = sin(r), C = cos(u), d = sin(u), and rewrite the above equations as

polynomial equations in a, b, c, d, x, y, z.
c. The pairs a, band c, d in part b are not independent since there are additional polynomial

identities

stemming from the basic trigonometric identity. Form a system of five equations by
adjoining the above equations to those from part b and compute a Groebner basis for the
corresponding ideal. Use the lex monomial ordering and the variable order

a > b > c > d > x > y > z.
There should be exactly one polynomial in your basis that depends only on x, y, z. This
is the equation of a variety containing T.

9. Consider the parametric curve K C 1R3 given by

x = (2 + cos(2s» cos(3s),

y = (2 + cos(2s» sin(3s),

z = sin(2s) .

a. Express the equations of K as polynomial equations in x, y, z. a = cos(s), b = sin(s).
Hint: Trig identities.

b. By computing a Groebner basis for the ideal generated by the equations from part a and
a2 + b2 - I as in Exercise 8, show that K is (a subset of) an affine algebraic curve . Find
implicit equations for a curve containing K .

c. Show that the equation of the surface from Exercise 8 is contained in the ideal generated
by the equations from part b. What does this result mean geometrically? (You can actu-
ally reach the same conclusion by comparing the parametrizations of T and K, without
calculations.)

10. Use the method of Lagrange Multipliers to find the point(s) on the surface x"+y2+Z2 - I = 0
closest to the point (I, I, I) in 1R3 • Hint: Proceed as in Example 3. (You may need to "fall
back" on a numerical method to solve the equations you get.)

II. Suppose we have numbers a , b, c which satsify the equations

a+b+c=3

a2 + b2+ c2 = 5

a3 + b3 + c3 = 7.

a. Prove that a4 + b4 + c4 = 9. Hint: Regard a, b, c as variables and show carefully that
a4 + b4 + c4 - 9 E (a + b + c - 3, a2+ b2+ c2 - 5, a3 + b3 + c3 - 7).

b. Show that as + bS + cS =I II.
c. What are as + bS + CS and a6 + b6 + c6? Hint: Compute remainders.

§9 (Optional) Improvements on Buchberger's Algorithm

In designinguseful mathematical software, attentionmust be paid not only to the cor-
rectness of the algorithmsemployed, but also to their efficiency . Inthis section,wewill
discusssomeimprovements on thebasicBuchbergeralgorithmforcomputingGroebner
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bases that can greatly speed up the calculations. Some version of these improvements
has been built into most of the computer algebra systems that offer Groebner basis
packages. The sect ion will conclude with a brief discussion of the complexity of Buch-
berger 's algorithm. Th is is still an active area of research though, and there are as yet
no definitive results in this direction .
The first class of modifications we will consider concern Theorem 6 of §6, which

states that an ideal basis G is a Groebner basis provided that S(j, g )G = 0 for all
I, g E G. If you look back at §7, you will see that this criterion is the driving force
behind Buchberger's algorithm. Hence, a good way to improve the efficiency of the
algorithm would be to show that fewer S-polynomials S(j, g) need to be considered.
As you learned from doing examples by hand , the polynomial divisions involved are the
most computationally intensive part of Buchberger's algorithm . Thus, any reduction of
the number of divisions that need to be performed is all to the good.
To identify S-polynomials that can be ignored in Theorem 6 of §6, we first need to

give a more general view of what it means to have zero remainder. The definit ion is as
follows .

Definition 1. Fix a monomial order and let G = {g l,"" g,} C k[XI, . . . , XII]'
Given 1 E k[XI, . . . , XII), we say that 1 reduces to zero modulo G. written

1 -+ G 0,

if 1 can be wtiuen in the form

such that whenever aig, # O. we have

multideg(j) ~ multideg(c.g.) .

To understand the relation between Definition 1 and the division algorithm , we have
the following lemma .

Lemma 2. Let G = (g l, . . . , g, ) be an ordered set 01 elements 01k[Xl , . . . , XII] and
fix! E k[XI, . . . ,XII]' Then r = 0 implies 1 -+ G 0, though the converse is false in
general.

Proof. Ifr = 0, then the division algorithm implies

1 = algi + ... + a.g, + 0,

and by Theorem 3 of §3, whenever a,gi =1= 0, we have

multideg(j) ~ multidegts.g») .

This shows that 1 -+ G O. To see that the converse may fail , consider Example 5 from
§3. If we divide 1 = xy2 - X by G = (xy + I, y2 - I), the division algorithm gives

xi - x = y . (x y + 1) + 0 . (i - 1) + (-x - y ),
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-Gso that f = -x - y f= O.Yet we can also write

xl - x = 0 . (xy + 1) + x . (l - 1),

and since

multideg(xy2 - x) ::: multideg(x . (l - I»

(in fact, they are equal), it follows that f ~G O. o

As an example of how Definition 1 can be used, let us state a more general version
of the Groebner basis criterion from §6.

Theorem 3. A basis G = {gl ' . . . , g,} for an ideal I is a Groebner basis ifand only
ifS(g; , gj) ~G Ofor all i f= j .

Proof. In Theorem 6 of §6, we proved this result under the hypothesis that S(gj, gj)G =
ofor all i f= j. But if you examine the proof, you will see that all we used was

(

S(gj , gk) = L a;jkgj,
;=1

where

[see (6) and (7) from §6]. This is exactly what S(g;, gj) ~G 0 means , and the theorem
follows. 0

ByLemma 2, notice that Theorem 6 of §6 is a special case ofTheorem 3. To exploit the
freedom given by Theorem 3, we next show that certain S-polynomials are guaranteed
to reduce to zero.

Proposition 4. Given afinite set G C k[xt, . . . , XII]' suppose that we have f, g E G
such that

LCM(LM(f), LM(g» = LM(f) . LM(g).

This means that the leading monomials of f and g are relatively prime. Then
S(f, g) ~G O.

Proof. For simplicity, we assume that f, g have been multiplied by appropriate con-
stants to make LC(f) = LC(g) = 1. Write f = LM(f) + p, g = LM(g)+ q. Then,
since LCM(LM(f) , LM(g» = LM(f) . LM(g), we have
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S(f, g) = LM(g) . f - LM(f) . g

= (g - q) . f - (f - p) . g

=g·f-q·f-f ·g+p ·g

=p.g-q.f.

We claim that

(2) multideg(S(f, s» = max(multideg(p . g) , multideg(q . f).

Note that (1) and (2) imply S(f, g) --*G 0 since f, g E G. To prove (2), observe that
in the last polynomial of (I), the leading monomials of p . g and q . f are distinct and,
hence, cannot cancel. For if the leading monomials were the same, we would have

LM(p) . LM(g) = LM(q) . LM(f).

However this is impossible ifLM(f), LM(g) are relatively prime : from the last equation,
LM(g) would have to divide LM(q), which is absurd since LM(g) > LM(q). 0

For an example of how this proposition works, let G = (yz + y, x 3 + y, Z4) and
use grlex order on k[x, y. zl. Then

S(x3 + y, Z4) --*G 0

by Proposition 4. However, using the division algorithm, it is easy to check that

S(x3 +y, Z4) = YZ4 = (Z3 - Z2 + z - I)(yz + y) + y,

so that

This explains why we need Definition 1: Proposition 4 is false if we use the notion of
zero remainder coming from the division algorithm.
Note that Proposition 4 gives a more efficient version of Theorem 3: to test for a

Groebner basis, we need only have Stg., gj) --*G 0 for those i < j where LM(g;) and
LM(gj) are not relatively prime. But before we apply this to improving Buchberger's
algorithm, let us explore a second way to improve Theorem 3.
The basic idea is to better understand the role played by S-polynomials in the proof

of Theorem 6 of §6.Since S-polynomials were constructed to cancel leading terms, this
means we should study cancellation in gieater generality. Hence, we will introduce the
notion of a syzygy on the leading terms of a set F = {fl, . . . ; j ,}. This word is used
in astronomy to indicate an alignment of three planets or other heavenly bodies. The
root is a Greek word meaning "yoke." In an astronomical syzygy, planets are "yoked
together"; in a mathematical syzygy, it is polynomials that are "yoked."

Definition 5. Let F = (fl ," " f s). A syzygy on the leading terms LT(fd•. . . .
LT(f,) of F is an s-tuple ofpolynomials S = (h I •. . . • h,) E (k[XI , . .. , xn ])' such
that

,
L h, . LT(/;) = O.
;= 1
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We let S(F) be the subset of (k[Xt • . . . • XIID' consisting ofall syzygies on the leading
terms of F .

For an example of a syzygy. consider F = (x , x 2 + Z, Y + z). Then using the lex
order. S = (-x + y, 1. -x) E (k[x, y , zD3 defines a syzygy in S(F) since

(-x + y) . LT(X) + 1 . LT(X2 + z) + (-x) . LT(y + z) = O.

Let e, = (0, . . . , O. 1, 0, . .. • 0) E (k[XI, . .. , XII])'. where the 1 is in the ith place .
Then a syzygy S ES(F) can be written as S = 2:::=1 hiej. For an example of how to
use this notation, consider the syzygies that come from S-polynomials. Namely. given
a pair {f;, h} c F where i < i. let xY be the least common multiple of the leading
monomials of f; and h .Then

XY xY
Sij = --ei - --e 'LT(f;) LT(fj) J

gives a syzygy on the leading terms of F. In fact. the name S-polynomial is actual1yan
abbreviation for "syzygy polynomial."
It is straightforward to check that the set of syzygies is closed under coordinate-wise

sums, and under coordinate-wise multiplication by polynomials (see Exercise 1). An
especially nice fact about S(F) is that it has a finite basis-there is a finite col1ection
of syzygies such that every other syzygy is a linear combination with polynomial
coefficients of the basis syzygies .
However. before we can prove this. we need to learn a bit more about the structure

of S(F) .We first define the notion of a homogeneous syzygy.

Definition 6. An element S E S(F) is homogeneous of multidegree a. where a E
Z;o. provided that

where c, E k and a (i) + multideg(f;) = a whenever c, =J; O.

You should check that the syzygy Sij given in (3) is homogeneous of multidegree y
(see Exercise 4). We can decompose syzygies into homogeneous ones as fol1ows.

Lemma 7. Every element of S(F) can be written uniquely as a sum ofhomogeneous
elements ofS(F).

Proof. Let S = (hi •... , h,) E S(F). Fix an exponent a E 7l~o ' and let hia
be the term of hi (if any) such that hia f; has multidegree a . Then-we must have
2:::=1 hiaLT(fi) = 0 since the hiaLT(f;) are the terms of multidegree a in the sum
2:::=1hjLT(f;) = O. Then Sa = (h 1a• . . . , h,a) is a homogeneous element of S(F) of
degree a and S = 2::a Sa.
The proof of uniqueness will be left to the reader (see Exercise 5). 0

We can now prove that the Sij 's form a basis of all syzygies on the leading tenns.
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Proposition 8. Given F = (fl, . .. , j ,), every syzygy 5 E 5(F) can be written as

5 = L uij5ij,
i <j

where uij E k[XI , . . . , xn ] and the syzygy 5ij is defined as in (3).

Proof. By Lemma 7, we can assume that 5 is homogeneous of multidegree a . Then
5 must have at least two nonzero components, say c;xa(i ) and CjXaUl, where i < j .
Then a(i) + multideg(j.) = a(j) + multideg(jj) = a, which implies that x Y =
LCM(LM(!i) , LM(fj» divides x". Since

x y x y
5 · - --e' - --e '
' J - LT(f;) I LT(fj) J'

an easy calculation shows that the ith component of

5 - c,LC(!i )x a - y5ij

must be zero, and the only other component affected is the jth. It follows that from 5,
we have produced a homogeneous szyzgy with fewer nonzero components. Continuing
in this way, we can write 5 as a combination of the 5ij 's, and we are done. 0

This proposition explains our observation in §6 that S-polynomials account for all
possible cancellation of leading terms.
An interesting observation is that we do not always need all of the 5ij's to generate

the syzygies in S(F) . For example, let F = (X2y2+ z. xy2 - y , x 2y + yz) and use
lex order in k[x, y, zl.The three syzygies corresponding to the S-polynomials are

512 = (1, -x , 0),
513 = (1,0, -y) ,

523 = (0, x, -y).

However, we see that 523 = 513 - 512 . Then , 523 is redundant in the sense that it can
be obtained from S 12, 513 by a linear combination. (In this case, the coefficients are
constants; in more general examples, we might find relations between syzygies with
polynomial coefficients .) In this case, {S12, SI3} forms a basis for the syzygies. Later
in the section, we will give a systematic method for making smaller bases of S(F) .
We are now ready to state a more refined version of our algorithmic criterion for

Groebner bases.

Theorem 9. A basis G = (gl , , g,) for an ideal I is a Groebner basis ifand only
iffor every element 5 = (hI , , hI) in a homogeneous basis for the syzygies S(G) ,
we have

I

5 · G = L hig; --""G 0.
i=1

Proof. We will use the strategy (and notation) of the proof of Theorem 6 of §6. We start
with f = I::=I b.s.. where m(i) = multideg(h;gi) and 8 = max(m(i» is minimal
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among all ways of writing f in tenus of g \, .. . , gs. As before, we need to show that
multideg(f) < 8 leads to a contradiction.
From (4) in §6, we know that multideg (f) < 8 implies that L III(i )=& LT(h ; )g; has

strictly smaller multidegree. This therefore means that LIII (i ) =~ LT(h; )LT(gd = 0, so
that

S = L LT(h ; )e ;
111 (; )= &

is a syzygy in S(G) .Note also that S is homogeneous of degree 8. Our hypothesis then
gives us a homogeneous basis SI , . .. , Sill of S(G ) with the property that S, . G -+G 0
for all j . We can write S in the form

(4 )

By writing the U j 's as sums of terms and expanding, we see that (4) expresses S as a
sum of homogeneous syzygies . Since S is homogeneous of multidegree 8, it follows
from the uniqueness of Lemma 7 that we can discard all syzygies not of multidegree 8.
Thus, in (4), we can assume that, for each j, either

U j = 0 or UjSj is homogeneous of multidegree 8.

Suppose that Sj has multidegree Y j' If U j #- 0, then it follows that U j can be written in
the form U j = Cjx&- YJ for some Cj E k, Thus, (4) can be written

S = LCj x &- YJSj .

j

where the sum is over those j's with U j #- O. If we take the dot product of each side
with G, we obtain

(5) L LT(h;)gi = S · G = LCjx&-Y'Sj , G .
111 (; )=& j

By hypothesis, Sj . G -+G 0, which means that

(6)

where

r

s.. G = Laijg;,
;=1

(7) multideg(aijg ;) ::: multidegjS, . G)

for ali i, j . Note that (5), (6), and (7) are similar to the corresponding (5), (6), and (7)
from §6. In fact, the remainder of the proof of the theorem is identical to what we did
in §6. The only detail you will need to check is that x&-Yj Sj . G has multidegree < 8
(see Exercise 6). The theorem is now proved. 0

Note that Theorem 6 of §6 is a special case of this result. Namely, if we use the basis
ISij} for the syzygies S(G ), then the polynomials Sij . G to be tested are precise ly the
S-polynomials Stg), g j ) '
To exploit the power of Theorem 9, we need to learn how to make smaller bases of

S(G ).Wewill show next that starting with the basis {Sij : i < j), there is a systematic
way to predict when elements can be omitted.
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Proposition 10. Given G = (gl, . .. , g.), suppose that we have a subset S C {Sij :
I ::: i < j ::: t} which is a basis oj S(G). In addition, suppose we have distinct
elements gi. gj , gk E G such that

LT(gd divides LCM(LT(gi) , LT(gj)) '

IfSib Sjk E S ,thenS-{Sij}isalsoabasisofS(G).(Note:lfi > j .we set Sq = Sj i.)

Proof. For simpl icity, we will assume that i < j < k. Set x Y" = LCM(LM(gi),
LM(gj) ) and let x Y" and x Yi ' be defined similarly. Then our hypothesis implies that x Y"
and x Yi ' both divide x Yi, . We leave it as an exercise to verify that

and the proposition is proved. o
To incorporate this proposition into an algorithm for creating Groebner bases, we

will use the ordered pairs (i , j) with i < j to keep track of which syzygies we want.
Since we sometimes will have an i ;f; j where we do not know which is larger, we will
use the following notation : given i ;f; i , define

[ ' oJ = { (i, j) if i < j
I, j ( " ) 'f' .j ,l t I > l -

We can now state an improved version of Buchberger's algorithm that takes into
account the results proved so far.

Theorem 11. Let I = (fl , . .. , I, )be a polynomial ideal. Then a Groebner basis for
I can be constructed in a finite number ofsteps by the following algorithm:

Input: F = (fJ, ... , I.)
Outpu t: G. a Groebner basis for I = (fl , . , . , f s)

{initiali zation}
B := {U,j)II <
G:= F
t := s

< j ::: s}

{iteration}
WHILE B =1= 0 DO

Select U, j) E B
IF LCM(LT(.fi), LT(!i)) =1= LT(f;)LT(fj) AND

Criterion(f; , r.. B) is false THEN
-=-:--::----::"7C

S := S(fi, !i)
IF S =1= aTHEN

t := t + I; f, := S
G:= G U Ur}
B := B UW, t) 11 ::: i ::: t - I}

B := B - W, j)},
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where Criterion (I; , /j , B) is true provided that there is some k rt Ii, j} for which the
pairs (i, k] and [j, k] are not in B and utt fi) divide s LCM(LTC.!i), LT(/j». (Note that
this criterion is based on Proposition 10.)

Proof. The basic idea of the algorithm is that B records the pairs (i, j) that remain to
be considered. Furthermore, we only compute the remainder of those S-polynomials
S(g i , gj) for which neither Proposition 4 nor Proposition 10 apply.
To prove that the algorithm works, we first observe that at every stage ofthe algorithm,

B has the property that if 1 ::5 i < j ::5 t and (i, j) rt B, then
(8) SCI;, fj) -+c 0 or Criterion(fi, /j, B) holds .

Initially, this is true since B starts off as the set of all possible pairs. We must show
that if (8) holds for some intermediate value of B, then it continues to hold when B
changes, say to B'.
To prove this, assume that (i , j) f/. B'. If (i, j) E B, then an examination of the

algorithm shows that B' = B - {(i, j)}. Now look at the step before we remove
(i, j) from B. If LCMCLTCI;», LT(fj» = LTC.!i)LT(/j) , then S(I; , /j) -+c 0 by
Proposition 4, and (8) holds. Also if Criterion(I; , /j, B) is true, then (8) clearly holds.
Now suppose that both of these fail. In this case, the algorithm computes the remainder
S = S(fi, ts: If S = 0, then SCI;, fj) -+c 0 by Lemma 2, as desired . Finally, if
S -# 0, then we enlarge G to be G' = G U IS}, and we leave it as an exercise to show
that SCI;, /j) -+C' O.
It remains to study the case when (i, j) rt B. Here, (8) holds for B, and we leave it

as an exercise to show that this implies that (8) also holds for B'.
Next, we need to show that G is a Groebner basis when B = 0. To prove this, let t be

the length of G, and consider the set T consisting of all pairs (i, j) for 1 ::5 i < j ::5 t
where Criteriont j}, /j, B) was false when (i, j) was selected in the algorithm. We
claim that S = {Si) : (i , j) E T} is a basis of S(G) with the property that Si) . G =
S(fi, f j) -+c 0 for all Si) E S. This claim and Theorem 9' will prove that G isa
Groebner basis.
To prove our claim, note that B = 0 implies that (8) holds for all pairs (i, j) for

1 ::5 i < j ::5 t . It follows that S(I; , /j) -+c 0 for all (i, j) E T. It remains to show
that S is a basis of SCG). To prove this, first notice that we can order the pairs (i, j)
according to when they were removed from B in the algorithm (see Exercise 10 for the
details of this ordering). Now go through the pairs in reverse order, starting with the
last removed, and delete the pairs (i , j) for which Criterionrj. , fj , B) was true at that
point in the algorithm. After going through all pairs , those that remain are precisely the
elements ofT. Let us show that at every stage of this process, the syzygies corresponding
to the pairs (i, j) not yet deleted form a basis of S(G). Th is is true initially because
we started with all of the Si) 'so which we know to be a basis. Further, if at some point
we delete (i , j), then the definition of Criteriontji , /j , B) implies that there is some k
where LT(fk) satisfies the LCM condition and [i, k]1[j, k] rt B.Thus, [i, k] and [j , k]
were removed earlier from B, and hence Sik and Sjk are still in the set we are creating
because we are going in reverse order. If follows from Proposition 11 that we still have
a basis even after deleting Si).
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Finally, we need to show that the algorithm terminates. As in the proof of the original
algorithm (Theorem 2 of §7), G is always a basis of our ideal , and each time we enlarge
G, the monomial ideal (LT(G)} gets strictly larger. By the ACC, it follows that at
some point, G must stop growing, and thus , we eventually stop adding elements to B.
Since every pass through the WHILE . .. DO loop removes an element of B, we must
eventually get B = 0, and the algorithm comes to an end . 0

The algorithm given above is still not optimal, and several strategies have been
found to impro ve its efficiency further. For example, our discussion of the division
algorithm in k[XI, . •. , xnl (Theorem 3 of §3) , we allowed the divisors II, . .. , I,
to be listed in any order. In practice, some effort could be saved on average if we
arranged the f; so that their leading terms are listed in increasing order with respect
to the chosen monomial ordering. Since the smaller LT(f;) are more likely to be used
during the division algorithm, listing them earlier means that fewer comparisons will
be required. A second strategy concerns the step where we choose (i, j) E B in
the algorithm of Theorem 11. BUCHBERGER (1985) suggests that there will often be
some savings if we pick (i, j) E B such that LCM(LM(f;), LM(h» is as small as
possible. The corresponding S-polynomials will tend to yield any nonzero remainders
(and new elements of the Groebner basis) sooner in the process, so there will be more
of a chance that subsequent remainders S(f; , h)G will be zero. This normal section
strategy is discussed in more detail in BECKER and WEISPFENNING (1993) , BUCHBERGER
(1985) and GtBAUER and MOLLER (1988). Finally, there is the idea of sugar, which is a
refinement of the normal selection strategy. Sugar and its variant double sugar can be
found in GIOVINI, MORA, NIESI, ROBBIANO and TRAVERSO (199 1).
In another direction, one can also modify the algorithm so that it will automatically

produce a reduced Groebner basis (as defined in §7) . The basic idea is to systematically
reduce G each time it is enlarged. Incorporating this idea also generally lessens the
number of S-polynomials that must be divided in the course of the algorithm. For a
further discussion of this idea, consult BUCHBERGER (1985).
We will end this section with a short discussion of the complexity of Buchberger's

algorithm. Even with the best currently known versions of the algorithm, it is still easy
to generate examples of ideals for which the computation of a Groebner basis takes a
tremendously long time and/or consumes a huge amount of storage space . There are
several reasons for this:
• The total degrees of intermediate polynomials that must be generated as the algorithm
proceeds can be quite large.

• The coefficients of the elements of a Groebner basis can be quite complicated rational
numbers, even when the coefficients of the original ideal generators were small
integers. See Example 3 of §8 or Exercise 13 of this section for some instances of
this phenomenon.

For these reasons, a large amount of theoretical work has been done to try to establish
uniform upper bounds on the degrees of the intermediate polynomials in Groebner basis
calculations when the degrees of the original generators are given. For some specific
results in this area , see DiJBE (1990) and MOLLER and MORA (1984). The idea is to
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measure to what extent the Groebner basis method will continue to be tractable as
larger and larger problems are attacked.
The bounds on the degrees of the generators in a Groebner basis are quite large. and it

has been shown that large bounds are necessary. For instance. MAYR and MEYER (1982)
give examples where the construction of a Groebner basis for an ideal generated by
polynomials of defree less than or equal to some d can involve polynomials of degree
proportional to 22 • As d -+ 00. 21:/ grows very rapidly. Even when grevlex order is
used (which often gives the smallest Groebner bases-see below), the degrees can be
quite large. For example, consider the polynomials

X,,+I - yz"-I w, xy,,-I - z", x"z - y"w.

Ifweusegrevlexorderwith x > y > z > w,then Mora [see LAZARD (1983)] showed
that the reduced Groebner basis contains the polynomial

Jl2+ 1 112
Z - Y w.

The results led for a time to some pessimism concerning the ultimate practicality of the
Groebner basis method as a whole . Further work has shown, however, that for ideals
in two and three variables. much more reasonable upper degree bounds are available
[see. for example, LAZARD (1983) and WINKLER (1984)]. Furthermore, in any case
the running time and storage space required by the algorithm seem to be much more
manageable "on average" (and this tends to include most cases of geometric interest)
than in the worst cases. There is also a growing realization that computing "algebraic"
information (such as the primary decomposition of an ideal-see Chapter 4) should have
greater complexity than computing "geometric" information (such as the dimension of
a variety-see Chapter 9). A good reference for this is GIUSTI and HEINTZ (1993). and
a discussion of a wide variety of complexity issues related to Groebner bases can be
found in BAYER and MUMFORD (1993).
Finally, experimentation with changes of variables and varying the ordering of the

variables often can reduce the difficulty of the computation drastically. BAYER and
STILLMAN (l987a) have shown that in most cases, the grevlex order should produce a
Groebner basis with polynomials of the smallest total degree. In a different direction,
some versions of the algorithm will change the term ordering as the algorithm progresses
in order to produce a more efficient Groebner basis. This is discussed by GRITZMANN
and STURMFELS (1993).

EXERCISES FOR §9

I. Let S = (CI•.. .• c.) and T = (d, • .. . • d,) E (k[xlo . .. , x,,)) ' be syzygieson the leading
terms of F = (fl . .... I,).
a. Show that S + T = (CI + d,•. . .. c, + d,) is also a syzygy.
b. Show that if g E k[x I , .. . • .r, I, then g . S = (gc l • . . . , gc,) is also a syzygy.

2. GivenanyG = (gl • . . . g,) E (k[x l • . . . • x" JY, wecandefinea syzygyon G tobean r-tuple
S = (hI • . . .• h,) E (k[xlo .. . , x"J) ' such that Lih,g; = O. [Note that the syzygies we
studied in the text are syzygieson LT(G) = (LT(gl).. . . . LT(G,» .]
a. Show that if G = (x 2 - y . xy - z.l - XZ), then (Z, -yox) definesa syzygy on G.
b. Findanother syzygyon G from part a.



110 2. Groebner Bases

c. Show that if S, T are syzyg ies on G. and g E k[x\ . . . . , x"l . then S + T and gS are also
syzyg ies on G.

3. Let M beann x (n+ I) matrix of polynomials ink[x l> .. . , x"l. Let I be the idealgenerated by
the determinants of all the n x n submatrices of M (such ideals are examples of determinantal
ideals).
a. Find a 2 x 3 matrix M such that the associated determinantal ideal of 2 x 2 submatrices

is the ideal with generators G as in Exercise 2.
b. Explain the syzygy given in part a of Exercise 2 in terms of your matrix.
c. Give a general way to produce syzygies on the generators of a determinantal ideal. Hint:

Find ways to produce (n + 1) x (n + 1) matrices containing M, whose determinants are
automatically zero.

4. Prove that the syzygy Sj j defined in (3) is homogeneous of multidegree y .
5. Complete the proof of Lemma 7 by showing that the decomposition into homogeneous

components is unique. Hint: First show that if S = La S~. where S~ has multidegree a, then,
for a fixed i , the ith components of the S~ are either 0 or have mult idegree a - multideg(fi)
and, hence. give distinct terms as a varies.

6. Suppose that S, is a homogeneous syzygy of multidegree Y, in S(G).Then show that S, . G
has multidegree < Yj. This implies that x&-Y, Sj . G has multidegree < 8, which is a fact we
need for the proof of Theorem 9.

7. Complete the proof of Proposition 10 by proving the formula expressing S ij in terms of Sik
and S jk'

- 0
8. Let G be a finite subset of k[xl> . . . ,x"l and let I E (G) . If I = r f. 0, then show that
F -+ 0 ' 0, where G' = G U [r}. This fact is used in the proof of Theorem II:

9. In the prool!ofTheorem II. we claimed that for every value of B, if I ~ i < j ~ t and
(i , j) if B. then condition (8) was true. To prove this, we needed to show that if the claim held
for B, then it held when B changed to some B' . The case when (i . j) if B' but (i. j) E B
was covered in the text. It remains to consider when (i, j) if B' U B . In this case. prove that
(8) holds for B' .Hint: Note that (8) holds for B. There are two cases to consider, depending
on whether B' is bigger or smaller than B . In the latter situation , B' = B - {(k, I)} for some
(k, I) f. (i, j) .

10. In this exercise , we will study the ordering on the set {(i, j) : I ~ i < j ~ I} described in
the proof of Theorem II. Assume that B = 121, and recall that t is the length of G when the
algorithm stops .
a. Show that any pair (i, j) with I ~ i < j ~ t was a member of B at some point during

the algorithm.
b. Use part a and B = 0 to explain how we can order the set of all pairs according to when

a pair was removed from B.
11. Consider I I = x 3 - 2xy and [z = x2y - 2y 2 + x and use grlex order on k[x, y1. These

polynomials are taken from Example I of §7. where we followed Buchberger's algorithm
to show how a Groebner basis was produced. Redo this example using the algorithm of
Theorem II and, in particular. keep track of how many times you have to use the division
algorithm.

12. Consider the polynomials

and use grevlex order with x > y > z > w. Mora [see LAZARD (1983)1 showed that the
reduced Groebne r basis contains the polynomial

Z"l+1 _ y,,2W.

Prove that this is true when n is 3, 4. or 5. How big are the Groebner bases?
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13. In this exercise , we will look at some examples of how the term order can affect the length
of a Groebner basis compu tation and ttle complexity of the answer.
a. Compute a Groebner basis for I = (x 5+ y4 + Z3 - I , x 3+ y2 + Z2 - I) using lex and

grevlex orders with x > Y > z. You may not notice any difference in the computation
time, but you will see that the Groebner basis is much simpler when using grevlex.

b. Compute a Groebner basis for I = (x 5 + y4 + Z3 - 1, x 3 + y3 + Z2 - 1) using
lex and grevlex orders with x > y > z. This differs from the previous example by
a single exponent , but the Groebner basis for lex order is significantly nastier (one of
its polynomials has 282 terms, total degree 25, and a largest coefficient of 170255391).
Depending on the computer and how the algorithm was implemented, the computation
for lex order may take dramat ically longer.

c. Let I = (x4 - YZ2w , xy2 - Z3, x3z - y3w ) be the ideal generated by the polynomials
of Exercise 12 with n = 3. Using lex and grevlex orders with x > Y > z > w, show
that the resulting Groebner bases are the same. So grevlex is not always better than lex,
but in practice, it is usually a good idea to use grevlex whenever possible.
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Elimination Theory

This chapter will study systematic methods for eliminating variables from systems of
polynomial equations . The basic strategy of elimination theory will be given in two
main theorems: the Elimination Theorem and the Extension Theorem. We will prove
these results using Groebner bases and the classic theory of resultants. The geometric
interpretation of elimination will also be explored when we discuss the Closure The-
orem. Of the many applications of elimination theory, we will treat two in detail: the
implicitization problem and the envelope of a family of curves.

§1 The Elimination and Extension Theorems

To get a sense of how elimination works, let us look at an example similar to those
discussed at the end of Chapter 2. We will solve the system of equations

x2+y+,=I ,
(I) x+l+,=I,

x + y + ,2 = I.

Ifwe let I be the ideal

(2) I = (x2 + Y+ z - ·1, x + l + , - I , x + y + ,2- I) ,

then a Groebner basis for I with respect to lex order is given by the four polynomials

g\ = x + y + ,2 - 1,

g2 = l - y - ,2 + z
g3 = 2y,2 + ,4 - ,2,

g4 = ,6 - 4,4 + 4,3 _ ,2 .

It follows that equations (1) and (3) have the same solutions. However, since

g4 = ,6 - 4z4 + 4,3 - ,2 = ,2(, - 1)2(,2 + 2, - 1)

involves only" we see that the possible z's are 0,1 and -1 ± ./2. Substituting these
values into g2 = y2 - Y- ,2 +, = 0 and g3 = 2yz2 + Z4 - Z2 = 0, we can determine

112
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the possible y's, and then finally gl = X + y + Z2 - 1 = 0 gives the corresponding
x 's. In this way, one can check that equations (1) have exactly five solutions:

(1.0,0) , (0, 1,0), (0,0, I) ,

(-1 +.../2. -1 +.../2, -1 + .../2),
(-1 -.../2, -1 -.../2, -1 - .../2).

What enabled us to find these solutions? There were two things that made our success
possible :
• (Elimination Step) We could find a consequence g4 = Z6 - 4z4 + 4z3 - Z2 = 0 of
our original equations which involved only z. i.e., we eliminated x and y from the
system of equations.

• (Extension Step) Once we solved the simpler equation g4 = 0 to determine the
values of z. we could extend these solutions to solutions of the original equations.

The basic idea of elimination theory is that both the Elimination Step and the Extension
Step can be done in great generality.
To see how the Elimination Step works, notice that our observation concerning g4

can be written

g4 E I n <C[z],

where I is the ideal given in equation (2). In fact. I n <C[z] consists of all consequences
of our equations which eliminate x and y. Generalizing this idea leads to the following
definition .

Definition 1. Given I = (fl , ... , j,) C k[XI, ... , XII], the lth elimination ideal II
is the ideal ofk[xl+l, . . . , XII] defined by

II = I n k[XI+I, ... , XII]'

Thus, h consists of all consequences of fl = . . . = fs = 0 which eliminate the vari-
ables XI, .• . , XI. In the exercises, you will verify that II is an ideal of k[xl+ I, .. . , XII]'
Note that I = 10 is the Othelimination ideal. Also observe that different orderings of
the variables lead to different elimination ideals.
Using this language, we see that eliminating Xl• . . . , XI means finding nonzero poly-

nomials in the lth elimination ideal II. Thus a solution of the Elimination Step means
giving a systematic procedure for finding elements of II.With the proper term ordering.
Groebner bases allow us to do this instantly.

Theorem 2 (The Elimination Theorem). Let I C k[Xl , ... , XII] be an ideal and let
G be a Groebner basis of I with respect to lex order where XI > X2 > . .. > XII' Then,
for every 0 :::: l :::: n, the set

GI = G n k[XI+I, ... , XII]
is a Groebner basis of the lth elimination ideal II.

Proof. Fix l between 0 and n. Since GI C II by construction. it suffices to show that

(LT(lI) = (LT(G /)
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by the definition of Groebner basis. One inclusion is obvious . and to prove the other
inclusion (LT(lI» C (LT(GI)). we need only show that the leading term LT(f). for an
arbitrary! E II, is divisible by LT(g) for some g E GI.
To prove this. note that! also lies in I. which tells us that LT(f) is divisible by LT(g)

for some g E G since G is a Groebner basis of I. Since! E II . this means that LT(g)
involves only the variables XI+I • ...• XII. Now comes the crucial observation: since
we are using lex order with XI > . . . > XII. any monomial involving Xl • •• • • X, is
greaterthan all monomials in k[XI+I • . . . •XII], so that LT(g) E k[XI+I • . . . • XII] implies
8 E k[XI+I • . . . • XII].This shows that 8 E GI, and the theorem is proved. 0

For an example of how this theorem works, let us return to example (I) from the
beginning of the section. Here, I = (x 2 + y + z-I . X + y 2 +z - 1. X +Y+ Z2 -I ), and
a Groebner basis with respect to lex order is given in (3). It follows from the Elimination
Theorem that

II = In <C[Y. z] = (l- y - Z2 + Z. 2YZ2+ Z4 - Z2, Z6 - 4z4+ 4z3 - Z2).

h = In <C[z] = (i - 4z4 + 4z3 - Z2).

Thus . g4 = Z6 - 4z4 + 4z3 - Z2 is not just some random way of eliminating X and
y from our equations-it is the best possible way to do so since any other polynomial
that eliminates X and y is a multiple of 84.
The Elimination Theorem shows that a Groebner basis for lex order eliminates not

only the first variable. but also the first two variables. the first three variables, and so
on. In some cases (such as the impliciti zation problem to be studied in §3). we only
want to eliminate certain variables, and we do not care about the others. In such a
situation , it is a bit of overkill to compute a Groebner basis using lex order. This is
especially true since lex order can lead to some very unpleasant Groebner bases (see
Exercise 13 of Chapter 2. §9 for an example). In the exercises, you will study versions
of the Elimination Theorem that use more efficient monomial orderings than lex.
We next discuss the Extension Step. Suppose that we have an ideal I C

k[X l • . . . •XII]. As in Chapter 2, we have the affine variety

V(I) = {(al • . . . • all) E k": f ta,• . .. . all) = Gfor all j' E/} .

To describe points of V(I). the basic idea is to build up solutions one coordinate at
a time. Fix some l between 1 and n . This gives us the elimination ideal I I, and we
will call a solution (al+ l , ... , all) E V(II ) a partial solution of the original system of
equations. To extend (a'+I , . . .• all) to a complete solution in V(l). we first need to add
one more coordinate to the solution . This means finding a, so that (al . a'+I , . . . , all)
lies in the variety V(lI-l) of the next elimination ideal. More concretely. suppose that
II_I = (g l • ... • 8,) in k[xi . XI+!, . .. •XII]' Then we want to find solutions XI = ai of
the equations

Here we are dealing with polynomials of one variable XI. and it follows that the possible
ai's are just the roots of the GCD of the above r polynomials .
The basic problem is that the above polynomials may not have a common root, i.e.,
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there may be some partial solutions which do not extend to complete solutions. For a
simple example . consider the equations

xy = I ,
xz = 1.

Here. I = (x y - I, x z - I). and an easy application of the Elimination Theorem shows
that y - z generates the first elimination ideal !I. Thus, the partial solutions are given
by (a, a). and these all extend to complete solutions (l/a, a, a) except for the partial
solution (0, 0). To see what is going on geometrically, note that y = z defines a plane
in 3-dimensional space. Then the variety (4) is a hyperbola lying in this plane:

....../
......... +- lb. plan. y = l

+- the sohnicns
+- lhc partial

solutions
) '

It is clear that the variety defined by (4) has no points lying over the partial solution
(0,0). Pictures such as the one here will be studied in more detail in §2 when we study
the geometric interpretation of eliminating variables . For now, our goal is to see if we
can determine in advance which partial solutions extend to complete solut ions.
Let us restrict our attention to the case where we eliminate just the first variable XI .

Thus, 'we want to know if a partial solution (a2, . . .• all) E V(ll) can be extended to
a solution (a), a2• . . . ,all) E V(l) . 'the following theorem tells us when this can be
done.

Theorem 3 (The Extension Theorem). Let I = (II, . . . • i,) C <C[Xt, . . . , XII] and
let II be the first elimination ideal of I . For each I ~ i ~ s, write /; in the form

/; = gi(X2, . .. , XII)X ;Yi + terms in which XI has degree < Ni.
where N, ::: 0 and gi E <C[X2• . . . , XII] is nonzero. Suppose that we have a partial
solution (a2• . . . •all) E V(l) . If (a2, . . . , all) ¢ V(gl • . . . , gS> . then there exists
at E <C such that (at. a2, . . . •all) E V(l).

The proof of this theorem uses resultants and will be given in §6. For the rest of
the section, we will explain the Extension Theorem and discuss its consequences. A
geometric interpretation will be given in §2.



116 3. Elimination Theory

A first observation is that the theorem is stated only for the field k = <C. To see why
<C is important. assume that k = IR and consider the equations

(5)

Eliminating x gives y = Z, so that we get the partial solutions (a. a) for all a E 1R. Since
the leading coefficients of x in XZ - Y and XZ - z never vanish, the Extension Theorem
guarantees that (a , a) extends. provided we work over <C. Over 1R, the situation is
different. Here, xZ = a has no real solutions when a is negative. so that only those
partial solutions with a ::: 0 extend to real solutions of (5). This shows that the Extension
Theorem is false over 1R.
Turning to the hypothesis (az • . . . ,all) ¢ V(gl, . . . • gs). note that the gi'S are the

leading coefficients with respect to XI of the f; 's, Thus. (az • . . . • all) ¢ V(gl • . . . • gs)
says that the leading coefficients do not vanish simultaneously at the partial solution..
To see why this condition is necessary, let us look at example (4). Here, the equations

xy = I,
xz =

have the partial solutions (y. z) = (a , a). The only one that does not extend is (0,
0), which is the partial solution where the leading coefficients y and z of x vanish.
The Extension Theorem tells us that the Extension Step can fail only when the leading
coefficients vanish simultaneously.
Finally, we should mention that the ideal of leading coefficients V(gl • . . . • g,)

depends on the basis {Ii , .. . • I ,} of I : changing to a different basis may cause
V(gl • . . . • gs) to change. In Chapter 8, we wi11leam how to choose (fl • . . .. I ,) so
that V(gl, . . . • gs) is as small as possible. We should also point out that if one works in
projective space (to be defined in Chapter 8), then one can show that all partial solutions
extend.
Although the Extension Theorem is stated only for the case of eliminating the first

variable XI, it can be used when eliminating any number of variables. For example,
consider the equations

(6)
x Z + i + ZZ = I.

xyz = 1.

A Groebner basis for I = (xz+ l + zZ - I, xyz - I} with respect to lex order is

gl = y4zZ+ iz4 - izz + I.

gz = X+ lz + YZ3 - yz.

By the Elimination Theorem, we obtain

II = In <C[y, z] = (gd.

Iz = I n <C[z] = {OJ.
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Since Jj = {O}, we have V(!z) = <C, and, thus, every c E <C is a partial solution. So
we ask:

Which partial solutions c E <C = V(l2) extend to (a, b, c) E V(l)?

The idea is to extend c one coordinate at a time: first to (b, c), then to (a , b, c). To
control which solutions extend, we will use the Extension Theorem at each step. The
crucial observation is that !z is the first elimination ideal of II. This is easy to see
here, and the general case is covered in the exercises. Thus , we will use the Extension
Theorem once to go from c E V(!z) to (b, c) E V(ld , and a second time to go to
(a, b, c) E V(l). This will tell us exactly which c's extend.
To start, we apply the Extension Theorem to go from /z to II = (gl) .The coefficient

of y4 in gl is Z2, so that c E <C = V(l2) extends to (b, c) whenever c =I O. Note
also that gl = 0 has no solution when c = O. The next step is to go from II to I;
that is, to find a so that (a , b, c) E V(l) . If we substitute (y, z) = (b, c) into (6), we
get two equations in x , and it is not obvious that there is a common solution x = a.
This is where the Extension Theorem shows its power. The leading coefficients of x
in x 2 + l + Z2 - I and xyz - 1 are 1 and yz, respectively. Since 1 never vanishes,
the Extension Theorem guarantees that a always exists. We have thus proved that all
partial solutions c =I 0 extend to V(l).
The Extension Theorem is especially easy to use when one of the leading coefficients

is constant. This case is sufficiently useful that we will state it as a separate corollary.

Corollary 4. Let I = (fl, . . . , f s) C <C[XI, ... ,XII]' and assume that for some i, /;
is ofthe form

/; = cx~ + terms in which XI has degree < N,

where c E <C is nonzero and N > O. If II is the first elimination ideal of I and
(a2, ... , all) E V(ll), then there is al E <C so that (aI , a2, . . . , all) E V(l).

Proof. This follows immediately from the Extension Theorem: since gj = c =I 0
implies V(gl , .. . , gs) = 0, we have (a2' .. . ,all) ¢ V(gl , ... , gs) for all partial
solutions . 0

We will end this section with an example of a system of equations that does not have
nice solutions . Consider the equations

xy = 4,

l = x 3 - 1.

Using lex order, the Groebner basis is given by

gl=16x-l -l,

g2 = y5 + l - 64,

but if we proceed as usual, we discover that y5+ y3 - 64 has no rational roots (in fact,
it is irreducible over <Q, a concept we will discuss in §4). One option is to compute
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the roots numerically. A variety of methods (such as the Newton-Raphson method) are
available. and for y5 + y3 - 64 = O. one obtains

y = 2.21363, -1.78719 ± 1.3984i. or 0.680372 ± 2.26969i.

These solutions can then be substituted into g\ = 16x - l - y4 = 0 to deter-
mine the values of x. Thus. unlike the previous examples. we can only find numerical
approximations to the solutions.
There are many interesting problems that arise when one tries to find numerical

solutions of polynomial equations. For further reading on this topic. we recommend
LAZARD (1993) and MANOCHA (1994). The reader may also wish to consult Cox , LITILE
and O'SHEA (1997), MIGNOTIE (1992) and MISHRA (1993).

EXERCISES FOR §1

1. Let I C k[xl> ...• x,,] be an ideal.
a. Prove that It = I n k[X'+I • . . . • x" I is an ideal of k[XI+I • . . . • x,,].
b. Prove that the ideal /1+1 C k[XI+2 • .. .• x,,] is the first elimination ideal of II C

k[XI+I • . . . •x"l.This observation allows us to use the Extension Theorem multiple times
when eliminating more than one variable.

2. Consider the system of equations

X
2 + 2/ = 3.

x 2 + x y + / = 3.

a. If I is the ideal generated by these equations. find bases of I n k[x) and I n k[y).
b. Find all solutions of the equations.
c. Which of the solut ions are rational. i.e.• lie in <Q2?
d. What is the smallest field k such that all solutions lie in k 2?

3. Determine all solut ions (x , y) E <Q2 of the system of equations

x 2 +2/ = 2.
x 2 + xy + /. = 2.

Also determine all solutions in ([:2.
4. Find bases for the elimination ideals I I and 12 for the ideal! determined by the equations:

x 2 + / + Z2 =4.

x 2 + 2y2 = 5.

xz = 1.

How many rational (i.e.• in <Q3) solutions are there?
5. In this exercise. we will prove a more general version of the Elim ination Theorem. Fix an

integer I :s: I :s: n . We say that a monomial order> on k[x{ • . . . • x,,] is of I-elimination
type provided that any monomial involving one of XI • • . . • XI is greater than all monomials
in k[XI+I • . . . •x"l. Prove the following generalized Elimination Theorem. If ! is an ideal in
k[x i • . . . • x,,1 and G is a Groebner basis of I with respect to a monomial order of I-elimination
type, then G n k[xl+l • . . . • x,,] is a basis of the Ith elimination ideal I n k[XI+I • . . . • x,,].

6. To exploit the generalized Elimination Theorem of Exercise 5. we need some interesting
examples of monomial orders of I-elimination type . We will consider two such orders.
a. Fix an integer I :s: I :s: n. and define the order », as follows: if a . {3 E Z~o. then a », {3
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if

al + .. .+ a, > fJI + ... + fJ" or a l + ... + a, = fJI + .. .+ fJ, and a >gm'e" fJ .

This is the Ith elimination order of BAYER and STILLMAN (1987b) . Prove that «, is a
monomial order and is of I-eliminat ion type. Hint: If you did Exercise 12 of Chapter 2, §4,
then you have already done this problem.

b. In Exercise 10 of Chapter 2, §4, we considered an example of a product order that mixed
lex and grlex orders on different sets of variables . Explain how to create a product order
that induces grevlex on both k[XI , . . . ,xil and k[X'+I, . . .• x,,1 and show that this order is
of I-elimination type.

c. If G is a Groebner basis for / C k[XI , .. . , x.; I for either of the monomial orders of parts
a or b, explain why G n k[XI+I, . . . • X" I is a Groebner basis with respect to grevlex .

7. Consider the equations

t 2 + x 2 + l + Z2 = O.
12 + 2x 2 - x y - Z2 = O.

t + i - Z3 = O.

We want to eliminate t . Let / = (t 2 + x 2 + y2 + Z2 , t 2 + 2x 2 - x y - Z2. t + y3 - Z3) be
the corresponding ideal.
a. Using lex order with t > x > y > z, compute a Groebner basis for /, and then find a

basis for / n k[x, y. zl. You should get four generators, one of which has total degree 12.
b. Use grevlex to compute a Groebner basis for / n k[x. y. zl. You will get a simpler set of

two generators.
c. Combine the answer to part b with the polynomial t + y3 - Z3 and show that this gives

a Groebner basis for / with respect to the elimination order> I of Exercise 6. Notice that
this Groebner basis is much simpler than the one found in part a. If you have access to a
compute r algebra system that knows elimination orders , then check your answer.

8. In equat ion (6), we showed that z =f. 0 could be specified arbitrarily . Hence, z can be regarded
as a "parameter." To emphasize this point, show that there are formulas for x and y in terms of
z. Hint: Use gl and the quadratic formula to get y in terms of z. Then use xyz = I to getx .The
formulas you obta in give a "parametrization" of V(l) which is different from those studied
in §3 of Chapter I. Namely, in Chapter I, we used parametrizations by rational functions ,
whereas here, we have what is called a parametrization by algebraic functions . Note that x
and y are not uniquely determined by z.

9. Consider the system of equations given by

x 5 + _ = y.
x5
I

x + - =z.x

Let / be the ideal in <C[x . y, zl determined by these equations.
a. Find a basis of /1 C <C[y, zl and show that /2 = {O} .
b. Use the Extension Theorem to prove that each partial solution c E V(l2) = <C extends to

a solution in V(l) C <c3•
c. Which partial solutions (y, z) E V(l l) C 1R2 extend to solutions in V(l) C 1R3 • Explain

why your answer does not contradict the Extension Theorem.
d. If we regard z as a "parameter" (see the previous problem) , then solve for x and y as

algebraic functions of z to obtain a "parametrization" of V(l) .
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§2 The Geometry of Elimination

In this section . we will give a geometric interpretation of the theorems proved in §I.
The main idea is that elimination corresponds to projecting a variety onto a lower
dimens ional subspace . We will also discuss the Closure Theorem. which describes the
relation between partial solut ions and elimination ideals . For simplic ity. we will work
over the field k = <C.
Let us start by defining the projection of an affine variety. Suppose that we are given

V = V(fl • . . . • i s) c <C". To eliminate the first I variables XI • • . • • X,. we will
consider the projection map

which sends (al • . . . • a,,) to (al+l• . . . , a,,) . If we apply 7f1 to V c <C". then we get
7f1(V) C <c"-'. We can relate 7f,(V) to the lth elimination ideal as follows.

Lemma 1. With the above notation, let /, = (fl • .. . • is) n <C[X'+I •. . .• x,,] be the
I th elimination ideal. Then , in <c,,-I ,we have

Proof. Fix a polynomial f E Ii. If(a l , . . . • a,,) E V, then f vanishes at (al • .. . , a,,)
since i E (fl • . . . • I s) . But i involves only x,+ I, . . . , X", so that we can write

This shows that i vanishes at all points of 7f, (V). o

As in §I, points of V(I,) will be called partial solutions. Using the lemma, we can
write n,(V) as follows:

7f1(V) = {(a,+I , . •. , a,,) E V(I,) : 3al , .. .. a, E <C

with (aI , ... , a" a'+l, . . . , a,,) E V}.

Thus, 7f, (V) consists exactly of the partial solutions that extend to complete solutions .
For an example of this, consider the variety V defined by equations (4) from §I:

xy = I,
(1)

xz = 1.

Here, we have the following picture that simultaneously shows the solutions and the
partial solutions :
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• ;r

.... the planey ~ Z

+- thesolutions
.... the partial

solutions

the arrows i.!
indicate the
projection l'C I

Note that V(!I) is the line y = z in the yz-plane, and that

JrJ(V) = {(a, a) E ([;2 : a :1= OJ.
In particular, Jrl (V) is not an affine variety-it is missing the point (0, 0).
The basic tool to understand the missing points is the Extension Theorem from §I.

It only deals with Jrl (i.e., eliminating XI), but gives us a good picture of what happens
in this case. Stated geometrically, here is what the Extension Theorem says .

Theorem 2. Given V = V(/1, . . . , f ,) C ([;". let gi be as in the Extension Theorem
from §I . If 11 is the first elimination ideal of (fl, .. . , f,). then we have the equality in
([;"-1

where Jrl : ([;" -+ ([;"-1 is projection onto the last n - I components.

Proof. The proof follows from Lemma 1 and the Extension Theorem. The details will
be left as an exercise . 0

This theorem tells us that Jrl (V) fills up the affine variety VUd, except possibly
for a part that lies in V(gl, .. . , g,). Unfortunately, it is not clear how big this part is,
and sometimes V(gl, . . . , gs) is unnaturally large. For example, one can show that the
equations

(2)
(y - z)x2 +xy = 1,

(y - z)x2 + XZ = I

generate the same ideal as equations (I).Since gl = g2 = y- z generate the elimination
ideal 11 , the Geometric Extension Theorem tells us nothing about the size of Jrl (V) in
this case .
Nevertheless, we can still make the following strong statements about the relation

between Jr,(V) and VU,).
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Theorem 3 (The Closure Theorem). Let V = V(fl' . . . , I s) C ([;11 and let 1/ be the
lth elimination ideal 01 (fl, ... , I s). Then :
(i) V ( it ) is the smallest affine variety containing IT/ (V) C ([;"-/.
(ii) When V =1= 0, there is an affine variety W ~ V (I/) such that V (I/) - W C IT/ (V).

Proof. When we say "smallest variety" in part (i) , we mean "smallest with respect to
set-theoretic inclusion." Thus, V(I/) being smallest means two things:
• IT/(V) C V(I/) .
• if Z is any other affine variety in ([;11-/ containing IT/(V), then V(I/) C Z.
In Chapter 4, we will express this by saying that V (It> is the Zariski closure of IT/ (V) .
Th is is where the theorem gets its name . We cannot yet prove part (i) of the theorem,
for it requires the Nullstellensatz. The proof will be given in Chapter 4.
The second part of the theorem says that although IT/(V) may not equal V(I/), it

fills up "most" of V(I/) in the sense that what is missing lies in a strictly smaller affine
variety. We will only prove this part of the theorem in the special case when I = 1. The
proof when I > 1 will be given in §6 of Chapter 5.
The main tool we will use is the decomposition

from the Geometric Extension Theorem. Let W = V(gl , . . . , g,) n V(Il ) and note
that W is an affine variety by Lemma 2 of Chapter I , §2. The above decomposition
impl ies that V(JI) - W C ITI ( V ) , and, thus, we are done if W =1= V(J. ). However, as
example (2) indicates, it can happen that W = V(Il).
In this case, we need to change the equations defining V so that W becomes smaller.

The key observation is that

(3)

This is proved as follows . First , since we are adding more equations, it is obvious
that V(fl, . . . , I" gl, .. . , gs) C V(f. , . .. , Is) = V. For the opposite inclusion, let
(a I , . .. , all) E V . Certainly each Ii vanishes at this point, and since (a2, , all) E
ITI(V) C V(II) = W, it follows that the gj 'S vanish here, Thus, (al, , all) E
V(fl , .. . , I" g l, , gs), which completes the proof of (3).
Let I = (/\, , I,) be our original ideal and let 1 be the ideal (fl, . . . , I s,

gl, .. . , g,) . Notice that I and 1may be different, even though they have the same '
variety V [proved in (3) above]. Thus, the corresponding elimination ideals II and 11
may differ. However, since V(II) and V(il) are both the smallest variety containing
ITI (V) [by part (i) of the theorem] , it follows that V(I,) = v(i,) .
The next step is to find a better basis of 1. First, recall that the g;'s are defined by

writ ing

Ii = gi (X2, • • • , XII)X~'+ terms in which Xl has degree < N;,

where N; > 0 and gi E ([;[X2, • • • ,XII] is nonzero. Now set

- NI, = Ii - giX • ' .
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For each i , note that Ii is either zero or has strictly smaller degree in x, than Ii .We
leave it as an exercise to show that

j = (11• .. . •L. g, • . . . • gs)'
Now apply the Geometric Extension Theorem to V = vi), .. . . 1.,. gl • . . . • gs).

Note that the leading coefficients of the generators are different. so that we get a different
decomposition

where W consists of those partial solutions where the leading coeffic ients of
It. ....1..g, • . . . • s. vanish .
Before going further with the proof. let us give an example to illustrate how it' can be

smaller than W. As in example (2), let / = (y - z)xz+xy - I. (y - z)xz+ xz - I) .
We know that /1 = (y - z) and g, = gz = Y - z. so that W = V(lt> in this case .
Then it is easy to check that the process described earlier yields the ideal

i = (y - z)xz + xy - I . (y - z)xz + xz - I. y - z) = (xy - I, xz - I. y - z) .

Applying the Geometric Extension Theor~m to I. one finds that it' consists of the
partial solutions where y and z vanish, i.e.•W = {(O, O)}.which is strictly smaller than
W = V(I,) . _
Unfortunately, in the general case , there is nothing to guarantee that W will be strictly

smaller. So it still could happen that it' = V(II) . If this is the Case. we simply repeat
the above process. If at any subsequent stage we get something strictly smaller than
V(I t>. then we are done .
It remains to consider what happens when we always get V(lt>. Each time we do

the above process. the degree s in XI of the generators drop (or remain at zero). so that
eventually all of the generators will have degree 0 in X, .This means that V can be
defined by the vanishing of polynomials in <C[xz, . . . • xlll . Thus. if (az• . . . , all) is a
partial solution. it follows that (a" az• . . . • all) E V for any a, E <C since XI does not
appear in the defining equations. Hence every partial solution extends. which proves
that Jr, (V) = V(lI). In this case, we see that part (ii) of the theorem is satisfied when
W= 0 (this is where we use the assumption V :f= 0). The theorem is now proved. 0

The Closure Theorem gives us a partial description of Jr/(V) since it fills up V(I/).
except for some missing points that lie in a variety strictly smaller than V (1/). Unfortu-
nately. the missing points might not fill up all of the smaller variety. The precise structure
of Jr/(V) can be described as follows: there are affine varieties Z, C Wi C <C"-/ for
I ~ i ~ m such that

III

Jr/(V) = U(Wi - Zi) '
i=1

In general, a set of this form is called constructible.Wewill prove this in §6ofChapter 5.
In §I, we saw that the nicest case of the Extension Theorem was when one of the

leading coefficients g, was a nonzero constant. Then the gi 's can never simultaneously
vanish at a point (az• . . . , all), and. consequently. partial solutions always extend in
this case . Thus. we have the following geometric version of Corollary 4 of §I .
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Corollary 4. Let V = V(fl , . .. , f s) c <C". and assume that for some i, fi is of the
form

fi = cx ;v + terms in which X I has degree < N ,

where c E <C is nonzero and N > O. If II is the first elimination ideal . then in <c,,-I

where 1l"j is projection on the last n - I components.

A final point we need to make concerns fields. The Extension Theorem and the
Closure Theorem (and their corollaries) are stated for the field of complex numbers
<C. In §6, we will see that the Extension Theorem actually holds for any algebraically
closed field k, and, in Chapter 4, we will show that the same is true for the Closure
Theorem.

EXERCISES FOR §2

I . Prove the Geometric Extens ion Theorem (Theorem 2) using the Extension Theorem and
Lemma I.

2. In example (2), verify carefully that «j - z)x 2 + xy - I , (y - z)x 2 + X Z - I) ' =
(x y - I , x z - I) . Also check that y - z vanishes at all partial solut ions in V(/d.

3. In this problem. we will work through the proof of Theorem 3 in the special case when
I = (fl . h . 13). where

I I = yx 3 + x 2 ,

h = ix2+ y2,

13 = yx' + x 2+ yl .

a. Find a Groebner basis for I and show that II = (y2).
b. Show that V(/I ) = V(/I) n V(g l ' g2. g3), where g; is the leading coefficient of x in fi.

In the notation of Theorem 3, this is a case when W =VUd.
c. Let i = (fl , h fJ. gl , g2, g3). Show that I 1= i and that V(I) = vci; Also check that

V(/d = v (il) '
d. Follow the proce~re described in the text for producing a new basis for i. Using this new

basis , show that W 1= V(/I).
4. Let f;, gi . hi E k[XI', .. . , XII ] for I ::: i ::: s . If we set i i = fi + hi8i. then prove that

(fl, .. . , [«. 81, · · · .8,) = (il , . . . , i s. 81. · · ·. g,) .

Then explain how the proof of Theorem 3 used a special case of this result.
5. To see how the Closure Theorem can fail over JR, cons ider the ideal

Let V = V(I ). and let lT l be the projection taking (x , y. z) to ( y , z).
a. Working over <C, prove that V (II ) = rr l ( V).
b. Working over JR, prove that V = Ii} and that VUd is infinite. Thus. V(ld may be much

larger than the smallest variety containing lTl ( V) when the field is not algebraically closed.
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§3 Implicitization

In Chapter 1, we saw that a variety V can sometimes be described using parametric
equations. The basic idea of the implicitization problem is to convert the parametrization
into defining equations for V. The name "implicitization" comes from Chapter 1,where
the equations defining V were called an "implicit representation" of V. However, some
care is required in giving a precise formulation of implicitization.The problem is that the
parametrization need not fill up all of the variety V-an example is given by equation
(4) from Chapter 1, §3. So the implicitization problem really asks for the equations
defining the smallest variety V containing the parametrization. In this section, we will
use the elimination theory developed in §§1 and 2 to give a complete solution of the
implicitization problem .
Furthermore, once the smallest variety V has been found, two other interesting ques-

tions arise. First , does the parametrization fill up all of V? Second , if there are missing
points, how do we find them? As we will see,Groebner bases and the Extension Theorem
give us powerful tools for studying this situation.
To illustrate these issues in a specific case, let us look at the tangent surface to the

twisted cubic in IR3, first studied in Chapter 1, §3. Recall that this surface is given
parametrically by

x = t + u,

Y = t 2 + 2tu ,
Z = t3 + 3t 2u.

In §8 of Chapter 2, we used these equations to show that the tangent surface lies on the
variety V in IR3 defined by

x 3z - (3/4)x 2y 2 - (3/2)xyz + y3 + (1/4)z2 = o.

However, we do not know if V is the smallest variety containing the tangent surface
and, thus, we cannot claim to have solved the implicitization problem. Furthermore,
even if V is the smallest variety, we still do not know if the tangent surface fills it up
completely. So there is a lot of work to do.
We begin our solution of the implicitization problem with the case of a polynomial

parametrization, which is specified by the data

(2)

Here, II, . .. , f" are polynomials in k[tJ , . . . , tllll. We can think of this geometrically
as the function

F :klll ~k"

defined by
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Then F(km ) C k" is the subset of k" parametrized by equations (2). Since Ftk'") may
not be an affine variety (examples will be given in the exercises), a solution of the
implicitization problem means finding the smallest affine variety that contains Ftk'"),
We can relate implicitization to elimination as follows. Equations (2) define a variety

V = V(X I - [v , . . .• XII - f n) C k"+m. Points of V can be written in the form

(tl .·· ·, tm . fl (tl , . .. , tm), . . . • f, ,(t1, . . " tm»,

which shows that V can be regarded as the graph of the function F.We also have two
other functions

i : k" ~ k"?";
7rm : k"?" ~ k"

defined by

7rm (t l , · · · . tm,Xl.· ·· , XII) = (xJ, . . . , XII) ·

This gives us the following diagram of sets and maps:

(3)
km F

~ k"
Note that F is then the composition F = 7rm 0 i . It is also straightforward to show that
i (km ) = V. Thus, we obtain

(4)

In more concrete terms, this says that the image of the parametrization is the projection
of its graph. We can now use elimination theory to find the smallest variety contairiing
F(k lll ) .

Theorem 1 (Polynomial Implicitization). Ifk is an infinite field , let F : kill -+- k" be
the function determined by the polynomial parametrization (2) . Let I be the ideal I =
(Xl - f lo , . . , XII - f n) C k[t l, ...• tm,Xl, · · ·, Xn] and let 1m = In k[Xl ,. · ., XII]
be the mth elimination ideal. Then V(lm) is the smallest variety in k" containing F(km).

Proof. Let V = V(I) C k":", The above discussion shows that V is the graph of
F : k" -+- k". Now assume that k = <C. By (4), we have F(<cm ) = 7rm (V ), and by
the Closure Theorem from §2, we know that V (1m) is the smallest variety containing
7rm (V ). This proves the theorem when k = <C.
Next, suppose that k is a subfield of <C. This means that k C <C and that k inherits its

field operations from <C. Such a field always contains the integers :if. (in fact, it contains
<Q-do you see why?) and, thus, is infinite. Since k may be strictly smaller than <C,
we cannot use the Closure Theorem directly . Our strategy will be to switch back and
forth between k and <C, and we will use the subscript k or <C to keep track of which
field we are working with. Thus, Vt(lm) is the variety we get in k" , whereas Va:;(lm)
is the larger set of solutions in <C" . (Note that going to the larger field does not change
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the elimination ideal/nl.This is because the algorithm used to compute the elimination
ideal is unaffected by changing from k to (['.) We need to prove that Vk(/m) is the
smallest variety in k" containing Fik'"),
By equation (4) of this section and Lemma I of§2, we know that F(knl ) = JrIll(Vd C

Vk(/m). Now let Z, = VkCgl, . '" g,) C k" be any variety of k" such that Ftk'"; C
Zi, We must show Vk(/nl) C Zi, We begin by noting that gi = 0 on Zk and, hence,
gi = 0 on the smaller set Ftk'"], This shows that each gi 0 F vanishes on all of
k'", But gi is a polynomial in k[XI , . . . , xlll, and F = (fl , , 1,,) is made up of
polynomials in k[tl , . . . , tm ]. It follows that gi 0 F E k[tl , , tm ].
Thus , the gi 0 F's are polynomials that vanish on k'" . Since k is infinite, Proposition 5

of Chapter I, § I implies that each gi 0 F is the zero polynomial. In particular, this
means that gi 0 F also vanishes on (['m, and, thus, the gi 'S vanish on F«['/II). Hence,
Za; = Va;(gl, . .. , g,) is a variety of (['" containing F«['m). Since the theorem is true
for ([', it follows that Va;(/m) C Za; in (['". If we then look at the solutions that lie in
k", it follows immediately that Vk(/m) C Zk. This proves that Vk(//II) is the smallest
variety of k" containing Ftk'") ,
Finally, if k is a field not contained in ([', one can prove that there is an algebraically

closed field K such that k C K [see Chapter VII, §2 of LANG (1965)] . As we remarked
at the end of §2, the Closure Theorem holds over any algebraically closed field. Then
the theorem follows using the above argument with ([' replaced by K . 0

Theorem 1 gives the following implicitization algorithm for polynomial parame-
trizations: if we have Xi = f;CtI, , till j for polynomials fl, ... , 1" E k[tl , . . . , tm ) ,
consider the ideal/ = (XI - flo , XII - 1,,) and compute a Groebner basis with
respect to a lexicographic ordering where every t i is greater than every Xi . By the
Elimination Theorem, the elements of the Groebner basis not involving tl, .. . , t.;
form a basis of L«, and by Theorem I, they define the smallest variety in k" containing
the parametrization.
For an example of how this algorithm works, let us look at the tangent surface to the

twisted cubic in IR3, which is given by the polynomial parametrization (1). Thus, we
need to consider the ideal

/ = (x - t - u, Y - t 2 - 2tu, z - t 3 - 3t 2u) C lR[t, u ; x, y , z) .

Using lex order with t > u > X > Y > z. a Groebner basis for / is given.by

g) = t + u - X,

g2 = u2 - x2 + y ,

g3 = ux 2 - uy - x 3 + (3/2)xy - (l/2)z,

g4 = uxy - uz - x2y - XZ - 2l,

ss = UXZ - ul + x2z - (l/2)xl- (l/2)yz,
g6 =ul- uz2 - 2x2yz + (l/2)x y3 - xz2+ (5/2)l z ,
g7 = x 3z - (3/4)x2l- (3/2)xyz + l + (l/4)Z2 .

The Elimination Theorem tells us that /2 = / n IR[x, y, z) = (g7), and, thus, by
Theorem I, V(g7) solves the implicitization problem for the tangent surface of the
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twisted cubic. The equation g7 = 0 is exactly the one given at the start of this section.
but now we know it defines the smallest variety in JR3 containing the tangent surface.
But we still do not know if the tangent surface fills up all of V (g7) c JR3. To answer

this question . we must see whether all partial solutions (x, y. z) E V(g7) = V(h)
extend to (r, u, x, y , z) E V(l). We will first work over a:; so that we can use the
Extension Theorem. As usual. our strategy will be to add one coordinate at a time.
Let us start with (x , y, z) E V(l2) = V(g7). In §l. we observed that l: is the

first elimination ideal of II. Further. the Elimination Theorem tells us that II =
(g2• . . . , g7). Then the Extension Theorem, in the form of Corollary 4 of §2. implies
that (x, y. z) always extends to (u, x, y, z) E V(ll) since II has a generator with a
constant leading coefficient of u (we leave it to you to find which of g2, ... , g7 has
this property) . Going from (u, x, v, z) E V(ll) to Ct, u, x, y, z) E V(l) is just as
easy: using Corollary 4 of §I again. we can always extend since gl = t + u - x has
a constant leading coefficient of t, We have thus proved that the tangent surface to the
twisted cubic equals V(g7) in a:;3.
It remains to see what happens over JR.Ifwe start with a real solution (x, y, z) E JR3

of g7 = 0, we know that it extends to (r , u, x, y, z) E V(l) C a:;5 . But are the
parameters t and u real? This is not immediately obvious. However, if you look at the
above Groebner basis, you can check that t and u are real when (x, y, z) E JR3 (see
Exercise 4). It follows that the tangent surface to the twisted cubic in JR3 equals the
variety defined by

x 3z - (3j4)x2l - (3j2)xyz + l + {lj4)Z2 = o.
In general, the question of whether a parametrization fills up all of its variety can
be difficult to answer. Each case has to be analyzed separately. But as indicated by the
example just completed. the combination of Groebner bases and the Extension Theorem
can shed considerable light on wha,t is going on.
In our discussion of implicitization, we have thus far only considered polynomial

parametrizations. The next step is to see what happens when we have a parametrization
by rational functions . To illustrate the difficulties that can arise. consider the following
rational parametrization:

u2
X=

V

v2
(5) y=

u
z = u.

It is easy to check that the point (x, y, z) always lies on the surface x 2y = Z3. Let
us see what happens if we clear denominators in the above equations and apply the
polynomial irnplicitization algorithm. We get the ideal

I = (vx - u2, uy - v2 , Z - u) C k[u, u, x , y. zl.
and we leave it as an exercise to show that h = I n k[x. y, zl is given by 12 =
(z(x 2y - Z3)). This implies that

V(h) = V(x 2y - Z3) U V(z) .
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and. in particular. V(h) is not the smallest variety containing the parametrization. So
the above ideal I is not what we want-simply "clearing denominators" is too naive.
To find an ideal that works better. we will need to be more clever.
In the general situation of a rational parametrization. we have

f,(tl • . . .• tm )
XI =

8'(tI • . . . • tm ) ·

(6)
fll (t, • . . . • t/1l)

XII = 81l(t1 • . . . • till) •

where fl. 81 , . .. , f" . 8" are polynomials in k[tl • . . . , till] ' The map F from k" to k"
given by (6) may not be defined on all of km because of the denominators. But if we let
W = V(8'82 ... 811) C k"; then it is clear that

(
f , (tI• . . .• t/1l)

F(tl ,··· .tlll ) = , . .. ,
81(t' , . .. • tm )

defines a map

F : k" - W ---+ k",

To solve the irnplicitization problem, we need to find the smallest variety of k"
containing Ftk'" - W) .
We can adapt diagram (3) to this case by writing

k"+1II

(7)
k" - W

i)"
F

---+ k"
It is easy to check that i t ]:" - W) c V(/) . where I = (g,xl - fl • . . . , gllXII - f,/)
is the ideal obtained by "clearing denominators." The problem is that V(l) may not be
the smallest variety containing i (kill - W). In the exercises. you will see that (5) is such
an example .
To avoid this difficulty. we will alter the ideal I slightly by using an extra dimension

to control the denominators. Consider the polynomial ring k[y. t" . . . , t/ll.XI, • • • • XII]

which gives us the affine space k"+m+ l . Let 8 be the product g = gl . g2 .. . gil. so that
W = V (g). Then consider the ideal

J = (g,x, - f" . . . , gllXII - f,/ , I - 8Y) c k[y, t" . . . , tm, Xl .· .. , XII]'

Note that the equation I - gy = 0 means that the denominators 8' • . . .• gil never
vanish on Vel) . To adapt diagram (7) to this new situation , consider the maps

j : kill _ W ---+ k"+m+ l •

7rm+ 1 : k"+11I+ I ---+ k"

defined by

. (I [,(th ... ,1", ) [.(th . . . •1"'»)
1(1, . .. . . 1"')= . 11•. . .• 1"'. • . . . • •

g(t" . . . . 1"') g'(tl• . .. , t"') g"(1, , . . . • 1"')

7rm+, (y, t" . . . • tm , Xl • • • • , Xn) = (x., . . . • Xn) ,
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respectively. Then we get the diagram

'\. :r,Il+1

k"
As before. we have F = ll'm+! 0 j .The surprise is that j (kill - W) = V(l) in k"+m+l.
To see this. note that j (k" - W) C V(1) follows easily from the definitions of j and 1.
Going the other way.ff Iy. r, . . . .• tm.x\ •...• xlI ) E V(1).theng(tI • ... • tm)y = I
implies that none of the gi'S vanish at (tl , . . . , tm) and, thus, gi (tl, .. . , tm )x; =
Ji(t\ • . . . • tm) can be solved for Xi = Ji(t\ •...• tm)/gi(tl • . . . • tl/l)' Since y
I/g(t, • . . . • tm). it follows that our point lies in jtk" - W) . This proves V(1) C
j(km - W).
From F = Jrm+1 0 j and [t]:" - W) = V(1). we obtain

(8)
Thus, the image of the parametrization is the projection of the variety V(1). As with
the polynomial case , we can now use elimination theory to solve the implicitization
problem.

Theorem 2 (Rational Implicitization). Ifk is an infinite field . let F : kill - W """"* k"
be the function determined by the rational parametrization (6) . Let 1 be the ideal
1 = (g,xI - fl •.. .• g"xlI - 1,,,1 - gy) c k[y,tl .... ,tlll.xJ, ... , x lI l. where
g = gl . g2 ' " gil ' and let 11/1+1 = 1 n k[x\ , . . . , xlll be the (m + I)st elimination
ideal . Then V(Jm+l) is the smallest variety in k" containing Ftk'" - W).

Proof. The proof is similar to the proof of Theorem I. One uses equation (8) rather
than equation (4). The only tricky point is showing that a polynomial vanishing on
k'" - W must be the zero polynomial. The 'exercises at the end of the section will take
you through the details. 0

The interpretation of Theorem 2 is very nice: given the rational parametrization (6).
consider the equations

g"x" = f",
glg2' .. gllY = 1.

These equations are obtained from (6) by "clearing denominators" and adding a final
equation (in the new variable y) to prevent the denominators from vanishing. Then
eliminating Y. tl .... , till gives us the equations we want.

More formally. Theorem 2 implies the following implicitization algorithm for ra-
tional parametrizations: if we have Xi = Ji / gi for polynomials f" gl, . . . •1", gIl E
k[tl, . ..• tml.considerthe new variable y and 1 = (glxI - fl • . . . , g"x lI - 1", 1-gy).
where g = g, .. . gil' Compute a Groebner basis with respect to a lexicographic
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ordering where y and every t, are greater than every Xi . Then the elements of the
Groebner basis not involving y, t), . . . , tm define the smallest variety in k" containing
the parametrization.
Let us see how this algorithm works for example (5). Let w be the new variable, so

that

J = (vx - u2 , uy - v2, Z - u , I - uvw) C k[w , u , V,X, y, zl.
One easily calculates that Js = J n k[x, y, z] = (x2y - Z3), so that V(x2y - Z3) is
the variety determined by the parametrization (5). In the exercises, you will study how
much of V(x 2 y - Z3) is filled up by the parametrization.
We should also mention that in practice, resultants are often used to solve the implic-

itization problem. Implicitization for curves and surfaces is discussed in ANDERSON,
GOLDMAN and SEDERBERG (l984a) and (l984b). A more recent reference is CANNY and
MANOCHA (1992), which shows how implicitization of parametric surfaces can be done
using multi polynomial resultants.

EXERCISES FOR §3

I. In diagram (3) in the text, prove carefully that F = 11'", 0 i and i(k"') = V.
2. When k = eL, the conclusion of Theorem I can be strengthened. Namely, one can show that

there is a variety W ~ V(/",) such that V(/",) - W c F(eL"'). Prove this using the Closure
Theorem.

3. Give an example to show that Exercise 2 is false over JR. Hint: (2 is always positive.
4. In the text, we proved that over eL, the tangent surface to the twisted cubic is defined by the

equation

87 = x 3z - (3/4)x 2 / - (3/2)xyz + i + {l/4)Z2 = o.
We want to show that the same is true over JR. If (x, y. z) is a real solution of the above
equation, then we proved (using the Extension Theorem) that there are t , U E eL such that

x = t + u,
Y = (2 + 'uu ,
z = (3 + 3(2u .

Use the Groebner basis given in the text to show that ( and u are real . This will prove that
(x, y, z) is on the tangent surface in JR3 . Hint: First show that u is real.

5. In the parametrization of the tangent surface of the twisted cubic, show that the parameters
t and u are uniquely determined by x, y, and z. Hint: The argument is similar to what you
did in Exercise 4.

6. Let S be the parametric surface defined by

x = uv ,

y = u2,

Z = v2•
a. Find the equation of the smallest variety V that contains S.
b. Over eL, use the Extension Theorem to prove that S = V. Hint: The argument is similar

to what we did for the tangent surface of the twisted cubic.
c. Over JR, show that S only covers the "half' of V. What parametrization would cover the

other "half"?
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7. Let S be the parametri c surface

x = uv.

y = uv2•
Z = u2•

a. Find the equat ion of the smallest variety V that contains S.
b. Over <C. show that V contains points which are not on S. Determine exactly which points

of V are not on S. Hint: Use lexicographic order with u > v > x > y > z.
8. The Enneper surface is defined parametric ally by

x = 3u + 3uv2 - u3•

y = 3v + 3u2v - v3 •

z=3u2 -3v2•

a. Find the equation of the smallest variety V containing the Enneper surface. It will be a
very complicated equation !

b. Over <C. use the Extension Theorem to prove that the above equations parametrize the
entire surface V. Hint: There are a lot of polynomials in the Groebner basis. Keep
looking-you will find what you need.

9. The Whitney umbrella surface is given parametrically by

x = uv.

A picture of this surface is:

a. Find the equation of the smallest variety containing the Whitney umbrella.
b. Show that the parametrization fills up the variety over <C but not over JR. Over JR. exactly

what points are omitted?
c. Show that the parameters u and v are not always uniquely determ ined by x, Y. and z. Find

the points where uniqueness fails and explain how your answer relates to the picture.
10. Considerthe curve in iC" parametrized by Xi = f;(t). where flo . .. , /., are polynomials in

<C[t]. This gives the ideal

I = (X I - fl( t )• . . . •x" - /. ,(t)) C <C[t .XI•. . . • x,,).

a. Prove that the parametric equations fill up all of the variety V(II) c <C".
b. Show that the conclusion of part a may fail if we let f •• . . . • f" be rational functions.

Hint: See §3 of Chapter I.
c. Even if all of the f; 's are polynomials. show that the conclusion of part a may fail if we

work over JR.
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II. This problem is concerned with the proof of Theorem 2.
a. Let k be an infinite field and let f . g E k[l" . .. ,11'1 ] ' Assume that g :f:. Dimd that J'

vanishes on k'" - V(g) . Prove that f is the zero polynomial. Hint : Cons ider the product
fg ·

b. Prove Theorem 2 using the hints given in the text.
12. Consider the parametrization (5) given in the text. For simplicity, let k = (1;. Also let
/ = (vx - ul , uy - vl , Z - u) be the ideal obtained by "clearing denominators."
a. Show that /1 = (z;(xly - Z; l») .

b. Show that the smallest variety in (1;5containing i «1;2 - W) [see diagram (7)] is V (vx -
u2, uy - vl • z - U. x2y - Z;l, VZ; - xy) . Hint: Show that i«1;l - W) = Jr l (V(J», and
then use the Closure Theorem.

c. Show that {(D. D. x, y, D) : x, y arbitrary} c V(l) and conclude that V(l) is nOI the
smallest variety containing i «1;1 - W) .

d. Determine exactly which portion of x 2y = Z;l is parametrized by (5).
13. Given a rational parametrization as in (6), there is one case where the naive ideal I

(glx l - fl , . . . , gilXII - 1,,) obtained by "clearing denominators" gives the right answer.
Suppose that Xi = I, (1)/gi (I) where there is only one parameter I . We can assume that for
each i , f;(l) and gi(t) are relatively prime in k[t] (so in particular, they have no common
roots). If / C k[l . Xl • • . • , XII] is as above, then prove that V(ld is the smallest variety
containing F(k - W), where as usual g = gl . . . gil E k[l] and W = V(g) C k . Hint: In
diagram (7), show that ilk" - W) = V(l), and adapt the proof of Theorem I.

14. The folium ofDescartes can be parametrized by

31
I + Il '
311

1+ I l .

a. Find the equation of the folium. Hint: Use Exercise 13.
b. Over (1; or JR, show that the above parametrization covers the entire curve.

15. In Exercise 16 to §3 of Chapter I, we studied the parametric equations over JR

(I - t)2 XI + 21(1 - I)WX2 + 12Xl
(I - 1)2 + 21(1 - I)W + 12

(I - .1)2YI + 21(1 - I)WY2 + 12Yl
(I - 1)2 + 21(1 -I)w + 12

where w, XI , YI , Xl , Y2, Xl , Yl are constants and W > D. By eliminating I , show that these
equations describe a portion of a conic sect ion. Recall that a conic section is described by
an equation of the form

ax l + bx y +cl + dx + ey + f = D.

Hint: In most computer algebra systems, the Groebner basis command allows polynomials to
have coefficients involving symbolic constants like w, x" YI, X2, Y2, Xl, Yl . Since we are
over JR and the denominators never vanish, you can use Exercise 13.

§4 Singular Points and Envelopes

In this section. we will discuss two topics from geometry:
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• the singular points on a curve',
• the envelope of a family of curves .
Our goal is to show how geometry provides interesting equations that can be solved by
the techniques studied in §§1 and 2.
We will introduce some of the basic ideas concerning singular points and envelopes ,

but our treatment will be far from complete . One could write an entire book on these
topics [see, for example , BRUCE and GIBLIN (1984)] . Also , our discussion of envelopes
will not be fully rigorous . We will rely on some ideas from calculus to justify what is
going on.

Singular Points
Suppose that we have a curve in the plane k2 defined by f(x, y) = 0, where
f E k[x, y]. We expect that V(f) will have a well-defined tangent line at most
points, although this may fail where the curve crosses itself or has a kink. Here are
two examples:

y

x

y

x

If we demand that a tangent line be unique and follow the curve on both sides of the
point, then each of these curves has a point where there is no tangent. Intuitively, a
singular point of V(f) is a point 'such as above where the tangent line fails to exist.
To make this notion more precise, we first must give an algebraic definition oftangent

line. Wewill use the following approach. Given a point (a. b) E V(f), a line L through
(a , b) is given parametrically by

x = a + ct ,
(1)

y = b + dt.
This line goes through (a, b) when t = O. Notice also that (c, d) i= (0,0) is a vector
parallel to the line. Thus , by varying (c, d) , we get all lines through (a , b). But how do
we find the one that is tangent to V(f)? Can we find it without using calculus?
Let us look at an example . Consider the line L



§4. SingularPointsand Envelopes 135

x = I + ct,
y = I + dt ,

through the point (I, I) on the parabola y = x2:

(2)

,,,,,

From calculus, we know that the tangent line has slope 2, which corresponds to the line
with d = 2c in the above parametrization. To find this line by algebraic means, we will
study the polynomial that describes how the line meets the parabola. If we substitute
(2) into the left-hand side of y - x 2 = 0, we get the polynomial

(3) get) = I + dt - (I + ct)2 = _c2t2+ (d - 2c)t = t (-c2t + d - 2c).

The roots of g determine where the line intersects the parabola (be sure you understand
this). If d =I 2c, then g has two distinct roots when c =I 0 and one root when c = o.
But if d = 2c , then g has a root "Of multiplicity 2. Thus, we can detect when the line
(2) is tangent to the parabola by looking for a multiple root.
Based on this example, let us make the following definition.

Definition 1. Let k be a positive integer. Suppose that we have a point (a, b) E V(f)
and let L be a line through (a , b). Then L meets V(f) with multiplicity k at (a, b) if L
can be parametrized as in (1) so that t = 0 is a root ofmultiplicity k ofthe polynomial
g(t) = f(a + ct , b + dt) .

In this definition , note that g (0) = f (a, b) = 0, so that t = 0 is a root of g.Also, recal1
that t = 0 is a root of multiplicity k when g = v», where h(O) =1= O. One ambiguity
with this definition is that a given line has many different parametrizations. So we need
to check that the notion of multiplicity is independent of the parametrization. This will
be covered in the exercises.
For an example of how this definition works, consider the line given by (2) above.

It should be clear from (3) that the line meets the parabola y = x2 with multiplicity I
at (I, I) when d =I 2c and with multiplicity 2 when d = 2c . Other examples will be
given in the exercises .
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We will use the notion of multiplicity to pick out the tangent line . To make this work ,
we will need the gradient vector of I. which is defined to be

VI - ( ~f ~/)- ax ' ay .

We can now state our result.

Proposition 2. Let I E k[x , y],andlet(a ,b) E V(f).
(i) llV f ta , b) t= (0,0) , then there is a unique line through (a , b) which meets V(f)

with multiplicity :::: 2.
(ii) If V f ia , b ) = (0,0), then every line through (a , b) meets V(f) with multiplicity

:::: 2.

Proof. Let a line L through (a, b) be parametrized as in equation (I) and let g (t) =
f ta + ct , b + dt). Since (a , b) E V(f), it follows that t = 0 is a root of g. The
following observation will be proved in the exercises:

(4) t = 0 is a root of g of multiplicity :::: 2 {=::> g' (0) = O.

Using the chain rule, one sees that

g'(t) = -Ix f ta + ct , b + dt) . C + f,:f(a + ct , b + dt) . d,

and thus

g'(O) = -Ix f ta , b) . c + *' f ia, b) . d.

If V f ta , b) = (0,0) , then the above equation shows that g' (O) always equals O.By
(4), it follows that L always meets V(f) at (a , b) with multiplicity g 2. This proves the
second part of the propo sition. Turning to the first part , suppose that V I (a, b) t= (0 , 0).
We know that g' (0) = 0 if and only if

(5 ) t f(a , b) . c + t. f ta, b) . d = O.

This is a linear equation in the unknowns c and d. Since the coefficients t f ta , b)
and t. I (a, b) are not both zero , the solution space is l-dimensional. Thus , there is
(co, do) t= (0, 0) such that (c , d) satisfies the above equation if and only if (c, d) =
A(co, do) for some A E k. It follows that the (c. d),s giving g'(O) = 0 all parametrize
the same line L. This shows that there is a unique line which meets V(f) at (a, b) with
multiplicity g 2. Proposition 2 is proved. 0

Using Proposition 2, it is now obvious how to define the tangent line. From the second
part of the proposition, it is also clear what a singular point should be.

Definition 3. Let I E k[x, y) and let (a, b) E V(f) .
(i) If V f ta , b) t= (0,0) , then the tangent line ofV(f) at (a , b) is the unique line

through (a. b) which meets V(f) with multiplicity :::: 2. We say that (a , b) is a
nonsingular point oIV(f ).

(ii) llV f ta, b ) = (0,0) , then we say that (a, b) is a singular point ofV(f ).
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Over IR, the tangent line and the gradient have the following geometric interpreta-
tion . If the tangent to V(f) at (a , b) is parametrized by (1), then the vector (c, d) is
parallel to the tangent line. But we also know from equation (5) that the dot product
V f(a, b) . (c, d) is zero, which means that V f(a, b) is perpendicular to (c, d). Thus,
we have an algebrai c proof of the theorem from calculus that the gradient V f(a , b) is
perpendicular to the tangent line ofV(f) at (a, b).
For any given curve V(f), we can compute the singular points as follows . The

gradient V f is zero when Ix f and -t f vanish simultaneously. Since we also have to
be on V(f), we need f = O. It follows that the singular points of V(f) are determined
by the equations

a af = ax f = ay f = O.

As an example, cons ider the curve y2 = x 2(1 + x) shown earlier. To find the singular
points , we must solve

f = l - x 2 - x 3 = 0,
-aa f = -2x -. 3x2 = 0,x

fy f = 2y = O.

From these equations, it is easy to see that (0, 0) is the only singular point of V(f) .
This agrees with the earlier picture .
Using the methods learned in §§ I and 2, we can tackle much more complicated

problems. For example, later in this section we will determine the singular points of
the curve defined by the sixth degree equation

o= - 1156 + 688x 2 - 191x4 + 16x6 + 544y + 30x2y - 4Ox4y

+ 225l- 96x2l + 16x4l- 136l- 32x&l + 16l .

The exercises will explore some other aspects of singular points . In Chapter 9, we will
study singular and nonsingular points on an arbitrary affine variety.

Envelopes
In our discussion of envelopes, we will work over IR to make the geometry easier to
see . The best way to explain what we mean by envelope is to compute an example. Let
t E IR, and consider the circle in IR2 defined by the equation

(6)

Since (t , t 2) parametrizes a parabola, we can think of equation (6) as describing the
family of circles of radius 2 in IR2 whose centers lie on the parabola y = x2•The picture
is as follows :
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A Family of Circles in the Plane

Note that the "boundary" curve is simultaneously tangent to all the circles in the family.
This is a special case of the envelope of a family of curves. The basic idea is that the
envelope of a family of curves is a single curve that is tangent to all of the curves in the
family. Our goa! is to study envelopes and learn how to compute them. In particular,
we want to find the equation of the envelope in the above example .
Before we can give a more careful definition of envelope, we must first understand

the concept of a family of curves in JR2.

Definition 4. Given a polynomial F E JR[x, y, t], fixa real number t E JR. Then the
variety in JR2 defined by F(x , y , t ) = 0 is denoted V(F,), and the family of curves
determined by F consists of the varieties V(F,) as t varies over JR.

In this definition , we think of t as a parameter that tells us which curve in the family
we are looking at. Strictly speaking, we should say "family of varieties" rather than
"family of curves," but we will use the latter to emphasize the geometry of the situation.
For another example of a family and its envelope, consider the curves defined by

(7) F(x, y, 1) = (x - t)2 - Y + t = O.

Writing this as y - t = (x - t)2, we see in the picture at the top of the next page that (7)
describes the family V(F,) of parabolas obtained by translating the standard parabola
y = x 2 along the straight line y = x . In this case, the envelope is clearly the straight
line that just touches each parabola in the family. This line has slope I, and from here,
it is easy to check that the envelope is given by y = x - 1/4 (the details are left as an
exerc ise).
Not all envelopes are so easy to describe . The remarkable fact is that we can

characterize the envelope in the following completely algebraic way.
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A Family of Parabolas in the Plane

Definition S. Given a family V(Ft ) ofcurves in JR2• its envelope consists ofall points
(x, y ) E JR2 with the property that

F(x , y , t) = 0,
aa; F (x, y, t) = 0

for some t E JR.

We need to explain how this definition corresponds to the intuitive idea of envelope.
The argument given below is not rigorous, but it does explain where the condition
on f, F comes from. A complete treatment of envelopes requires a fair amount of
theoret ical machinery. We refer the reader to Chapter 5 of BRUCE and GIBLIN (1984)
for more deta ils.
Given a family V(F; ), we think of the envelope as a curve C with the property that at

each point on the curve, C is tangent to one of the curves V(Ft ) in the family. Suppose
that C is parametrized by

x = f(t),

y = get) .

We will assume that attime t • the point (f (t ), g(t» is on the curve V(Ft ) . This ensures
that C meets all the members of the family. Algebraically, this means that

(8) F(f(t), g(t ), t) = 0 for all t E JR.

But when is C tangent to V(Fr) at (f(t), get»~? This is what is needed for C to
be the envelope of the family. We know from calculus that the tangent vector to C is
(f/ (r), g'(t)) . As for V(Ft ), we have the gradient '11 F = (t F, iv F ), and from the
first part of this section, we know that VF is perpendicular to the tarigent line to V (F t ) .
Thus, for C to be tangent to V (Ft ) , the tangent (F(t), g'(t)) must be perpendicular to
the gradient '11 F. In terms of dot products , this means that '11 F . (f /(t) , g'(t » = 0 or,
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equivalently,

(9) t F(f(t), g(l), t) . f'(t) + 1; F(f(l), get) , t) . g'(I) = O.

We have thus shown that the envelope is determined by conditions (8) and (9) . To
relate this to Definition 5, differentiate (8) with respect to t. Using the chain rule, we
get

fx F(f(l), g(l), t) . ri» + 1; F(f(t), get), t) . g'(I) + j; F(f(t) , get) , r) = O.

If we subtract equation (9) from this, we obtain

(10) j; F(f(t), g(1), t) = O.

From (8) and (10), it follows that (x, y) = (f(t), g(l» has exactly the property
described in Definition 5.
As we will see later in the section, the above discussion of envelopes is rather naive.

For us, the main consequence ofDefinition 5 is that the envelope of V(F,) is determined
by the equations

F(x, y , t) = 0,
j; F(x , y , t) = O.

Note that x and y tell us where we are on the envelope and t tells us which curve in the
family we are tangent to. Since these equations involve x, y, and t . we need to eliminate
t to find the equation of the envelope. Thus, we can apply the theory from §§1 and 2 to
study the envelope of a family of curves.
Let us see how this works in example (6). Here, F = (x - 1)2 + (y - t 2 )2 - 4, so

that the envelope is described by the equations

F = (x - t)2 + (y - t 2)2 - 4 = 0,

j; F = -2(x - t) - 4t(y - t 2 ) = O.

Using lexicographic order with t > x > y, a Groebner basis is given by

gl = - 1156 + 688x2 - 191x 4 + 16x6 + 544y + 30x2y - 4Ox4y

+ 2251 - 96x21 + 16x4y2 - 136l- 32x2y3 + 16l,
82 =(7327 - 1928y - 768y2 - 896l + 256y4)t + 6929x - 2946x3

+ 224x5+ 2922xy - 1480x3y + 128x5y - 792xl - 224x3l

- 544xl + 128x3l - 384xy4,

83 =(431x - 12xy - 48xl- 64xl)t + 952 - 159x2 - 16x4+ 320y
- 214x2y + 32x4y - 366y2 - 32x2l- 80l + 32x21 + 32l,

g4 =(697 - 288x2+ 108y - 336l + 64l)t + 23x - 174x3

+ 32x5+ 322xy - 112x3y + 32xl + 32x3l- 96xl,
g5 =135t 2 + (26x + 40xy + 32xy2)t - 128 + l11x2

- 16x4+ 64y + 8x2y + 32l- 16x2l- 16y3.
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We have written the Groebner basis as polynomials in t with coefficients in lR[x, y].
The Elimination Theorem tells us that gl generates the first elimination ideal. Thus, the
envelope lies on the curve gl = O. Here is a picture of V(gl) together with the parabola
y = xz:

The surprise is the "triangular" portion of the graph that was somewhat unclear in the
earlier picture of the family. By drawing some circles centered on the parabola, you can
see how the triangle is still part of the envelope.
We have proved that the envelope lies on V(g,), but the two may not be equal. In

fact, there are two interesting questions to ask at this point:
• Is every point of V (g I) on the envelope? This is the same as asking if every partial
solution (x, y) of (II) extends to a complete solution (x, y, t) .

• Given a point on the envelope, how many curves in the family are tangent to the
envelope at the point? This asks how many t's are there for which (x, y) extends to
(x, y, t) .

Since the leading coefficient of t in gs is the constant 135, the Extension Theorem (in
the form of Corollary 4 of § I) guarantees that every partial solution extends, provided
we work over the complex numbers. Thus, t exists, but it might be complex. This
illustrates the power and limitation of the Extension Theorem: it can guarantee that
there is a solution, but it might lie in the wrong field.
In spite of this difficulty, the equation gs = 0 does have something useful to tell us:

it is quadratic in t . so that a given (x, y) extends in at most two ways to a complete
solution. Thus, a point on the envelope of (6) is tangent to at most two circles in the
family. Can you see any points where there are two tangent circles?
To get more information on what is happening, let us look at the other polynomials in

the Groebner basis. Note that gz. g3, and g4 involve t only to the first power. Thus, we
can write them in the form

g; = A;(x . y)t + B;(x, y), i = 2,3,4.
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If Ai does not vanish at (x, y) for one of i = 2, 3, 4, then we can solve Ait + B, = 0
to obta in

Bi(x, y)
t = - .

A;(x, y)

Thus , we see that t is real whenever x and yare. More importantly, this formula shows
that t is uniquely determined when A;(x, y) ::j: O. Thus, a point on the envelope 0/(6)
not in V(A2, A3' A4) is tangent to exactly one circle in the family.
It remains to understand where A2, A3, and A4 vanish simultaneously. These poly-

nomials might look complicated, but, using the techniques of § I , one can show that the
real solutions of A2 = A3 = A4 = 0 are

(12) (x , y) = (0, 17/4) and (±0.936845, 1.63988).

(14)

Looking back at the picture of V(gd, it appears that these are the singular points of
V(gl) . Can you see the two circles tangent at these points?
From the first part of this section , we know that the singular points of V(g,) are

determined by the equations gl = -Ix g, = tv gl = O. Thus , to say that the singular
points coincide with (12) means that "

a a(13) V(A2, A3, A4) = V(g), ax s, ay gl~ '

To prove this, we will show that
a agl, axg l , ayg\ E (A2 , A3' A4),
A 2 A 2 A2 ( a a)2' 3' 4 E 81'ijX8Ioay81'

The proof of (14) is a straightforward application of the ideal membership algo-
rithm discussed in Chapter 2. For the first line, one computes a Groebner basis of
(A 2, A3, A4) and then applies the algorithm for the ideal membership problem to each
of 8', -Ix gl, tv g l (see §7 ofChapter2). The second line of(14) is treated similarly-the
details will be"leftas an exercise.
Since (13) follows immediately from (14), we have proved that a nonsingular point

on V(gl) is in the envelope of (6) and, at such a point, the envelope is tangent to
exactly one circle in the family. Also note that the singular points of V(g ,) are the most
interesting points in the envelope ; for they are the ones where there are two tangent
circles . This last observation shows that singular points are not always bad-they can be
a useful indication that something unusual is happen ing. An important part of algebraic
geometry is devoted to the study of singular points.
In this example, equations (11) for the envelope were easy to write down. But to under-

stand the equations, we had to use a Groebner basis and the Elimination and Extension
Theorems. Even though the Groebner basis looked complicated, it told us exactly which
points on the envelope were tangent to more than one circle. Th is illustrates nicely the
power of the theory we have developed so far.
As we said earlier, our treatment of envelopes has been a bit naive. Evidence of this

comes from the above example, which shows that the envelope can have singularities.
How can the envelope be "tangent" to a curve in the family at a singular point? In the
exercises, we will indicate another reason why our discussion has been too simple. We
have also omitted the fascinating relation between the family of curves V(Fr ) C IR2 and
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the surface V(F) C IR3 defined by Ftx, y. t) = O. We referthe readerto Chapter 5 of
BRUCE and GIBLIN (1984) for a more complete treatment of these aspects of envelopes.

EXERCISES FOR§4

1. Let C be the curve in e defined by x 3 - xy + i = I and note that (I. I) E C. Now
consider the straight line parametrized by

x = I + ct.

Y = 1 + de.

Compute the multiplicity of this line when it meets C at (1, I) . What does this tell you about
the tangent line? Hint: There will be two cases to consider.

2. In Definition I . we need to show that the notion of multiplicity is independent of how the
line is parametrized.
a. Show that two parametrizations

x=a+ct. x=a+c't,
y = b + dt , Y = b + d't .

correspond to the same line if and only if there is a nonzero real number A such that
(c. d) = A(C', d'], Hint: In the parametrization x = a + ct , y = b + dt of a line L,
recall that L is parallel to the vector (c , d) .

b. Suppose that the two parametrizations of part a correspond to the same line L that meets
V(f) at (a , b). Prove that the polynomials get) = f(a + ct , b + dt) and g'(t} =
I(a + c't , b + d't} have the same multiplicity at t = O. Hint: Use part a to relate g and
g' , This will prove that the multipl icity of how L meets V(n at (a, b) is well defined .

3. Consider the stra ight lines

x = t,

y=b+e.

These lines have slope I and y-intercept b. For which values ofb is the line tangent to the circle
x 2+y2 = 2? Draw a picture to illustrate your answer.Hint: Consider get) = t2+(b+t}2-2.
The roots of this quadratic determine the values of t where the line meets the circle .

4. If (a, b) E V(f) and yo [ia , b) f= (0,0), prove that the tangent line of V(f) at (a , b) is
defined by the equation

t f ia , b) . (x - a) + *f ia , b) . (y - b) = O.

5. Let g E k[t] be a polynomial such that g(O) = O.
a. Prove that t = 0 is a root of multiplicity ~ 2 of g if and only if g'(O) = O. Hint: Write
get} = thtt], and use the product rule .

b. More generally, prove that t = 0 is a root of multiplicity 2: k if and only if g'(O) =
g"(O) = ... = g (I-Il(O) =O.

6. As in the Definit ion I, let a line L be parametrized by (I), where (a , b) E V(f) . Also
let get} = I(a + ct , b + dt) . Prove that L meets V(f) with multiplicity k if and only if
g'(O) = g"(O) = . . . = g (I-Il(O) = 0 but g 'I>(O) f= O. Hin t: Use the previous exercise.

7. In this exercise , we will study how a tangent line can meet a curve with mult iplicity greater
than 2. Let C be the curve defined by y = f(x), where I E k[x] . Thus, C is just the graph
of f .
a. Give an algebraic proof that the tangent line to C at (a, f(a» is parametrized by

x = a + t ,

y = I(a)+ !'(a)t .
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Hint: Consider get) = I(a) + j'(a)t - f ta + t).
b. Show that the tangent line at (a, I(a» meets the curve with multiplicity 2: 3 if and only

if /,,(a) = O. Hint: Use the previous exercise .
c. Show that the multiplicity is exactly 3 if and only if /,,(a) = 0 but /,,'(a) =f. O.
d. Over JR, a point of inflection is defined to be a point where /"(x) changes sign. Prove

that if the multiplicity is 3, then (a , I(a» is a point of inflection.
8. In this problem, we will compute some singular points .

a. Show that (0, 0) is the only singular point of y2 = x 3•
b. In Exercise 8 of §3 of Chapter I, we studied the curve y2 = cx 2 - x 3 , where c is some

constant. Find all singular points of this curve and explain how YOUt answer relates to the
picture of the curve given in Chapter 1.

c. Show that the circle x 2 + y2 = a2 has no singular points.
9. One use of multiplicities is to show that one singularity is "worse" than another.

a. For the curve y2 = x 3, show that most lines through the origin meet the curve with
multiplicity exactly 2.

b. For x 4 + 2xy 2 + y3 = 0, show that all lines through the origin meet the curve with
multiplicity 2: 3.

This suggests that the singularity at the origin is "worse" on the second curve . Using the
ideas behind this exercise , one can define the notion of the multiplicity of a singular point.

10. We proved in the text that (0, 0) is a singular point of the curve C defined by y2 = x2(1 +x) .
But in the picture of C, it looks like there are two "tangent"lines through the origin . Can we
use multiplicities to pick these out?
a. Show that with two exceptions, all lines through the origin meet C with multiplicity 2.

What are the lines that have multiplicity 3?
b. Explain how your answer to part a relates to the picture of C in the text. Why should the

"tangent" lines have higher multiplicity?
II . The four-leaved rose is defined in polar coordinates by the equation r = sin(20) :

In Cartesian coordinates , this curve is defined by the equation (x 2 + y2)3 = 4x 2y2 .
a. Show that most lines through the origin meet the rose with multiplic ity 4 at the origin .

Can you give a geometric explanation for this number?
b. Find the lines through the origin that meet the rose with multiplicity> 4. Give a geometric

explanation for the numbers you get.
12. Consider a surface VU) c k3 defined by IE k[x , y, z].
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a. Define what it means for (a , b, c) E V(f) to be a singular point.
b. Determine all singular points of the sphere x 2 + y2 + Z2 = I. Does your answer make

sense?
c. Determine all singular points on the surface V(x2 - ylz2 + Z3). How does your answer

relate to the picture of the surface drawn in §2 of Chapter I?
13. Consider the family of curves given by F = xy - f E IR[x, y, fl. Draw various of the

curves V(F,) in the family. Be sure to include a picture of V(Fo).
14. This problem will study the envelope of the family F = (x - f)2 - Y + t considered in

example (7).
a. It is obvious that the envelope is a straight line of slope I. Use elementary calculus to

show that the line is y = x - 1/4.
b. Use Definition 5 to compute the envelope.
c. Find a parametrization of the envelope so that at time t, the point (f(t), g(t) is on the

parabola V(F,) . Note that this is the kind of parametrization used in our discussion of
Definition 5.

15. This problem is concerned with the envelope of example (6).
a. Copy the picture in the text onto a sheet of paper and draw in the two tangent circles for

each of the points in (12).
b. For the point (0,4.25) = (0,17/4), find the exact values of the t's that give the two

tangent circles .
c. Show that the exact values of the points (12) are given by

(0, ¥) and (± 4}15 + 6-Y2 - 12-Y4, ~ (-I + 6-Y2».

Hint: Most computer algebra systems have commands to factor polynomials and solve
cubic equations .

16. Consider the family determined by F = (x - t)2 + y2 - (1/2)t2.
a. Compute the envelope of this family.
b. Draw a picture to illustrate your answer.

17. Consider the family of circles defined by (x - t)2 + (y - (2)2 = f2 in the plane IR2 •
a. Compute the equation of the envelope of this family and show that the envelope is the

union of two varieties.
b. Use the Extension Theorem and a Groebner basis to determine, for each point in the

envelope , how many curves in the family are tangent to it. Draw a picture to illustrate
your answer. Hint: You will use a different argument for each of the two curves making
up the envelope .

18. Prove (14) using the hints given in the text. Also show that A2 rf. (gl ' 1. gl, 1. gil . This
shows that the ideals (gl' 1. gl, ;f;:gl) and (A2, A) , A4} are not equal, even though they
define the same variety. .

19. In this exercise , we will show that our definition of envelope is too naive.
a. Given a family of circles of radius I with centers lying on the x-axis, draw a picture to

show that the envelope consists of the lines y = ± I.
b. Use Definition 5 to compute the envelope of the family given by F = (x - t)2 + l - I.

Your answer should nos be surprising.
c. Use Definition 5 to find the envelope when the family is F = (x - (3)2 + y2 - I. Note

that one of the curves in the family is part of the answer. This is because using f3 allows
the curves to "bunch up" near t = 0, which forces V(Fo) to appear in the envelope .

In our intuitive discussion of envelope, recall that we assumed we could parametrize the
envelope so that (f(t), get»~ was in V(F,) at time t , This presumes that the envelope is
tangent to different curves in the family. Yet in the example given in part c, part of the
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envelope lies in the same curve in the family. Thus . our treatment of envelope was too
simple .

20. Suppose we have a family of curves in lR2 determined by F E lR[x . y. tl. Some of the
curves V(F,) may have singular points. whereas others may not. Can we find the ones that
have a singularity?
a. By considering the equations F = t F = t F = 0 in lR) and using elimination

theory. describe a procedure for determining those t's corresponding to curves in the
family which have a singular point.

b. Apply the method of part a to find the curves in the family of Exercise 13 that have
singular points.

§5 Unique Factorization and Resultants

The main task remaining in Chapter 3 is to prove the Extension Theorem. This will
require that we learn some new algebraic tools concerning unique factorization and
resultants. Both of these will be used in §6 when we prove the Extension Theorem . We
will also make frequent use of unique factorization in later chapters of the book.

Irreducible Polynomials and Unique Factorization
We begin with a basic definition.

Definition 1. Let k be a field. A polynomial f E k[xi • . . . •XII] is irreducible over
k if f is nonconstant and is not the product of two nonconstant polynomials in
k[x l • . . . • XII]'

This definition says that if a nonconstant polynomial f is irreducible over k, then up
to a constant multiple. its only nonconstant factor is f itself. Also note that the concept
of irreducibility depends on the field. For example. x2 + I is irreducible over <Q and
JR. but. over <C. we have x 2 + I = (x - i)(x + i).
Every polynomial is a product of irreducible polynomials as follows.

Proposition 2. Every nonconstant polynomial f E k[xi • . . . •XII] can be written as a
product ofpolynomials which are irreducible over k.

Proof. If f is irreducible over k, then we are done . Otherwise, we can write f = gh,
where g. h E k[xi • . . . •XII] are nonconstant. Note that the total degrees of f and g are
less than the total degree of f. Now apply this process to g and h: if either fails to be
irreducible over k, we factor it into nonconstant factoraSince the total degree drops
each time we factor, this process can be repeated at most finitely many times: Thus. f
must be a product of irreducibles. 0

InTheorem5 wewill show that the factorization ofProposition 2 is essentially unique.
But first, we have to prove the following crucial property of irreducible polynomials.
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Theorem 3. Let I E k[XI , .. . , XII] be irreducible over k and suppose that I divides
the product gh, where g. h E k[xi • . . . •XII]' Then I divides g or h.

Proof. We will use induction on the number of variables . When n = 1, we can use
the GCD theory developed in §5 of Chapter 1. If I divides gh, then consider p =
GCD(j, g) . If p is nonconstant, then I must be a constant multiple of p since I is
irreducible, and it follows that I divides g. On the other hand, if p is constant, we
can assume p = 1, and then we can find A, B E k[xd such that AI + Bg = I (see
Proposition 6 of Chapter I, §5). If we multiply this by h, we get

h = h(AI + Bg) = Ahf + Bgh .

Since I divides gh , I is a factor of Ah] + Bgh, and, thus. I divides h. Th is proves
the case n = 1.
Now assume that the theorem is true for n - 1.We first discuss the special case where

the irreducible polynomial does not involve XI :

(I) u E k[X2• . . . , XII] irreducible, u divides gh E k[Xh . . . , X'I] => u divides g or h.

To prove this, write g = L ;=Oaix\ and h = Lr~objx\ , where a., b, E k[X2• . . . , XII]'
If u divides every ai, then u divides g, and similarly for h. Hence , if u divides neither,
we can find i , j :::: 0 such that u divides neither a, nor bi :We will assume that i and j
are the smallest subscripts with this property. Then consider

Ci+j = (aobj+ j + atbj+j_1 + .. .+ aj_Ibj+d + a.b, + (ai+lb j_ 1 + .,.+ aj+jbo).

By the way we chose i , u divides every term inside the first set of parentheses and, by
the choice of i. the same is true for the second set of parentheses. But u divides neither
a, nor bt - and since u is irreducible, our inductive assumption implies that u does not
divide a.b] , Since u divides all other terms of cu.], it cannot divide Ci+j' We leave it
as an exercise to show that c,+ j is the coefficient of x;+) in gh, and, hence, u cannot
divide gh. This contradiction completes the proof of (I).
Now, given (I). we can treat the general case. Suppose that I divides gh , If I doesn 't

involve XI, then we are done by (I). So assume that I is nonconstant in X I . We will
use the ring k (X2 • . . . • xlI)[x I ] , which is a polynomial ring in one variable over the field
k(X2, . .. , XII)' Remember that elements of k(X2, ...• XII) are quotients of polynomi-
als in k[X2• . . . •XII]' We can regard k[x), . . . ,XII] as lying inside k (X2 ; .. . • xlI)[xd .
The strategy will be to work in the larger ring, where we know the theorem to be true,
and then pass back to the smaller ring k[ xi • . . . , XII]'
Weclaim that I is still irreducible when regarded as an element of k(X2• . . . , XII)[XI]'

To see why, suppose we had a factorization of I in the larger ring. say I = AB. Here.
A and B are polynomials in XI with coefficients in k(X2, . . . •XII)' To prove that I is
irreducible here, we must show that A or B has degree 2. in XI . Let d ~ k[X2• . . . •XII]
be the product of all denominators in A and B. Then A = dA and B = dB are in
k[Xl, . .. , XII], and

(2)

in k[XI, .. . •XII]' By Proposition 2, we can write d2 as a product of irreducible factors
in k[X2, . . . , XII]' and, by (1). each of these divides A or B. We can cancel such a factor
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from both sides of (2), and after we have cancelled all of the factors, we are left with

in k[X l, ... , x1I1 . Since f is irreducible in k[XI, . . . , XII]' this implies that A 1 or 8 1 is
constant. Now these polynomials were obtained from the original A, 8 by multiplying
and dividing by various elements of k[X2, ... • XII]' This shows that either A or 8 does
not involve x" and our claim follows.
Now that f is irreducible in k(X2, . . . , xlI)[xtl . we know by the n = 1 case of

the theorem that f divides g or h in k(X2• . . . • XII)[XI] . Say g = Af for some A E
k(X2• . . . , XII)[XI] . If we clear denominators, we can write

(3) dg = Af

in k[xi • . . . , xlll, where d E k[X2, . . . , xlll . By (1), every irreducible factor of d divides
Ii or f .The latter is impossible since f is irreducible and has positive degree in XJ . But
each time an irreducible factor divides Ii.we can cancel it from both sides of (3).When
all the cancellation is done, we see that f divides g in k[Xl , .. . •XII]' This completes
the proof of the theorem. 0

In §6, we will need the following consequence of Theorem 3.

Corollary 4. Suppose that f . g E k[XI , . . .• XII] have positive degree in XI. Then f
and g have a commonfactor in k[xi • . . . , XII] ofpositive degree in XI ifand only ifthey
have a common/actor in k(X2, . . . , xlI ) [x !l .

Proof. If / and g have a common factor h in k[XI, . . . , xlll of positive degree in XI,

then they certainly have a common factor in the larger ring k(X2, . . . , XII)[XI]' Going
the other way, suppose that f and g have a common factor h E k(X2 ," " xlI)[x!l.
Then

/ = hll,
g = hgl ,

11 E k(X2, .. . , xlI)[x!l ,

gl E k(X2, . . • , XII )[xtl ·

Now h, j I and g\ may have denominators that are polynomials in k[X2, . . . , XII]'
Letting d E k[X2, . . .• XII] be a common denominator of these polynomials, we get
h = dh, f J = d11and gl = dg l in k[xl • . . . , XII]' If we multiply each side of the
above equations by d2 , we obtain

d2f = hf«,
d2g = hg,

in k[Xl, .. . , x1I1. Now let h, be an irreducible factor of h of positive degree in XI. Since
h = h / d has positive degree in X I, such an h I must exist. Then h I divides d2 f, so that
it divides d2or f by Theorem 3. The former is impossible because d2 E k[X2, .. . , XII]
and. hence , h , must divide f in k[XI , . . . , x1I1. A similar argument shows that h ,
divides g, and, thus, h I is the required common factor. This completes the proof of the
corollary. 0
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Theorem 3 says that irreducible polynomials behave like prime numbers. in that if a
prime divides a product of two integers. it must divide one or the other. This property of
primes is the key to unique factorization of integers. and the same is true for irreducible
polynomials.

Theorem S. Every nonconstant f E k[xi • . . . • x,,] can be written as a product f =
f l 'h . .. fr ofirreducibles over k. Further, if f= g l .g2 . . . gs is anotherfactori zation
into irreducibles over k, then r = s and the g;'s can be permuted so that each /; is a
constant multiple ofgi.

Proof. The proof will be covered in the exercises. o
For polynomials in <Q[XI •.. . • X II]. there are algorithms for factoring into irreducibles

over <Q. A classical algorithm due to Kronecker is discussed in Theorem 4.8 of MINES.
RICHMAN. and RUITENBERG (1988). and a more efficient method is given in DAVEN-
PORT. SIRET and TOURNIER (1988) or MIGNOTTE (1992) . Most computer algebra systems
have a command for factoring polynomials in <Q[XI • . ..• XII]' Factoring polynomials in
lR[xl • . . .• XII] or <C[XI •...• XII) is much more difficult.

Resultants
Although resultants have a different flavor from what we have done so far. they play
an important role in elimination theory. We will introduce the concept of resultant
by asking when two polynomials in k[x] have a common factor. This might seem far
removed from elimination. but we will see the connection by the end of the section. In
§6. we will study the resultant of two polynomials in k[x ,• . . . . X II1. and we will then
use resultants to prove the Extension Theorem.
Suppose that we want to know whether two polynomials f . g E k[x] have a common

factor (which means a polynomial h E k[x) of degree> 0 which divides f and g).
One way would be to factor f and g into irreducibles. Unfortunately. factoring can be a
time-consuming process. A more efficient method would be to compute the OCD of f
and g using the Euclidean Algorithm from Chapter I. A drawback is that the Euclidean
Algorithm requires divis ions in the field k. As we will see later. this is something we
want to avoid when doing elimination. So is there a way of determining whether a
common factor exists without doing any divisions in k? Here is a first answer.

Lemma 6. Let f. g E k[x) be polynomials ofdegrees l > 0 and m > 0, respectively.
Then f and g have a common factor if and only if there are polynomials A. B E k[x]
such that:
(i) A and B are not both zero.
(ii) A has degree at most m - I and B has degree at most l - I.
(iii) Af + Bg = O.

Proof. First. assume that f and g have a common factor h E k[x]. Then f = hfI and
g = hg 1• where Ii . gl E k[x]. Note that f l has degree at most l - I . and similarly
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deg(gl) ~ m - 1. Then

gl . 1+ (- II> . g = gl . hI) - II . hg, = 0,

and, thus, A = gl and B = -II have the required properties.
Conversely, suppose that A and B have the above three properties. By (i), we may

assume B i= ~ IfJ and g have no co~mon fector, then their GCD is I, so we can find
polynomials A , B E k[x] such that AI + Bg = 1 (see Proposition 6 of Chapter I,
§5). Now multiply by B and use Bg = -AI:

B = (AI + Bg)B = ABI + BBg = ABI - BAI = (AB - BA)f.

Since B is nonzero, this equation shows that B has degree at least I, which contradicts
(ii) . Hence, there must be a common factor of positive degree. 0

The answer given by Lemma 6 may not seem very satisfactory, for we still need to
decide whether the required A and B exist. Remarkably, we can use linear algebra to
answer this last question. The idea is to tum AI + Bg = °into a system of linear
equations. Write :

A = coxm -
I + + Cm-I,

B = dOX
I- 1 + + dl - I ,

where for now we will regard the I + m coefficients Co, . .. , Cm-) , do, . . . , dl - I as
unknowns. Our goal is to find c., d, E k, not all zero , so that the equation

(4) AI + Bg = 0

holds . Note that this will automatically give us A and B as required in Lemma 6.
To get a system of linear equations, let us also write out I and g :

I = aoxl + + ai , ao i= 0,

g = boxlll + + bill , bo i= 0,
where a., b, E k , If we.substitute these formulas for I ,g, A, and B into equation (4)
and compare the coefficients of powers of x , then we get the following system of linear
equations with unknowns c., d, and coefficients a., b, in k:

aoco + bodo = ° coefficient of x l +m -
I

alco + aoci + . btdo+ bodl = 0 coefficient of X I+III
-
2

(5)

+ bllldl-I = ° coefficient of xO•
Since there are l + m linear equations and l + m unknowns, we know from linear
algebra that there is a nonzero solution if and only if the coefficient matrix has zero
determinant. This leads to the following definition.

Definition 7. Given polynomials I, g E k[x] 01positive degree. write them in the
form

I = aoxl + + ai, ao i= 0,

g = boxm + + bill, bo i= 0.
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Then the Sylvester matrix of f and g with respect to x , denoted Syl(f, g, x) is the
coefficient matrix of the system of equations given in (5). Thus. Syl(f, g, x) is the
following (l + m) x (l + m) matrix:

ao bo
at ao bl bo

az al bz b l

ao bo
Syl(f, g, x) = at bi,

a, bm

a, bm

a, bm
m columns I columns

where the empty spaces are filled by zeros. The resultant of f and g with respect to x,
denoted Res(f, g, x) , is the determinant of the Sylvester matrix. Thus,

Res(f, g , x) = det(Syl(f, s. x» .

From this definition, we get the following properties of the resultant. A polynomial
is called an integer polynomial provided that all of its coefficients are integers.

Proposition 8. Given f, g E k[x] ofpositive degree, the resultant Res(f, g , x) E k
is an integer polynomial in the coefficients of f and g. Furthermore, f and g have a
common factor in k[x] ifand only ifRes(f, g, x) = O.

Proof. The standard formula for the determinant of.an s x s matrix A = (aij) 15; .j 5-'
is

det(A) =
(1 a permutation

ofll. ··.. '}

sgn(a)at(1(1) . aZ(1(Z) . • • a'(1C<),

where sgn (a) is+I ifa interchanges an even number of pairs of elements of {I, . . . , s}
and -I if a interchanges an odd number of pairs (see Appendix A for more details) .
This shows that the determinant is an integer polynomial (in fact, the coefficients are
±l) in its entries, and the first statement of the proposition then follows immediately
from the definition of resultant.
The second statement is just as easy to prove: the resultant is zero {? the coefficient

matrix of equations (5) has zero determinant {? equations (5) have a nonzero solution .
We observed earlier that this is equivalent to the existence of A and B as in Lemma 6.
and then Lemma 6 completes the proof of the proposition. 0
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As an example, let us see if f = 2x2 + 3x + 1 and g = 7x 2 + X + 3 have a common
factor in <Q[x].One computes that

Res(f.g.x) ~ (! ~ iD~ 153 # O.

so that there is no common factor.
One disadvantage to using resultants is that large determinants are hard to compute.

In the exerc ises, we will explain an alternate method for computing resultants that is
similar to the Euclidean Algorithm. Most computer algebra systems have a resultant
command that implements this algorithm.
To link resultants to elimination, let us compute the resultant of the polynomials f =

xy - I and g = x 2+ y2 - 4. Regarding f and g as polynomials in x whose coefficients
are polynomials in y, we get

Res(f. g. x) ~ del ( ~I ~ ~) = l - 41 + I.
-1 y2- 4

More generally, if f andg are any polynomials ink[x , y] in which x appears to a positive
power, then we can compute Res(f, g , x) in the same way. Since the coefficients are
polynomials in y, Proposition 8 guarantees that Res(f, g, x) is a polynomial in y. Thus,
given f, g E k[x, y], we can use the resultant to eliminate x . But is this the same kind of
elimination that we did in §§1and 2? In particular, is Res(f, g, x) in the first elimination
ideal (f, g) n k[y]? To answer these questions, we will need the following result.

Proposition 9. Given f, g E k[x] ofpositive degree, there are polynomials A, B E
k[x] such that

Af + Bg = Res(f, g , x).

Furthermore, the coefficients ofA and B are integer polynomials in the coefficients of
f and g.

Proof. The definition of resultant was based on the equation Af + Bg = O. In this
proof, we will apply the same methods to the equation

(6) - -Af + Bg = 1.

The reason for using A rather than A will soon be apparent.
The proposition is trivially true if Res(f, g, x) = 0 (simply choose A = B = 0),

so we may assume Res(f, g, x) =/= O. Now let

f = aox l + + ai, ao =/= 0,
g = boxm + + bm , bo =/= 0,
A= coxm -

I + + em-I,

B= dox H + + d'_I,
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where the coefficients Co, • . . , Cm-I, do, . . . , dt- ! are unknowns in k. If we substi-
tute these formulas into (6) and compare coefficients of powers of x, then we get the
following system of linear equations with unknowns C; , d, and coefficients a., b, in k:

(7)

+
+

= 0 coefficient of X'+III-1
= 0 coefficient of x'+m-2

atCIII-! + bmdt-! = I coefficient of xo.
These equations are the same as (5) except for the I on the right-hand side of the last
equation. Thus, the coefficient matrix is the Sylvester matrix of f and g, and then
Res(f, g, x) f. 0 guarantees that (7) has a unique solution in k.
In this situation, we can use Cramer's rule to give aformula for the unique solution.

Cramer's rule states that the ith unknown is a ratio of two determinants, where the
denominator is the determinant of the coefficient matrix and the numerator is the deter-
minant of the matrix where the ith column of the coefficient matrix has been replaced
by the right-hand side of the equation. For a more precise statement of Cramer's rule,
the reader should consult Appendix A. In our case , Cramer's rule gives formulas for
the Ci'S and d, 'soFor example, the first unknown Co is given by

0 bo

0 ao

I bo
Co = det

Res(f, g, x) 0 at ao b",

a, bm

Since a determinant is an integer polynomial in its entries, it follows that

an integer polynomialin a., b,
Co =

Res(f, s.x)
There are similar formulas for the other Ci'S and the d. :«. Since A= cox m - I + . . . +
Cm-I, we can pull out the common denominator Res(f, g, x) and write Ain the form

I
A= ARes(f, g, x) ,

where A E k[x] and the coefficients of A are integer polynomials in a., b.. Similarly,
we can write

I
B = B,

Res(f, g. x)

where B E k[x] has the same properties as A. Since Aand Bsatisfy Af + Bg = I,
we can multiply through by Res(f, g, x) to obtain

Af + Bg = Res(f, g, x) .

Since A and B have the required kind of coefficients, the proposition is proved. 0
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Most courses in linear algebra place little emphasis on Cramer's rule , mainly because
Gaussian elimination is much more efficient (from a computational point of view) than
Cramer's rule. But for theoretical uses, where one needs to worry about the form of the
solution, Cramer's rule is very important (as shown by the above proposition).
We can now explain the relation between the resultant and the GCD. Given f, g E

k[xJ, Res(f, g , x) :1= 0 tells us that f and g have no common factor , and, hence, their
GCD is 1. Then Proposition 6 of Chapter I, §5 says that there are Aand Bsuch that
Af +Bg = 1.As the above formulas forAand Bmake clear, the coefficients ofAand B
have a denominator given by the resultant (though the resultant need not be the smallest
denominator). Then clear ing these denominators leads to Af + Bg = Res(f, g, x ).
To see this more explicitly, let us return to the case of f = x y - 1and g = x 2+y2 - 4.

If we regard these as polynomials in x, then we computed that Res(f, g, x) = y4 -
4y2 + 1 :1= O. Thus, their GCD is 1, and we leave it as an exercise to check that

_ ( y x + 1 ) f + y2 g = 1.
y4 _ 4y2 + 1 y4 _ 4y2 + 1 y4 - 4y2 + 1

Note that this equation takes place in k(y)[x l, i.e., the coefficients are rationalfunctions
in y . This is because the GCD theory from §5 of Chapter 1 requires field coefficients.
If we want to work in k(x , y l ,we must clear denominators , which leads to

(8) -(yx + l)f + 19 = y4 - 4l + 1.

This, of course , is just a special case of Proposition 9. Hence, we can regard the resultant
as a "denominator-free" version of the OeD.
We have now answered the question posed before Proposition 9, for (8) shows that

the resultant y4 - 4y2+ 1 is in the elimination ideal. More generally, it is clear that if
t. g E k(x , y] are any polynomials of positive degree in x , then Res(f, g. x) always
lies in the first elimination ideal of (j, g) . In §6, we see how these ideas apply to the
case oi ], g E k[XI , . . . , xll l.
In add ition to the resultant of two polynomials discussed here, the resultant of three of

more polynomials can be defined .One way ofdoing this will be presented in §6, though
readers interested in multipolynomial resultants should consult MACAULAY (1902) or
VAN DER WAERDEN (1931). Modem introductions to this theory can be found in BAJAl,
GARRITY and WARREN (1988) or CANNY and MANOCHA (1993 ). The latter has fur-
ther class ic references. A more sophisticated treatment of resultants is presented in
JOUANOLOU (1991) , and a vast generalization of the concept of resultant is discussed in
GELFAND, 'KAPRANOv and ZELEVINSKY (1994).

EXERCISES FOR§5

1. Here are some examples of irreducible polynomials.
a. Show that every f E k[x I of degree I is irreducible over k.
b. Let f E k[x) have degree 2 or 3. Show that! is irreducible over k if and only if f has

no roots in k.
c. Use part b to show that x 2 - 2 and x3 - 2 are irreducible over <Q but not over 1R.
d. Prove that x4 + 1 is irreducible over <Q but not over 1R. This one is a bit harder.
e. Use part d to show that part b can fail for polynom ials of degree g 4.
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2. Prove that a field k is algebraically closed if and only if every irreducible polynomial in k[x]
has degree I.

3. This exercise is concerned with the proof of Theorem 3. Suppose that I = Liaix~ and
g = L ibiX;. where a., b, E k[X2•. . . , x,,].
a. Let U E k[X2•.. .• x,,]. Show that u divides I in k[Xh . . . • x,,) if and only if. in

k[X2• . . . • x,,). u divides every a..
b. If we write gh = L iCiX;. verify that Ci+j is given by the formula that appears in the proof

of Theorem 3.
4. In this exercise. we will prove Theorem 5.

a. If I is irreducible and divides a product h, ... h" then prove that I divides hi for some
i .

b. The existence of a factorization follows from Proposition I. Now prove the uniqueness
part of Theorem 5. Hint: If I = I I ' " I , = gl' " g" where the fi's and gj 's are
irreducible. apply part a to show that I I divides some gj' Then argue gj is a constant
multiple of II. and. hence . we can cancel II from each side. Use induction on the total
degree of I.

5. Compute the resultant of X S - 3x 4 - 2x 3 + 3x2 + 7x + 6 and x 4 + x2 + I. Do these
polynomials have a common factor in <Q[x]? Explain your reasoning .

6. In Exercise 14 of Chapter I. §5. we proved that if I = c(x - a I)" .. . (x - a,)" E <C[x].
then

GCD(f, 1') = (x - al),,- I ... (x - adl-I .

Over an arbitrary field k; a given polynomial I E k[x] of positive degree may not be a
product of linear factors. But by unique factorization. we know that I can be written in the
form

I = I;' . .. J;'I .
where II • . . . • It E k[x] are irreducible and no fi is a constant multiple of Ij for j :f. i .
Prove that if k contains the rational numbers lQ. then

GCD(f, f') = 1;,-1 . . .J;'I-I .
Hint: Follow the outline of Exercise 14 of Chapter I, §5. Your proof will use unique
factorization . The hypothesis <Q c k is needed to ensure that f' :f. O.

7. If I. g E <C[x) are polynomials of positive degree . prove that I and g have a common
root in <C if and only if Res(f, g . x) = O. Hint: Use Proposition 8 and the fact that <C is
algebraically closed.

8. If I = aox' + ... + a, E k[x]. where ao :f. 0 and l > O. then the discriminant of I is
defined to be

. (_1)'11- 1)/2 ,
disc(f) = Res(f. I . x) .

ao

Prove that I has a multiple factor (i.e.• I is divisible by h2 for some h E k[x] of positive
degree) if and only if disc(f) = O. Hint: Use the previous exercise . Over the complex num-
bers. Exercise 7 implies that a polynomial has a multiple root if and only if its discriminant
is zero.

9. Use the previous exercise to determine whether or not 6x4 - 23x3 + 32x2 - I9x + 4 has a
multiple root in <C. What is the multiple root?

10. Compute the discriminant of the quadratic polynom ial I = ax 2 + bx + c. Explain how
your answer.relates to the quadratic formula. and. without using Exercise 8. prove that I has
a multiple root if and only if its discriminant vanishes.
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II. Consider the polynom ials I = 2x2 + 3x + I and g = 7x 2 + X + 3.
a. Use the Euclidean Algorithm (by hand, not computer) to find the GCD of these

polynomials .
b. Find polynomials A, B E <Q[x) such that AI + Bg = I . Hint: Use the calculations you

made in part a.
c. In the equation you found in part b, clear the denominators. How does this answer relate

to the resultant ?
12. If I , g E ~[x), explain why Res(f, g , x) E z:
13. Let I = xy - I and g = x2+ y2 - 4. We will regard I and g as polynom ials in x with

coefficient s in key).
a. With I and g as above, set up the system of equat ions (7) that describes AI + lig = I.

Hint: Ais linear and Ii is constant. Thus, you should have three equations in three
unknowns.

b. Use Cramer's rule to solve the system of equations obtained in part a. Hint: The
denominator is the resultant.

c. What equation do you get when you clear denominators in part b? Hint: See equation (8)
in the text.

14. In the text, we defined Res(f. g. x) when I. g E k[x) have positive degree. In this problem,
we will explore what happens when one (or both) of I and g are constant.
a. First, assume that I has degree I > 0 and g = bo is constant (possibly 0). Show that

the Sylvester matrix of I and g is the I x I matrix with bo on the main diagonal and O's
elsewhere. Conclude 'that Res(f. bo, x ) = b~ .

b. When I 'Wdg are as in part a, show that Propositions 8 and 9 are still true.
c. What is R~s(ao , g. x ) when 1= ao is constant (poss ibly zero) and g has degree m > O.

Expla in your reason ing.
d. The one case not covered so far is when both I = ao and g = bo are constants. In this

case, one defines

Res(ao, bo) = {~ if either ao = 0 or bo = 0
if ao =I 0 and bo =I O.

By considering I = g = 2 in <Q[xl , show that Propositions 8 and 9 can fail when I
and g are constant. Hint: Look at the statements requiring that certain things be integer
polynomials in the coefficients of I and g.

15. Prove that if I has degree I and g has degree m, then the resultant has the following symmetry
property :

Res(f, g. x) = (-I)''''Res(g, I , x).

Hint: A determinant changes sign if you switch two columns .
16. Let I = aoxl + .. . + a, and g = bex" + ... + b.; be polynomials in k[x) , and assume

that I ::: m.
a. Let] = I - (aolbo)x' -'"g , so that deg(]) ~ I - I. If deg(j) = I - I , then prove

Res(f, g, x) = (-1)"'boRes(] , g, x).

Hint: Use column operations on the Sylvester matrix . You will subtract aolbo times the
first m columns in the g part from the columns in the I part . Then expand by minors
along the first row. [See Theorem 5.7 of FtNKBEINER (1978) for a description of expansion
by minors.)
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b. Let j be as in part a. but this time we allow the possibility that the degree of j could be
strictly smaller than I - I. Prove that

Res(f. g , x) = (_I)m(/-deg ( i»b~-deg( j)Res(j, g . x).

Hint : The exponent I - deg(j) tells you how many times to expand by minors.
c. Now use the div ision algorithm to write f = qg + r in k[xl . where deg(r) < deg(g) .

Then use part b to prove that

Res(f. g, x) = (_l)m(/-deg(r»b~-deg(r)Res(r, g. x) .

17. In this exerc ise. we will mod ify the Euclidean Algorithm to give an algorithm for computing
resultants. The basic idea is the following: to find the GCD of f and g,we used the division
algorithm to write f = qg + r, g = q'r + r', etc. In equation (5) of Chapter I. §5, the
equ alit ies

GCD(f, g) = GCD(g. r) = GCD(r, r) = ...
enabled us to compute the GCD since the degrees were decreasing. Using Exercises 15 and
16, we get the following "resultant" version of the first two equalities above :

Res(f, g. x) = (_I)deg<'~ )(deg( j)-deg(r»b~egU )-deg(r )Res(r~ g , x)

= (-I )deg(j) deg(g)b~egU) -deglr)Res(g, r, x)

= (_ I)degU)deglg)+deg(r)(deg(g)-deg(r'»b~egU)-deg(r ) b~degl g )-deg(r' )

Res(r', r, x)

= (-I )deg(j) degl.~ )+deg l.~ ) deg(r)b~eglj)-deglr ) b~deg( g)-deg(r' )

Resfr, r ', x).

where bo (resp . b~) is the leading coefficient of g (resp, r) . Continuing in this way, we can
reduce to the case where the second polynomial is constant, and then we can use Exercise 14
to compute the resultant.

To set this up as pseudocode, we need to introduce two functions: let r = rema inder(f, g)
be the remainder on divis ion of f by g and let lead(f) be the leading coefficient of f. We
can now state the algorithm for finding Res(f, g . x):

Input: f , s
Output: res
h := f
s:= g
res := I
WHILE deg(s) > 0 DO

r := remainder(h, s)
res := (-I )deglh)deg(' )lead(s)deg(h)-deg(r) res

h:= s
. s:= r

IF h = 0 or s = 0 THEN res := 0 ELSE
IF deg (h ) > 0 THEN res := sdeg(h)res

Prove that this algorithm computes the resultant of f and g. Hint: Use Exercises 14, IS, and
16, and follow the proof of Proposition 6 of Chapter I, §5.
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§6 Resultants and the Extension Theorem

In this section we will prove the Extension Theorem using the results of §5. Our first
task will be to adapt the theory of resultants to the case of polynomials in n variables.
Thus, suppose we are given f, g E k[XI, . . . , XII] of positive degree in XI. As in §5,
we write

(1)
f = aoxl + + at,

g = boxr + + bnr,
ao =1= 0,

bo =1= 0,

where a., b, E k[X2, . . . , XII] , and we define the resultant of f and g with respect to
XI to be the determinant

ao bo
al ao b l bo

al b l

ao bo
Res(f, g, x)) = det a\ b l

at bnr

a, bnr

a, bnr

m columns I columns
where the empty spaces are filled by zeros.
For resultants of polynomials in several variables, the results of §5 can be stated as

follows.

Proposition 1. Let [, g E k[XI , . . . , XII] have positive degree in XI. Then:
(i) Res(f, g, XI) is in the first elimination ideal (f, g) n .k[X2 , ... , XII]'
(ii) Res(f, g, XI) = °if and only if f and g have a common factor in k[x\, ... , XII]

which has positive degree in XI.

Proof. When we write f, g in terms of XI, the coefficients a., b, lie in k[X2, . .. , XII]'
Since the resultant is an integer polynomial in a., b, (Proposition 8 of §5), it follows
that Res(f, g, x)) E k[X2, . . . , xlI] ..We also know that

Af + Bg = Res(f, g, XI),

where Aand B are polynomials inXI whose coefficients are again integer polynomials in
a., b, (Proposition 9 of §5). Thus, A, B E k[X2, ... , xlI][xtl = k[XI, . .. , XII]' and
then the above equation implies Res(f, g, XI) E (f, g) . This proves part (i) of the
proposition.
To prove the second part. we will use Proposition 8 of §5 to interpret the vanishing

of the resultant in terms of common factors. In §5. we worked with polynomials in one
variable with coefficients in a field. Since f and g are polynomials inXI with coefficients
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in k[X2, . . . , XII], the field the coefficients lie in is k(X2, .. . , XII)' Then Proposition 8
of §5, applied to f, g E k(X2, .. . , XII) [Xl ], tells us that Res(f, g. XI) = 0 if and only
if f and g have a common factor in k(X2, . .. , xlI)[xd which has positive degree in XI .
But then we can apply Corollary 4 of §5, which says that this is equivalent to having a
common factor in k[Xl, ... , XII]of positive degree in Xl. The proposition is proved. 0

Over the complex numbers, two polynomials in <C[x] have a common factor if and
only if they have a common root (this is easy to prove). Thus, we get the following
corollary of Proposition I.

Corollary 2. If f , g E <C[x], then Res(f, g, x) = 0 if and only if f and g have a
common root in <C.

We next show how resultants can be used to extend partial solutions. As we will soon
see, the following proposition is the key to proving the Extension Theorem.

Proposition 3. Given f , g E <C[XI, . . . ,XII]' let ao, bo E <C[X2 , . .. ,XII] be as in (1).
IfRes(f, g, Xl) E <C[X2, ... , XII] vanishes at (C2 , . .. , Cn) E <c"- l • then either
(i) ao or bo vanishes at (C2, ... , cII). or
(ii) There is Cl E <C such that f and g vanish a~ (CI, ... , cII) E <C" .

Proof. We first introduce some notation to simplify the proof. Let c = (C2, ... ,CII).
and let f(Xl' c) = f(XI, C2,"" CII)' It suffices to show that f(XI, c) and g(XI , c)
have a common root when ao(c) and bo(c) are both nonzero . To prove this. write

f(Xl' c) = ao(c)x: + + a/(c), ao(c) i= 0

g(Xl ' c) = bO(C)X;" + + bIll (c), bo(c) i= O.

By hypothesis, h = Res(f. g, XI) vanishes at c. Hence, if we evaluate the determinant
giving h at the point c, we obtain

ao(c) bo(c)

(3) o= h(c) = det
ao(c) bo(c)

a/(c) b",(c)

a,(c) bll/(c)

m columns l columns

From (2), the resultant of f(XI, c) and g(XI, c) is exactly the determinant that appears
in equation (3), and it follows that

0= h(c) = Res(f(xl, c), g(XI, c), XI) '

Then Corollary 2 implies that f(XI, c) and g(XI, c) have a common root, and the
proposition is proved. 0
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We now have all the ingredients needed to prove the Extension Theorem. But rather
than go directly to the general theorem, we will first treat the special case when the
ideal is generated by two polynomials.

Theorem 4 (The Extension Theorem for Two Polynomials). Let I = (f, g) c
<C[XI , , XII) and let II be the first elimination ideal of I . Also. let ao, bo E
<C[x z, , XII) be as in (I). Suppose that we have a partial solution (cz, , cll ) E
V(l I) .If(cz , . . . , CII) ¢ V(ao, bo), then there exists CI E <C such that (CI', , CII) E
V(l).

Proof. We will use the notation c = (C2, ... , clI ) from the proof of Proposition 3.
By Proposition I, we know that Res(f, g , XI) E II, so that the resultant vanishes at
the partial solution c. If neither ao nor bo vanishes at c, then the required CI exists by
Proposition 3.
Unfortunately, we 're not quite done; for our hypothesis on c allows one (but not

both) of ao(c) and bo(c) to vanish. Let's suppose that ao(c) i= 0 but bo(c) = O. Then
g(XI, c) has degree in Xl strictly smaller than m. In this case, the determinant of (3)
is (l + m) x (l + m) , which makes it too big to be the resultant of f(XI, c) and
g(XI , c) . While there is a relation between (3) and Res(f(xl, c), g(XI, c), XI) (this will
be explored in the exercises), we willtake a different approach.
The idea is that since V(f, g) depends on the ideal (f, g), we can use a different

basis of the ideal when ao(c) i= 0 and bo(c) = O. IfN is any positive integer, we leave
it to the reader to check that

(4) (f, g) = (f, g + XIVf).

Now choose N large enough so that x~ f has larger degree in Xl than g. Then the
leading coefficient of g + x~ f with respect to Xl is LlO , which is nonzero at c. This
allows us to apply the previous argument to f and g + x~ f, giving us CI E <C with
(CI, c) E V(f, g + x~ f). By (4), this implies (CI , c) E V(f, g), and the theorem is
proved. 0

Note how the above proof breaks down when both ao and bo vanish at the partial
solution c. The underlying reason, of course, is that such a partial solution may not
extend. Example (4) from §I shows that this can happen in practice.
This is a good place to discuss how elimination relates to Groebner bases and re-

sultants. In the case when f, g E CC[XI ,. '.. , XII), Groebner bases and resultants tell
us different things about the first elimination ideal II of (f, g). The Groebner basis
describes I, very quickly, but does nothing to rule out the possibility that I, = {OJ. On
the other hand, the resultant creates an element of II that is directly linked to whether a
partial solution extends . Since the Extension Theorem is at heart an existence theorem,
we need more than just a description of I,. This is why resultants are so important to
the proof.
The final task of the section is to prove the Extens ion Theorem for an arbitrary ideal

(fl , . . . , I, ) C <C[XI , ··· , XII]' The immediate problem is that we only defined the
resultant of two polynomials. What is the "resultant" of [v . . . . , I, when s ~ 3? The
idea is to introduce new variables uz, .. . , Us and encode [i . ... , f s into the single
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polynomial

uzh + ... + v. I. E <C[uz, . . . , Us, Xl. ·· · , XII)'

We can regard fl as a polynomial in the same ring . By Proposition 1. the resultant of
fl and uz]: + .. . + ui ], lies in <C[uz. . . . , Us , Xz, .. . , XII)' To get polynomials in
xz, . .. , XII ' we expand the resultant in terms of powers of u : •.. . , Us. This means
writing

(5) Res(/, , uzh + ... + u, f" x, ) = L hu(xz , .. . , xlI)uu.
a

where UU is the monom ial U~l . • . u~· (as defined in Chapter 1) and hu E <C[xz, ... , XII )
for all a. We call the polynomi als hu the generalized resultants of f 1, . . . , f ,.
As an example, let us compute the generalized resultants of the polynomials

f, = xZ + y + z - 1

[: = X + i + z - 1,
!J = x + y + Zz - 1,

from example (I) of §1. In this case. we have

Res(/I , uzh + U3!J, x) =(l + 2i z - 2i + ZZ + y - z) u~

+ 2(i zz + l + Z3 - i - ZZ + YZ)UZU3

+ (Z4 + 2yzz + i - 2zz - y + z) u~,

and it follows that the generalized resultants are given by

hzo = l + 2i z - 2i + Z2 + y - Z

h ll = 2(i zz + l + Z3 - i- Z2 + vz)

h 4 2 z z 2 2oz = Z + yz + y - z - y + z.

Note that this depends on which polynomial is first: the generalized resu ltants of
h . fl, !J will be slightly different.
In practice , generalized result ants are rarely used . But they are exactly what we need

to prove the Extens ion Theorem. Let us recall the statement of the theorem.

Theorem 5 (The Extension Theorem). Let 1 = (/1, . .. , f , ) C <C[XI, . . . , XII) and
let II be the first elimination ideal of I . For each 1 ~ i :s s, write Ii in the form

Ii = gi(xz, . .. , xlI)Xj\', + terms in which XI has degree < Ni;

where N, ~ 0 and gi E <C[xz... . , XII] is nonzero. Suppose that we have a partial
solution (cz, . . . , cll ) E V(lt> . If (cz, . .. , cll ) If. V(g l , ... , g, ), then there exists
CI E <C such that (CI, Cz . . . . , clI) E V(I ).

Proof. As usual . we set c = (cz, .. . , CII )' We seek a common root CI of
I, (XI, c), ... , f, (XI, c). The case s = 2 was treated in Theorem 4, which also covers
the case s = 1 since V(/1) = V (/1, f l ). It remains to prove the theorem when s ~ 3.
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Since c fj. V(gl.. ... , g,). we may assume that gl (c) i= O. Let ha E $C[X2, ... , XII]
be the generalized resultants of it .. . .. fs . Thus.

(6) Res(fl. Ud2 + ' " + v.L: XI) = L hau a.
a

We will now show that the h« 's lie in the first elimination ideal I I . Since we are com-
puting resultants in the ring <C[U2• . . . , Us,XI, • . . • xlll, it follows from Proposition I
that

(7) Afl + B(ud2 + ... + u,fs) = Res(fI, u2h + '" + v.L. XI)

for some polynomials A,B E <C[U2•.. . ,Us.XI, . . . • XII]. Now write A
:EaAaua and B = :EpBpuP• where Aa,BfJ E <C[XI • . . .• XII]. We will prove
ha E (/I • .. . • ! ,) = I by comparing coefficients of ua in (7) . Since we already
know ha E <C[X2, . . . , XII]. this will imply ha Ell '
To compare coefficients. we need to write everything using the monomial notation

of Chapter 1. Thus, set ez = (1,0, . .. ,0) • . . . , e, = (0• . . . , 0, I) . so that uz]: +
. . . + UsI, = :E i ~2uei f; . Then equation (7) can be written

~v ~ (~A"U} + (~B'U') (~U"f')
";h

= L(Aafl)Ua + L Bpf;uP+ei
a i~2.fJ

~ ~(A"f,)u. +~ C~" B,j,) U·

~ ~ (A.f' + :i B'f') « :
Ifwe equate the coefficients of ua • then we obtain

ha = Aafl + L BfJf;.
j ~ 2 . f.1

f.I+~i =U'

which proves that ha E I. As we have seen, this shows that ha Ell for all a.
Since c E VUd. it follows that ha(c) = 0 for all a. Then (6) shows that the

resultant h = Res(fl, u2h +.. .+ u, fs. XI) vanishes identically when evaluated at c.
If h(c, U2 • . . . , us) denotes the polynomial we get in <C[XI , U2 • . . . , us] by substituting
c = (C2, .. . • clI ) for (X2, . . . ,XII). then we have

(8) h(c, U2, . .. , u,L= O.

We will now make the following assumption concerning 12:
(9) g2(C) i= 0 and 12 has degree in XI greater than h . . . . . Is.
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We claim that this implies

The proof is similar to the argument following equation (3). Namely, if we evaluate
the determinant defining h = Res(f). u2h + .. . + «.I. XI) at c, it follows that
h(c . U2 • . . . • us) is given by a certain determinant. Furthermore, this determinant is
the resultant in (10) provided the leading coefficients of fl and ui]: + + uJ, do
not vanish at c. This is true for I, since 81(c) # O. Turning to ui]: + + usf"
assumption (9) implies that its leading coefficient is U2g2, and (9) also tells us that the
leading coefficient does not vanish since g2(C) # O. This completes the proof of (10).
If we combine (8) and (10), then we obtain

The polynomialsjj tx.. c)andu2h(xl , c) + .. .+ U../,(XI , cj lie inC[x} , U2," " us],
so that by Proposition I, the vanishing of their resultant implies that they have a com-
mon factor F of positive degree in XI. Since F divides fl (XI, c), it follows that F is a
polynomial in lC[XI]. We claim that F divides each of h(XI , c) , . . . , f ,(XI. c) . To see
this, note that F divide s u2h(X I. c), which means

for some A E lC[XI, U2 • . . . • u,]. Comparing coefficients of U2, . .. , Us then implies
that F divides h(xi. c) • . .. , f ,(XI, c) . We leave the details to the reader.
Since F also divides f l (XI, c), we see that F is a common factor of positive degree

of all of the Ii (XI. c) 's. Now let CI be a root of F (we know that c) exists because we
are working over the complex numbers). Then c ) is automatically a common root of
all of the Ii (XI, c) 's, which proves the Extension Theorem when (9) is true .
. Finall y, if (9) is not true for fl ' . .. , L , then it is a simple matter to find a new basis
for which (9) does hold. The basic idea is to replace h by h + x[V fl, where N is a
positive integer. The reader should check that

1= (fJ, [: + x~ fl.!J, .. . . j ,).

If N is sufficiently large , the leading coefficient of h + XIVf l will be g l , which we
kriow is nonvanishing at c. Making N larger if necessary, we can assume that h +x~ fl
has larger degree in XI than h . . . . , f ,.Then the previous argument gives us CI which
is a common root of f l (XI. c). h(XI, c) + XIV fl (XI. c). h(XI, c), . . . , f,(X I, c) . It is
easy to check that CI is then a common root of all of the f i (XI , c) 's , This completes the
proof of the Extension Theorem. 0

A final observation to make is that the Extension Theorem is true over any alge -
braically closed field. For concreteness, we stated the theorem only for the complex
numbers lC, but if you examine the proof carefully, you will see that the required CI
exists because a nonconstant polynomial in lC[XI] has a root in lC. Since this property
is true for any algebraically closed field, it follows that the Extension Theorem holds
over such fields (see Exercise 14 for more details).
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EXERCISES FOR §6

1. In k[x, y1. consider the two polynomials

f = x 2y - 3x / +x2 - 3xy ,

g = x 3y + x 3 - 4/ - 3y + I

a. Compute Res(f, g, x).
b. Compute Res(f, s . y).
c. What does the result of part b imply about f and g?

2. Let f . g E <C[x, y1. In this exercise . you will prove that

V(f. g) is infinite {=} f and g have a nonconstant common factor in <C[x. y ],

a. Prove that V(f) is infinite when f is nonconstant. Hint: Suppose f has positive degree
in x. Then the leading coefficient of x in f can vanish for at most finitely many values of
y. Now use the fact that <C is algebraically closed.

b. If f and g have a nonconstant common factor h E <C[x , y1. then use part a to show that
V(f, g) is infinite.

c. If f and g have no nonconstant common factor, show that Res(f, g , x) and Res(f. g. y)
are nonzero and conclude that V(f, g ) is finite..

3. If f . g E k[x , yl. Proposition I shows that Res(f, g. x) E I I = (f. g) n k[yl . The
interesting fact is that the resultant need not generate I I'
a. Show that Res(f. g, x) generates I I when f = x y - I and g = x2 + i - 4.
b. Show that Res(f. g , x) does not generate II when f = xy - I and g = yx 2+ y2 - 4.
Do you see any connection between part b and the Extension Theorem?

4. Suppose that f , g E <C[x1are polynomials of positive degree. The goal of this problem is
to construct a polynomial whose roots are all sums of a root of f plus a root of g.
a. Show that a complex number y E <C can be written y = ex+fl.where f (ex) = g (fl) = O.

if and only if the equations f(x) = g(y - x) = 0 have a solution with y = y.
b. Using Theorem 3. show that y is a rootofRes(f(x), g(y -x). x) ifandonly ify = ex+fl.

where f(ex) = g (fl) = O.
c. Construct a polynom ial with coefficients in <Q which has ...fi+ ../3 as a root. Hint: What

are f and g in this case?
d. Modify your construction to create a polynomial whose roots are all differences of a root

of f minus a root of g.
5. Suppose that f. g E <C[x1are polynomials of positive degree . If all of the roots of fare

nonzero. adapt the argument of Exercise 4 to construct a polynomial whose roots are all
products of a root of f times a root of g.

6. Suppose that [, g E <Q[x1are polynomials of positive degree.
a. Most computer algebra systems have a command for factoring polynomials over <Q into

irreducibles over <Q. In particular. one can determine if a given polynomial has any integer
roots. Combine this with part d of Exercise 4 to describe an algorithm for determining
when f and g have roots ex and fl respectively which differ by an integer.

b. Showthatthepolynomials f = xS-2x3-2x2+4andg = x S+5x4+8xJ+2x2-5x+1

have roots which differ by an integer. What is the integer?
7. In §3. we mentioned that resultants are sometimes used to solve implicitization problems.

For a simple example of how this works. consider the curve parametrized by

t 2
u- --- 1+ t 2 '
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To get an implici t equation, form the equations

u (l + t 2 ) - t 2 = O.

and use an appropriate resultant to eliminate t . Then compare your result to the answer
obta ined by the methods of §3. (Note that Exerc ise 13 of §3 is relevant .)

8. In the proof of Theorem 3, we evaluated a resul tant h = Res (f. g. XI) at c and cla imed that
the result was still a resultant. To show that this does not always happe n. let us workout
some examples.
a. Let! = x 2y + 3x - I and g = 6x 2 + y2 - 4. Compute h = Res(f. g. x ) and show

that h (0) = - 180. But if we set y = 0 in ! and g, we get the polynomi als 3x - I and
6x 2 - 4. Check that Res(3x - I . 6x 2 - 4) = -30. Thu s, h (O) is not a resultant-it
is off by a factor of 6. Note why equality fails: h(O) is a 4 x 4 determinant. whereas
Res(3x - I. 6x 2 - 4) is a 3 x 3 determinant.

b. Now let! = x2y + 3xy - I and g = 6x 2 + y2 - 4. Compute h = Res(f, g. x) and
verify that h(O) = 36. Setting y = 0 in ! and g gives polynomials -I and x 2 - 4. Use
Exercise 14 of §5 to show that the resultant of these polynomials is I. Thus. h (0) is off
by a factor of 36.

When the degree of ! drops by I (in part a). we get an extra factor of 6. and when it drops
by 2 (in part b). we get an extra factor of 36 = 62• And the leading coefficient of x in g is
6. In Exercise 11. we will see that this is no accident.

9. Let! = x 2y + X - I and g = x 2y + X + y2 - 4. If h = Res(f, g. x) E <C[y] . show that
h(O) = O. But if we substitute y = 0 into! and g . we get x -I and x - 4. Show that these
polynomials have a nonzero resultant. Thus, h(O) is not a resultant.

10. In Exercises 8 and 9, we saw that substituting into a resultant can give the wrong answer. The
common thread in these examples is that the degree of one of the polynomials dropped when
we plugged in. The goal of this exercise is to show that things work nicely when the degrees
do not drop . More precisely, let ! . g E k[XI , . . . • x,,], and let c = (Ci+1o . .. • c,,) E r:',
where i ~ 2. Then! (XI • . . . , Xi. c) will denote the polynomial obtained by plugging in
c. Wri te f. g as in equat ion (I ) in the text . so that Go, bo E k [X2• . . . • x,,] are the leading
coefficients of x uv], g. respec tively. Let h = Res(f. g. XI ) E k[X 2• . . . • x,, ] be the resultant
of! and g .
a. If QO(X2• . . . , Xi . c) :j= 0 and bO(X2• . . . • Xi , c) :j= 0, then prove that

h(X2• . . . • Xi. c) = Res(f (xi ... . , Xi . c) , g (x .. . . . •Xi. c). XI )

in k[X2• . . . • x;] . Hint: See the argument used in the proof of Theorem 3. Equation (3) is
especially important.

b. Note that Theorem 3 uses the case i = 1 of the resul t proved in part a. Explain how
this result is used in the proof of the general case of the Extension Theorem. Hint: See
equation (10) .

II . In this problem we will explore what happens to a resultant when plugging in causes the de-
gree of one of the polynomials to drop. Let!. g E k[x .. . . . , x,,] and set h = Res(f. g. XI).
If c = (c2• • • • • COl) E k,,- I,let !(XI. c) be the polynomial in k[ill obta ined by subst ituting
in c. As in (I). let Qo . bo E k[X2• . . . • x,,] be the leading coefficients of XI in !. g. respec-
tively. We will assume that Qo(c) :j= 0 and bo(c) = O. and our goal is to see how h(c) relates
to Res(f(xi. c). g(x i . c). xd .
a. First suppose that the degree of g drop s by exactly I , which means that b l (c) :j= O. In this

case, prove that

h (c) = Qo(c) . Res(f(x l . c) . g (x .. c). x d.

Hint: h (c) is given by the following determinant (see next page):
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ao(c) 0
a t( c) ao(c) b, (c) 0

a t(c) b. (c)

ao(c) 0
h(c) = det a l(c) bl(c)

a,(c) b.,,(c)

a,(c) b",(c )

a, (c) b",( c)

m columns I columns
The determinant is the wrong size to be the resultant of f(Xt . c) and g(x" c) . If you
expand by minors along the first row [see Theorem 5.7 of FtNKBEtNER (1978)]. the
desired result will follow.

b. Now let us do the general case. Suppose that the degree of g(x i . c) is m - p, where
p ?: I . Then prove that

h(c) = ao(c)/' . Res(f(xt. c), g(Xt , c), XI).

Hint: Expand by minors p times . Note how this formula explains the results of Exercise 8.
12. Let I = (ft . h , fJ) c k[w . x, y , zl. where

f t = x 4 - 2x/ + zw,
12 = wx 2 - w 2z + y .
f) = X) + 3w .

a. Compute the generalized resultants of f l . h . fJ with respect to w. You should get two
polynomials h lO • h OI E k[x . y . zl.

b. Show that the generalized resultants do not generate II = I n k[ x , y . zl. Hint: Use
lexicographic order with w > z > y > x .

13. Let f. g t . . . . • g, E k[x] be polynomials. Prove that f is a common factor of gl • . .. • g,
if and only if f divides glUt + .. . + g,u, in k[ x , U t , . . .• u,j. Hin t: See the comments
following equation ( I I) in the text.

14. Show that the Extension Theorem holds over any algebraically closed field. Hint: You will
need to see exactly where the proo fs of Corollary 2. Proposition 3 and Theorems 4 and 5 use
the complex numbers <C.
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In this chapter, we will explore the correspondence between ideals and varieties . In §§1
and 2, we will prove the Nullstellensatz, a celebrated theorem which identifies exactly
which ideals correspond to varieties . This will allow us to construct a "dictionary"
between geometry and algebra, whereby any statement about varieties can be translated
into a statement about ideals (and conversely) . We will pursue this theme in §§3 and
4, where we will define a number of natural algebraic operations on ideals and study
their geometric analogues. In keeping with the computational emphasis of this course,
we will develop algorithms to carry out the algebraic operations. In §§5 and 6, we will
study the more important algebraic and geometric concepts arising out of the Hilbert
Basis Theorem: notably the possibility of decomposing a variety into a union of simpler
varieties and the corresponding algebraic notion of writ ing an ideal as an intersection
of simpler ideals.

§1 Hilbert's Nullstellensatz

In Chapter I, we saw that a variety V C kif can be studied by passing to the ideal

I(V) = (f E k[xl, .. . ,xlIl : f(x) =ofor all X E VI

of all polynomials vanishing on V. That is, we have a map

affine varieties ideals
V I(V) .

Conversely, given an ideal I C k[XI, . . . , xlIl, we can define the set

V(I) = (x E k" : f(x) = 0 for all f E I}.

The Hilbert Basis Theorem assures us that V(I) is actually an affine variety, for it tells us
that there exists a finite set of polynomials fl ' .. . , f s E I such that I = (f" .. . , f ,),
and we proved in Proposition 9 of Chapter 2, §5 that V(l) is the set of common roots
of these polynomials. Thus, we have a map

ideals affine varieties
I V(I) .

167
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These two maps give us a correspondence between ideals and varieties . In this chapter,
we will explore the nature of this correspondence.
The first thing to note is that this correspondence (more precisely, the map V) is not

one-to-one: different ideals can give the same variety. For example, (x) and (x 2 ) are
different ideals ink[x] which have the same variety V(x) = V(x 2 ) = {OJ. More serious
problems can arise if the field k is not algebraically closed. For example , consider the
three polynomials I , I + x 2 , and I + x 2 + x 4 in IR[x]. The se generate different ideals

/1 = (I) = IR[x], lz = (I + x 2 ) , /3 = (I + x 2 + x 4 ) ,

but each polynomial has no real roots, so that the corresponding varieties are all empty :

V(ll) = V(l2) = V(l3) = 0.

Examples of polynomials in two variables without real roots include I + x 2 + y2 and
I + x 2 + y4. These give different ideals in IR[x, y] which correspond to the empty
variety.
Does this problem of having different ideals represent the empty variety go away if

the field k is algebraically closed? It does in the one-variable case when the ring is k[x].
To see this, recall from §5 of Chapter I that any ideal/in k[x] can be generated by a
single polynomial because k[x] is a principal ideal domain. So we can write / = (f)
for some polynomial I E k[x]. Then V(l) is the set of roots of I; that is, the set
of a E k such that I(a) = O. But since k is algebraically closed, every nonconstant
polynomial in k[x] has a root. Hence, the only way that we could have V(l) = 0 would
be to have I be a nonzero constant. In this case, 1/f E k. Thus, I = (l / j) . fE/,
which means that g . I = g E / for all g E k[x]. This shows that / = k[x] is the only
ideal of k[x] that represents the empty variety when k is algebraically closed.
A wonderful thing now happens: the same property holds when there is more than

one variable. In any polynomial ring, algebraic closure is enough to guarantee that the
only ideal which represents the empty variety is the entire polynomial ring itself. This
is the Weak Nullstellensatz,which is the basis of (and is equivalent to) one of the most
celebrated mathematical results of the late nineteenth century , Hilbert's Nullstellensatz.
Such is its impact that, even today, one customarily uses the original German name
Nullstellensatz: a word formed , in typical German fashion, from three simpler words:
Null (=Zero), Stellen (=Places), Satz (=Theorem).

Theorem 1 (The Weak Nullstellensatz). Let k be an algebraically closed field and
let I C k[XI, . . . , XII] be an ideal satisfying V(l) = 0. Then / = k[Xl , .. . , XII]'

Proof. To prove that an ideal/equals k[xt, .. . ,XII]' the standard strategy is to show
that the constant polynomial I is in /. This is because if I E /, then by the definition
of an ideal, we have I = I . IE/ for every I E k[XI, . . . , XII]' Thus, knowing that
IE/ is enough to show that / is the whole polynomial ring.
Our proof is by induction on n, the number of variables . If n = I and / C k[x]

satisfies V(l) = 0, then we already showed that / = k[x] in the discussion preceding
the statement of the theorem .
Now assume the result has been proved for the polynomial ring in n - I vari-

ables , which we write as k[X2 , . . . , XII]' Consider any ideal/ = (fl , ... , I s) c
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k[XI , . . . , XII] for which V(l) = 0. We may assume that fl is not a constant since,
otherwise, there is nothing to prove. So, suppose fl has total degree N ~ 1. We will
next change coordinates so that f l has an especially nice form. Namely , consider the
linear change of coordinates

(1)

X I = iI ,
Xz = i z + azi l ,

XII = ill + alii"

where the a, are as-yet-to-be-determined constants in k. Substitute for XI , . . . , XII so
that fl has the form

fl(XI, ... , XII) = fl(i l , i z + azi l, .. . , i ll + alli l)

=c(az, . . . , all)i~ + terms in which i l has degree < N .

We will leave it as an exercise for the reader to show that c(az, . . . , all) is a nonzero
polynomial expression in az, . .. , all ' In the exercises, you will also show that an alge-
braically closed field is infinite .Thus, we can choose az, . .. , all so that c(az, ... , all) #
oby Proposition 5 of Chapter 1, §I .
With this choice of az, . . . , all' under the coordinate change (1) every polynomial

f E k[XI , . . . , xn] goes over to a polynomial] E k[i l , • • • , i n]. In the exercises, we
will ask you to check that the set i = {] : f E l} is an ideal in k[i l, . . . , ill] ' Note
that we still have vii, = 0 since if the transformed equations had solutions, so would
the original ones. Furthermore, if we can show that I E. i, then I E I will follow since
constants are unaffected by the - operation.
Hence , it suffices to prove that 1 E i. By the previous paragraph, f l E I transforms

to ] • e ] with the property that

]1 (i l , · . · . , i ll) = c(a z, . .. , all)i~ + terms in which i l has degreee < N ,

where c(a z, . . . , all ) # O. Thi s allows us to use a corollary of the Geometric Extension
Theorem (see Corollary 4 of Chapter 3, §2), to relate vti, with its projection into
the subspace with coord inates x z, .. . , XII ' As we noted in Chapter 3, the Extension
Theorem and its -corollaries hold over any algebraically closed field. Let

be the projection mapping onto the last n - I components. If we set i , = i n
k[iz, .. . , i ll ] as usual, then the corollary states that partial solutions in k":' always
extend, i.e., V(id = ]f1(V(i)). This implies that V(id = JrI(V(i)) = ]f1(0) = 0.
By the induction hypothesis, it follows that i l = k[iz, ... , i ll] ' But this implies that
I E I, C i, and the proof is complete. 0

In the special case when k = <C, the Weak Nullstellensatz may be thought of as the
"Fundamental Theorem of Algebra for multivariable polynomials"-every system of
polynomials that generates an ideal smaller than <C[XI , .. . , XII] has a common zero in
ce".
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The Weak Nullstellensatz also allows us to solve the consistency problem from §2
of Chapter 1. Recall that this problem asks whether a system

fl = 0,
h = 0,

I , = 0

of polynomial equations has a common solution in ([;". The polynomials fail to have a
common solution if and only if V(/1 , . .. , f s) = 0. By the Weak Nullstellensatz, the
latter holds if and only if I E (/1, . .. , I,).Thus, to solve the consistency problem, we
need to be able to determine whether I belongs to an ideal. This is made easy by the
observation that for any monomial ordering, {I} is the only reduced Groebner basis for
the ideal (I).
To see this, let {gl, . . . , g,1 be a Groebner basis of I = (I). Thus, I E (LT(l») =

(LT(gl), . . . , LT(g/»), 'and then Lemma 2 of Chapter 2, §4 implies that I is divisible
by some LT(g;), say LT(gl) . This forces LT(gl) to be constant. Then every other LT(gi)
is a multiple of that constant, g2• . . . , g/ can be removed from the Groebner basis by
Lemma 3 of Chapter 2, §7. Finally, since LT(gl) is constant, gl itself is constant since
every nonconstant monomial is > 1 (see Corollary 6 of Chapter 2, §4). We can multiply
by an appropriate constant to make g I = I. Our reduced Groebner basis is thus {I}.
To summarize, we have the following consistency algorithm: if we have polynomials

I I, ... ,Is E eI;[XI, ... , XII], we compute a reduced Groebner basis of the ideal they
generate with respect to any ordering. If this basis is {I}, the polynomials have no
common zero in eI;"; if the basis is not {II, they must have a common zero. Note that
the algorithm works over any algebraically closed field.
If we are working over a fieldk which is not algebraically closed, then the comsistency

algorithm still works in one direction: if {II is a reduced Groebner basis of (fl, ... , I,),
then the equations II = ... = I, = 0 have no common solution. The converse is not
true, as shown by the examples preceding the statement of the Weak Nullstellensatz.
Inspired by the Weak Nullstellensatz, one might hope that the correspondence be-

tween affine ideals and varieties is one-to-one provided only that one restricts to
algebraically closed fields. Unfortunately, our earlier example V(x) = V(x 2), = {OJ
works over any field. Similarly, the ideals (x 2 , y) and (x, y) (and, for that matter,
(x", ylll) where nand m are integers greater than one) are different but define the same
variety : namely, the single point {(O, O)} C k2• These examples illustrate a basic rea-
son why different ideals can define the same variety (equivalently, that the map V can
fail to be one-to-one): namely, a power of a polynomial vanishes on the same set as
the original polynomial. The Hilbert Nullstellensatz states that, over an algebraically
closed field, this is the only reason that different ideals can give the same variety : if a
polynomial I vanishes at all points of some variety V(l), then some power of I must
belong to I.

Theorem 2 (Hilbert's Nullstellensatz). Let k be an algebraically closed field. If
f , I I, ... , Is E k[X I, .•. , XII] are such that f E I(V (fl , . .. , Isn, then there exists
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an integer m ~ 1 such that

I" E (fl.·· · .f,)

(and conversely).

Proof. Given a polynomial f which vanishes at every common zero of the polyno-
mials fl • . . . • f s. we must show that there exists an integer m ~ I and polynomials
A I • . .. • As such that

s

r = LA;/;.
;=1

The most direct proof is based on an ingenious trick. Consider the ideal

i = (fJ, ...• f,. 1 - yf) C k[xl • . . . •XII. y].

where f. fl • . . . • f , are as above. We claim that

V(i) = 0.

To see this. let (al •...• all. all+l) E k"+ I . Either
• (al •. . . • all) is a common zero of fl • . . . • [« . or
• (al • ...• all) is not a common zero of fl • . . . • f ,.
Inthe first case f (a I • ... all) = 0 since f vanishes at any common zero of fl • . . . • f,.
Thus . the polynomial 1 - yf takes the value I - all+1 f ta, • . . . •all ) = I =j:. 0 at
the point (al , .. .• all. all+I). In particular. (al, . ..• all' all+l) rt vci: In the second
case. for some i, I ::: i ::: s, we must have .it (a I • . . . • all) =j:. O. Thinking of .it as
a function of n + I variables which does not depend on the last variable. we have
f;(al ,.· .• an, all+d =j:. O. In particular. we again conclude that (ai, . ..• all' an+l) ¢
V(i) . Since (al •. .. • at" all+l) E k"+1was arbitrary. we conclude that vti, = 0 as
claimed .
Now apply the Weak Nullstellensatz to conclude that lEi. That is,

s

(2) I = L Pi (XI • . . . • XII' y ) f; + q (XI, . .. •XII. y)( 1 - yf)
;= 1

for some polynomials Pi. q E k[xI • . . . • XII . y]. Now set y = Ilf(xl • ...• XII) ' Then
relation (2) above implies that

(3)
s

1= LPi(Xl .... ,xlI.I/f)/;.
i~

Multiply both sides of this equation by a power fill . where m is chosen sufficiently
large to clear all the denominators. This yields

(4)
s

r =LA i /;.
i= 1

for some polynomials Ai E k[XI , . .. , XII] . which is what we had to show. 0
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EXERCISES FOR §1

1. Recall that V(y - xZ. z - x3) is the twisted cubic in IR3•

a. Show that V« y - x 2) z+ (z - X 3)2) is also the twisted cubi c.
b. Show that any variety V(I) C IR" , I C IR[XI•... , x,,]. can be defined by a single

equation (and, hence. by a principal ideal).
2. Let J = (x 2 + y2 - I, Y - I}. Find f E I (V(J» such that f f/ J.
3. Under the change of coordinates (I) , a polynomial f tx, • . . . • x,,) of total degree N goes

over into a polynomial of the form

j = c(a2 ' .. . , an)x;v + terms in which x\ has degree < N.

We want to show that c(az• . . . ,an) is a nonzero polynomial in az• . . . • a" .
a. Wr ite f = h,v +h ,v_1+ . . .+howhere each hi . 0 ~ i ~ N . is homogeneous ofdegree
i (that is, where each monomial in h, has total degree i) . Show that after the coordinate
change (I), the coefficient c(az • . . . • a,,) of x'~ in j is hN(1, az, .. . • an) '

b. Let h(xi • . . . • xn) be a homogeneous polynomial. Show that h is the zero polynomial in
k[x ), .. .• x,,] if and only if h(!, X2 • . • • • xn) is the zero polynomial in k[x z• .. . , xn] '

c. Conclude that c(az , . : . • an) is not the zero polynomial in az, . . . , an.
4. Prove that an algebraically closed field k must be infinite . Hint: Given n elements a \ • . . . • an

of a field k , can you write down a polynomial f E k[x] with the property that f(a ;) = I
for all i ?

5. Establish that i as defined in the proof of the Weak Nullstellensatz is an ideal of
k[x ), . . .• x,,].

6. In deducing Hilbert's Nullstellensatz from the Weak Nullstellensatz. we made the substitution
y = 1/f(x" . . . • .r.,) to deduce relations (3) and (4) from (2). Justify this rigorously. Hint:
In what set is 1/ f conta'ined ?

7. The purpose of this exerci se is to show that if k is any field which is not algebraically closed.
then any variety V C k" can be defined by a single equation.
a. If f = aoxn + a,x,,-I + ... + an_Ix + an is a polyn omial of degree n in x, define

the homogenization r of f with respect to some variable y to be the homogeneous
polynomial fh = aoxn + a ,xn-1y + .. . + an_lxy,,-1 + anY" . Show that f has a root
in k if and only if there is (a , b) E kZ such that (a, b) i' (0 ,0) and r (a . b) =O. Hint:
Show that f /'(a . b) = b" f h(a /b . I) when b i' O.

b. If k is not algebraically closed. show that there exists f E k[ x, y] such that the variety
defined by f = 0 consists of just the or igin (0, 0) E k2• Hint: Choose a polynomial in
k[x] with no root in k and consider its homogenization.

c. If k is not algebraically closed. show that for each integer s > 0 there exists f E
k[XI , . .. , x,] such that the only solution of f = 0 is the origin (0• . . . • 0) E k': Hint:
Use induction and part b above. See also Exercise 1.

d. If W = V(g" . .. • g,) is any variety in k"; where k is not algebraically closed. then show
that W can be defined by a single equation. Hint: Consider the polynomial f (g ,. . . . • g,)
where f is as above.

8. Let k be an arbitrary field and let S be the subset of all polynomials in k[x), . . . , xn ] that have
no zeros in k", If I is any ideal in k[XI, . ; .• xn ] such that InS =0, show that V(I) i' 0.
Hint: When k is not algebraically closed, use the previous exercise.

9. (A generalization of Exercise 5.) Let A be an n x . TJ matrix with entries in k. Suppose that
x = Ax where we are thinking of x and x as column vectors. Define a map
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by sending t E k[x) , ... , Xn I to j E k[XI, .. . , x" I, where j is the polynomial defined by
j(X) = t(Ax).
a. Show that ClA is k-Iinear, i.e., show that ClA (rt +sg) = rClA (f) + SO!A (g) for all r, s E k

and all t, g E k[x), .. • , x"l ·
b. Show thato , (f .g) = ClA (f) ' ClA(g) for all t, g E k[x), .. • , x"l. [Ak-linear mapwhich

satisfies this property and the additional property that it maps the constant polynomial 1 to
the constant polynomial I is called a ring homomorphism.Since it is clear that o , (I) = I,
this shows that ClA is a ring homomorphism.]

c. Find conditions on the matrix A which guarantee that ClA is one-to-one and onto.
d. Is the image [ClA(f) : tEl} of an ideal I C k[x), . . . , XII J necessarily an ideal in

k[XI , .. . , xn ]? Give a proof or a counterexample .
e. Is the inverse image If E k[Xh .. . , xn ] : ClA (f) E II of an ideal I in k[Xh . . . , x,,] an

ideal in k[XI, .. . , X"I? Give a proof or a counterexample.
f. Do the conclusions of parts a-e change if we allow the entries in the n x n matrix A to
be elements of k[XI , . . . •Xn I?

10. In Exercise I, we encountered two ideals in IR[x, yl which give the same nonernpty variety.
Show that one of these ideals is contained in the other. Can you find two ideals in IR[x, yI,
neither contained in the other, which give the same nonempty variety? Can you do the same
for IR[x]?

§2 Radical Ideals and the Ideal-Variety Correspondence

To further explore the relation between ideals and varieties, it is natural to recast Hilbert's
Nullstellensatz in terms of ideals. Can we characterize the sorts of ideals that appear as
the ideal of a variety? That is, can we identify those ideals that consist ofall polynomials
which vanish on some variety V? The key observation is contained in the following
simple lemma.

Lemma 1. Let V be a variety. If fill E I(V) , then f E I(V) .

Proof. Let x E V. If fm E I(V), then (f(x»m = O. But this can happen only if
f(x) = O. Since x E V was arbitrary, we must have f E I(V). 0

Thus, an ideal consisting of all polynomials which vanish on a variety V has the
property that if some power of a polynomial belongs to the ideal, then the polynomial
itself must belong to the ideal. This leads to the following definition.

Definition 2. An ideal I is radical if r' E I for any integer m ~ I implies that
f E I .

Rephrasing Lemma I in terms of radical ideals gives the following statement.

Corollary 3. I(V) is a radical ideal.

On the other hand, Hilbert's Nullstellensatz tells us that the only way that an arbitrary
ideal I can fail to be the ideal of all polynomials vanishing on V(l) is for I to contain
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powers f ill of polynomials I which are not in I-in other words , for I to fail to be a
radical ideal. This suggests that there is a one-to-one correspondence between affine
varieties and radical ideals . To clar ify this and get a sharp statement, it is useful to
introduce the operation of taking the radical of an ideal.

Definition 4. Let I C k[X l , . . . ,XII] be an ideal. The radical of I , denoted-J], is the
set

{f : f ill E I for some integer m ::: I}.

Note that we always have I C -J] since I E I implies fl E I and, hence , f E .Ji
by definition. It is an easy exercise to show that an ideal I is radical if and only if I = .Ji.
A somewhat more surprising fact is that the radical of an ideal is always an ideal. To
see what is at stake here. cons ider, for example, the ideal J = (x 2• y3) .C k[x, y] .
Although neither X nor y belongs to J, it is clear that X E ../J and y E ../J. Note
that (x . y)2 = x2y2 E J since x2 E J; thus, x . y E ../J. It is less obvious that
x + y E ../J. To see this, observe that

(x + y)4 = x 4+ 4x3y+ 6x2l + 4xl + l E J
because x 4, 4x3y. 6x 2y2 E J (they are all multiples ofx2) and 4xl, y4 E J (because
they are multiples of y3).Thus, x + y E ../J. By way of contrast, neither xy nor x + y
belong to J.

Lemma 5. If T is an ideal in k[XI , . .. , x ,,]. then -Ji is an ideal in k[x" . . . ,x,,]
containing I. Furthermore, -Ji is a radical ideal.
Proof. We have already shown that I C .Ji. To show .Ji is an ideal ; suppose f , g E
-Ji. Then there are positive integers m and l such that f ill , gl E I. In the binomial
expansion of (f +g)III+I- 1every term has a factor rs' with i + j = m + l - 1. Since
either i ::: m or j ::: I, either t or s' is in I , whence f is' E I and every term in the
binomial expansion is in T. Hence, (f + g)III+I -1 E T and, therefore, f + g E .Ji.
Finall y. suppose f ·E -Ji and h E k[XI , . . . , x,,]. Then fill E I for some integer
m ::: 1. Since I is an ideal , we have (h . f)1II = hili f ill E I . Hence, hI E .Ji.This
shows that .Ji is an ideal. In Exercise 4, you will show that -Ji is a radical ideal. 0

We are now ready to state the ideal-theoretic form of the Nullstellerisatz.

Theorem 6 (The Strong Nullstellensatz). Let k be an algebraically closed field. IfT
is an ideal in k[x i • . . . • x,,], then

I(V(l» = Ji.
Proof. We certainly have .Ji c I(V(l» because f E .Ji implies that fill E T for
some m. Hence, fill vanishes on V(l ), which implies that f vanishes on V(l ). Thus,
f E I(V(l» .
Conversely, suppose that f E I(V(l». Then, by definition , f vanishes on V(l) .

By Hilbert's Nullstellensatz, there exists an integer m ::: I such that f ill E I. But this
means that f E Ji.Since f was arbitrary, I(V(l» c Jl. This completes the proof.D
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It has become a custom, to which we shall adhere , to refer to Theorem 6 as the
Nullstellensatz with no further qualification. The most important consequence of the
Nullstellensatz is that it allows us to set up a "dictionary" between geometry and algebra .
The basis of the dictionary is contained in the following theorem.

Theorem 7 (The Ideal-Variety Correspondence). Let k be an arbitrary field.
(i) The maps

affine varieties I
---+ ideals

and

ideals
v

---+ affine varieties

are inclusion-reversing, i.e., if II C h are ideals, then V(ll) :J V(h) and,
similarly, if VI C V2 are varieties, then I(VI) :J I(V2) . Furthermore, for any
variety V , we have

V(I(V) = V,

so that I is always one-to-one.
(ii) If k is algebraically closed, and ifwe restrict to radical ideals, then the maps

affine varieties ~ radical ideals

and

radical ideals
v

---+ affine varieties

are inclusion-reversing bijections which are inverses ofeach other.

Proof. (i) In the exercises you will show that I and V are inclus ion-reversing. It remains
to prove that V(I(V) = V when V = V(fl, : . . , I ,) is a subvariety of k". Since
every f E I(V) vanishes on V, the inclusion V C V(I(V» follows directly from the
definition of V. Going the other way, note that f l ' .. . , I, E I(V) by the definition
of I, and, thus, (fl, , I,) C I(V) . Since V is inclusion -reversing , it follows that
V(I(V» C V«fl , , I ,)) = V. This proves the desired equality V(I(V)) = V,
and, consequently, I is one-to -one since it has a left inverse.
(ii) Since I(V) is radical by Corollary 3, we can think of! as a funct ion from varieties

to radical ideals. Furthermore, we already know V(I(V») = V for any variety V .
It remains to prove I(V(l» = I whenever I is a radical ideal. This is easy: the
Nullstellensatz tells us I(V(l» = .../i, and I being radical implies .../i = I (see
Exercise 4). This gives the desired equality. Hence, V and I are inverses or each other
and, thus, define bijections between the set of radical ideals and affine varieties . The
theorem is proved. 0

As a consequence of this theorem, any question about varieties can be rephrased as an
algebraic question about radical ideals (and conversely) , provided that we are working
over an algebraically closed field. This ability to pass between algebra and geometry
will give us considerable power.
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In view of the Nullstellensatz and the importance it assigns radical ideals, it is natural
to ask whether one can compute generators for the radical from generators of the original
ideal. In fact, there are three questions to ask concerning an ideal I = {fl , , f s}:
• (Radical Generators) Is there an algorithm which produces a set {gI, , gill} of
polynomials such that ../i = (gl' . .. , gill)?

• (Radical Ideal) Is there an algorithm which will determine whether I is radical?
• (Radical Membership) Given f E k[xi • . . . , xlIl. is there an algorithm which will
determine whether f E ../i?
The existence of these algorithms follows from work of HERMANN (1926 ) [see also

MINES, RICHMAN, and RUITENBERG (1988) and SEIDENBERG (1974,1984) for more mod-
em expositions] . Unfortunately, the algorithms given in these papers for the first two
questions are not very practical and would not be suitable for using on a computer.
However, recent work by GIANNI, TRAGER and ZACHARIAS (1988) has led to an algo-
rithm implemented in AXIOM and REDUCE for finding the radical of an ideal. This
algorithm is described in detail in Theorem 8.99 of BECKER and WEISPFENNING (1993).
A different algorithm for radicals, due to EISENBUD, HUNEKE and VASCONCELOS (1992) ,
has been implemented in Macaulay.
For now. we will settle for solving the more modest radical membership problem. To

test whether f E ../i , we could use the ideal membership algorithm to check whether
r ' E I for all integers m > O. This is not satisfactory because we might have to
go to very large powers of m. and it will never tell us if f ¢ ../i (at least . not until
we work out a priori bounds on m) . Fortunately, we can adapt the proof of Hilbert 's
Nullstellensatz to give an algorithm for determining whether I E ,/(fJ, .. . , I s)'

Proposition 8 (Radical Membership). Let k be an arbitrary field and let I
(fl • . . .• ! I) C k[XI, ... , xlIl be an ideal. Then f E ../i if and only if the con-
stant polynomial] belongs to the ideal i = (fl •... , Is, I - yf) C k[XI, . . . , XII' y]
(in which case, i = k[XI, . . . , XII' y].)

Proof. From equations (2), (3), and (4) in the proof of Hilbert's Nullstellensatz in §I,
we see that lei implies r ' E I for some m, which, in tum , implies f E ../i. Going
the other way, suppose that f E ../i. Then f ill E lei for some m. But we' also have
1 - yf E [, and, consequently,

I = yinI" + (I - ylll f ill) = ylll . I" + (I - yf). (I + yf + ... + y'"-I fill -I) E i ,
as desired. o

Proposition 8, together with our earlier remarks on determining whether 1
belongs to an ideal (see the discussion of the consistency problem in §I), imme-
diately leads to the radical membership algorithm. That is, to determine if f E
J {fl • . . . , f s} C k[xl • . . . • xlIl, we compute a reduced Groebner basis of the ideal
(fl , . . . , ! " I - yf) C k[ x l • . . . •XII' y] with respect to some ordering. If the result
is {I}, then f E -Ji. Otherwise. f ¢ -Ji.
As an example, considerthe ideal] = (xy2 +2y2. x 4 - 2x2 + I) in k[x, yl.Let us

test if f = y - x2+ I lies in ../i. Using lex order on k[x . y, zl. one checks that the
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ideal

i = (xl + 21 , x 4 - 2x 2 + I, I - z(y - x 2+ I» C k[x , y, zl

has reduced Groebner basis {I}. It follows that y - x 2 + I E .Ji by Proposition 8.
Indeed, using the division algorithm , we can check what power of y - x 2 + I lies

in I:
--~-G

Y - x 2 + I = y - x 2 + I,
...,.---.,,--.,-:;,G
(y - x 2 + 1)2 = -2x2y + 2y,
---."-----.,,.G
(y - x 2 + 1)3 = 0,

where G = {x4 - 2x 2 + I, y2} is a Groebner basis for I with respect to the lex
ordering and pG is the remainder of p on divis ion by G. As a consequence, we see
that (y - x 2 + 1)3 E I , but no lower power of y - x 2 + I is in I (in particular,
y - x 2 + I rt I).
We can also see what is happening in this example geometrically. As a set, V(l) =

{(± I, O)}, but (speaking somewhat imprecisely) every polynomial in I vanishes to
order at least 2 at each of the two points in V(l) . This is visible from the form of the
generators of I if we factor them:

xl + 21 = lex + 2) and x 4 - 2x 2 + I = (x 2 - 1)2.

Even though I = y - x2 + I also vanishes at (±I , 0), I only vanishes to order I
there. We must take a higher power of I to obtain an element of I .
Wewill end this section with a discussion of the one case where we can compute the

radical of an ideal, which is when we are dealing with a principal ideall = (f). Recall
that a polynomial I is said to be irreducible if it has the property that whenever I = g .h
for some polynomials g and h, then either g or h is a constant. We saw in §5 ofChapter
3 that any polynomial I can always be written as a product of irreducible polynomials.
By collect ing the irreducible polynomials which differ by constant multiples of one
another, we can write I in the form

I = 1~'/;2 . . . Ira"
where the Ii's , I :::: i :::: r, are distinct irreducible polynomials.That is, where Ii and Ii
are not constant multiples of one another whenever i i= j . Moreover, this expression
for I is unique up to reordering the Ii's and up to multiplying the Ii's by constant
multiples. (This is just a restatement of Theorem 5 of Chapter 3, §5.) If we have I
expressed as a product of irreducible polynomials, then it is easy to write down an
explicit expression for the radical of the principal ideal generated by I .

Proposition 9. Let I E k[XI , . . . , x, 1and I = (f) the principal ideal generated by
1·11I = I~ ' It . . .I:' is the factorization 01I into a product 01distinct irreducible
polynomials. then

-Ji = Jf.i} = UJ!2 . . . fr).
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Proof. We first show that fl fz . . . fr belongs to ..Ji. Let N be an integer strictly greater
than the maximum of ai, . . . , a., Then

(flfz ·· · fr) N = fi- a, f;,-a z •• • tr: f

is a polynomial multiple of f . This shows that (fl fz . .. fr)N E I, which implies that
fl fz . . . fr E -J], This, (fl [: . .. fr) c -J],
Conversely, suppose that g E ..Ji. Then there exists a positive integer M such

that gM E I . This means that gM = h . f for some polynomial h. Now suppose
that g = g~' g~Z ... g~> is the factorization of g into a product of distinct irreducible
polynomials. Then s" = g~,M g~ZM . . . g~,M is the factorization of s" into a product
of distinct irreducible polynomials. Thus ,

gb,Mgb1M gb,M h fa'faz f.a,
I Z " ' s = ' I Z " ' r '

.But, by unique factorization, the irreducible polynomials on both sides of the above
equation must be the same (up to multiplication by constants). Since the fl , . . . , fr are
irreducible, each Ii, I ::: i ::: r must be equal to a constant multiple of some gi -This
implies that g is a polynomial multiple of fl fz . . . fr and, therefore g is conta ined in
the ideal (fIlz . . . f r). The proposition is proved . 0

In view of Proposition 9, we make the following definition :

Definition 10. Iff E k[xi . . . . , XII] is a polynomial. we define the reduction of f.
denoted fred. to be the polynomial such that (fred) = .Jfl}. A polynomial is said to
be reduced (or square-free) iff = fred. .

Thus , f red is the polynomial f with repeated factors "stripped away." So, for example,
if f = (x + yZ)3(x - y), then f red = (x + y2)(X - y). Note that fred is only unique
up to a constant factor in k.
The usefulness of Proposition 9 is mitigated by the requirement that f be factored

into irreducible factors. We might ask if there is an algorithm to compute fred from f
without factoring f first. It turns out that such an algorithm exists.
To state the algorithm, we will need the notion of a greatest common divisor of two

polynomials.

Definition 11. Let f, g E k[Xh . .. , XII)' Then h E k[XI, . . . , xn ) is called a greatest
common divisor of f and g, and denoted h =GCD(f, g), if
(i) h divides f and g.
(ii) If P is any polynomial which divides both f and g, then p divides h.

It is easy to show that GCD(f, g) exists and is unique to multiplication by a nonzero
constant in k (see Exercise 9). Unfortunately, the one-variable algorithm for finding the
GCD (that is, the Euclidean Algorithm) does not work in the case of several variables. To
see this, consider the polynomials xy andxz in k[x, y, zl.Clearly, GCD(xy, XZ) = x .
However, no matter what term ordering we use, dividing xy by x z gives 0 plus remainder
xz and dividing xz by xy gives 0 plus remainder x y . As a result, neither polynomial
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"reduces" with respect to the other and there is no next step to which to apply the
analogue of the Euclidean Algorithm.
Nevertheless, there is an algorithm for calculating the GCD of two polynomials

in several variables . We defer a discussion of it until the next section after we have
studied intersections of ideals. For the purposes of our discussion here, let us assume
that we have such an algorithm. We also remark that given polynomials II, ... , Is E
k[XI , . . . , xn],one can defineGCDUI, 12, .. :, Is) exactly as in the one-variable case.
There is also an algorithm for computing GCDUI, 12, .. . , Is).
Using this notion of GCD, we can now give a formula for computing the radical of

a principal ideal.

Ired = (af af af )GCD I, -a '-a , . . . , -a •XI X2 .r,

Proposition 12. Suppose that k is a field containing the rational numbers <Q and let
I = (f) be a principal ideal in k[xi • . . . , XII]' Then .Ji = (fred), where

I

Proof. Writing I as in Proposition 9, we know that -J] = (fJ!2 ' " Ir) . Thus, it
suffices to show

(I) GCD (I 2.L af ) 111,- 1/ 112- 1 /.11,-1
'a "" '-a =12 " 'r'XI XH

We first use the product rule to note that

a! = /11,-1/2
112- 1 • • • /.11,-1 (a l 2A I: . . . fr + ... + arl J!2' " af , ) .a"1 1 r aXI aXI

This proves that 1111 , - 11{2- 1 . . . 1;,-1 divides the GCD. It remains to show that for
each i, there is some aof which is not divisible by it'.

XI

Write I = I t 'hi , where hi is not divisible by fi. Since fi is nonconstant, some
variable X j must appear in fi. The product rule gives us

u. = r:' (a . ali h . + 1'. ohi ) •aXj . I I axj I J I ax j

If this expression is divisible by It' "then *f; hi must be divisible by fi. Since fi is
irreducible and does not divide hi, this forces fi to divide. i£t:. In Exercise 13, you

I

will show that 2li.a
a , is nonzero since <Q c k and x j appears in fi. As 2fJ...ao i also has
~ ~

smaller total degree than fi, it follows that fi cannot divide 2li.a
a, . Consequently, 2.La

a . is
XJ XJ

not divisible by It', which proves (I), and the proposition follows. 0

It is worth remarking that for fields which do not contain <Q, the above formula for
Ired may fail (see Exercise 13).

EXERCISES FOR §2

I. Given a field k (not necessarily algebraically closed), show that .j(x2, y2} = (x, y) and,
more generally, show that J (x n , ylll) = (x, y) for any positive integers n and m.
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2. Let f and g be distinct nonconstant polynomials in k[x . y ) and let 1 = (P. g3). Is it
necessarily true that.JJ = (f. g )? Expl ain .

3. Show that (x l + I) C lR[x] is a rad ical ideal . but that V(x l + I) is the empty variety.
4. Let 1 be an ideal in k[xi • . . . • x,,], where k is an arb itrary field.

a. Show that .JJ is a rad ical ideal.
b. Show that I is rad ical if and only if 1 = .JJ.
c. Show that IJI = .JJ.

5. Prove that I and V are inclusion-reversing.
6. Let 1 be an ideal in k[xi • . . . • x ,,].

a. In the special case when .JJ = (fl . Iz),with /;'''' E I . prove that f "' I+",, -1 E 1 for all
f E .JJ.

b. Now prove that for any I. there exists rno such that f "''' E 1 for all f E .JJ.Hint: Write
.JJ = (fl . .. . , f s) .

7. Determine whether the folllow ing polynomials lie in the following radicals. If the answer is
yes. what is the smallest ower of the polynomial that lies in the ideal ?
a. Is x + Y E (x 3• y3. x y(x + y »)?

b. Is Xl + 3xz E )(x + Z, xly . X - Zl )?
8. Show that if /,,, and /''' +1 are homogeneous polynomials of degree m and m + I . respectively.

with no common factors [i.e.• GCD (/,,,. /' ,,+d = I] . then h = /,,, + /'''+1is irreducible.
9. Given f . g E k[x \ • . . . • x"l. use unique factorizat ion to prove that GCD(f. g ) ex ists. Also

prove that GCD(f. g ) is un ique up to multiplication by a nonzero constant of k .
10. Prove the following ideal-the oretic characterizat ion of GCD(f. g): given f. g. h in

k[x l •. . .• x,, ] . then h = GCD(f. g) if and only if h is a generator of the smallest prin-
cipal ideal containing (f. g ) (tha t is. if (h ) c J . whenever J is a princip al idea l such that
J :J (f. g) .

I I. Find a basis for the ideal

) (x 5 - 2x' + 2x1 - X. x 5 - x' - 2x3+ 2x l + X - I ) .

Compare with Exercise 17 of Chapter I . §5.
12. Let f = x 5 + 3x ' y + 3X3yl - 2X'yl + Xl y 3 - 6x 3y 3 - 6x l y' + x 3y' - 2x y 5 + 3x l y5 +

3x y 6 + v' E lQ[ x . y ]. ComputeNT.
13. A field k has characteristic zero if it contains the rat ional numbers lQ; otherwise. k has

positi ve characteristic.
a. Let k be the field IFI from Exercise I of Chapter I. § I. If f = x~ + ... + x; E

IFz[x l •. . . • x,,]. then show that :;, = 0 for all i . Conclude that the formula given in
Proposition 12 may fail when the field is IFz.

b. Let k be a field of characteristic zero and let f E k[x i • . . : • x" I be nonconstant. If the
vari able Xj appears in f. then prove that ~1:J =f. O. Also explain why ;i~ has smaller
total degree than f .

14. Let J = (xy , (x - y)x) . Describe V(J) and show that .J7 = (x) .
15. Prove that 1 = (xy , x z. yz ) is a radical ideal. Hint: If you div ide I E k[x . y. z] by

xy , x z. yz , what does the remainder look like? What does I '" look like?

§3 Sums, Products, and Intersections of Ideals

Ideals are algebraic objects and, as a result , there are natural algebraic operations we can
define on them . In this section . we consider three such : sum, intersection, and product.
These are binary operations: to each pair of ideals, they associate a new ideal. We shall
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be particularly interested in two general questions which arise in connection with each
of these operations. The first asks how, given generators of a pair of ideals, one can
compute generators of the new ideals which result on applying these operations. The
second asks for the geometric significance of these algebraic operations. Thus , the first
question fits the general computational theme of this book; the second, the general
thrust of this chapter. We consider each of the operations in tum.

Sums of Ideals

Definition 1. If I and J are ideals of the ring k[XI, .. . , xlIl , then the sum of I and
J . denoted I + J, is the set

1+ J = {f + g : f E I and gE Jl·

Proposition 2. If I and J are ideals in k[XI , • .. , XII l, then I + J is also an ideal in
k[xl • . . . •x; [, In fact, I + J is the smallest ideal containing I and J . Furthermore, if
I = (f, . .... fr) and J = (g" ... , gs), then 1+ J = (fl , . . . , fr' gJ, ... , gs).

Proof. Note first that 0 = 0 + 0 E I + J . Suppose h \, b: E I + J. By the definition
of 1+ J, there exist f l . 12 E I and g l, g2 E J such that hi = I I + g" b: = h + g2.
Then, after rearranging terms slightly, hi +h2 = (f\ +h)+ (g l +g2) .Butfl+ 12 E I
because I is an ideal and. similarly, gl + g2 E J, whence hi + h2 E I + J . To check
closure under multiplication, let h E I + J and I E k[XI, . . . , XII l be any polynomiaT.
Then, as above, there exist f E I and g E J such that h = f + g . But then
I . h = I . (f + g) = I . f + I . g. Now I . I E I and I . g E J because I and J are
ideals. Consequently, I . h E I + J . This shows that I + J is an ideal.
If H is an ideal which contains I and J, then H must contain all elements I E I

and g E J . Since H is an ideal, H must contain all f + g, where I E I. g E
J. In particular, H :J I + J. Therefore, every ideal containing I and J contains
I + J and, thus, I + J must be the smallest such ideal. Finally, if I = (fl ' ...• Ir)
and J = (gl • . . . , g, ), then (ft • . .. , t-.s». .. . , gs) is an ideal containing I and J,
so that I + J C (fl ,"" Ir. gl , ... g,). The reverse inclusion is obvious . so that
1 + J = (fl • . ..• I. . gl • . . . , gs). 0

The following corolIary is an immediate consequence of Proposition 2.

Corollary 3. If I. . . . . , f r E k[x l • . . . , XIIl, then

(fI, .. . , fr) = (fd + .. .+ (fr) '

To see what happens geometrically, let I = (x 2 + y) and J = (z) be ideals in IR3•
We have sketched V(l ) and V(J) below. Then I + J = (x 2 + y , z) contains both
x 2+y and z. Thus, the variety V(l + J) must consist ofthose points where both x2+y
and z vanish. That is. it must be the intersection of V(l) and V (J) .
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f--V(x' +y)

, !
V(z)
!

y

.,

The same line of reasoning generalizes to show that addition of ideals corresponds
geometrically to taking intersections of varieties.

Theorem 4. If I and J 'be ideals in k[x) • . . . •XII], then V(l + J) = V(l) n V(J) .

Proof. If X E V(l +'J), then X E V(l) because I C I + J; similarly, x E V(J) .
Thus , x E V(l) n V(J) and we conclude that V(l + J) C V(l) n V(J) .
To get the opposite inclusion, suppose x E V(l) n V(J) . Let h be any polynomial

in I + J. Then there exist f E I and g E J such that h = I + g. We have
I(x) = 0 because x E V(l) and g(x) = 0 because x E V(J) . Thus , h(x) =
I(x) + g(x) = 0 + 0 = O. Since h was arbitrary, we conclude that x E V(l + J) .
Hence , V(l + J) :J V(l) n V(J). 0

An analogue of Theorem 4, stated in terms of generators was given in Lemma 2 of
Chapter I, §2.

Products of Ideals
In Lemma 2 of Chapter I , §2, we encountered the fact that an ideal generated by the
products of the generators of two other ideals corresponds to the union of varieties :

V(f, • . . . fr) U V(gt, . . . , gs) = V(/;g j. I :::: i :::: r, 1 s j s s).

Thus, for example, the variety V(x z, yz) corresponding to an ideal generated by the
product of the generators of the ideals , (x, y) and (z) in k[x, y. zlis the union ofV(x , y)
(the z-axis) and V(z) (the xy-plane) . This suggests the following definition.

Definition 5. II I and J are two ideals in k[x" . . . , XII]. then their product, denoted
I . J, is defined to be the ideal generated by all polynomials I . g where I E I and
g E J.
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Thus, the product I . J of I and J is the set

I · J = {flgl + .. .+ Irgr : II .. .. , Ir E I, gl , . . . , gr E J. r a positive integer}.

To see that this is an ideal, note that 0 = 0 . 0 E I . J . Moreover, it is clear that
hI, h2 E I · J implies that hi + h i E I · J. Finally, ifh = t.s. + ... + t.s. E I · J
and p is any polynomial, then

ph = (pll)gl + .. .+ (pfr)gr E I· J

since pj; E I for all i, I ::: i ::: r . Note that the set of products would not be an ideal
because it would not be closed under addition. The following easy proposition shows
that computing a set of generators for I . J given sets of generators for I and J is
completely straightforward.

Proposition 6. Let I = (fl, ... , Ir) and J = (gl' ... , gs)' Then I · J is generated
by the set 01all products 01generators 01 I and J :

I . J = (j;gj : I ::: i ::: r, I ::: j ::: s).

Proof. It is clear that the ideal generated by products j;gj of the generators is contained
in I . J. To establish the opposite inclusion, note that any polynomial in I . J is a sum
of polynomials of the form I g with I E I and g E J. But we can write I and g in
terms of the generators I I, ... , t. and gl , . .. , g" respectively, as

1= adl + ...+ arlr,
for appropriate polynomials al , ... , a.; bv , .. . , b., Thus, Is. and any sum of
polynomials of this form. can be written as a sum L cij j; gj, where cij E
k[xlo .. . , XII]' 0

The following proposinon guarantees that the product of ideals does indeed
correspond geometrically to the operation of taking the union of varieties.

Theorem 7. II I and J be ideals in k[x) , . . . , XII], then V(I . J) = V(I) U V(J).

Proof. Let X E V(I . J). Then g(x)h(x) = 0 for all gEl and all h E J.1f g(x) = 0
for all g E I,thenx E V(/) .Ifg(x) =1= Oforsomeg E I,thenwemusthaveh(x) = 0
for all h E J. In either event, X E V(I) U V(J).
Conversely, suppose X E V(/) U V(J) . Either g(x) = 0 for all gEl or hex) = 0

for all h E J. Thus, g(x)h(x) = 0 for all gEl and h E J. Thus , I(x) = 0 for all
I E I . J and, hence, x E V(/ . J) . 0

In what follows, we will often write the product of ideals as I J rather than I . J .

Intersections of Ideals
The operation of forming the intersection of two ideals is, in some ways, even more
primitive than the operations of addition and multiplication.
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Definition 8. The intersection / n J oftwo ideaLs / and J in k[xl • . . . • XII] is the set
ofpoLynomiaLs which beLong to both / and J .

As in the case of sums, the set of ideals is closed under intersections.

Proposition 9. If / and J are ideaLs in k[x )• . . . , XII] , then / n J is also an ideal.

Proof. Note that 0 E / n J since 0 E / and 0 E J . If I. s E / n J. then f + s E /
because f , g E / . Similarly, I + g E J and, hence, I +gEl n J . Finally, to check
closure under multipl ication . let IE/ n J and h by any polynomial in k[xl • . . . , XII] '
Since IE/ and / is an ideal. we have h . f E / . Similarly . h . I E J and, hence,
h . IE/ n J . 0

Note that we always have / J C / n J since elements of / J are sums of polynomials
of the form I g with fE/ and g E J . But the latter belong to both / (since f E l)
and J (since g E J). However, / J can be strictly contained in / n J. For example.
if / = J = (x, y) . then / J = (x 2• xy, y2) is strictly contained in / n J = / =
(x . y) (x E / n J, but x rt lJ ).
Given two ideals and a set of generators for each, we would like to be able to compute

a set of generators for the intersection . This is much more delicate than the analogous
problems for sums and products of ideals , which were entirely straightforward. To
see what is involved, suppose / is the ideal in k[x. y ] generated by the polynomial
I = (x + y )4(X2 + y)2(X - 5y) and let J be the ideal generated by the polynomial
g = (x + y)(x 2+ y )Jcx + 3y ) .We leave it as an (easy) exercise to check that

/ n J = (x + y )4(X2 + y)3(X - 5y)(x + 3y»).

This computation is easy precisely because we were given factorizations of I and g into
irreducible polynomials. In general. such factorizations may not be available. So any
algorithm which allows one to compute intersections will have to be powerful enough
to circumvent this difficulty.
Nevertheless, there is a nice trick which reduces the computation of intersections

to computing the intersection of an ideal with a subring (i.e., eliminating variables). a
problem which we have already solved. To state the theorem. we need a little notation :
if I is an ideal in k[XI. " . . , XII] and l(t) E "kU] a polynomial in the single variable
t , then II denotes the ideal in k[XI , . . " XII' t] generated by the set of polynomials
{f . h : h E l}. This is a little different from our usual notion of product in that
the ideal I and the ideal generated by I (t) in k[t] lie in different rings: in fact, the
ideal I C k[x t •.. .• XII] is not an ideal in k[xt • . . . • XII. t] because it is not closed
under multiplication by t . When we want to stress that the polynomial I E k[t] is
a polynomial in t alone, we write I = f(t) . Similarly, to stress that a polynomial
h E k[x l• . . . . xII]involvesonlythevariablesxt, ...• xlI ,wewriteh = h (x ).Along
the same lines. if we are considering a polynomial g"in k[XI , ... , XII ' t] and we want
to emphasize that it can involve the variables XI • . •.• XII as well as t, we will write
g = g(x , r) . In terms of this notation . II = 1(t)1 = (f(t)h(x) : hex ) E l) . So. for
example, if f(t ) = t 2 - t and I = (x , y). then the ideal l(t)/ in k[x . y , t] contains



§3. Sums, Products, and Intersections ofIdeals 185

(t2 - t)x and (t2 - t)y. In fact, it is not difficult to see that f(t)I is generated as an
ideal by (t2 - t)x and (t2 - t)y. This is a special case of the following assertion.

Lemma 10.
(i) If I is generated as an ideal in k[XI, ... , XII] by PI(x), , Pr(x) , then f(t)I is

generated as an ideal in k[XI, . . . , XII ' t] by f(t) . PI(X), , f(t) . Pr(X)'
(ii) Ifg(x,t) E f(t)Iandaisanyelementofthefieldk,theng(x ,a) E I .

Proof. To prove the first assertion, note that any polynomial g(x , t) E f(t)I can be
expressed as a sum of terms of the form h(x, t) . f(t) . p(x) for h E k[XI , . . . , XII' t]
and pEl. But because I is generated by PI , ... , pr the polynomial p(x) can be
expressed as a sum of terms of the form qi (x) Pi(x), I :::: i :::: r . That is,

r

p(x) = L qi(X)Pi (x) .
i=l

Hence,
r

hex, t) . f(t) . p(X) = L hex , t)qi(x)f(t)Pi(X) .
i = 1

Now,foreachi, I:::: i :::: r, hex, t) ·qi(X) E k[XI , .. . ,XII' t) .Thus,h(x, t) ·f(t)·p(x)
belongs to the ideal in k[XI, .. . , XII' t] generated by f(t) . PI(x), .. . , f(t) . Pr(x),
Since g(x, r) is a sum of such terms,

g(X , t) E (f(t) . PI(X), . . . , f(t) . Pr(X»,

which establishes (i).The second assertion follows immediately upon substituting a E k
for t. 0

Theorem 11. Let I, J be ideals in k[XI , . .. , XII] ' Then

I n J = (t I + (1 - t).]) n k[XI, . . . , XII ]'

Proof. Note thatt1+ (l - t)J is an ideal in k[Xl, .. . , XII ' t].To establish the desired
equality, we use the usual strategy of proving conta inment in both directions.
Suppose f E I n J . Since f E I, we have t . f E t I. Similarly, f E J implies

(l - t) . f E (1 - t)J . Thus, f = t . f + (l - t) . f E t I + (l - t)J . Since
I , J C k[Xl' .. . , XII], we have f E (t I + (I - t)J) n k[xt, . . . , XII]' This shows that
In J c (t I + (1- t)J) n k[XI, ' " , XII ]'
To establish containment in the opposite direction, suppose f E (t I + (l - t)J) n

k[XI , . . . , XII) ' Then f(x) = g(x , t) + hex, t) , where g(x, r) E tl and hex, t) E
(l - t)J . First set t = O. Since every element of t I is a multiple of t, we have
g(x,O) = O. Thus, f (x) = h(x ,O) and hence, f(x) E J by Lemma 10. On the
other hand, set t = 1 in the relation f(x) = g(x, t) + hex, t). Since every element
of (l - t)J is a multiple of I - t . we have hex, I) = O. Thus , f(x) = g(x , 1) and,
hence, f (x) E I by Lemma 10. Since f belongs to both I and J , we have f E I n J.
Thus, I n J :) (t I + (l - t) J) n k[Xl, .. . , XII) and this completes the proof. 0
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The above result and the Elimination Theorem (Theorem 2 of Chapter 3, §1) lead to
the following algorithm for computing intersections of ideals: if I = (fl, . .. , fr)
and J = (g I, . . . , gs) are ideals in k [x I , . . . , XII], we consider the ideal

(tfl,"" tfr, (l - t)gt, ···, (l - t)gs) C k[xt, . . . , XII ' r]

and compute a Groebner basis with respect to lex order in which t is greater than the
Xi. The elements of this basis which do not contain the variable t will form a basis
(in fact, a Groebner basis) of I n J . For more efficient calculations, one could also
use one of the orders described in Exercises 5 and 6 of Chapter 3, §I. An algorithm
for intersecting three or more ideals is described in Proposition 6.19 of BECKER and
WEISPFENNING (1993).
As a simple example of the above procedure, suppose we want to compute the

intersection of the ideals I = (x 2y) and J = (x y2) in k[x , y]. We consider the ideal

t I + (l - t)J = (tx 2y, (l - t)xl) = (tx2y, txl- xl)

in k[t, x , y]. Computing the S-polynomial ofthe generators, we obtain tx2y 2 - (tx 2y 2 -
x 2y2) = x 2y2 . It is easily checked that {tx2y, txy2 - xy2, x 2y2} is a Groebner basis of
t 1+ (l - t)J with respect to lex order with t > x > y. By the Elimination Theorem,
{X2y2} is a (Groebner) basis of (t I + (l - t)J) n k[x , y]. Thus,

I n J = (x 2y 2 ) .

As another example, we invite the reader to apply the algorithm for computing in-
tersections of ideals to give an alternate proof that the intersection I n J of the
ideals

I = (x + y)4(X2 + y)2(X - 5y»)

ink[x, y] is

and J = (x + y)(x2 + y)\x + 3y»)

I n J = (x + y)\x2 + y)3(x - 5y)(x + 3y») .

These examples above are rather simple in that our algorithm applies to ideals which
are not necessarily principal, whereas the examples given here involve intersections of
principal ideals. We shall see a somewhat more complicated example in the exercises.
Wecan generalize both of the examples above by introducing the following definition.

Definition 12. A polynomial h E k[XI, .. . ,XII] is called a least common multiple
of f , g E k[x (, . .. , XII] and denoted h = LCM(j, g) if
(i) f divides hand s divides h .
(ii) h divides any polynomial which both f and g divide.

For example,

and

LCM«x + y )\ x 2 + y)2(x - 5y), (x + y)(x2 + y)3(x + 3y»

= (x + y)4(X2 + y)3(x - 5y)(x + 3y) .



§3. Sums. Products. and Intersections of Ideals 187

More generally, suppose f. g E k[xl • . . . • XII] and let f = ft' .. . fra , and g =
gt' ... g.~' be their factorizations into distinct irreducible polynomials. It may happen
that some of the irreducible factors of f are constant multiples of those of g. In this
case, let us suppose that we have rearranged the order of the irreducible polynomials
in the expressions for f and g so that for some I, I ~ I ~ miner , s) , Ii is a constant
(nonzero) multiple of gi for I ~ i ~ I and for all i , j > l , Ii is not a constant multiple
of g j ' Then it follows from unique factorization that

(I) LCM(!) f max(a , .b , ) Fmax (a, .b/ ) b,+, b, 1'" /+' I'",
, g = I ' ''11 'gl+1 " 'g.. '/1+1 ' ' 'l r'

[In the case that f and g share no common factors, we have LCM(f, g) = f .g.] This,
in tum , implies that the following result.

Proposition 13.
(i) The intersection I n J oftwo principal ideals I, J C k[Xl, . . . , XII] is a principal

ideal.
(ii) If I = (f). J = (g) and In J = (h). then

h = LCM(f, g) .

Proof. The proof will be left as an exercise. o

(2)

This result , together with our algorithm for computing the intersection of two ideals
immediately gives an algorithm for computing the least common multiple of two
polynomials. Namely , to compute the least common multiple of two polynomials f, g E
k[X l, ... , XII], we compute the intersection (f) n (g) using our algorithm for computing
the intersection of ideals . Proposition 13 assures us that this intersection is a principal
ideal (in the exercises. we ask you to prove that the intersection of principal ideals is
principal) and that any generator of it is a least common multiple of f and g.
This algorithm for computing least common multiples allows us to clear up a point

which we left unfinished in §2: namely, the computation of the greatest common divisor
of two polynomials fand g . The crucial observation is the following .

Proposition 14. Let f, g E k[X I , . . . , XII]' Then

LCM(f, g ) . GCD(f, g) = fg.

Proof. The proof is an exercise . You will need to express f and g as a product of
distinct irreducibles and use the remarks preceding Proposition 13, especially equation
(I). 0

It follows immediately from Proposition 14 that

GCD(f ) - f· g
, g - LCM(f, g)

This gives an algorithm for computing the greatest common divisor of two poly-
nomials f and g. Namely, we compute LCM(j, g) using our algorithm for the least
common multiple and divide it into the product of f and g using the division algorithm.
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We should point out that the QeD algorithm just described is rather cumbersome. In
practice, more efficient algorithms are used [see DAVENPORT, SIRET, and TOURNIER
(1988)] .
Having dealt with the computation of intersections, we now ask what operation on

varieties corresponds to the operation of intersection on ideals. The following result
answers this question.

Theorem 15. If I and J are ideals in k[x" . .. , XII], then V(l n J) = V(l) U V(J) .

Proof. Let X E V(l) U V(J) . Then X E V(l) or x E V(J) . This means that either
f(x) = 0 for all f E I or f(x) = 0 for all f E J . Thus, certainly, f(x) = 0 for all
f E In J . Hence, x E V(l n J) . Thus, V(l) U V(J) C V(l n J).
On the other hand, note that since I J C I n J, we have V (I n J) c V (I J) .

But V(l J) = V(l) U V(J) by Theorem 7 and we immediately obtain the reverse
inequality. 0

Thus, the intersection of two ideals corresponds to the same variety as the product. In
view of this and the fact that the intersection is much more difficult to compute than the
product, one might legitimately question the wisdom of bothering with the intersection
at all. The reason is that intersection behaves much better with respect to the operation
of taking radicals: the product of radical ideals need not be a radical ideal (consider I J
where I = J), but the intersection of radical ideals is always a radical ideal. The latter
fact follows upon applying the following proposition to radical ide als .

Proposition 16. If I , J are any ideals; then

../lFli = .j[ n ../J.

Proof. Iff E .../If)], then fill E I n J for some integer m > O. Since f ill E I , we
have f E Ji. Similarly, f E ../J.Thus, .../If)] c -Ji n ../J.
To establish the reverse inclusion, suppose f E -Jin ../J.Then, there exist integers

m, p > 0 such that I" E I and I" E J. Thus, r'fP = f'''+P E I n J , so
f E .../If)]. 0

EXERCISES FOR §3

I. Show that

«x + y )4(X2+ y)2(X - 5y») n «x + y)(x2+ y)\x + 3y»)

= «x + y)4(X2+ y)3(X - 5y)(x + 3y») .

2. Prove formula (I) for the least common multiple of two polynomials f and g.
3. Prove assertion (i) of Proposition 13. That is, show that the intersection of two principal

ideals is principal.
4. Prove assertion (ii) of Proposition 13. That is, show that the least common multiple of two

polynomials f and g in k[x), .. . , x ; I is the generator of the ideal (f) n (g ).
5. Prove Proposition 14.That is, show that the least commonmultiple of two polynomials times

the greatest common divisor of the same two polynomials is the product of the polynomials.
Hint: Use the remarks following the statement of Proposition 14.
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6. Let II . . ... I, and 1 be ideals in k[X I , . . . • x,,). Show the following:
a. (II + 12 )1 = I II + 121 .
b. (11 . . . 1,)'" = I t· · ·I;".

7. Let I and 1 be ideals in k[XI' . . .• x,,]. where k is an arbitrary field. Then:
a. If I k C 1 for some integer k > O. then .,fi c JI.
b. v'I+J = J.,fi + JI.

8. Let

and

g = x4+ 2X l z:2 _ x2/ + X2z:4 _ 2x y2z:2 _ /z:4 .

a. Use a computer algebra program to compute generators for (f) n (g) and -!Uf(i'i.
b. Use a computer algebra program to compute GCD(f. g) .
c. Let p = x 2 + x y + x z + yz: and q = x 2 - xy - xz + yz: . Use a computer algebra

program to calculate (f. g) n tp, q) .
9. For an arbitrary field. show that J77 = ,.JTF1J.Give an example to show that the product

of radical ideals need not be radical. Give an example to show that .JTJcan differ from
.,fiJI.

10. If I is an ideal ink[xi• . . . • x,,]and (f(1) is an ideal in kIt]. show thatthe ideal f(t)1 defined
in the text is the product of the ideal j generated by all elements of I in k[x lo . .. ,x"' t] and
the ideal (f(tn generated by f(t ) in k[x l• .. . • x". r ],

II. Two ideals I and 1 of k[xi • . . . • x;1are said to be comaximal if and only if I + 1 =
k[xlo . . . • x,,).
a. Show that if k = <C. then I and 1 are comaximal if and only if V(I) n V(J) = 0. Give

an example to show that this is false in general.
b. Show that if I and 1 are comaxirnal, then I 1 = I n 1 .
c. Is the converse to part (b) true? That is. if I 1 = I n 1 . does it necessarily follow that I

and 1 are comaximal? Proof or counterexample?
. d. If I and 1 are cornax imal, show that I and 12 are comaximal. In fact. show that l" and

J' are comaximal for all positive integers rand s .
e. Let II . . . .. I, be ideals in k[xl • . . . • x,,] and suppose that I ; and 1; = n j#ilj are

comaximal for all i . Show that

I~' n · : · n I;" = (I I • . . · 1,)'" := (II n · · · n i.v:
for all positive integers m ,

12. Let I be an ideal in k[xl • . . .• x,,] and suppose that I C JI. Show that l'" C 1 for some
integer m > O. Hint: You will need to use the Hilbert Basis Theorem.

13. Let A be an m x n constant matrix and suppose that x = Ay where we are thinking of
x E k" and y E k" as column vectors . As in Exercise 9 of §I. define a map

O!A : k[xi • . . . • xm) ---+ k[YI• . . . • y,,)

by sending f E k[xl • . . .• x",] to O!Af E k[ylo . . . • y,,]. where O!Af is the polynomial
defined by O!Af(y) = f (Ay).
a. Show that the set If E k[x i• . . . • x",] : O!A(f) = OJ is an ideal in k[xi • . . . • x.; I. [This

set is called the kernel of O!Aand denoted ker (O!A).1
b. If! is an ideal in k [x l • .. . . x",].showthatthesetO!.~(I) = (O!A(f) : f E l}neednotbe

an ideal ink[ylo . . . • y"l. [Wewill often write (O!~ (I» to denote the ideal in k[YI• . . . • y,,1
generated by the elements of O!A(I)-it is called the extension of I to k[x l•. . .• xml.]
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Show that if I ' is an ideal in k[ ylo .. .• y"j , the set cx~ I(I ') = (f E k[xl • .. . • xmj :
cx" (f) E !'} is an ideal in k[xi • . . . , x.; j (often called the contractionof 1').

14. Let A and cx" be as above and let K = ker(cx,,). Let [ and J be ideals in k[xio . . .• xmj.
Show that:
a. [ C J implies (cx,,(I» c (cx ,,(J».
b. (cx" (I + J» = (cx" (I» + (cx .~ (1» .
c. (cx ,,(1 J» = (cx,,(I»(cx,,(1» .
d. (cx" (I n J» c (cx" (l» n (cx" (1» with equality if [ ~ K or J ~ K .
e. (cx ,,(-!i)) C ..!(cx,,(l)} with equality if [ ~ K.

15. Let A. cx" . and K = ker(cx,,) be as above. Let I' and J' be ideals in k[ yl •.. . • y"j. Show
that:
a. I' C l' impliescx~'(I') C cx~I(1').

b. CX~I (I' + 1') = CX~I (I') + CX~I (1').
c. CX~I(1'1') ~ (CX~I(I'»(CX~I(1')}with equality if the right-handside containsK.
d. CX~I(1' n 1') = CX~I(I') n cx~I(1').

e. CX~I(,JF} = JCX~ I(l') .

§4 Zariski Closure and Quotients of Ideals

We have already seen a number of examples of sets which are not varieties. Such sets
arose very natural1y in Chapter 3, where we saw that the projection ofa variety need
not be a variety, and in the exercises in Chapter 1, where we saw that the (set-theoretic)
difference of varieties can fail to be a variety.
Whether or not a set 5 C k" is an affine variety. the set

1(5) = If E k[XI , . . . , x,,) : f(a) = 0 for al1a E 5)

is an ideal in k[xi • . . . , x,,) (check this !). In fact, it is radical. By the ideal-variety
correspondence, V(I(5» is a variety. The fol1owing proposition states that this variety
is the smal1est variety that contains the set 5.

Proposition 1. IfS c k" , the affine varietyV(I(S» is the smallest variety that contains
S [in the sense that ifW C k" is any affine variety containing S, then V(I(S» c WJ.

Proof. If W :J S, then I(W) c I(S) (because I is inclusion-reversing). But then
V(I(W» :J V(I(S» (because V is inclusion-reversing). Since W is an affine variety,
V(I(W» = W by Theorem 7 from §2, and the result fol1ows. 0

This proposition leads to the following definition.

Definition 2. The Zariski closure of a subset ofaffine space is the smallest affine
algebraic variety containing the set. If 5 c k" , the Zariski closure ofS is denoted S
and is equal to V(I(S».

A natural example of Zariski closure is given by elimination ideals. We can now
prove the first assertion of the Closure Theorem (Theorem 3 of Chapter 3, §2) .·
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Theorem 3. Let k be an algebraically closedfield. Suppose V = V(fl • . . . • f ,) C k",
and let tt, : k" --+ k"-I be projection onto the last n - I components. If II is the lth
elimination ideal II = (fl' . .. • f ,) n k[XI+l . . . . • XII]' then V(ll) is the Zariski closure
oflrl(V) ,

Proof. In view of Proposition I . we must show that V(ll) = V(I(lrl(V»). By Lem-
ma I of Chapter 3, §2. we have lrt(V) C V(l/)' Since V(I(lrl(V») is the smallest
variety containing lrl(V). it follows immediately that V(l(lrl(V») C V(ll).
To get the oppos ite inclusion, suppose f E V(lt), i.e., f(al+l , .. . , all) = a for

all (al+I , ...• all) E lrl(V) , Then , considered as an element of k[Xl. X2 , .. · • XII) .
we certainly have f ta«, a2, .. . , all) = a for all (al • . . .• all) E V . By Hilbert's
Nullstellensatz. f'v E (fl • . . . , f s) for some integer N . Since f does not depend on
Xl, . . . xi, neither does f'v, and we have fN E (fl • . . . , I s) n k[XI+I• . . . , XII) = II.
Thus, f E ../li, which implies J(rr/(V» C ../li. It follows that vu., = V(../li) c
V(J(rrl (V))), and the theorem is proved. 0

Another context in which we encountered sets which were not varieties was in taking
the difference of varieties . For example, let W = V(K) where K C k[x, y . z] is the
ideal (xz , yz) and V = V(l) where I = (z). Then we have already seen that W is the
union of the xy-plane and the z-axis. Since V is the xy-plane, W - V is the z-axis with
the origin removed (because the origin also belongs to the xy-plane) . We have seen
in Chapter I that this is not a variety. The z-axis [= V(x, y)] is the smallest variety
containing W - V .
We could ask if there is a general way to compute the ideal corre sponding to the

Zariski closure W - V of the difference of two varieties Wand V . The answer is
affirmative, but it involves a new algebraic construction on ideals.
To see what the construction involves let us first note the following.

Proposition 4. If V and Ware varieties with V E W. then W = V U (W - V).

Proof. Since W contains W - V and W is a variety, it must be the case that the smallest
variety containing W - V is contained in W . Hence, W - V C 'W. Since V C W by
hypothesis, we must have V U (W - V) C W.
To get the reverse containment, note that V C W implies W = V U (W - V) . Since

W - V C W - V, the desired inclusion W C V U W - V follows immediately. 0

Our next task is to study the ideal-theoretic analogue of W - V. We start with the
following definition .

Definition 5. If I , I are ideals in k[XI , . .. , xlIl. then I:I is the set

If E k[Xl, .. . ,X,J : fg E I for all g E II

and is called the ideal quotient (or colon ideal) of / by J.



192 4. The Algebra-Geometry Dictionary

So, for example, in k[x, y , zl we have

(xz , yz) : (z) = {f E k[x, y, z] : I · z E (xz . yz)}

= {f E k[x, y, zl : I · z = Axz + Byz}
= {f E k[x, y, z] : I = Ax + By}
= (x , y) .

Proposition 6. II I, 1 are ideals in k[XI, . . . , XII] , then I:l is an ideal in k[XI, . . . , XII]
and l .J contains I .

Proof. To show 1:1 contains I , note that because I is an ideal, if I E I , then f gEl
for all g E k[XI, . . . , XII] and, hence, certainly I gEl for alIgEl . To show that I:J
is an ideal , first note that 0 E 1:1 because 0 E I . Let II, h E 1:1.Then Ivsand hg are
in I for all gEl. Since I is an ideal (/1 + h)g = Ilg + hs E I for alI gr at E J ,
Thus, II + [: E 1:1. To check closure under multiplication is equalIy straightforward:
if I E 1:1 and h E k[XI, .. . , XII], then I gEl and, since I is an ideal, higEl for
alIgEl , which means that hi E I:l. 0

The folIowing theorem shows that the ideal quotient is indeed the algebraic analogue
of the Zariski closure of a difference of varieties.

Theorem 7. Let I and 1 be ideals in k[XI , . . . , XII]' Then

V(l:J) :J V(l) - V(l).

If, in addition , k is algebraically closed and I is a radical ideal, then

V(l:J) = V(l) - V(l).

Proof. We claim that l:J C I(V(l) - V(J». For suppose that I E 1:1 and X E
V(l) - V(J). Then Ig E I for alI gEl. Since X E V(l), we have I(x)g(x) = 0 for
alIgEl. Since x rf. V(J) , there is some gEl such that g(x) i= O. Hence, I (x) = 0
for any x E V(l> - Vel) . Hence, I E I(V(l) - V(J» which proves the claim. Since
V is inclusion-reversing, we have V(l:J) . -:J V(I(V(l) - V(J))) . This proves the first
part of the theorem.
Now, suppose that k is algebraicalIy closed and that I = JI. Let X E V(/ :J).

Equivalently ,

(I) if hg E I for all gEl, then hex) = O.

Now leth E I(V(l) - V(J» . IfgEl, thenhg vanishes on V(l) becauseh vanishes on
V(l) - V(J) and g on Vel) . Thus , by the NullstelIensatz , hg E JI. By assumption,
I = JI, and hence, hg E [ for all gEl . By (I), we have hex) = O. Thus,
X E V(I(V(l) - V(J))). This establishes that

V(/:J) C V(I(V(l) - Vel))),

and completes the proof. o
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The proof of Theorem 7 yields the following corollary that holds over any field.

Corollary 8. Let V and W be varieties in k", Then

I(V) : I(W) = I(V - W) .

Proof. In Theorem 7. we showed that 1:1 C I(VU) - V(J)) . If we apply this to
I = I (V) and I = I(W) , we obtain I(V) : I(W) C I(V - W) .The opposite inclusion
follows from the definition of ideal quotient. 0

The following proposition takes care of some of the more obvious properties of ideal
quotients. The reader is urged to translate the statements into terms of varieties (upon
which they become completely obvious).

Proposition 9. Let I. 1. and K be ideals in k[xi • . . . •x,,]. Then:
(i) I : k[XI , . . .• x,,] = I .
(ii) I i c: K ifandonlyifl C K : 1.
(iii) I C I ifand only if1:1 = k[XI, .. . • x,,].

Proof. The proof is left as an exercise. o
The following useful proposition relates the quotient operation to the other operations

we have defined:

Proposition 10. Let I , l ., 1, Ji, and K be ideals in k[xl • . . . •x,,] for 1 < ::: r.
Then

(2)

(3)

(4)

(nIi) : I = nUi:I),
/ = 1 i = 1

I: (t Ii) = QU:Ii),
U :I) :K=I :IK.

Proof. We again leave the (straightforward) proofs to the reader. o

If f is a polynomial and I an ideal, we often write I: f instead of I : (n. Note that
a special case of (3) is that

(5)
r

I : (fl , h , .. · , fr) =nU :j;) .
;=1

We now tum to the question of how to compute generators of the ideal quotient 1:1
given generators of I and 1 . The following observat ion is the key step.

Theorem 11. Let I be an ideal and g an element ofk[xi • . . . •X,,]. If{h l • • • • • hpj is
a basis ofthe ideal I n (g), then {hi/g • . . . , hp/g} is a basis of I : (g).
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Proof. If a E (g}, then a = bg for some polynomial b. Thus, if f E
(hl/g , . . . , hp/g), then

af = bgf E (hi • . . . , hp} = 1 () (g} C I.

Thus, f E I: (g}. Conversely, suppose f E I : (g}. Then fg E I. Since fg E (g},
we have fg E 1 () (g}. If 1 () (g} = (hi, . . . , hp}, this means fg = I: r.h, for some
polynomials rio Since each hi E (g}, each h;/g is a polynomial. and we conclude that
f = I: ri(h;/g) , whence f E (hi/g • . . . , hp/g}. 0

This theorem, together with our procedure for computing intersections of ideals and
equation (5), immediately leads to an algorithm for computing a basis of an ideal
quotient. Namely, given 1 = (f1 •.. . ,fr)andJ = (gl . .. ·.g'} = (gl}+ " '+(gs},
to compute a basis of I:J, we first compute a basis for 1 : (gi} for each i , In view of
Theorem 11. we first compute a basis of (flo . . . • fr} () (gi}' Recall that we do this
by finding a Groebner basis of (tfl ," " tfr, (I - t)gi} with respect to a lex order in
which t precedes all the Xi and retaining all basis elements which do not depend on t
.(this is our algorithm for computing ideal intersections). Using the division algorithm,
we divide each of these elements by gi to get a basis for 1 : (gi}. Finally. we compute
a basis for I:J by applying the intersection algorithm s - 1 times, computing first a
basis for 1 : (gl, g2} = (I : (gl}) () (I : (g2}), then a basis for 1 : (gl' g2. g3} =
(I : (gl. g2}) () (I : (g3}), and so on .

EXERCISES FOR §4

I. Find the Zariski closure of the following sets:
a. The projection of the hyperbola V(xy - I) in IR2 onto the x-axis .
b. The boundary of the first quadrant in IR2 •
c. The set {(x . y) E IR2 : x2+ y2 ::: 4).

2. Let 1 = (x + y)2(X - y)(x + Z2)and g = (x + Z2)3(X - y)(z + y). Compute generators
for (f) : (g) .

3. Let 1 and J be ideals. Show that if 1 is a radical ideal, then I:} is a radical and 1:1= 1 : ./7.
4. Give an example to show that the hypothesis that 1 is radical is necessary for the conclusion

of Theorem 7 to hold. Hint: Examine the proof to see where we used this hypothesis.
5. Prove Proposition 9 and find geometric interpretations of each of its assertions.
6. Prove Proposition 10and find geometric interpretations of each of its assertions.
7. Let A be an m x n constant matrix and suppose that x = Ay where we are thinking of

X E k" and y E k" as column vectors. As in Exercises 9 of §I and 13 of §3, define a map

aA : k[XI , . . . , x",1 -+ k[YI • . . . • Ynl

by sending 1 E k[XI • . .. , x",1 to aAI E k[YI •. ..• Ynl, where aAI is the polynomial
defined by aAI(y) = I(Ay) .
a. Show that a.~ (/:1) C aA(I) : aA(1) with equality if 1 :) K where K = ker(a,.\).
b. Show that a~1 (I ' : J') =a;1 (I ') : a~1 (1').

8. Let 1 C k[x), . ..• x,,1 be an ideal, and fix1 E k[x ), . ..• x"l.Then the saturationof 1 with
respect to 1 is the set

1 : 100 = {g E k[xl • .. .• x,,1 : I mg E 1 for some m > OJ .

a. Prove that 1 : 100 is an ideal.
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b. Prove that we have the ascending chain of ideals I : I c I : 12 C I : 13 C .. ..
c. By part b and the Ascending Chain Condition (Theorem 7 of Chapter 2, §5), we have

I : I N= I : I N+I = . . . for some integer N. Prove that I : 100 = I : I N.
d. Prove that I : 1 00 = I : I'" if and only if I : I '" = I : 1 ",+1 .
e. Use part d to describe an algorithm for computing the saturation I : 100 •

9. As in Exercise 8. let I = (/10" " t ,) C k[XIo "" XII] and fix IE k[X Io "" x,,).lf Y is
a new variable, set

i = (fl , . ' " Iso I - fy) C k[XI, . .• , XII ' y].

a. Prove that I : 100 = in k [XI , .. . , XII)' Hint: See the proof of Proposition 8 of §2.
b. Use the result of part a to describe a second algorithm for computing I : 100 •

10. Using the notation of Exercise 8. prove that I :100 = k[xi • . . . • XII] if and only if I E .;7.
Note that Proposition 8 is an immediate corollary of Exercises 9 and 10.

§5 Irreducible Varieties and Prime Ideals

We have already seen that the union of two varieties is a variety. For example, in Chapter
I and in the last section, we considered V (xz, yz), which is the union of a line and a
plane. Intuitively, it is natural to think of the line and the plane as "more fundamental"
than V(xz, yz). Intuition also tells us that a line or a plane are "irreducible" or "inde-
composable" in some sense: they do not obviously seem to be a union of finitely many
simpler varieties. We formalize this notion as follows .

Definition 1. An affine variety V C k" is irreducible if whenever V is written in
the form ' V = VI U V2 , where VI and V2 are affine varieties, then either VI = V or
V2 = V .

Thus , V (x z. yz) is not an irreducible variety. On the other hand, it is not completely
clear when a variety is irreducible. If this definition is to correspond to our geometric
intuition, it is clear that a point, a line. and a plane ought to be irreducible. For that
matter, the twisted cubic V (y - x 2, Z - x 3) in IR3 appears to be irreducible. But how
do we prove this? The key is to capture this notion algebraically: if we can characterize
ideals which correspond to irreducible varieties , then perhaps we stand a chance of
establishing whether a variety is irreducible.
The following notion turns out to be the right one .

Definition 2. An ideal I C k [XI , . . . , XII] is prime ifwhenever f, g E k [XI, • . • , XII]
and f gEl , then either f E I or:. gEl.

Ifwe have set things up right, an irreducible variety will correspond to a prime ideal
and conversely. The following theorem assures us that this is indeed the case .

Proposition 3. Let V C k" be an affine variety. Then V is irreducible if and only if
I(V) is a prime ideal.
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Proof. First. assume that V is irreducible and let fg E I(V). Set VI = V n V(f) and
V2 = V n V(g); these are affine varieties because an intersection of affine varieties is
a variety. Then fg E I(V) easily implies that V = VI U V2. Since V is irreducible. we
have either V = VI or V = V2. Say the former holds. so that V = VI = V n V(f) .
This implies that f vanishes on V. so that f E I(V) . Thus, I(V) is prime.
Next, assume that I(V) is prime and let V = VI U V2. Suppose that V :f:. VI. We

claim that I(V) = 1(V2). To prove this. note that I(V) C 1(V2) since V2 C V . For
the opposite inclusion, first note that I( V) ~ I (VI) since VI ~ V. Thus. we can pick
f E I(V)) - I(V). Now take any g E I(V2). Since V = VI U V2, it follows that fg
vanishes on V. and. hence. fg E I(V). But I(V) is prime. so that f or g lies in I(V) .
We know that f ¢ I(V) and. thus. g E I(V) . This proves I(V) = I(V2) . whence
V = V2 because I is one-to-one . Thus. V is an irreducible variety. 0

It is an easy exercise to show that every prime ideal is radical. Then. using the
ideal-variety correspondence between radical ideals and varieties. we get the following
corollary of Proposition 3.

Corollary 4. When k is algebraically closed. the functions I andV induce a one-to-one
correspondence between irreducible varieties in k" and prime ideals in k[xi • . . . • XII]'

As an example of how to use Proposition 3. let us prove that the ideal I(V) of the
twisted cubic is prime. Suppose that fg E I(V). Since the curve is parametrized by
(r, t2• t 3 ) . it follows that. for all t ,

f t), t2, t 3)g(t, t 2 • t 3 ) = O.

This implies that f tt , t 2 • t 3 ) or g(t. t2 • t 3 ) must be the zero polynomial. so that f or
. g vanishes on V. Hence, for g lies in I(V). proving that I(V) is a prime ideal. By the
proposition, the twisted cubic is an irreducible variety in IR3. One proves that a straight
line is irreducible in the same way: first parametrize it. then apply the above argument.
In fact. the above argument holds much more generally .

Proposition 5. Ifk is an infinite field and V C k" is a variety defined parametrically

XI = fl(tl • . . . , tm).

XII = f"(t,, . . . . tm).
where fl • . . . • f" are polynomials in k[tl • . . . • tm]. then V is irreducible.

Proof. As in §3 of Chapter 3. we let F : k" _ k" be defined by

Ftt, • . . . , tm ) = (/1 (tl • ...• tl/l)' ... , f,,(tl • ... , tm»'

Saying that V is defined parametrically by the above equations means that V is the
Zariski closure of Ftk'"), In particular. I(V) = I(F(km».
For any polynomial g E k[x, •...• XII], the function g 0 F is a polynomial in

k[t" ...• tml. In fact, g 0 F is the polynomial obtained by "plugging the polynomials
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fl ' . .. , [" into g" :

g o F = g(fl(t l .... , tm ) , · • • , [,,(t, , .. . , tm» .

Because k is infinite, I (V) = I(F(k /ll» is the set of polynomials in k[x" ... , XII]
whose composition with F is the zero polynomial in k[tl , . . . , tm]:

I(V ) = {g E k[x\ , . .. , XII] : g o F = O} .

Now suppose that gh E I(V). Then (gh) 0 F = (g 0 F )(h 0 F) = O. (Make sure
you understand this.) But, if the product of two polynomials in k[tl, . . . , tm] is the zero
polynomial, one of them must be the zero polynomial. Hence , either g 0 F = 0 or
h 0 F = O. This means that either g E I(V) or h E I(V) . This shows that I(V) is a
prime ideal and, therefore, that V is irreducible. 0

With a little care, the above argument extends still further to show that any variety
defined by a rational parametrization is irreducible.

Proposition 6. If k is an infinite field and V is a variety defined by the rational
parametrization

[" (t t . . . . , tm )
X" = g,,(t \, . . . • tm )

where f" . . . , [« , g" . .. , g" E k[t l , . ..• tm], then V is irreducible .

Proof. Set W = V(glg2 .. . gIl) and let F : k'" - W --+ k" defined by

_ (fl(tt , . .. , tm) [,,(tl •. .. , tm»)F(t" . .. , t/ll) - , . . . , .
gt(t\ • ... ,t/ll) g"(tl .· . . ,t/ll)

Then V is the Zariski closure of Ftk" - W), which implies that I (V) is the set of
h E k[x , . : . . , x,,} such that the function h 0 F is zero for all (tt , . . . , t/ll) E k'" - W.
The difficulty is that h 0 F need not be a polynomial. and we, thus , cannot directly
apply the argument in the latter part of the proof of Proposition 5.
We can get around this difficulty as follows. Let h E k[xt, . . . • x,,]. Since

g,(t" ... , tm)g2(t\, .. . , tm ) · · · g,,(tl, . .. , tm ) "# 0
for any (tl," " tm ) E k'" - W, the function (g,g2 '" g,,)N(h 0 F) is equal to zero
at precisely those values of (t" . . . , tm ) E k'" - W for which h 0 F is equal to zero.
Moreover, if we let N be the total degree of h E k[xl • . . . , x,,], then we leave it as
an exercise to show that (g\ g2 ... g,,)N(h 0 F) is a polynomial in k[tl, . . . , tm]. We
deduce that h E I(V) if and only (glg2 .. . g,,)N(h 0 F) is zero for all t E k" - W.
But, by Problem I I of Chapter 3, §3, this happens if and only if (gl g2 . . . g,,)N(h 0 F)
is the zero polynomial in k[tl • . . . , tm ]. Thus, we have shown that

h E I(V)if and only if(g\g2' " g,,)N(h 0 F) = 0 E k[tl , ... , tm ] .
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Now, we can continue with our proof that I(V) is prime . Suppose p, q E
k[x" .. . , x,,] are such that p . q E I( V) . If the total degrees of p and q are M and N,
respectively, then the total degree of p - q is M + N. Thus , (glg2 so":"(p 0 F) .
(q 0 F) = O. But the former is a product of the polynomials (glg2 g,,)M (p 0 F) and
(glg2 ' .. g,,)N (q 0 F) ink[tl, . . . , tm ] . Hence one of them must be the zero polynomial.
In particular, either p E I(V) or q E I(V). This shows that I(V) is a prime ideal and,
therefore, that V is an irreducible variety. 0

The simplest variety in k" given by a parametrization is a single point {(a I, ... , all)}'
In the notation of Proposition 5, it is given by the parametrization in which each f; is
the constant polynomial f;(XI, , XII) = ai, I ::::; i ::::; n.1t is clearly irreducible and
it is easy to check that I({(ai , , all)}) = (XI - aI, . .. , XII - an) (see Exercise 7),
which implies that the latter is prime. The ideal (XI - aI, . . . , X" - all) has another
distinctive property : it is maximal in the sense that the only ideal which strictly contains
it is the whole ring k[x" . . . , XII]' Such ideals are important enough to merit special
attention.

Definition 7. An ideal I C k [Xh . . . , XII] is said to be maximal if I =I: k [x" . . . , x,,]
and any ideal J containing I is such that either J = lor J = k[x" . . . , x,,].

In order to streamline statements, we make the following definition.

Definition 8. An ideal I C k[XI , . . . , x,,] is called proper if I is not equal to
k[x, • . . . , XII]'

Thus, an ideal is maximal if it is proper and no other proper ideal strictly contains it.
We now show that any ideal of the form (XI - ai , . . . ,XII - all) is maximal.

Proposition 9. Ifk is any field, an ideal I C k[XI, . . . , XII] of the form

I = (Xl - aJ, . . . , XII - all)'

where aI , . ' .' ,all E k , is maximal.

Proof. Suppose that J is some ideal strictly containing I .Then there must exist f E J
such that f rt I .We can use the division algorithm to write f as AI (Xl - a,) + ... +
A,,(xlI-all)+bforsomeb E k.SinceA\(xl-a(}+· .. +AII(x,,-a,,) E landf rt I,
we must have b =I: O. However, since f E J and since AI (x, -ad+' ..+AII(x,,-a,,) E
I C J, we also have

b = f - (AI(.t', - ad + ... + AII(xlI - a,,» E J.

Since b is nonzero , lib · b = I E J, so J = k[x" ... , XII]'

Since

V(X\ - a" . .. , XII - a,.) = {(a" .. . , all)} '

o
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every point (ai, .. . ,all) E k" corresponds to a maximal ideal of k[XI , . . . ,XII]' namely
(XI - ai, . . . , Xn - all)' The converse does not hold if k is not algebraically closed. In
the exercises. we ask you to show that (x 2 + I) is maximal in JR[x]. The latter does
not correspond to a point of JR. The following result, however, holds in any polynomial
ring.

Proposition 10. Ifk is any field. a maximal ideal in k[XI, . .. , XII] is prime.

Proof. Suppose that I is a proper ideal which is not prime and let f gEl, where f fI I
and g fI I . Consider the ideal (f) + I. This ideal strictly contains I because f fI I.
Moreover, if we were to have (f) + I = k[XI, ... ,XII] ' then I = cf + h for some
polynomial c and some h E I. Multiplying through by g would give g = cfg +hg E I
which would contradict our choice of g. Thus. I + (f) is a proper ideal containing I,
so that I is not maximal. 0

Note that Propositions 9 and 10 together imply that (XI - ai , .. . , XII - all) is prime
in k[XI , . . . , XII] even if k is not infinite. Over an algebraically closed field. it turns out
that every maximal ideal corresponds to some point of k" .

Theorem 11. If k is an algebraically closed field. then every maximal ideal of
k[xi • . . . • xn] is of the form (XI - ai , . . . , XII - all) for some al • . . . , all E k.

Proof. Let I C k[XI, ... , xn] be maximal. Since I i' k[XI, . . . , XII], we have
V (I) i' 0 by the Weak Nullstellensatz (Theorem I of §I). Hence, there is some point
(ai , . . . , all) E V(/) . Passing to ideals, we have

I(V(I» C I({(aJ, . . . , all»)) '

But I(V(l» = .Ji by the Strong Nullstellensatz (Theorem 6 of §2). Now I is maximal
by hypothesis, hence prime by Proposition 10, hence.Ji = I by the remark following
Proposition 3. Thus, we can write

I C I(l.(al • .. . , all)))'

We have already observed that I({(al, .. . , all)}) = (XI"'" al, .. . , XII - all) (see
Exercise 7) , and, thus, the above inclusion becomes

I C (XI - alo .. . , XII - all) ~ k[XI, . . . , XII] '

Since I is maximal, it follows that I = (XI - ai, . . . ,XII - all) ' o

Note the proof of Theorem II relies heavily on the Nullstellensatz. It is not difficult
to see that it is, in fact , equivalent to the Nullstellensatz.
We have the following easy corollary of Theorem.11.

Corollary 12. If k is an algebraically closed field. then there is a one-to-one
correspondence between points ofk" and maximal ideals ofk[XI , . .. , XII]'
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Thus, we have extended our algebra-geometry dictionary. Over an algebraically
closed field, every nonempty irreducible variety corresponds to a proper prime ideal,
and conversely. Every point corresponds to a maximal ideal, and conversely.

EXERCISES FOR §5

I. If h E k[xJ, . .. •x,,1 has total degree N and if F is as in Proposition 6, show that
(glgz ... g,,),v(h 0 F) is a polynomial in k[t), ... • (mI .

2. Show that a prime ideal is radical.
3. Show that an ideal I is prime if and only if for any ideals J and K such that if J K C I,

either J C I or K C I.
4. Let II , . . . , I" be ideals and P a prime ideal containing n;'=1 l.. Then prove that P :::> I,

for some i . Further, if P = n;'=I l., show that P = I, for some i .
5. Express f = x 2z - 6y4 + 2x y3z as f = fl(x. y .z)(x + 3) + hex. y, z)(y - I) +
!J(x, v. z)(z - 2) for some fl' h.!J E k[x , y, z],

6. Let k be an infinite field.
a. Show that any straight line in k" is irreducible.
b. Prove that any linear subspace of k" is irreducible. Hint: Parametrize and use Proposition

5.
7. Show that

8. Show the following
a. (x 2 + I) is maximal in IR[x].
b. If I c lR[x ), .. . • xn ] is maximal. show that V(l) is either empty or a point in lR". Hint:-

Examine the proof of Theorem II.
c. Give an example of a maximal ideal I in lR[xl .. .. , xn ] for which V(l) = 0. Hint:

Consider the ideal (x ~ + l .x2' .. . • x,,) .
9. Suppose that k is a field which is not algebraically closed.

a. Show that if I C k[xi • . . . • x,,] is maximal. then V(l) is either empty or a point in k".
Hint: Examine the proof of Theorem I I.

b. Show that there exists a maximal ideal I in k[XI , ...• xn ] for which V(l) = 0. Hint: See
the previous exercise.

c. Conclude that if k is not algebraically closed, there is always a maximal ideal of
k[XI, . . . •x,,1 which is not of the form (XI - al • .. '. ' x" - an)'

10. Prove that Theorem II implies the Weak Nullstellensatz.
II . If f E ([;[XI • . . . • x"1is irreducible, then V(j) is irreducible.
12. Prove that if I is any proper ideal in ([;[XI •...• Xn 1, then ,fi is the intersection of all maximal

ideals containing I . Hint: Use Theorem II.

§6 Decomposition of a Variety into Irreducibles

In the last section , we saw that irreducible varieties arise naturally in many contexts . It
is natural to ask whether an arbitrary variety can be built up out of irreducibles. In this
section, we explore this and related questions.
We begin by translating the Ascending Chain Condition (ACC) for ideals (see §5 of

Chapter 2) into the language of varieties.
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Proposition 1 (The Descending Chain Condition). Any descending chain ofvarieties

in k" must stabilize. That is. there exists a positive integer N such that Vv = VN+I

Proof. Passing to the corresponding ideals gives an ascending chain of ideals

By the ascending chain condition for ideals (see Theorem 7 of Chapter 2, §5), there
exists N such that I(VN) =I(VN+I) = . . '. Since V(I(V» = V for any variety V, we
have VN = VN+I = . . .. 0

We can use Proposition I to prove the following basic result about the structure of
affine varieties.

Theorem 2. Let V C k" be an affine variety. Then V can be written as a finite union

V = VI U· ·· U VIII'

where each Vi is an irreducible variety.

Proof. Assume that V is an affine variety which cannot be written as a finite union
of irreducibles . Then V is not irreducible, so that V = VI U V;, where V =1= VI and
V =1= V; . Further, one of VI and V; must not be a union of irreducibles, for otherwise
V would be of the same form. Say VI is not a union of irreducibles. Repeating the
argument just given, we can write VI = V2 U V;, where VI =1= V2, VI =1= V;, and V2
is not a union of irreducibles . Continuing in this way gives 'us an infinite sequence of
affine varieties

with

This contradicts Proposition I. o

As a simple example of Theorem 2, consider the variety V(xz , yz) which is a union
of a line (the z-axis) and a plane (the xy-plane), both of which are irreducible by
Exercise 6 of §5. For a more complicated example of the decomposition of a variety
into irreducibles , consider the variety

V = V(xz -l, x 3 - yz).

We have sketched this variety on the next page.
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The picture suggests that this variety is not irreducible. It appears to be a union of two
curves. Indeed, since both xz - y2 and x 3 - yz vanish on the z-axis, it is clear that the
z-axis V(x, y) is contained in V .What about the other curve V - V(x, y)?
By Theorem 7 of §4, this suggests looking at the ideal quotient

(xz - y2, x 3 - yz) : (x, y).

(At the end of the section we will see that (xz - y2, x 3 - yz) is a radical ideal.) Wecan
compute this quotient using our algorithm for computing ideal quotients (make sure
you review this algorithm). By equation (5) of §4, the above is equal to

(l : x) n (l : y),

where I = (xz - y2, x 3 - yz) . To computel:x. we first compute I n (x) using our
algorithm for computing intersections of ideals. Using lex order with z > y > x, we
obtain

I n (x) = (x 2z - xl. x 4 - xyz. x 3y - xz2• x 5 - xl) .

We can omit x 5 - xy3 since it is a combination of the first and second elements in the
basis. Hence

(I)
(
X2Z - x l x4-xyz X3y-xZ2)I:x = . , ---C'--__

X X X

= (xz -l,x3 - YZ,x2y - Z2)

= I + (x 2y - Z2).

Similarly, to compute I: (y), we compute

In (y) = (xyz -i. x 3y -lz. x 2i - yz2).
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which gives

(
xyz - y3 x 3y _ y2z x 2y2 - yz2 )

I : y = , , ---'------'--
y y y

= (xz - l , x 3 - yz ,x2y - Z2)

= I + (x 2y - Z2)

= I : x .
(Do the computations using a computer algebra system.) Since I:x = I : y, we have

I: (x, y) = (xz -l, x 3 - yz. x 2y - Z2).

The variety W = V(x Z - y2, x 3 - vz. x2Y - Z2) turns out to be an irreducible curve. To
see this, note that it can be parametrized as (t3, t 4, t 5) [it is clear that (t3, t 4 , t5) E W
for any t-we leave it as an exercise to show every point of W is of this form], so that
W is irreducible by Proposition 5 of the last section . It then follows easily that

V =Vex , y) u W

(see Exercise 8), which gives decomposition of V into irreducibles.
Both in the above example and the case of V(xz, yz) , it appears that the decom-

position of a variety is unique. It is natural to ask whether this is true in general. It
is clear that, to avoid trivialities, we must rule out decompositions in which the same
irreducible component appears more than once, or in which one irreducible component
contains another. This is the aim of the following definition.

Definition 3. Let V C k" be an affine variety. A decomposition

V = VI U' " U Vm'

where each Vi is an irreducible variety, is called a minimal decomposition (or,
sometimes. an irredundant union) if Vi rt. Vj for i =1= j.

With this definition, we can now prove the following uniqueness result.

Theorem 4. Let V C k" be an affine variety. The V has a minimal decomposition

V=VIU" ,UVm

(so each Vi is an irreducible variety and Vi rt. Vj for i =1= j) .Furthermore. this minimal
decompos ition is unique up 10 the order in which Vi , . .. , VIII are written.

Proof. By Theorem 2, V can be written in the form if = VI U . . . U VIII ' where each
Vi is irreducible. Further, if a Vi lies in some Vj for i =1= j, we can drop Vi, and V will
be the union of the remaining Vj's for j =1= i . Repeating this process leads to a minimal
decomposition of V.
To show uniqueness, suppose that V = V{ U . . . U V/ is another minimal

decomposition of "V. Then, for each Vi in the first decomposition, we have
Vi = Vi n V = Vi n (V{ U . . . U V/) = (Vi n v{) U . . . U (Vi n VI').
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Since Vi is irreducible, it follows that Vi = Vi n V; for some j, i.e., Vi C V;. Applying
the same argument to V; (using the Vi'S to decompose V) shows that V; C Vk for some
k , and, thus,

Vi C V; C Vk •

By minimality, i = k, and it follows that Vi = V;. Hence, every Vi appears in V
V[ U .. . U V/, which implies m ~ l. A similar argument proves I ~ m, and m = I
follows. Thus, the V;"s are just a permutat ion of the Vi 'S, and uniqueness is proved. 0

We remark that the uniqueness part of Theorem 4 is false if one does not insist that
the union be finite. (A plane P is the union of all the points on it. It is also the union
of some line in P and all the points not on the line-there are infinitely many lines in
P with which one could start.) This should alert the reader to the fact that although the
proof of Theorem 4 is easy, it is far from vacuous: one makes subtle use of finiteness
(which follows, in turn, from the Hilbert Basis Theorem).
Theorems 2 and 4 can also be expressed purely algebraically using the one-to-one

correspondence between radical ideals and varieties.

Theorem 5. Ifk is algebraically closed, then every radical ideal in k[Xl , .. . , XII] can
be written uniquely as a finite intersection ofprime ideals, I = PI n .. . n Pr • where
Pi rt Pj for i f j . (As in the case of varieties, we often call such a presentation ofa
radical ideal a minimal decomposition or an irredundant intersection).

Proof. Theorem 5 follows immediately from Theorems 2 and 4 and the ideal-variety
correspondence. 0

We can also use ideal quotients from §4 to describe the prime ideals that appear in
the minimal representation of a radical ideal.

Theorem 6. If k is algebraically closed and I is a proper radical ideal such that

is its minimal representation as an intersection of prime ideals. then the Pi'S are
precisely the proper prime ideals that occur in the set {/ : f : f E k[Xl, . .. , XII]} '

Proof. First, note that since I is proper, each Pi is also a proper ideal (this follows from
minimality) .
For any f E k[XI , .. . , XII] ' we have

by equation (2) of §4. Note also that for any prime ideal P, either f E P, in which
case P : f = (I), or f ¢ P, in which case P: f = P (see Exercise 3).
Now suppose that I : f is a proper prime ideal. By Exercise 4 of §5, the above
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formula for / : f implies that / : f = Pi : f for some i, Since Pi : f = Pi or (I) by
the above observation, it follows that / : f = Pi.

To see that every Pi can arise in this way, fix i and pick f E (n~"'i Pj ) - Pi;
such an f exists because n~=1 Pi is minimal. Then Pi : f = Pi and P, : f = (1)for
j =1= i, If we combine this with the above formula for / : f, then it follows easily that
/: f = Pi. 0

We should mention that Theorems 5 and 6 hold for any field k, although the proofs
in the general case are different (see Corollary 10 of §7).
Foran example ofwhat these theorems say, consider the ideal/ = (xz - yZ, x 3- yz).

Recall that the variety V = V(l) was discussed earlier in this section. For the time
being, let us assume that / is radical (eventually we will see that this is true). Can we
write / as an intersection of prime ideals?
We start with the geometric decomposition

V = vo, y) U W

proved earlier, where W = V (xz - yZ , x 3 - yz, X Zy - zZ). This suggests that

J = (x , y) n (xz -l, x 3 - yz, xZy - zZ),

which is straightforward to prove by the techniques we have learned so far (see Exercise
4). Also, from equation (1), we know that! : x = (xz - yZ, x 3 - yz, xZy - zZ).Thus,

/ = (x, y) n (/:x) .

To represent (x , y) as an ideal quotient of J, let us think geometrically. The idea is to
remove W from V . Of the three equations defining W, the first two give V. So it makes
sense to use the third one, Xzy - zz, and one can check that J : (x 2y - (;z) = (x, y)
(see Exercise 4). Thus ,

(2)

It remains to show that I : (xZy - zZ) and l :x are prime ideals. The first is easy since
I : (x zy - zZ) = (x. y) is obviously prime. As for the second, we have already seen that
W = V(xz - yZ, x 3 - yz, xZy - zZ) is irreducible and, in the exercises, you will show
that I(W) = (xz - yZ, x 3 - yz, x Zy - zZ) = l:x. It follows from Proposition 3 of §5
that I:x is a prime ideal. This completes the proof that (2) is the minimal representation
of / as an intersection of prime ideals . Finally, since / is an intersection of prime ideals,
we see that / is a radical ideal (see Exercise I).
The arguments used in this example are special to the case I = (xz - yZ, x 3 - yz).

It would be nice to have more general methods that could be applied to any ideal.
Theorems 2, 4, 5, and 6 tell us that certain decompositions exist, but the proofs give no
indication of how to find them. The problem is that the proofs rely on the Hilbert Basis
Theorem, which is intrinsically nonconstructive. Based on what we have seen in §§5
and 6, the following questions arise naturally:
• (Primality) Is there an algorithm for deciding if a given ideal is prime?
• (Irreducibility) Is there an algorithm for deciding if a given affine variety is
irreducibIe?
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• (Decomposition) Is there an algorithm for finding the minimal decomposition of a
given variety or radical ideal?

The answer to all three questions is yes, and descriptions of the algorithms can be
found in the works of HERMANN (1926), MINES, RICHMAN, and RUITENBERG (1988),
and SEIDENBERG (1974, 1984). As in §2, the algorithms in these articles are not very
practical.However,theworkof GIANNI,TRAGER, andZACHARIAS (1988)has recently led
to algorithms implemented in AXIOM and REDUCE that answer the abovequestions.
SeealsoChapter8OfBECKER andWEISPFENNING (1993)and, for the primalityalgorithm,
§4.4 of ADAMS and LOUSTAUNAU (1994). A different algorithm for studying these
questions, based On ideas of EISENBUD, HUNEKE and VASCONCELOS (1992), has been
partially implemented in Macaulay.

EXERCISES FOR §6

1. Show that the intersection of any collection of prime ideals is radical.
2. Show that an irredundant intersection of at least two prime ideals is never prime.
3. If P c k[x" . . . • x,,] is a prime ideal, then prove that P : 1= P if I rt P and P : I = (I)

if IE P.
4. Let 1= (xz - y2. xl - yz},

a. Show that I : (x 2y - Z2) = (x , y) .
b. Show that I : (x2y - Z2) is prime.
c. Show that I = (x , y) n (xz -l. x 3 - yz . Z2 - x2y).

5. Let J = (xz - y2, x3 - yz . Z2 - x 2y).

a. Show that every point of W = V(J) is of the form «(3. (4. (5) for some ( E k ,
b. Show that J = I(W). Hint: Compute a Groebner basis for J using lex order with z >

Y > x and show that every I E k[x. v, z] can be written in the form

I = g + a + bz + A(x) + yB(x) + y2C(x).

where g E J. a. b E k and A. B. C E k[x).
6. Translate Theorem 6 and its proof into geometry.
7. Let 1= (xz - y2. Z3 - xS).

a. Express V(l) as a finite union of irreducible varieties. Hint: You will use the
pararnetrizations «(3. (4, (5) and «(3, _(4. (5).

b. Express I as an intersection of prime ideals which are ideal quotients of I and conclude
that I is radical.

8. Let V. W be varieties in k" with V C W . Show that each irreducible component of V is
contained in some irreducible component ofW.

9. Letl E CC[x,• . . . •x,,] and let j" = I;" 1;1 ... I:" be the decomposition of I into irreducible
factors . Show that V(f) = V(fl) U UV(fr) is the decomposition ofV(f) into irreducible
components and I(V(f» = (/d2 Ir) ' Hint: See Exercise II of §5.

§7 (Optional) Primary Decomposition of Ideals

In view of the decomposition theorem proved in §6 for radical ideals, it is natural
to ask whether an arbitrary ideal I (not necessarily radical) can be represented as
an intersection of simpler ideals. In this section, we will prove the Lasker-Noether
decomposition theorem, which describes the structure of I in detail.
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There is no hope of writing an arbitrary ideal/as an intersection of prime ideals
(since an intersection of prime ideals is always radical) . The next thing that suggests
itself is to write I as an intersection of powers of prime ideals. This does not quite work
either: consider the ideal/ = (x , y2) in <C[x, y]. Any prime ideal containing I must
contain x and y and, hence, must equal (x , y) (since (x, y) is maximal). Thus, if I were
to be an intersection of powers of prime ideals, it would have to be a power of (x, y) .
This is impossible since (x, y}2 ~ / ~ (x, y) (see Exercise I for the details) .
The concept we need is a bit more subtle .

Definition 1. An ideal/in k[XI, .. . , XII] is primary if f gEl implies either fE/
or some power s" E / (for some m > 0).

It is easy to see that prime ideals are primary. Also , you can check that the ideal
/ = (x, y2) discussed above is primary (see Exercise I) .

Lemma 2. If / is primary, then .Ji is prime and is the smallest prime ideal containing
/.

Proof. See Exercise 2.

In view of this lemma, we make the following definition.

Definition 3. If / is primary and .Ji = P. then we say that / is P-primary.

We can now prove that every ideal is an intersection of primary ideals.

o

Theorem 4. Every ideal/ C k[XI , . . • , XII] can be written as a finite intersection of
primary ideals .

Proof. We first define an ideal / to be irreducible if / = II n /2 implies that / = / 1 or
/ = /Z .We claim that every ideal is an intersection of finitely many irreducible ideals.
The argument is in " ideal" version of the proof of Theorem 2 from §6. One uses the
ACC rather than the DCC-we leave the details as an exercise.
Next we claim that an irreducible ideal is primary. Note that this will prove the

theorem. To see why the claim is true, suppose that I is irreducible and that fg E /
with f fj. / .We need to prove that some power of g lies in I. Consider the ideals / : gil
for n ::: 1. In the exercises, you will show that I : gil C I : s"!' for all n. Thus, we get
the ascending chain of ideals

/ : g C / : g2 C . . . .

By the ascending chain condition, there exists an integer N ::: I such that / : s" =
/ : gN+I . We will leave it as an exercise to show that (l + (gN}) n (l + (f)) = /.
Since / is irreducible, it follows that / = I + {gN} or / = I + {f} . The latter cannot
occur since f fj. l , so thai / = / + {gN}. This proves that s" E l. 0

As in the case of variet ies, we can define what it means for a decomposition to be
minimal.
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Definition 5. A primary decomposition of an ideal I is an expression of I as an
intersection ofprimary ideals: I = n~=1 Qi.lt is called minimal or irredundant if
the .;Qi are all distinct and Qi 1J n N i Qj.

To prove the existence of a minimal decomposition. we will need the following
lemma. the proof of which we leave as an exercise .

Lemma 6. If I, J are primary and..[j = n. then I n J is primary.
We can now prove the first part of the Lasker-Noether decomposition theorem.

Theorem 7 (Lasker-Noether). Every ideal I C k[XI , . . .• x;1has a minimalprimary
decomposition.

Proof. By Theorem 4. we know that there is a primary decomposition I = n~=1 Qi.
Suppose that Qi and Qj have the same radical for some i i= j. Then, by Lemma 6,
Q = Qi n Qj is primary. so that in the decomposition of I. we can replace Qi and
Qj by the single ideal Q. Continuing in this way, eventually all of the Qi'S will have
distinct radicals.
Next. suppose that some Qi contains nHi Qj' Then we can omit Qi . and I will be

the intersection of the remaining Qj's for j i= i. Continuing in this way, we can reduce
to the case where Qi 1J nNi Qj for all i. 0

Unlike the case of varieties (or radical ideals). a minimal primary decomposition
need not be unique. In the exercises. you will verify that the ideal (x 2, xy) C k[x, y]
has the two distinct minimal decompositions

(x 2, x y ) = (x) n (x 2, xY,l) = (x) n (x 2, y) .

Although (x 2•xy, y2) and (x2, y) are distinct. note that they have the same radical. To
prove that this happens in general, we will use ideal quotients from §4. We start by
computing some ideal quotients of a primary ideal.

Lemma 8. If I is primary and ..[j = P and if f E k[XI, . . . , x" l. then:
if
if
if

Proof. See Exercise 7.

f E I,
f rt I ,
f rt P,

then
then
then

I : f = (1).
I : f is P-primary,
I : f = I .

o

The second part of the Lasker-Noether theorem tells us that the radicals of the ideals
in a minimal decomposition are uniquely determined.

Theorem 9 (Lasker-Noether). Let I = n~= 1 Qi be a minimal primary decomposi-
tion ofa proper ideal I C k[XI, . . . , xn ] and let Pi = .;Qi. Then the Pi are precisely
the proper prime ideals occurring in the set (.../T7 : f E k[xt, .. . , x ,,]}.
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Remark. In particular, the Pi are independent of the primary decomposition of I .We
say the Pi belong to I .

Proof. The proof is very similar to the proof of Theorem 6 from §6. The details are
covered in Exercises 8-10. 0

In §6, we proved a decomposition theorem for radical ideals over an algebraically
closed field. Using Lasker-Noether theorems, we can now show that these results hold
over an arbitrary field k.

Corollary 10. Let I = n;=, Qi be a minimal primary decomposition of a proper
radical ideal I C k[XI , .. . , x,,]. Then the Qi are prime and are precisely the proper
prime ideals occurring in the set {/ : f : f E k[XI , . • . , x,,]}.

Proof. See Exercise 12. o
The two Lasker-Noether theorems do not tell the full story of a minimal primary

decomposition I = n;=, Qi. For example, if Pi is minimal in the sense that no P, is
strictly contained in Pi, then one can show that Qi is uniquely determined. Thus there is
a uniqueness theorem for some of the Qi'S [see Chapter 4 of ATIYAH and MAcDONALD
(1969) for the details]. We should also mention that the conclusion of Theorem 9 can
be strengthened: one can show that the Pi'S are precisely the proper prime ideals in the
set {/ : f : f E k[x I, . .• , x,,]} [see Chapter 7 of ATIYAH and MACDoNALD (1969)] .
Finally, it is natural to ask if primary decomposition can be done constructively. More

precisely, given I = (fl, . . . , f,), we can ask the following:
• (Primary Decomposition) Is there an algorithm for finding bases for the primary

ideals Qi in a minimal primary decomposition of I?
• (Associated Primes) Can we find bases for the associated primes Pi = ..[Q;?
If you look in the references given at the end of §6, you will see that the answer to these
quest ions is yes . Primary decomposition has been 'implemented in both AXIOM and
REDUCE.

EXERCISES FOR §7

I. Consider the ideal I = (x, y2) E <C[x,y) .
a. Prove that (x, y)2 ~ I ~ (x, y), and conclude that I is not a prime power.
b. Prove that I is primary.

2. Prove Lemma 2.
3. This exercise is concerned with the proof of Theorem 4. Let I C k[XI, .. . , x,,) be an ideal.

a. Using the hints given in the text, prove that I is a finite intersection of irreducible ideals .
b. If g E k[x lo . . . , x,,], then prove that I : gil C I : s:" for all n ~ I.
c. Suppose that f gEl. If, in addition, I : s" = I : gN+1 , then prove that (I + (gN) n (I +
(f) = I. Hint: Elements of (I + (gN» n (I + (f) can be written as a+»s" = C+d] ,
where a, c e I and b, d E k[XI, •. • , x,,] . Now multiply through by g.

4. In the proof of Theorem 4, we showed that every irreducible ideal is primary. Surprisingly,
the converse is false. Let I be the ideal (x 2 , xy , l) c k[x, y).
a. Show that I is primary.
b. Show that I = (x 2 , y) n (x, l) and conclude that I is not irreducible.
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5. Prove Lemma 6. Hint: Proposition 16 from §3 will be useful.
6. Let 1 be the ideal (x 2• xy) C <Q[x, y].

a. Prove that

are two distinct minimal primary decompositions of I .
b. Prove that for any a E <Q.

1 = (x)n(x2.y-ax)

is a minimal primary decomposition of I. Thus, 1 has infinitely many distinct minimal
primary decompositions .

7. Prove Lemma 8.
8. Prove that an ideal is proper if and only if its radical is.
9. Let 1 be a proper ideal. Prove that the primes belonging to 1 are also proper ideals. Hint:

Use Exercise 8.
10. Prove Theorem 9. Hint: Adapt the proof of Theorem 6 from §6. The extra ingredient is that

you will need to take radicals. Proposition 16 from §3 will be useful. You will also need to
use Exercise 9 and Lemma 8.

II. Let PI• . . .• P, be the prime ideals belonging to I.
a. Prove that.fl = n;=J Pi. Hint: Use Proposition 16 from §3.
b. Use the ideal of Exercise 4 to show that.fl = n~=, Pi need not be a minimal

decomposition of Ji.
12. Prove Corollary 10. Hint: Show that 1 : f is radical whenever 1 is.

§8 Summary

The following table summarizes the results of this chapter. In the table, it is supposed
that all ideals are radical and that the field is algebraically closed .

ALGEBRA GEOMETRY
radical ideals varieties

I - V(l)
I(V) +-- V

addition of ideals intersection of varieties
I+l - V(l) n Vel)

JI(V) + I(W) +-- vnw
product of ideals union of varieties

]J - V(l) U V(J)
JI(V)I(W) +-- VUW

intersection of ideals union of varieties
Inl - V(l) U Vel)

I(V) n I(W) +-- VUW
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ALGEBRA GEOMETRY

quotient of ideals difference of varieties
[ :l ---+ V(l) - Vel)

I (V) : I (W ) +--- V-W

elimination of variables projection of varieties
j l n k[XI+I , . . . , XII ] JrI(V(l ))

prime ideal irreducible variety

maximal ideal point of affine space

ascending chain condition descending cha in cond ition
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5

Polynomial and Rational Functions on a
Variety

One of the unifying themes of modem mathematics is that in order to understand any
class of mathematical objects, one should also study mappings between those objects ,
and especially the mappings which preserve some property of interest. For instance,
in linear algebra after studying vector spaces, you also studied the properties of linear
mappings between vector spaces (mappings that preserve the vector space operations
of sum and scalar product).
In this chapter, we will consider mappings between varieties, and the results of our

investigation will form another chapter of the "algebra-geometry dictionary" that we
started in Chapter 4. The algebraic properties of polynomial and rational functions on
a variety yield many insights into the geometric properties of the variety itself. This
chapter will also serve as an introduction to (and motivation for) the idea of a quotient
ring.

§1 Polynomial Mappings

We will begin our study of functions between varieties by reconsidering two examples
that we have encountered previously. First , recall the tangent surface of the twisted cubic
curve in IR.J. As in equation (I) of Chapter 3, §3 we describe this surface parametrically:

x = t + u,
y = t2 + 2tu,
Z = t 3 + 3t 2u .

In functional language, giving the parametric representation (I) is equivalent to defining
a mapping

by

(2) t/J(t, u) = (t + u, t2 + 2tu, t 3 + 3t2u).

The domain of t/J is an affine variety V = lR? and the image of t/J is the tangent surface
s.

212



§l. Polynomial Mappings 213

We saw in §3 of Chapter 3 that S is the same as the affine variety W = V(x3z -
(3/4)X 2y2 - (3/2)xyz + y3 + {l/4)Z2). Hence, our parametrization gives what we
might call apolynomial mapping between V and W. (The adjective "polynomial" refers
to the fact that the component functions of rP are polynomials in t and u.)
Second. in the discussion of the geometry of elimination of variables from systems

of equations in §2 of Chapter 3, we considered the projection mappings

Irk : <C" ~ <c"-k

defined by

If we have a variety V = V(l) C <C" , then we can also restrict Irk to V and, as we
know, Irk(V) will be contained in the affine variety W = V(h), where h = I n
<C[Xk+l • . . . •XII], the kth elimination ideal of I .Hence, we can consider Irk : V ~ W
as a mapping of varieties. Here too, by the definition of Irk we see that the component
functions of Irk are polynomials in the coordinates in the domain.

Definition 1.' Let V C k"i , W C k" be varieties. Afunction rP : V ~ W is said to be
a polynomial mapping (or regular mapping) if there exist polynomials fl' . . . , /" E
k[x, • . . . ,x,,] such that

rP(a" . . . , am) = (f.(al,' · " am), "" /,,(al •... , am»

for all (al •.. . , am) E V. We say that the n-tuple ofpolynomials

(fl , . . . , /,,) E (k[x" . . . , xm])"

represents rP.

To say that rP is a polynomial mapping from V C k" to W C k" represented
by (fl ," " /,,) means that (fl(al,"" am)"' " /,,(al,"" am» must satisfy the
defining equations of W for all (ai , ...• alii) E V . For example, consider V =
V(y - x 2 , Z - x 3 ) C e (the twisted cubic) and W = V(y3- Z2) C k2 •Then the pro-
jection zr. : k 3 ~ erepresentedby(y,z)givesapolynomialmappingIr. : V ~ W .
This is true because every point in Irl (V) = {(x2 • x 3) : x E k} satisfies the defining
equation of W.
Of particular interest is the case W = k ,where rP simply becomes a scalar polynomial

function defined on the variety V. One reason to consider polynomial functions from
V to k is that a general polynomial mapping rP : V ~ k" is constructed by using
any n polynomial functions ¢i : V ~ k as the components. Hence, if we understand
functions rP : V ~ k, we understand how to construct all mappings rP : V ~ k" as
well.
To begin our study of polynomial functions, note that, for V C k", Definition I

says that a mapping rP : V ~ k is a polynomial function if there exists a polynomial
f E k[x) , . . . , XIII] representing rP. In fact, we usually specify a polynomial func-
tion by giving an explicit polynomial representative. Thus, finding a representative is
not actually the key issue. What we will see next, however, is that the cases where a
representative is uniquely determined are very rare. For example, consider the variety
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v = V (y - X 2 ) C IR2. The polynomial I = X 3+ y 3 represents a polynomial function
from V to IR. However, g = x3 + y3 + (y - x2), h = x 3+ y3 + (x 4y - x6), and
F = x 3+ y3 + A(x, y)(y - x 2) for any A(x , y) define the same polynomial function
on V. Indeed, since I(V) is the set of polynomials which are zero at every point of V ,
adding any element ofl(V) to I does not change the values of the polynomial at the
points of V. The general pattern is the same.

Proposition 2. Let V C kill be an affine variety. Then
(i) I and g E k[X I , .. . , Xm1representthe same polynomialfunction on V ifand only
if I - g E I (V).

(ii) (/, ... . , /,,) and (g J , • • • , g,,) represent the same polynomial mapping from V to
k" iland only if Ii - gi E I (V) lor each i , I ~ i ~ m.

Proof. (i)If/-g =h E I(V),thenforanyp = (a' , .. . . alll ) E V,j(p) -g(p) =
h(p) = O. Hence, I and g represent the same function on V. Conversely, if I and g
represent the same function, then, at every p E V , I (p) - g(p) = O. Thus, I - g E
I(V) by definition. Part (ii) follows directly from (i). 0

Thus, the correspondence between polynomials in k[x" ... , XIII ] and polynomial
functions is one-to-one only in the case that I(V) = (OJ . In Exercise 7, you will show
that I( V) = {OJ if and only if k is infinite and V = k'" ,
There are two ways of dealing with this potential ambiguity in describing polynomial

functions on a variety:
• In rough terms . we can "lump together" all the polynomials I E k[XI , . . . , XIII] that
represent the same function on V and think of that collection as a "new object" in its
own right. We can then take the collection of polynomials as our description of the
function on V .

• Alternatively, we can systematically look for the simplest possible individual polyno-
mial that represents each function on V and work with those "standard representative"
polynomials exclusively.

Each of these approaches has its own advantages, and we will consider both of them
in detail in later sections.of this chapter. We will conclude this section by looking at
two further examples to show the kinds of properties of varieties that can be revealed
by considering polynomial function s.

Definition 3. We denote by key] the collection ofpolynomial functions ¢ : V ~ k .

Since k is a field, we can define a sum and a product function for any pair of functions
¢ , 1/J : V ~ k by adding and multiplying images . For each p E V ,

(¢ + 1/J)(p) = ¢(p) + 1/J(p),

(¢ . 1/J )(p ) = ¢(p) . 1/J(p).

Furthermore, if we pick specific representatives f, g E k[Xl , " " XIII ] for ¢, 1/J , re-
spectively, then, by definition , the polynomial sum f + g represents ¢ + 1/J and the
polynomial product f .g represents ¢ .1/J. It follows that ¢ + 1/J and ¢ .1/J are polynomial
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functions on V.
Thus, we see that k[V] has sum and product operations constructed using the sum and

product operations in k[XI, . . . , xm ]. All of the usual properties of sums and products
of polynomials also hold for funct ions in k[V]. Thus, k[V] is another example of a
commutative ring. (See Appendix A for the precise definition .) We will also return to
this point in §2.
Now we are ready to start exploring what k[V] can tell us about the geometric

properties of a variety V. First , recall from §5 of Chapter 4 that a variety V C k'"
is said to be reducible if it can be written as the union of two nonempty proper sub-
varieties: V = VI U V2, where VI =I V and V2 =I V . For example, the variety
V = V(x3+xl - xz, yx 2+ y3 - yz) in k3 is reducible since, from the factoriza-
tions of the defining equations, we can decompose Vas V = V(x 2 +l- z) UV(x, y) .
Wewould like to demonstrate that geome tric properties such as reducibility can be "read
off" from a sufficiently good algebraic description of k[V]. To see this, let

(3) f = x2+ v'> z. g = 2x2 - 3lz E k[x, y, z]

and let 41 , if! be the corresponding elements of k[V].
Note that neither 41 nor if! is identically zero on V. For example, at (0, 0, 5) E

V , 41(0,0,5) = f(O, 0, 5) = -5 =I O. Similarly, at (1 , 1,2) E V, 1/1(1, 1,2) =
g( I, 1,2) = -4 =I O. However, the product function 41 . if! is zero at every point of V .
The reason is that

f . g = (x2+ l- z)(2x2 - 3y4Z)

=2x(x3 + xl - XZ) - 3iz(x2y + i - yz)

E (x3+xl - XZ, x 2y + i - yz).

Hence f .g E I(V), so the corresponding polynomial function 41 · if! on V is identically
zero.
The product of two nonzero elements of a field or of two nonzero polynomials in

k[XI , .. . , x,,] is never zero . In general , a commutative ring R is said to be an integral
domain if whenever a . b = 0 in R, either a = 0 or b = O. Hence , for the variety
V in the above example, we see that k[V] is not an integral domain . Furthermore, the
existence of 41 =I 0 and 1/1 =I 0 in k[V] such that 41 . if! = 0 is a direct consequence of
the reducibility of V : fin (3) is zero on VI = V(x2+y2 - z), but noton V2 = Vex , y) ,
and similarly g is zero on V2 , but not on VI . This is why f . g = 0 at every point of
V = VI U V2.Hence, we see a relation between the geometric properties of V and the
algebraic properties of k[V].
The general case of this relation can be stated as follows .

Proposition 4. Let V C k" be an affine variety. The following statements are
equivalent:
(i) V is irreducible.
(ii) I(V) is a prime ideal.
(iii) k[V] is an integral domain.

Proof. (i)¢}(ii) is Proposition 3 of Chapter 4, §5.
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To show (iii)::::}(i), suppose that k[ V] is an integral domain but that V is reducible . By
Definition I of Chapter 4, §5, this means that we can write V = VI U V2,where VI and
V2 are proper, nonempty subvarieties of V. Let /1 E k[XI , . . . , XII] be a polynomial
that vanishes on VI but not identically on V2 and, similarly, let h be identically zero
on V2, but not on VI ' (Such polynomials must exist since VI and V2 are varieties and
neither is contained in the other.) Hence, neither / 1nor [: represents the zero function
in k[V]. However, the product /1 . h vanishes at all points of VI U V2 = V . Hence,
the product function is zero in k[V] . This is a contradiction to our hypothesis that k[V]
was an integral domain . Hence, V is irreducible.
Finally, for (i)::::}(iii), suppose that k[V] is not an integral domain. Then there must

be polynomials / , g E k[x, • . . . , XII] such that neither / nor g vanishes identically on
V but their product does. In Exercise 9, you will check that we get a decomposition of
V as a union of subvarieties:

V = (V n V(f)) U (V n V (g).

You will also show in Exercise 9 that, under these hypotheses. neither V n V(f) nor
V n V(g) is all of V. This contradicts our assumption that V is irreducible. 0

Next we will consider another examp le of the kind of information about varieties
revealed by polynomial mappings. The variety V C <c3 defined by

x 2 + 2xz +2l + 3y = O.
(4) xy + 2x + z = 0,

xz + l + 2y = 0

is the intersection of three quadric surfaces .
To study V, we compute a Groebner basis for the ideal generated by the polynomi-

als in (4), using the lexicographic order and the variable order y > z > x . The result
is

gi = Y - x 2 ,

g2 = Z + x3+ 2x .

Geometrically, by the results of Chapter 3, §2, we know that the projection of V on
the x-axis is onto since the two polynomials in (5) have constant leading coefficients.
Furthermore, for each value of x in <C, there are unique y, z satisfying equations (4).
We can rephrase this observation using the maps

tt : V ---+ <C, (x, y. z) J-+ x ,

¢ : <C ---+ V, X J-+ (x , x2, _x3 - 2x ).

Note that (5) guarantees that ¢ takes values in V. Both ¢ and tt are visibly polynomial
mappings. We claim that these maps establish a one-to-one correspondence between
the points of the variety V and the points of the variety <C.
Our claim will follow if we can show that tt and ¢ are inverses of each other. To

verify this last claim, we first check that tt 0 ¢ = ida:;. This is actually quite clear since

(rr 0 ¢)(x) = rr(x, x2, _x3 - 2x) = x .
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On the other hand , if (z , y , z) E V, then

(rjJ 0 rr)(x , y, z) = (x , x 2 , _ x 3 - 2x) .

By (5), we have y - x 2 , Z+ x 3 +2x E I (V ) and it follows that rjJ 0 rr defines the same
mapping on V as id v (x , y, z) = (x, y , z).
The conclu sion we draw from this example is that V C <c3 and <C are " isomorphic"

varietie s in the sense that there is a one-to -one , onto , polynomial mapp ing from V to
<C, with a polynomial inverse. Even though our two varieties are defined by different
equations and are subsets of different ambient spaces, they are " the same" in a certain
sense. In addition, the Groebner basis calculation leading to equation (5) shows that
<c[V] = <C[xJ, in the sense that every 1/1 E <C[V] can be (uniquely) expressed by
substituting for y and z from (5) to yield a polynomial in .r alone . Of course, if we use
x as the coordinate on W = <C, then <c[W] = <C[x] as well, and we obtain the same
collection of functions on our two isomorphic varieties.
Thus, the collection of polynomial functions on an affine variety can detect geometric

properties such as reducibility or irreducibility. In addition, know ing the structure of
k[ V] can also furn ish information leading toward the beginnings of a classification of
varieties, a topic we have not broached before. We will return to these questions later
in the chapter, once we have developed several different tools to analyze the algebraic
propert ies of k[V].

EXERCISES FOR §l

I. Let V be the twisted cub ic in JR3and let W = V(v - u - u2) in JR2. Show that rjJ (x , y, z) =
(xy , Z + x 2i )define s a polynom ial mapp ing from V to W. Hint: The easiest way is to use
a parametrizat ion of V .

2. Let V = V(y - x) in JR2and let cp : JR2 ->- JR3 be the polynom ial mapp ing repre sented by
q, (x , y) = (x2 - y. y 2. X - 3y 2). The image of V is an affine variety in JR3. Find a system
of equations defining the image of cp.

3. Given a polynom ial funct ion cp : V -+ k , we define a level set of cp to be
cp - I (C) = {(ah . .. , am) E V : cp (a l ," " am) = c] ,

where c E k is fixed. In this exercise, we will investigate how level sets can be used to
analyze and reconstruc t a variety. We will assume that k = JR, and we will work with the
surface

V (x 2 - lZ2 + Z3) C JR3.

a. Let cp be the polynomi al function repre sented by f(x, y. z) = z. The image of cp is all
of JR in this case. For each c E JR , explain why the level set r/> -I (c) is the affine variety
defined by the equ ations:

x 2 -lZ2 + Z3 = 0,

Z - c = O.

b. Elim inate z between these equations to find the equation of the intersection of V with the
plane z = c. Explain why your equati on defines a hyperbola in the plane z = c if c =fi 0,
and the y-axis if c = O. (Refe r to the sketch of V in §3 of Chapter I, and see if you can
visualize the way these hyperbolas lie on V .)

c. Let rr : V ->- JR be the polynom ial mapp ing rr(x, y. z) = x. Describe the level sets
rr - I (c) in V geometrically for c = -1 ,0, 1.
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d. Do the same for the level sets of a : V !R given by a(x, y . z) = y.
e. Construct a polynomial mapping 1ft : !R V and identify the image as a subvariety of
V.

4. Let V = V(Z2 - (x 2+ y2 - 1)(4 - x2 - y2» in !R3and let rr : V ..... !R2 be the vertical
projection rr(x, y. z) = (x, y) .
a. What is the maximum number of points in rr- I (a , b) for (a. b) E !R2?
b. For which subsets R C !R2 does (a . b) E R imply rr- I (a, b) consists of two points. one

point, no points?
c. Using pan b describe and/or sketch V .

5. Show that ~I(X, y , z) = (2x 2 + y2, Z2 - y3 + 3xz) and ~2(X , y , z) = (2y + xz, 3y2)
represent the same polynomial mapping from the twisted cubic in !R3 to !R2•

6. Considerthe mapping ~ : !R2 ..... IRs defined by ~(u , v) = (u, v, u2 , uv , v2 ) .
a. The image of ~ is a variety S known as an affine Veronese surface . Find implicit equations

for S.
b. Show that the projection tt : S ..... !R2 defined by rr(x l , X2, X3. X4, xs) = (XI , X2) is the

inverse mapping of ~ : !R2 ..... S. What does this imply about S and !R2?
7. This problem characterizes the varieties for which I(V) = (OJ .

a. Show that if k is an infinite field and V C k" is a variety. then I(V) = (OJ if and only if
V = k",

b. On the other hand, show that if k is finite. then I(V) is never equal to (OJ . Hint: See
Exercise 4 of Chapter I. §I.

8. Let V = V(xy . z z) C !R3•

a. Show that neither of the polynomial functions f = y2 + zJ. g = x 2 - X is identically
zero on V, but that their product is identically zero on V.

b. Find VI = V n V(f) and V2 = V n V(g) and show that V = VI U V2 •
9. Let V be an irreducible variety and let 41. 1ft be functions in k[ V] represented by polynomi-

als f, g , respectively. Suppose that 41 . 1ft = 0 in k[Vj , but that neither ~ nor 1ft is the zero
function on V .
a. Show that V = (V n V(f» U (V n V(g».
b. Show that neither V n V(f) nor V n V(g) is all of V and deduce a contradiction.

10. In this problem, we will see that there are no nonconstant polynomial mappings from V = !R
to W = V(y2 - x 3 + x) C !R2. Thus, these varieties are not isomorphic (that is, they are
not "the same" in the sense introduced in this section) .
a. Suppose ~ : !R ..... W is a polynomial mapping represented by ~(t) = (a(t) , b(t»

where a(t ), bet) E !R[t] . Explain why it must be true that b(t)2 =a(t)(a(t)2 - 1).
b. Explain why the two factors on the right of the equation in pan a must be 'relatively prime

in !R[t].
c. Using the unique factorizations of a and b into products of powers of irreducible poly-

nomials, show that b2 = ac' for some polynomial e(t) E !R[t] relatively prime to
a.

d. From pan c it follows that e2 = a2 - 1. Deduce from this equation that e, a , and, hence,
b must be constant polynomials.

§2 Quotients of Polynomial Rings

The construction of k[ V] given in §I is a special case of what is called the quotient of
k[XI , • . . , XII]modulo an ideal!. From the word quotient, you might guess that the issue
is to define a division operation, but this is not the case . Instead , forming the quotient
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will indicate the sort of "lumping together" of polynomials that we mentioned in §l
when describing the elements cP E k[V] . The quotient construction is a fundamental
tool in commutative algebra and algebraic geometry. so if you pursue these subjects
further . the acquaintance you make with quotient rings here will be valuable.
To begin. we introduce some new terminology.

Definition 1. Let 1 C k[Xl, . . . •XII] be an ideal, and let I, g E k[XI • • . . •XII]' We
say 1 and g are congruent modulo I, written

1 == g mod I.

ifl-g E I.

For instance, if 1 = (x2 - y2, X + y3 + I) C k[x, y ], then 1 = x 4 - y4 + X and
g = X + x 5 + x 4y3 + x 4 are congruent modulo 1 since

1 - g = x4 - y4 _ x5 _ x 4/ _ x4

= (x2+ l)(x2 -l) - (x 4)(x + i + I) E I.

The most important property .of the congruence relation is given by the following
proposit ion.

Proposition 2. Let 1 C k[Xl , . . . , XII] be an ideal. Then congruence modulo 1 is an
equivalence relation on k[x i • . . . , XII]'

Proof. Congruence modulo 1 is reflexive since 1 - 1 = 0 E 1 for every 1 E
k[XI • . . . , XII]' To prove symmetry, suppose that 1 == g mod I. Then 1 - gEl,
which implies that g - 1 = (-1)(/ - g) E 1 as well. Hence, g == 1 mod 1
also. Finally, we need to cons ider transitivity. If 1 == g mod 1 and g == h mod I , then
1 - g. g -h E I .Since 1 is closed under addition, we have 1 - g +g -h = 1-h E 1
as well. Hence, 1 == h mod I. 0

An equivalence relation on a set S partitions S into a collection of disjoint subsets
called equivalence classes. For any 1 E k[XI • . . . •XII], the class of l.is the set

[f] = {g E k[Xl • . . .• XII] : g == 1 mod I}.

The definition of congruence modulo 1 and Proposition 2 make sense for every ideal
1 C k[Xl, . . . , XII]' In the special case that 1 = I(V) is the ideal of the variety V, then
by Proposition 2 of §I, it follows that 1 == g mod I(V) if and only if 1 and g define
the same funct ion on V. In other words, the "lumping together" of polynomials that
define the same function on a variety V is accomplished by passing to the equivalence
classes for the congruence relation modulo I(V). More formally, we have the following
proposition.

Proposition 3. The dist inct polynomial functions cP : V ~ k are in one-to-one
correspondence with the equivalence classes 01polynomials under congruence modulo
I(V).
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Proof. This is a corollary of Proposition 2 of §1 and the (easy) proof is left to the reader
as an exercise . 0

We are now ready to introduce the quotients mentioned in the title of this section .

Definition 4. The quotient ofk[x) , . . . , XII] modulo I, written k[XI, . . . , xlIl// , is the
set ofequivalence classes for congruence modulo I:

k[XI• . . . , XII1/1 = ([f] : f E k[x), . .. ,xnll .

For instance, take k = IR, n = I, and 1 = (x 2 - 2). We may ask whether there
is some way to describe all the equivalence classes for congruence modulo I. By
the division algorithm, every f E IR[x] can be written as f = q . (x 2 - 2) + r ,
where r = ax + b for some a, b E lR. By the definition, f == r mod 1 since
f - r = q . (x 2 - 2) E I. Thus, every element of lR[xI belongs to one of the
equivalence classes [ax + b], and IR[x]/1 = {[ax + b] : a, b E lR}. In §3, we will
extend the idea used in this example to a method for dealing with k[XI, ... , XII]/ 1 in
general.
Because k[XI, ... , xIII is a ring, given any two classes [fl. [g] E k[XI' ...• XII]/ I,

we can attempt to define sum and product operations on classes by using the
corresponding operations on elements of k[xi • . . . • XII] ' That is, we can try to define

[fl + [g] = [f + gl (sum in k[Xh , XII]),

[f] . [g] = [f. g] (product in k[x) , XII]) '
We must check, however, that these formulas actually make sense. We need to show
that if we choose different I' E [f] and g' E [gI, then the class [I' + g'] is the same
as the class [f + g]. Similarly, we need to check that [f' . g'] = [f . g].

Proposition 5. The operations defined in equations (I) yields the same classes in
k[XI, . . . , Xn1/1 on the right-hand sides no matter which I' E [f] and g' E [g] we
use. (We say that the operations on classes given in (I) are well-defined on classes.)

Proof. If I' E [f] and g' E [g], then I' = f + a and g' = g + b, where a , b e I,
Hence,

f' + g' = (f + a) + (g + b) = (f + g) + (a + b).

Since we also have a + b e I (I is an ideal), it follows that I' + g' == f + g mod I,
so [f' + g'] = [f + g] . Similarly,

f' . g' = (f + a) . (g + b) = fg + ag + fb + abo

Since a, bEl, we have ag + fb + ab E I. Thus, I' . s' == f . g mod I, so
[f'.g'] = [f ·g] · 0

To illustrate this result, consider the sum and product operations in IR[xl/ (x2 - 2).
As we saw earlier, the classes [ax + bJ, a, b E lR form a complete list of the elements
of IR[x]/(x 2 - 2). The sum operation is defined by [ax + b] + [cx + d] = [(a +
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c)X + (b + d)] . Note that this amounts to the usual vector sum on ordered pairs of real
numbers . The product operation is also easily understood. We have

[ax + b] . [cx + d] = [acx 2 + (ad + bc)x + bd]

= [(ad + bc)x + (bd + 2ac],

as we can see by dividing the quadratic polynomial in the first line by x 2 - 2 and using
the remainder as our representative of the class of the product.
Once we know that the operations in (I) are well-defined, it follows immediately

that all of the axioms for a commutative ring are satisfied in k[XI, ... , xlI] / I. This
is so because the sum and product in k[Xl' .. . , xlI]/ 1 are defined in terms of the
corresponding operations in k[Xh . .. , XII] ' where we know that the axioms do hold.
For example, to check that sums are associative in k[XI, . .. , XliII I, we argue as follows:
if[f], [g], [h] E k[Xl, . .. , xlI]/I, then

([f] + [g]) + [h] = [f + g] + [h]

= [(f + g) + h] [by (I)]

= [f + (g + h)] (by associativity in k[x), ... , XII])

= [f] + [g + h]

= [f] + ([g] + [hJ) .

Similarly, commutativity ofaddition, associativity, and commutativity ofmultiplication,
and the distributive law all follow because polynomials satisfy these properties. The
additive identity is [0] E k[XI, . .. , xlI]/ I, and the multiplicative identity is [I] E
k[XI, . .. , xlI]/ I. To summarize, we have sketched the proof of the following theorem .

Theorem 6. Let I be an ideal in k[XI, .. . , XII]' The quotient k[x), .. . , xn ] / I is a
commutative ring under the sum and product operations given in (1).

Next, given a variety V, we would like to relate the quotient ring k[Xl' ... , xlI]/I(V)
to the ring k[V] of polynomial functions on V. It turns out that these two rings are "the
same" in the following sense .

Theorem 7. The one-to-one correspondence between the elements of k[V] and the
elements ofk[XI • . . . • xlI]/I(V) given in Proposition 3 preserves sums and products.

Proof. Let <1> : k[Xl, ... ,xlIlIl(V) -+- k[V] be the mapping defined by <1>([f]) = ¢,
where ¢ is the polynomial function represented by f. Since every element of k[V] is
represented by some polynomial, we see that <1> is onto. To see that <1> is also one-to-
one, suppose that <1>([/)] = <1> ([g]). Then by Proposition 3, f == g mod I(V). Hence,
[f] = [g] in k[x), .. . , xlI]/I(V).
To study sums and products, let [f], [g] E k[x), .. . ,xlI]/I(V). Then <1>([f] +

[g]) = <1> ([f + g J) by the definition of sum in the quotient ring. If f represents the
polynomial function ¢ and g represents 1/J, then f + g represents ¢ + 1/J. Hence,

<1>([f + gJ) = ¢ + 1/J = <1>([f]) + <1>([g]) .
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Thus , $ preserves sums. Similarly,

$([f] . [gJ) = $([f . gJ) = ¢ . t = $([fJ) . $([gJ).

Thus, $ preserves products as well.
The inverse correspondence W also preserves sums and products by a similar

argument, and the theorem is proved. 0

The result of Theorem 7 illustrates a basic notion from abstract algebra. The following
definition tells us what it means for two rings to be essentially the same .

Definition 8. Let R, S be commutative rings .
(i) Amapping ¢ : R -+ S is said to be a ring isomorphism if:

a. ¢ preserves sums: ¢(r + r') = ¢(r) + ¢(r')for all r, r ' E R.
b. ¢ preserves products : ¢ (r . r') = ¢ (r) . ¢ (r') for all r, r' E R.
c. ¢ is one-to-one and onto.

(ii) Two rings R, S are isomorphic if there exists an isomorphism ¢ : R -+ S. We
write R ~ S to denote that R is isomorphic to S.

(iii) A mapping ¢ : R -+ S is a ring homomorphism if ¢ satisfies properties (a)
and (b) of (i), but not necessarily property (c), and if. in addition, ¢ maps the
multipli cative identity I E R to I E S.

In general, a "homomorphism" is a mapping that preserves algebraic structure. A ring
homomorphism ¢ : R -+ S is a mapping that preserves the addition and multiplication
operations in the ring R.
From Theorem 7, we get a ring isomorphism k[V] ~ k[XI , .. . , x,,]/I(V). A natural

question to ask is what happens if we replace V ( I) by some other ideal I which defines
V . [From Chapter 4, we know that there are lots of ideals I such that V = V(l ).]
Could it be true that all the quotient rings k[XI , . . . , x,,]/ I are isomorphic to k[V]? The
following example shows that the answer to this question is no. Let V = (CO, O)} . We
saw in Chapter 1, §4 that I (V) = I ({(O,O)}) = (x , y). Thus , by Theorem 7, we have
k[x , ylll(V) ~ k[V].
Our first claim is that the quotient ring k[x , y ]/I(V) is isomorphic to the field k ,The

easiest way to see this is to note that a polynomial function on the one-point set {(O, O)}
can be represented by a constant since the function will have only one function value.
Alternatively, we can derive the same fact algebraically by constructing a mapping

$ : k[x, y]/I(V) ~ k

by setting $ ([fJ) = f (0, 0) (the constant term of the polynomial). We will leave it as
an exercise to show that $ is a ring isomorphism.
Now,letI = (X3+y2, 3y4) C k[x, y].ItiseasytocheckthatV(l) = (CO, O)} = V.

We ask whether k[x, y]/ I is also isomorphic to k. A moment's thought shows that this
is not so. For instance, consider the class [y] E k[x, y]/ I . Note that y ¢ I , a fact
which can be checked by finding a Groebner basis for I (use any monomial order) and
computing a remainder. In the ring k[x, y]/ I, this shows that [y] # [0]. But we also
have [y]4 = [y4] = [0] since y4 E I. Thus, there is an element of k[x, y]/ I which is
not zero itself, but whose fourth power is zero. In a field, this is impossible. We conclude
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that k[x, y]11 is not a field. But this says that k[x, Y]/ I (V ) and k[x, Y]II cannot be
isomorphic rings since one is a field and the other is not. (See Exercise 8.)
In a commutative ring R, an a E R such that a" = 0 for some n ~ I is called a

nilpotent element.The example just givenis actually quite representative of the kind of
difference that can appear when we compare k[x), . .. , xlI]/I(V) with k[XI, ... , xlI]1I
for another ideal I with V(l) = V . If I is not a radical ideal, there will be elements
f E .Ji which are not in I itself. Thus, in k[XI, .. . , xlI]1 I, we will have [fl =1= [0] ,
whereas [fl" = [0] forthe n > I such that f" E l. The ring k[XI, ... , xlI]1 I will have
nonzero nilpotent elements, whereas k[XI, . . . , xlI]/I(V) never does . I(V) is always a
radical ideal, so [fl" = 0 if and only if [fl = O.
Since a quotient k[XI , . . . , xlI]1 I is a commutative ring in its own right, we can study

other facets of its ring structure as well, and, in particular, we can consider ideals in
k[XI, ... , xlI]1 I .The definition is the same as the definition of ideals in k[XI, . .. , XII]'

Definition 9. A subset I of a commutative ring R is said to be an ideal in R if it
satisfies
(i) 0 E I (where 0 is the zero element of R).
(ii) Ifa,b E I ,thena+b E I .
(iii) Ifa E landr E Ri then r r a E I .

There is a close relation between ideals in the quotient k[XI , . . . , xlI]1 I and ideals
ink[xl, ... , XII]'

Proposition 10. Let I be an ideal in k[XI, . . . ,XII]' The ideals in the quotient ring
k[x], . . . ,xlIlI l are in one-to -one correspondence with the ideals of k[XI, . . . , X,,]
containing 1 (that is. the ideals J satisfying 1 C J C R) .

Proof. First, we give a way to produce an ideal in k[XI, . . . ,xlI]11 corresponding to
each J containing I in k[XI, . . . , x,,] . Given an ideal J in k[x) , . . . , x,,] containing
1,letJlldenotetheset{[j] E k[ x), . . . ,x,,]II : j E J} . We claim that JII is
an ideal in k[x) , . .. , xlI]1 I . To prove this, first note that [0] E J I 1 since 0 E J.
Next, let [j], [k] E J I I . Then [j] + [k] = U + k] by the definition of the sum in
k[XI , . . . , x,,]II . Since i. k E J, we have j +k E J as well. Hence ,U] + [k] E J II.
Finally, ifU] E J I I and [r] E k[x), ... , x,,]1 I , then lrlU] = lr :j] by the definition
of the product in k[XI, . .. , x,,]II. But r · j E J since J is an ideal in k[XI, ... , x,,] .
Hence, [r] . U] E J I I. As a result, J I I is an ideal in k[XI , .. . , xlI]1 I.
If 7 C k[XI , ... , x,,]1 I is an ideal, we next show how to produce a~ ideal J C

k[XI, ... , x,,] which contains I. Let J = {j E k[x) , . . . , XII] : [j] E J}. Then we
have I C J since [i] = [0] E 7for any i E I. It remains to show that J is an ideal of
k[XI, . . . , x,,] . First note that 0 E I _E J. Furthermore, if i .k E J, then [j], [k] E 7
implies that [j] + [k] = U + kLE J. It follows that j t. k E J . Finally, if j E J and
r E k[XI, . . . , XII], then U] E J, so [r][j] = [rj] E J . But this says rj E J, and,
hence , J is an ideal in k[x), . . . , XII] '
We have, thus, shown that there are correspondences between the two collections of

ideals:
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{J : 1 C J C k[Xl," " XII]} {1 c k[x\ •. . . , xlI]//}

(2) J ----+JII = {[j] : j E J}- -J = {j : [j] E J} +-J.

We leave it as an exercise to prove that each of these arrows is the inverse of the other.
This gives the desired one-to-one correspondence. 0

For example . consider the ideal 1 = (x 2 - 4x + 3) in R = lR[x} . We know from
Chapter I that R is a principal ideal domain. That is. every ideal in R is generated
by a single polynomial. The ideals containing 1 are precisely the ideals generated by
polynomials that di vide x 2 - 4x + 3. Hence. the quotient ring RII has exactly four
ideals in this case:

ideals in RII

{[OJ}
([x - I])
([x - 3])
RII

ideals in R containing 1

1
(x - I)
(x - 3)

R

As in another example earlier in this section . we can compute in R II by computing
remainders with respect to x 2 - 4x + 3.
As a corollary of Proposition 10. we deduce the following result about ideals in

quotient rings. parallel to the Hilbert Basis Theorem from Chapter 2.

Corollary 11. Every ideal in the quotient ring k[Xl, . . . • xll]11 is finitely generated.

- -Proof. Let J be any ideal in k[Xl •. .. , x,,]1 I. By Proposition 10, J = {[j] : j E J}
for an ideal J in k[Xl' . . . , x,,] containing I . Then the Hilbert Basis Theorem implies
thatJ = (fl , . : .. j ,)forsomej; Ek[xI , .. . ,xlI].Butthenforanyj E J .wehave
j = h tIl + .. .+ h, I s for some hi E k [xi • . . . • x,,] . Hence.

[j] = [htfl + + h,fs]
= [hd[Jd + + [hs][/s].

As a result , the classes [JI], .. . • [f,] generate J in k[xl • . . . • x,,]1 I . o

In the next section, we will discuss a more constructive method to study the quotient
rings k [x 1, •. • • xlI]11 and their algebraic properties.

EXERCISES FOR §2

1. Let I = (fJ, . . . • f .) c k[:C f"' " :e,,]. Describe an algorithm for determining whether
f == g mod I using techn iques from Chapter 2.

2. Prove Propos ition 3.
3. Prove Theorem 6. That is, show that the other axioms for a commutative ring are satisfied

by k[Xf , . .. • :c"lI I.
4. In this problem. we will give an algebraic construction of a field containing <Q in which 2 has

a square root. Note that the field of real numbers is one such field. However. our construction
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will not make use of the limit process necessary, for example, to make sense of an infinite
decimal expansi on such as the usual expans ion..fi = 1.414. . . . Instead, we will work with
the polynomial x 2 - 2.
a. Show that every 1 E lQ[ x] is congruent modulo the ideal I = (x 2 - 2) c lQ[xl to a

unique polynomial of the form ax + b, where a, b E lQ.
b. Show that the class of X' in lQ[x III is a square root of 2 in the sense that [x j2 = [21 in
lQ[x]ll .

c. Show that F = lQ[x III is a field. Hint: Using Theorem 6, the only thing left to prove is
that every nonzero element of F has a multiplicative inverse in F.

d. Find a subfield of F isomorphic to lQ.
5. In this problem, we will consider the addition and multiplication operations in the quotient

ring lR[xll (x 2 + I}.
a. Show that every 1 E lR[x] is congruent modulo I = (x 2 + I) to a unique polynomial

of the form ax + b, where a, b E 1R.
b. Construct formulas for the addit ion and multip lication rules in lR[xII (x 2+ I) using these

polynomials as the standard representatives for classes.
c. Do we know another way to describe the ring lR[x]1 (x 2+ I) (that is, another well-known

ring isomorphic to this one?) Hint: What is [x12?
6. Show that lR[x II (x 2 - 4x + 3) is not an integral domain .
7. It is possible to define a quotient ring RI I whenever I is an ideal in a commutative ring R.

The general construction is the same as the one we have given for k[XI, . .. , x, III. Here is
one simple example.
a. Let I = (p) in R = Z, where p is a prime number. Show that the relation of congruence

modulo p , defined by

m == n mod p <==> P divides m - n

is an equivalence relation on Z , and list the different equivalence classes. We will denote
the set of equivalence classes by ZI(p) .

b. Construct sum and product operati ons in 7L(p } by the analogue of equation (I) and then
prove that they are well-defined by adapt ing the proof of Proposition 5.

c. Explain why 7L(p } is a commutative ring under the operations you defined in part b.
d. Show that the finite field IFp introduced in Chapter I is isomorphic as a ring to 7L1(p) .

8. In this problem , we study how ring homomorphisms interact with multiplicative inverses in
a ring.
a. Show that every ring isomorphism ¢J : R - S takes the multiplicative identity in R to

the multiplicative identity in S, that is, ¢J(l) = 1.
b. Show that ifr E R has a multiplicative inverse, then , for any ring homomorphism, ¢J(r - I )

is a multiplicative inverse for ¢(r) in the ring S.
c. Show that if Rand S are isomorphic as rings and R is a field, then S is also a field,

9. Prove that the map 1 ~ 1(0, 0) induces a ring isomorphism k[x , y II(x , y) :;:: k. Hint: An
efficient proof can be given using Exercise 16.

10. This problem illustrate s one important use of nilpotent elements in rings . Let R = k[x] and
let I = (x 2) .
a. Show that [xl is a nilpotent element in RII and find the smallest power of [x] which is

equa l to zero.
b. Show that every class RII has a unique representative of the form b+ae, where a, b E k

and E is shorthand for [x I.
c. Given b+ ae E RII, we can define a mapping R - RII by substituting x = b+ae in

each element 1(x ) E R. For instance, with b + ae = 2 + E and 1(x) = x 2 , we obtain
(2 + E)2 = 4 + 4E+ €2 = 4E+ 4. Show that
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(3) f(b + af) = f(b) + a . f' tb)«,

where f' is the formal derivative of the polynomial f. (Thus, derivatives of polynomi-
als can be constructed in a purely algebraic way.)

d. Suppose f = [xl E k[xl/(x l ) . Derive a formula analogous to (3) for feb + af) .
II. Let R be a commutative ring. Show that the set of nilpotent elements of R forms an ideal in

R. Hint: To show that the sum of two nilpotent elements is also nilpotent, you can expand
a suitable power (a + bl using the distributive law. The result is formally the same as the
usual binomial expansion.

12. This exercise will show that the two mappings given in (2) are inverses of each other.
a. If l t; J is an ideal of clr., . . . , x"l , show that J = If E k[XI,.·. , x,,1 : [Il E JII},

w~re J I I = {[jl : j E J I.Explain how you!Jlroof uses the assumption I C J.
b. If J is an ideal of k[XI:-; .. , x"lll, show that J = {IfI E k[XI, . . . , x,,111 : f E JI,

where J = {j : [j] E JI .
13. Let Rand 5 be commutative rings and let 4> : R --+ 5 be a ring homomorphism.

a. IfJ C 5 is an ideal, show that 4> -I (1) is an ideal in R.
b. If 4> is an isomorphism of rings, show that there is a one-to-one, inclusion-preserving

correspondence between the ideals of R and the ideals of 5.
14. This problem studies the ideals in some quotient rings.

a. Let I = (Xl - x) C R = IR[x]. Determine the ideals in the quotient ring RI I using
Proposition 10. Draw a diagram indicating which of these ideals are contained in which
others.

b. How does your answer change if I = (Xl + x)?
15. This problem considers some special quotient rings ofIR[x, yl.

a. Let I = (x 2 , i) c IR[x, yI. Describe the ideals in IR[x, Y]I I. Hint: Use Proposition 10.
b. Is IR[x, YI/(x3 , y) isomorphic to IR[x. YI!(x 2 , y 2 )?

16. Let e : k[x" . . . , x,,] --+ 5 bea ring homomorphism. The set {r E k[X I, . .. ,x,,1 : ¢>(r) =
o E 51 is called the kernel of 4>, written ker(4)).
a. Show that ker( ¢» is an ideal in k [x I , . . • , x; I.
b. Show that the mapping u from k[XI, . . . ,x,,]/ker(4)) to 5 defined by u([rJ) = 4>(r) is

well-defined in the sense that u([rJ) = u([r'J) whenever r = r' mod ker(¢».
c. Show that u is a ring homomorphism.
d. (The Isomorphism Theorem) Assume that 4> is onto . Show that u is a one-to-one

and onto ring homomorphism. As a result, we have 5 := k[X I, . . . , x,,]lker(4)) when
4> : k[xj, . . . , x" I --+ 5 is onto.

17. Use Exercise 16 to give a more concise proof of Theorem 7. Consider the mapping
¢> : k[XI , . . . , x,,1 -> k[VI that takes a polynomial to the element of k[VI that it represents.
Hint: What is the kernel of 4>?

§3 Algorithmic Computations in k[Xh ... ,xnl/I

In this section, we will use the division algorithm to produce simple representatives of
equivalence classes for congruence modulo l , where / C k[XI, ... , XII] is an ideal.
These representatives will enable us to develop an explicit method for computing the
sum and product operations in a quotient ring k[XI , .. . , xII]/ I . As an added dividend,
we will derive an easily checked criterion to determine when a system of polynomial
equations over <C has only finitely many solutions.
The basic idea that we will use is a direct consequence of the fact that the remainder on

division of a polynomial f by aGroebner basis G for an ideal/is uniquely determined
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by the polynomial f . (This was Proposition 1 of Chapter 2, §6.) Furthermore, we have
the following basic observations reinterpreting the result of the division and the form
of the remainder.

Proposition 1. Fix a monomial ordering on k[XI, .. . , XII] and let I C k[x, • . . . , XII]
be an ideal. As in Chapter 2, §5. (LT(l)} will denote the ideal generated by the leading
terms ofelements of I .
(i) Every f E k[XI, . . . , XII] is congruent modulo I to a unique polynomial r which

is a k-linear combination ofthe monomials in the complement of (LT(l)}.
(ii) The elements of {xa : x a rf. (LT(l)}} are "linearly independent modulo I." That

is, if
L caxa == 0 mod I,
a

where the xa appearing are all in the complement of (LT(l)} , then Ca = 0 for all
a .

Proof. (i) Let G be a Groebner basis for I and let f E k[Xl, . . . , XII]' By the divi-
sion algorithm, the remainder r = yG satisfies f = q + r ; where q E I. Hence,
f - r = q E I, so f == r mod I. The division algorithm also tells us that r is a
k-linear combination of the monomials x" rf. (LT(l)}. The uniqueness of r follows
from Proposition 1 of Chapter 2, §6.
(ii) The argument to establish this part of the proposition is essentially the same as

the proofof the uniqueness of the remainder in Proposition 1ofChapter 2, §6.We leave
it to the reader to carry out the details. 0

Historically, this was actually the first application of Groebner bases. Buchberger's
thesis concerned the question of finding "standard sets of representatives" for the classes
in quotient rings . We also note that if I = I(V) for a variety. V, Proposition 1 gives
standard representatives for the polynomial functions ¢ E k[V].

Example 2. Let I = (x y3 - x 2 , x 3y2 - y) in R[x, y] and use graded lex order. We
find that

G = {x3l - y , x 4 - l, xl- x 2 , l- xy}
is a Groebner basis for I . Hence, (LT(l)} = (x3y2 , x 4, xl. y4). As in Chapter 2, §4,
we can draw a diagram in Z;o to represent the exponent vectors of the monomials in
(LT(l)} and its complement as follows. The vectors

a(l) = (3,2),

a(2) = (4,0),

a(3) = (1,3),
a(4) = (0,4)

are the exponent vectors of the generators of (LT(l)}. Thus, the elements of

«3 ,2) + Z~o) U «4,0) + Z~o) U «1,3) + Z~o) U «0,4) + Z~o)
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are the exponen t vectors of monomials in (LT(l»). As a result , we can represent the
monomials in (LT(l» ) by the integer points in the shaded region in Z~o given below:

n

(0.4 )

•

•
•

•

•
•

•

•
•

•

•
•

•
•
•

•
•
•

• • • • • •
(1, 3)

0 0 • • • •(3,2)

0 0 0 • • •

(4,0) m

(m,n) t--+ x'" y"

Given any f E lR[x, y ), Proposition I implies that the remainder ] Gwill be aIR -linear
combination of the 12 monomials I , x , x 2, x 3, y, x y , x 2y , x 3y , y2, xy2, x 2y2, y3 not
contained in the shaded region. Note that in this case the remainders all belong to a
finite-dimensional vector subspace of lR[x , y1.
We may also ask what happens if we use a different monomial order in lR[x , Y1with

the same ideal. If we use lex order instead of grlex, with the variables ordered y > x ,
we find that a Groebner basis in this case is

G = {y - x7, x l2 _ x 2}.

Hence , forthis monomial order, (LT(l») = (y , x 12), and (LT(l» ) contain s all the mono-
mials with exponent vectors in the shaded region below. Thus, for every f E lR[x , y ],
we see that]G E Span f l , x , x 2 , •• • , xii ).

n

(0.1)

• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •
• • • • • • • • • • • • • •

(12,0) m

(m.n)~ x'" )'''

Note that (LT(I )} and the remainders can be completely ditterent cepenumg on
which monomial order we use. In both cases, however, the possible remainders form
the elements of a 12-dimensional vector space. The fact that the dimension is the same
in both cases is no accident, as we will soon see. No matter what monomial order we
use, for a given ideal I , we will always find the same number of monom ials in the
complement of (LT(I )} (in the case that this number is finite).
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Example 3. For the ideal considered in Example 2, there were only finitely many
monomials in the complement of (LT(l»). This is actually a very special situation. For
instance , consider I = (x - Z2, Y - Z3) E k[x , y, z]. Using lex order, the given
generators for I already form a Groebner basis , so that (LT(l») = (x, y) . The set of
possible remainders modulo I is, thus, the set of all k-linear combinations of the powers
of z. In this case, we recognize I as the ideal of a twisted cubic curve in k3• As a result
of Proposition I, we see that every polynomial function on the twisted cubic can be
uniquely represented by a polynomial in k[z]. Hence, the space of possible remainders
is not finite-dimensional and V(l) is a curve.What can you say about V(l) forthe ideal
in Example 2?

In any case, we can use Proposition I in the following way to describe a portion of
the algebraic structure of the quotient ring k[Xl, . . . , xlI] / I .

Proposition 4. Let I C k[Xl, . . . , XII]bean ideal. Thenk[XI , ... , xlI ] / I is isomorphic
as a k-vector space to S = Span(x" : X" rt (LT(l»)) .

Proof. By Proposition I, the mapping <t> : k[XI , . . . , x lI ] / I -+- S defined by <t> (UD =
-GI defines a one-to-one correspondence between the classes in k[XI' . . . , xlI]/ I and the
elements of S. Hence, it remains to check that <t> preserves the vector space operations.
Considerthe sum operation ink[XI, . . . , x lI ] / I introduced in §2. If [fl, [g] are elements
of k[XI, . . . , x lI ] / I, then using Proposition I, we can "standardize" our polynomial
representatives by computing remainders with respect to a Groebner basis G for I . By
Exercise 12 of Chapter 2, §6, we have I + gG = r + -gG, so that if

(I)

(where the sum is over those ex with x" rt (LT(l»)), then
-G '"1+ g = ~(c" + d';)x" .

a

Weconclude that with the standard representatives, the sum operation in k[XI , . . . , xlI ] /
I is the same as the vector sum in the k-vectorspace S = Span(x" : x" rt (LT(l»)) .
Further, if c E k, we leave it as an exercise toprove that c . I G = C •r (this is an
easy consequence of the uniqueness part of Proposition I) . It follows that

-G '"c - I = ~cc"x",
a

which shows that multiplication by c in k[XI , . . ~ , xlIl! I is the same as scalar mul-
tiplication in S. This shows that the map <t> is linear and, hence, is a vector space
isomorphism. 0

The product operation in k[Xl , . . . , xlI] / I is slightly less stra ightforward, The reason
for this is clear, however, if we consider an example . Let I be the ideal

I = (y + x 2 - I, x y - 21 + 2y) C lR[x, y].
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If we compute a Groebner basis for I using lex order with x > y, then we get

(2) G = {x2 + Y - I , xy - 21 + 2y, l- (7/4)l + (3/4)y}.

Thus, (LT(l») = (x 2, xy, y3), and {l, x, y , y2} forms a basis for the vector space of
remainders modulo I .Consider the classes of f = 3y2+x and g = x - y in IR[x, y]/ I .
The product of [f] and [g] is represented by f . g = 3xy2 + x 2 - 3y3 - xy .However,
this polynomial cannot be the standard representative of the product function because
it contains monomials that are in (LT(I»). Hence, we should divide again by G, and the
remainder f . gG will be the standard representative of the product. We have

---=----=------::-----jG
3x y2 + x 2 - 3y3 - xy = (-1l/4)y2- (5/4)y + I,

which is in Span(l, x, y, y2) as we expect.
The above discussion gives a completely algorithmic way to handle computations in

k[Xl , . . . , x lI ] / I. To summarize, we have proved the following result.

Proposition 5. Let I be an ideal in k[XI, . . . , XII] and let G be a Groebner basis for
I with respect to any monomial order. For each [f] E k[XI, . . . , x lI ] / I, we get the

. --G
standard representative f = f in S = Spantx" : x a f/. (LT(l»)) . Then:
(i) [f] + [g] is represented by 7 + g.

--G
(ii) [f]. [g] is represented by 7 .g E S.

We will conclude this section by using the ideas we have developed to give an
algorithmic criterion to determine when a variety in <C" contains only a finite number
of points or, equivalently, to determine when a system of polynomial equations has only
a finite number of solutions in <C. (As in Chapter 3, we must work over an algebraically
closed field to ensure that we are not "missing" any solutions of the equations with
coordinates in a larger field K ~ k.)

Theorem 6. Let V = V(I) be an affine variety in <C" andfix a monomial ordering in
<C[XI, ... , XII]' Then the following statements are equivalent:
(i) V is a finite set.
(ii) For each i, I ~ i ~ n, there is some m, ::: 0 such that X;'i E (LT(l»).
(iii) LetGbeaGroebnerbasisforI. Thenforeachi, I ~ i ~ n.there is some m, ::: 0

such that X~i = LM(g) for some g E G.
(iv) The CC-vector space S = Spantx" : xa f/. (LT(l»)) is finite-dimensional.
(v) The CC-vector space CC[XI, . .. , Xn1/I is finite-dimensional.

Proof. (i) => (ii) If V = 0, then I E I by the Weak Nullstellensatz. In this case, we
can take m, = 0 for all i. If V is nonempty, then for a fixed i, let a j, j = I, . .. , k,
be thedistinct complex numbers appearing as ith coordinates of points in V . Form the
one-variable polynomial

k

f(xj) n(x; - aj) .
j=l
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By construction, f vanishes at every point in V, so f E I(V). By the Nullstellensatz,
there is some m ~ I such that [" E I. But this says that the leading monomial of fill
is in (LT(l)}. Examining our expression for f, we see that Xf lll E (LT(l)} .
(ii) {:> (iii) Let x;" E (LT(l)} . Since G is a Groebner basis of I , (LT(l)}= (LT(g) :

g E G}. By Lemma 2 of Chapter 2, §4, there is some g E G, such that LT(g) divides
X; ' i . But this implies that LT(g) is a power of xi, as claimed. The opposite implication
follows directly from the definition of (LT(l)} .
(ii) :::} (iv) If some power x;'; E (LT(l)} for each i , then the monomials X~ ' • • • x~"

for which some a, ~ m, are all in (LT(l)}. The monomials in the complement of
(LT(l)} must have a, ~ m, - I for each i. As a result, the number of monomials in the
complement of (LT(l)} can be at most mi ' ml .. .m.:
(iv) {:> (v) follows from Proposition 4.
(v) :::} (i) To show that V is finite, it suffices to show that for each i there can be

only finitely many distinct ith coordinates for the points of V. Fix i and consider the
classes [x(] in ([;[x, • . . . ,x,,]/ I , where j = 0, I , 2, . . .. Since ([;[x" . . . , x,,]/ I is
finite-dimensional , the [x!] must be linearly dependent in ([;[Xl, .• . , x,,]/!. That is,
there exist constants Cj (not all zero) and some m such that

However, this implies that L~~o CjX( E I. Since a nonzero polynomial can have only
finitely many roots in ([;, this shows that the points of V have only finitely many different
ith coordinates.
We note that the hypothesis k = ([; was used only in showing that (i):::}(ii). The

other implications are true even if k is not algebraically closed . 0

A judicious choice of monomial ordering can sometimes lead to a very easy
determination that a variety is finite. For example, consider the ideal

I = {x 5 + i + Zl - I , Xl + i + z - I, x 4 + i + Z6 - I}.

Using grlex, we see that x 5 , y3, Z6 E (LT(l)} since those are the leading monomials of
the three generators. By part (ii) of the theorem ,we know that V(l) is finite (even without
computing a Groebner basis) . If we actually wanted to determine which points were
in V(l) , we would need to do elimination, for instance, by computing a lexicographic
Groebner basis. This can be a time-consuming calculation, even for a computer algebra
system .
A close examination of the proof of the theorem also yields the following quantitative

estimate of the number of solutions of a system of equations when that number is finite.

Corollary 7. Let I C ([;[x, , .. . , x,,] be an ideal such that for each i , some power
x;'; E (LT(l)} . Then the number ofpoints ofV(l) is at most m , . ml" .m.:

Proof. We leave the proof as an exercise for the reader. o
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Here is a pair of examples to illustrate the corollary. First consider the variety V =
V(Xy 3 - X2 , X3y 2 - y) C (C2 from Example 2. The lexicographic Groebner basis for
this ideal is G = {y - x7, x I2 - x}. Hence, in the notation of the theorem, we have
mj = 12 and m2 = 1 as the smallest powers of the two variables contained in (LT(l».
By solving the equations from G, we see that V actually contains 12 = mI ' m2 points
in this case :

V = {(O, O)} U {(~, ~7) : ~II = I}.

(Recall that there are 11 distinct 11th roots of unity in (C.)
On the other hand, consider the variety V = V(x 2 + Y - 1, xy - 2y2 + 2y) in

(C2. From the lexicographic Groebner basis computed in (2) for this ideal, we see that
ml = 2 and m2 = 3 are the smallest powers of x and y, respectively, conta ined in
(LT(l» . However, V contains only 4 < 2 . 3 points in (C2 :

V = {(±I , 0), (0,1), (-1/2, 3/4»).

Can you explain the reason(s) for the difference between mI' m2 and the cardinality
of V in this example?
We can improve the bound given in Corollary 7 as follows .

Proposition 8. Let I C (C[XI, . .. ,XII] be an ideal such that V = VU) is afinite set.
(i) The number ofpoints in V is at most dim«C[xl, .. . , xlI ]/ l) (where "dim" means

dimension as a vector space over <C).
(ii) If I is a radical ideal, then equality holds , i.e., the number ofpoints in V is exactly

dim«C[xI, . .. ,xlIJ!I).

Proof. We first show thatgiven distinct points PI, .. . , Pm E (C", there is a polynomial
fl E (C[X) , .. . , XII] with fl(P I) = 1 and fl(P2) = ... = fl(Pm) = O. To prove
this, note that if a =I b E (CII . then they must differ at some coordinate, say the jth, and
it follows that g = (Xj - bj )/(a j - bj) satisfies g(a) = 1, g(b) = O. Ifwe apply this
observation to each pair PI =I Pi, i ~ 2, we get polynomials gi such that 8i (PI) = 1
and 8i (Pi) = 0 for i ~ 2. Then fl = 82 . 83 . . . 8m has the desired property.
In the argument just given, there is nothing special about PI. Ifwe apply the same ar-

gument with PI replaced by each ofPI, . .. , Pill in tum, we get polynomials fi- . . . , [,,,
such that fi(Pi) = 1 and fi(pj) = 0 for i =I j.
Now we can prove the proposition. Suppose that V = {pJ, .. . , Pm},where the Pi

are distinct. Then we get fl, . .. , [,,, as above. If we can prove that [fl] , .. . , [[,,,] E
(C[xJ, ... , xlI ]/ I are linearly independent, then

(3) m ~ dim«C[xJ, . . . ,xlI ] / l)

will follow, and the first part of the proposition will beproved.
To prove linear independence, suppose that L;~jai[fi] = [0] in (C[xJ, . . . , xlIl/I ,

where a, E (C. Back in (C[XI, . .. , XII], this means that 8 = L~~I a, fi E I , so that 8
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vanishes at all points of V = {PI, ... , Pm} . Then, for 1 ::: j ::: m, we have

m
0= g(Pj) = L aj/;(pj) = 0 + aJj(pj) = aj,

i=1

and linear independence follows.
Finally, suppose that 1 is radical. To prove that equality holds in (3) , it suffices to

show that [fd , . .. • [fm] are a basis of <C[XI, . . . , x" l! l. Since we just proved linear
independence, we only need to show that they span. Thus, let [g] E <C[XI , ... , x,,]/1 be
arbitrary, and set a, = g(Pi). Then consider h = g - L7~1 a,[r -One easily computes
h(pj) = 0 for all i. so that h E I(V) . By the Nullstellensatz, I(V) = I(V(l» = .Ji
since <C is algebraically closed, and since I is radical, we conclude that h E l . Thus
[h] = [0] in <C[Xf, . . . ,x"l!l, which implies [g] = L7~1 ai[/;]. The proposition is
now proved. 0

To see why this proposition represents an improvement over Corollary 7; consider
Example 2 from the beginning of this section. Using grlex, we found x 4 • y4 E (LT(l») ,
so the V(l) bas s 4 · 4 = 16 points by Corollary 7. Yet Example 2 also shows that
<C[x, y]/ I has dimension 12 over <C. Thus Proposition 8 gives a better bound of 12.
For any ideall, we have V(l) = V(.Ji) . Thus, when V(l) is finite, Proposition 8

shows how to find the exact number of solutions over <C, provided we know .Ji. Al-
though radicals are hard to compute in general, .Ji is' relatively easy to find when 1
satisfies the conditions of Theorem 6. For a description of the algorithm, see Theo-
rem 8.20 of BECKER and WEISPFENNING (1993). This subject (and its relation to solving
equations) is also discussed in Cox, UTILE and O'SHEA (1997) .
Theorem 6 shows how we can characterize "zero-dimensional" varieties (varieties

containing only finitely many points) using the properties Of<C[XI, .. •• x" l/ I. In Chap-
ter 9, we will take up the general question of assigning a dimension to a general variety,
and some of the ideas introduced here will be useful.

EXERCISES FOR §3

I. Complete the proof of part (ii) of Proposition 1.
2. In Proposition 5, we stated a method for computing [Il . [g] in k[xi • . . . • x; l/ I. Could we

simply computeH rather than first computing the remainders of f and g separately?
3. Let 1 = (x 4y - Z6, x 2 - iz. x Jz2 - yJ) in k[x. y, el.

a. Using lex order, find a Groebner basis G for 1 and a collection of monomials that spans
the space of remainders modulo G.

b. Repeat part a for grlex order. How do your sets of monomials compare?
4. Use the division algorithm and the uniqueness part of Proposition I to prove that c .r =

- G
c - f whenever f E k[xt • .. . , x"l and C E k .

5. Let 1 = (y + x 2 - I. xy .; 2y 2 + 2y) c lR[x. Yl. (This is the ideal used in the example
following Proposition 4.)
a. Construct a vector space isomorphism lR[x , yl/1 ~ IR4•
b. Using the lexicographic Groebner basis given in (2), compute a "multiplication table"

for the elements {ll ], [x] , [y].[lll in lR[x , yllI . (Express each product as a linear
combination of these four classes.)
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c. Is lR[x. y II I a field? Why or why not?
6. Let V = V (X3 - x~. X4 - X IXZ. XIX4 - X IXS . x;- X3XS ) c <cs.

a. Using any convenient monomial order. determ ine a collection of monomials spann ing
the space of remainders modulo a Groebner basis for the ideal generated by the defining
equations of V.

b. For which i is there some m, ~ 0 such that x;ni E (LT(I»)?
c. Is V a finite set? Why or why not?

7. Let I be any ideal in k[x i • . . . • xn] .
a. Suppose that S = Spanf.r" : XO if. (LT(I»)) is a k-vector space of finite dimension d

for some choice of monom ial order. Show that the dimension of k[x i • . . . • xn]1I as a
k-vector space is equal to d.

b. Deduce from part a that the number of monomials in the complement of (LT(I») is
independent of the choice of the monom ial order. when that number is finite.

8. Prove Corollary 7. Hint: Use Propos ition 4 and part (iii) of Theorem 6.
9. Suppose that I C k[x io .. .• xn] is an ideal such that for each i . X;"i E (LT(I)). State and

prove a criterion that can be used to determine when V(I ) contains exactly m i' mz . . .m;
points in <cn • Does your criterion somehow take the multiplicity of the roots into account ?

10. Most computer algebra systems contain routines for simplifying radical expressions. For
example. instead of writing

r=

most systems would allow you to rational ize the denom inator and rewrite r as a quot ient of
polynomial s in x , where .j2 and ..fj appear in the coefficients only in the numerator. The
idea behind one method used here is as follows. .
a. Explain why r can be seen as a rational function in .r , whose coefficients are elements of

the quotient ring R = <Q[YI. Yz I/(Y~ - 2. yi - 3). Hint: See Exercise 4 from §2 of this
chapter.

b. Compute a Groebner basis G for I = (y~ - 2. yi - 3) and construct a multiplication
table for the classes of the monomials spanning the possible remainders modulo G (which
should be ([ II. [yd . [Yll. [YI YZ]}) .

c. Now. to rationalize the denominator of r , we can try to solve the following equation

where ao. al . az. a3 are rational functions of x with rational number coefficients. Multipl y
out (3) using your table from part b. match coefficients. and solve the resulting linear
equations for ao. al . az. a3' Then

gives the rationalized expression for r.
11. In this problem. we will establish a fact about the number of monomial s of total degree less

than or equal to d in k[xi • . . . • Xn I and relate this to the intuitive notion of the dimens ion of
the variety V = k":
a. Explain why every monom ial in k[x l •. . .• xn) is in the complement of (LT(I (V»)) for
V = k",

b. Show that for all d . n ~ O. the numbe r of distinct monomials of degree less than or
equal to d in k[x i • . . . • xnl is the binomial coefficient (n; J) . (This general izes part a of
Exercise 5 in Chapter 2. §I.)
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c. When n is fixed. explain why this number of monomials grows like d" as d --. 00. Note
that the exponent n is the same as the intuitive dimension of the variety V = k", for
which k[V] = k[xi • . . . • x,,] .

12. In this problem. we will compare what happens with the monomials not in (LT(I)) in two
examples where V(I) is not finite. and one where V(I) is finite.
a. Consider the variety V(I) C a:::3• where I = (x 2 + y. X - i + Z2 . xy - z). Compute

a Groebner basis for I using lex order. and. for I ::: d ::: 10. tabulate the number of
monomials of degree x d that are not in (LT(I )). Note that by Theorem 6. V(I) is a
finite subset of a:::3 • Hint: It may be helpful to try to visualize or sketch a 3-dimensional
analogue of the diagrams in Example 2 for this ideal.

b. Repeatthe calculations of part a for J = (x 2+ y , X - y2+ Z2). Here. V(J) is not finite.
How does the behavior of the number of monomials of degree x d in the complement of
(LT(I)) (as a function of d) differ from the behavior in pan a?

c. Let H](d) be the number of monomials of degree x d in the complement of (LT(J)).
Can you guess a power k such that H] (d) will grow roughly like d" as d grows?

d. Now repeat parts band c for the ideal K = (x 2 + y) .
e. Using the intuitive notion of the dimension of a variety that we developed in Chapter I.

can you see a pattern here? Wewill return to these questions in Chapter 9.
13. Let k be any field. and suppose I C k[xi • . . . • x,,] has the property that k[xi • . . . • x; III is

a finite dimensional vector space over k.
a. Prove that dim(k[xi . .. . . x,,]/v'I) ::: dim(k[x i... .. x,,]1 I). Hint: Show that I C v'I

induces a map of quotient rings k[xi • . . . • x" III --. k[xi • . . . • x; II v'I which is onto.
b. Show that the number of points in V(I) is at most dim(k[xi . . . .. x,,11v'I).
c. Give an example to show that equality need not hold in pan b when k is not algebraically

closed.

§4 The Coordinate Ring of an Affine Variety

In this section. we wilI apply the algebraic tools developed in §§2 and 3 to study the
ring k[V] of polynomial functions on an affine variety V C k" .Using the isomorphism
k[V] ;::: k[xi • . . . •xlI]/I(V) from §2. we wilI frequently identify k[V] with the quotient
ring k[xi • . . . • xlI]/I(V). Thus. given a polynomial I E k[XI, . . .• XII], we let [f]
denote the polynomial function in k[V] represented by I .

In particular. each variable Xi gives a polynomial function [Xi] : V -+ k whose value
at a point p E V is the ith coordinate of p . We calI [x;l E k[V] the ith coordinate
function on V. Then the isomorphism k[V] ;::: k[xJ, ... , xlI]/I(V) shows that the
coordinate functions generate k[V] in the sense that any polynomial function on V is a
k-linear combination of products of the [Xi]' This explains the following terminology.

Definition 1. The coordinate ring alan affine variety V C k" is the ring k[V] .

Many results from previous sections of this chapter can be rephrased in terms of the
coordinate ring. For example:
• Proposition 4 from §I: A variety is irreducible if and only if its coordinate ring is an
integral domain.

• Theorem 6 from §3: Over k = <C. a variety is finite if and only if its coordinate ring
is finite -dimensional as a <C-vector space.
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In the "algebra-geometry" dictionary ofChapter 4, we related varieties in k" to ideals in
k[xi • . . . , XII] ' One theme ofChapter 5 is that this dictionary still works if we replace k"
and k[XI, . . . , XII] by a general variety V and its coordinate ring k[V]. For this purpose,
we introduce the following definitions.

Definition 2. Let V C k" be an affine variety.
(i) Forany ideal 1 = (¢I, .. . , ¢,) c key] , we define

Vy(J) = {(al , " " all) E V : ¢(al, . ..• all) = Ofor all ¢ E i} .

We call Vv (l) a subvariety ofV.
(ii) For each subset W C V, we define

Iy(W) = (¢ E key] : ¢(a), .. . , all) = Ofor all (ai , ... , all) E W}.

For instance, let V = V(z - x 2 - y2) C IR3• If we take 1 = ([x]) E IR[V], then

W = Vy(J) = {(O, y, l) : y E IR} C V

is a subvariety of V. Note that this is the same as V(z - x2 - y2. x) in IR3• Similarly,
if we let W = {(l , I , 2)} C V, then we leave it as an exerc ise to show that

!v(W) = ([x - 1], [y - 1]).

Given a fixed affine variety V, we can use Iv and Vv to relate subvarieties of V to
ideals in k[V] . The first result we get is the following.

Proposition 3~ Let V C kn be an affine variety.
(i) For each ideal I C key] , W = V v (i) is an affine variety in k" contained in V .
(ii) For each subset W C V, Iy(W) is an ideal ofk[V).
(iii) Ifi C k[V]isanideal,theni C...[J C Iy(Vy(i».
(iv) IfW C V is a subvariety, then W = Vv(I y (W» .

Proof. To prove (i), we will use the one-to-one correspondence of Proposition I0 of
§.2 between the ideals of key] and the ideals in k[xl , . .. , XII) containing I(V). Let
1 = {f E k[XI, . . . , XII] : [f] E i} C k[xl.!...... , XII] be the ideal c~rresponding

to 1 C key] . Then Vel) c V, since I(V) C l. But we also have V(i) = Vy(J)
by definition since the elements of ] represent the functions in J on V. Thus, W
(considered as a subset of k") is an affine variety in its own right.
The proofs of (ii), (iii) , and (iv) are similar to arguments given in earlier chapters and

the details are left as an exercise. Note that the definition of the radical of an ideal is
the same in key] as it is in k[XI, .. . , XII]' 0

We can also show that the radical ideals in k[V] correspond to the radical ideals in
k[Xl, . .. , XII] containing I(V).

~roposition4. An ideal 1 C key] is radical if and only if the corresponding ideal
1 = {f E k[Xl, . ' " XII] : [f] E l} C k[XI, . .. , XII] is radical.
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Proof. Assume J is radical, and let f E k[XI , ... , XII] satisfy r ' E J for some
m ::: I . Then [[III] :: [filii E J. Since J is a radical ide~, this implies that [fl E
J. Hence, f E J , so J is also a radical ideal. Conversely, if J is radical and [filii E J,
then [/"'] E J , so I" E J.Since J is radical, this shows that f E J.Hence, [fl E J
and J is radical. 0

Rather than discuss the complete " ideal- variety" correspondence (as we did in Chap-
ter 4), we will confine ourselves to the following result which highlights some of the
important properties of the correspondence.

Theorem 5. Let k be an algebraically closedfield and let V C k" be an affine variety.
(i) (The Nullstellensatz in k[V]) If J is any ideal in k[V] , then

I v(V v(J)) = .J] = {[fI E k[V] : U'l" E J} .

(ii) The correspondences

Iv

{
affine sUbvarieties} ~ {radicalideals}

We V ~ J C k[V]

are inclusion-reversing bijections and are inverses ofeach other.
(iii) Under the correspondence given in (ii), points ofV correspond to maximal ideals

ofk[V].

Proof. (i) Let J be an ideal of k[V] . By the correspondence of Proposition IO of
§2, J corresponds to the ideal J C k[XI, . . . , XII] as in the proof of Proposition 4,
where V(1) = Vv(J). As a result , if [fl E h(Vv(1)), then f E I(Va)) . By
the Nullstellensatz in k" , I(Va» = JJ, so fill E J for some m ::: 1. But then,
[fill] = [flnr E J, so [fl E .J7 in k[V]. We have shown that Iv(Vv(J)) C .J7.
Since the opposite inclusion holds for any ideal , our Nullstellensatz in k[V] is proved .
(ii) follows from (i) as in Chapter 4.
(iii) is proved in the same way as Theorem II of Chapter 4, §5. 0

Next, we return to the general topic of a classification of varieties that we posed in
§I . What should it mean for two affine varieties to be " isomorphic"? One reasonable
answer is given in the following definition .

Definition 6. Let V C kill and W C k" be algebraic varieties. We say that V and W
are isomorphic if there exist polynomial mappings a : V ~ Wand f3 : W ~ V
such that a 0 f3 = idw, and f3 0 Ci = idv. (For any variety V, we write idv for the
identity mapping from V to itself. This is always a polynomial mapping.)

Intuitively, varieties that are isomorphic should share properties such as irreducibility,
dimension, etc . In addition, subvarieties of V should correspond to subvarieties of W,
and so forth . For instance, saying that a variety W C k" is isomorphic to V = k"
implies that there is a one-to-one and onto polynomial mapping a : kill ~ W with a
polynomial inverse . Thus , we have a polynomial parametrization ofW with especially
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nice properties! Here is an example, inspired by a technique used in geometric modeling,
which illustrates the usefulness of this idea .

Example 7. Let us consider the two surfaces

QI = V(X2 - xy - i + Z2) = V(/t) ,

Q2 = V(X 2 - i + Z2 - Z) = V(h)

in lR3• (These might be boundary surfaces ofa solid region in a shape we were designing,
for example.) To study the intersection curve C = V(/1, h) of the two surfaces, we
could proceed as follows. Neither QI nor Q2 is an espec ially simple surface , so the
intersection curve is fairly difficult to visualize directly. However, as usual, we are not
limited to using the particular equations I I,h to define the curve! It is easy to check
that C = V(/1, II + ch) , where c E lR is any nonzero real number. Hence, the
surfaces Fe = V(/1 + ch) also contain C. These surfaces, together with Q2, are often
called the elements of the pencil of surfaces determined by QI and Q2. (A pencil of
varieties is a one-parameter family of varieties, parametrized by the points of k , In the
above case, the parameter is c E lR.)
If we can find a value of c making the surface Fe particularly simple, then under-

standing the curve C will be correspondingly easier. Here, if we take c = -I , then F_ 1

is defined by

O=/I-h
= z - xy.

The surface F = F_I is much easier to understand because it is isomorphic as a variety
to lR2 [as is any graph of a polynomial function f i», y)}. To see this, note that we have
polynomial mappings:

a. : lR2 ---+ Q,
(x, y) t-+ (x , y, xy),

rr : Q ---+ lR2 ,

(x, y, z) t-+ (x , y),

which satisfy a. 0 tt = idQ and tt 0 a. = id lR2.

Hence , curves on Q can be reduced to plane curves in the following way. To study
C, we can project to the curve rr (C) C lR2 , and we obtain the equation

for rr(C) by substituting z = xy in either It or h .Note that tt and a. restrict to give
isomorphisms between C and rr(C) , so we have not really lost anything by projecting
in this case.
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x

Inparticular, each point (a, b) on rr(C) corresponds to exactly one point (a, b, ab) on
C. In the exercises, you will show that rr(C) can also be parametrized as

y=

x=
_t2 + t + I
t 2 + I

_t2 + t + I
t(t + 2)

From this we can also obtain a parametrization of C via the mapping a.

(I)

Given the above example, it is natural to ask how we can tell whether two varieties
are isomorphic. One way is to consider the relation between their coordinate rings

k[V] ~ k[Xl, . . . , x",]/I(V) and k[W] ~ k[Yt, ... , YII]/I(W).

The fundamental observation is that if we have a polynomial mapping a : V ~ W,
then every polynomial function I/J : W ~ k in k[W] gives us another polynomial
function I/J 0 a : V -+ kin keY]. This will give us a map from k[W] to key] with the
following properties.

Proposition 8. Let V and W be varieties (possibly in different affine spaces).
(i) Let a : V -+ W be a polynomial mapping. Then for every polynomial function

I/J : W -+ k, the composition I/J 0 a : V -+ k is also a polynomial function .
Furthermore, the map a* : k[W] -+ key] defined by a*(I/J) = ¢ 0 a is a ring
homomorphism which is the identity on the constant functions k C k[W]. (Note
that a* "goes in the opposite direction" from a since a* maps functions on W to
functions on V. For this reason we call a" the pullback mapping on functions.)
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(ii) Conversely, let I : k[W) ~ k[V) be a ring homomorphism which is the identity
on constants. Then there is a unique polynomial mapping cx : V ~ W such that
I = cx" .

Proof. (i) Suppose that V C k" has coordinates XI , ... , Xm and W C k" has coordi-
nates Yt , . .. , Y".Then ¢: W ~ k can be represented by a polynomial I(YI • . . . • y,,),
and o : V ~ W can be represented by an n-tuple of polynomials:

cx(xj, . .. • xm ) = (al(xt • ... , xm ) , • •• , a"ex" . . . , x,;,» '

We compute ¢ 0 a by substituting CXeXt, ... , XIII) into ¢. Thus,

e¢ 0 cx)(Xt • . ..• xm) = lea'ex ', . . .• xm ) , •••• al/exl. · .. , xm».

which is a polynomial in XI • . . . •Xm. Hence, ¢ 0 a is a polynomial function on V.
It follows that we can define cx" : k[W) ~ k[V) by the formula cx"e¢) = ¢ 0 a, To

show that a" is a ring homomorphism, let 1{J be another element of k[W), represented
by a polynomial g(YI • . . . , y,,). Then

(cx"(¢ + 1{J»)(XI, ... , xm) = l(aleXI •.. .• xm), .. ·• a,,(x' •... , XIII»

+ g(a lext, , xm ) , •• • , a,,(x', , xm»
= CX"(¢)(Xh , xm ) + cx"(1{J)(X t , , xm ) ·

Hence, cx"e¢ + 1{J) = cx"e¢) + cx"(1{J) , and cx"e¢ . 1{J) = cx"e¢) . cx"e1{J) is proved
similarly. Thus. a" is a ring homomorphism.
Finally, consider [a) E k[W) for some a E k . Then [al is a constant function on W

with value a, and it follows that cx"([a)) = [a) 0 a is constant on V, again with value
a. Thus, cx"([a)) = [a], so that cx" is the identity on constants.
(ii) Now let I : k[W] ~ k[V] be a ring homomorphism which is the identity on the

constants. We need to show that I comes from a polynomial mapp ing a : V ~ W.
Since W C k" has coordinates Yt, ... •YII, we get coordinate funct ions [Yd E k[W].
Then I([Yi)) E k[V] , and since V C kill has coordinates Xl, . . .• XIII ' we can write
l e[Yi]) = [aieXt , . . . ,xm)] E k[V]forsomepolynomialai E k[xl.·.·.xm).Then
consider the polynomial mapping

cx = ea leXI, .. .• XIII) ' .. .• a"exl, . . · , XIII»'

We need to show that a maps V to W and that I = cx".
Given any polynomial F E k[y" ...• y,,), we first claim that

(2)

in k[V]. To prove this. note that

[F 0 cx) = I([F))

[F 0 cx] = [Feat • . . . , all)] = Fe[ad , · . . , [a,,]) = F(fe[Yd) • .. .• le[y,,))),

where the second equality follows from the definition of sum and product in k[V],
and the third follows from [ad = le[Yi]). But [F] = [ley" .. . , YII») is a k-linear
combination of products of the [Yi), so that

F(f([Yd), ·· .• I([Y,,))) = 1([FeYt • . . . , y,,))) = I([F])
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since f is a ring homomorphism which is the identity on k (see Exercise 10). Equation
(2) follows immediately.
We can now prove that a maps V to W. Given a point (c j, . .. , cm) E V , we must

show that cfc .. . . . , cm) E W. If FE I(W), then [F] = 0 in k[W], and since f is a
ring homomorphism, we have f([F]) = 0 in key] . By (2) , this implies that [F 0 a] is
the zero function on V. In particular,

[F 0 aHcl , "" cm) = F(a(cl , . . . , cm)) = O.

Since F was an arbitrary element ofl(W), this shows a(c l , . . . , cm) E W, as desired .
Once we know a maps V to W, equation (2) implies that [F] 0 a = f([F]) for any

[F] E k[W]. Since a'([F]) = [F] 0 a , this proves f = a' . It remains to show that
a is uniquely determined. So suppose we have f3 : V ~ W such that f = f3'. If f3 is
represented by

f3(Xl , . • . , xm) = (bl(XI, . . . , xm), . · . , b,,(x) , ... , xm)) ,

then note that f3'([y ;]) = [y;] 0 13 = [b;(XI, . . . , XIII)]' A similar computation gives
a' ([y;]) = [a; (XI, . . . , xm ) ), and since a' = f = f3', we have [a;] = [b;] for all i .
Then a, and b, give the same polynomial function on V , and, hence, a = (aI, .. . , a,,)
and 13 = (b l , .. . , b,,) define the same mapping on V. This shows a = 13, and
uniqueness is proved . 0

Now suppose that a : V ~ Wand 13 : W~ V are inverse polynomial mappings .
Then a 0 f3 = idu-, where idw : W ~ W is the identity map. By general properties
of functions , this implies (a 0 f3)"(cjJ) = idrv (cjJ) = (cjJ) 0 idw = cjJ for all cjJ E k[W].
However, we also have

(a 0 f3)'(cjJ) = cjJ 0 (a 0 f3) = (cjJ 0 a) 0 f3
= a'(cjJ) 013 = (3'(a'(cjJ» = (13' 0 a·)(cjJ).

Hence, (a 0 (3)' = f3* 0 a' = idklW j as a mapping from k[W] to itself. Similarly, one
can show that (13 0 a)" = a' 013' = idk[v), This proves the first half of the following
theorem .

Theorem 9. Two affine varieties V C k" and W C k" are isomorphic if and only
if there is an isomorphism key] ~ k[W] ofcoordinate rings which is the identity on
constant functions .

Proof. The above discussion shows that if V and W are isomorphic varieties, then
k[V] ~ k[W] as rings. Proposition 8 shows that the isomorphism is the identity on
constants.
For the converse, we must show that if we have a ring isomorphism f : k[W] ~

key] which is the identity on k, then f and f-l "come from" inverse polynomial
mappings between V and W . By part (ii) of Proposition 8, we know that f = a' for
some a : V ~ Wand f-I = f3' for f3 : W ~ V. We need to show that a and f3 are
inverse mappings. First consider the composite map a 0 f3 : W ~ W . This is clearly
a polynomial map, and, using the argument from (3), we see that, for any cjJ E k[WJ,

(4) (a 0 f3)*(cjJ) = f3'(a'(cjJ)) = r l(f(cjJ)) = cjJ.
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It is also easy to check that the identity map idw : W -+ W is a polynomial map on
W. and we saw above that id~(¢) = ¢ for all ¢ E k[W). From (4). we conclude that
(a 0 fJ)* = id~. and then a 0 fJ = idw follows from the uniqueness statement of part
(ii) of Proposition 8. In a similar way. one proves that fJ 0 a = idv, and. hence. a and
fJ are inverse mappings. This completes the proof of the theorem . 0

We conclude with several examples to illustrate isomorphisms of varieties and the
corresponding isomorphisms of their coordinate rings.
Let A be an invertible n x n matrix with entries in k and consider linear mapping

LA : k" -+ k" defined by LA(x) = Ax. where Ax is the matrix product. From
Exercise 9 ofChapter 4. §I. we know that L ~ is a ring isomorphism from k[xl • . . . • XII]
to itself. Hence. by the theorem. LA is an isomorphism of varieties taking k" to itself.
(Such isomorphisms are often called automorphisms of a variety.) In Exercise 9. you
will show that if V is any subvariety of k", then LA(V) is a subvariety of k" isomorphic
to V since LArestricts to give an isomorphism of V onto LA(V). For example. the curve
we studied in the final example of §I of this chapter was obtained from the "standard"
twisted cubic curve in ([;3 by an invertible linear mapping. Refer to equation (5) of §I
and see if you can identify the mapping LA that was used.
Next. let f tx , y) E k[x, y] and considerthe graph of the polynomial function on k 2

given by f [that is. the variety V = V(z - [t», y)) C k 3) . Generalizing what we said
concerning the variety V(z - xy) in analyzing the curve given in Example 7. it will
always be the case that a graph V is isomorphic as a variety to k2 • The reason is that the
projection on the (x, y)-plane T( : V -+ k 2 • and the parametrization of the graph given
by a : e -+ V, a(x . y) = (z , Y. f tx , y)) are inverse mappings . The isomorphism
of coordinate rings corresponding to T( just consists of substituting z = f(x , y) into
every polynomial function F(x , y . z) on V .
Finally. consider the curve V = V(y5 - x2) in IR2•

y

x

We claim that V is not isomorphic to IR as a variety, even though there is a one-to-one
polynomial mapping from V to IRgiven by projecting V onto the x-axis.The reason lies
in the coordinate ring of V : IR[V] = IR[x. y)/ (y5 - x2). If there were an isomorphism
a : IR -+ V. then the "pullback" a· : IR[V] -+ IR[u] would be a ring isomorphism
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given by

a*([xJ) = c(u),

a*([yJ) = d(u),

where c(u) , d(u) E IR[u] are polynomials. Since y5 - x2 represents the zero function
on V , we must have a* (yS - x 2) = (d (u»5 - (c(U»2 =0 in IR[u]. .
Wemay assume that c(O) = d (0) = °since the parametrization a can be "arranged"

so that a (0) = (0, 0) E V . But then, let us examine the possible polynomial solutions

c(u) = CJU + C2u2 + . .. , d(u) = diu + d2u2 + .. .
of the equation (c(u»2 = (d(u»5. Since (d(U»5 contains no power of u lower than
u5, the same must be true of (c(u»2. However,

(c(u»2 = c~u2 + 2CIC2U3+ (c~ + 2CIC3)U4 + ....
The coefficient of u2 must be zero, which implies CJ = O.The coefficient of u4 must
also be zero, which implies C2 = °as well. Since CI, C2 = 0, the smallest power of u
that can appear in c2 is u6 , which implies that dl = 0 also.
It follows that u cannot be in the image of a* since the image of a* consists of

polynomials in c(u) and d(u). This is a contradiction since a* was supposed to be
a ring isomorphism onto IR[u]. Thus, our two varieties are not isomorphic. In the
exercises, you will derive more information about IR[Vj by the method of §3, to yield
another proof that IR[Vj is not isomorphic to a polynomial ring in one variable.

EXERCISES FOR§4

I. Let C be the twisted cubic curve in k3•
a. Show that C is a subvariety of the surface S = V(xz _ y 2).
b. Find an ideal J C k[S] such that C = V5(1).

2. Let V C <C" be a nonempty affine variety.
a. Let rP E <C[V]. Show that Vv (rP) = 13 if and only if rP is invert ible in <c[V](which means

that there is some 1/1 E <c[V] such that rP1/I = [I] in <C[V]) .
b. Is the statement of part a true if we replace <C by IR? If so, prove it; if not, give a

counterexample.
3. Prove parts (ii), (iii), and (iv) of Proposition 3.
4. Let V = V(y - x"; z - x" ), where m, n are any integers g I. Show that V is isomorphic

as a variety to k by constructing explicit inverse polynomial mapp ings a : k ~ V and
f3 : V ~ k.

5. Show that any surface in kJ with a defining equation of the form x - fey, z) = 0 or
y - g (x , z) = 0 is isomorphic as a variety to k2•

6. Let V be a variety in k" defined by a single equation of the form x; - f (x" . . . , X,,_I) = O.
Show that V is isomorphic as a variety to k,,-I.

7. In this exercise, we will derive the parametrization (1) for the projected curve tt (C) from
Example 7.
a. Show that every hyperbola in IR2 whose asymptotes are horizontal and vertical and which

passes through the points (0, 0) and (I , I) is defined by an equation of the form

xy + tx - (t + I)y = 0

for some t E IR.
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b. Using a computer algebra system, compute a Groebner basis for the ideal generated by
the equation of 7l'(C), and the above equation of the hyperbola. Use lex order with the
variables ordered x > y > I .

c. The Groebner basis will contain one polynomial depending on v. 1 only. By collecting
powers of y and factoring, show that this polynomial has y = 0 as a double root, y = I
as a single root , and one root which depends on 1 : y = -:\2,:'Z:I.

d. Now consider the other elements of the basis and show that for the "movable" root from
part c. there is a unique corresponding x value given by the first equation in (I).

The method sketched in Exercise 7 probably seems exceedingly ad hoc, but it is an example
of a general pattern that can be developed with some more machinery concerning algebraic
curves. Using the complex projective plane to be introduced in Chapter 8, it can be shown
that 7l'(C ) is contained in a projective algebraic curve with three singular points similar to
the one at (0, 0) in the sketch . Using the family of conics passing through all three singular
points and anyone additional point, we can give a rational parametrization for any irreducible
quartic curve with three singular points as in this example. However, nonsingular quartic
curves have no such parametrizations.

8. Let QI - V(x2 + y2 + Z2 - I), and Qz = V((x - 1/2)2 - 3y z - 2zz) in IR3.
a. Using the idea of Example 7 and Exercise 5, find a surface in the pencil defined by Q I

and Qz that is isomorphic as a variety to IRz.
b. Describe and/or sketch the intersection curve QI n Qz.

9. Let a : V --+ Wand (3 : W --+ V be inverse polynomial mappings between two isomorphic
varieties V and W. Let V = Vv(I) for some ideal I c k [V] . Show that o (V) is a subvariety
of Wand explain how to find an ideal J c kiWI such that a(V) = V\V(J) .

10. Let! : k[V] --+ k[WI be a ring isomorphism of coordinate rings which is the identity on
constants. Suppose that V C k" with coordinates Xl , . . .• x"' . If F E k[ x" . . . , x",], then
prove that !([FD = F(f([xd ) , .. . , !([x",])) . Hint: Express [FI as a e-Iinear combination
of products of the [Xi]'

I I . This exercise will study the example following Definition 2 where V = V(z - x2 - y2) C
IR3 •
a. Show that the subvariety W = I(I, I. 2)} C V is equal to Vv([x - I] . [y - ID. Explain

why this impl ies that ([x - I] , [y - II) C Iy(W).
b. Prove that ([x - I] , [y - II) = I y(W) . Hint: Show that V is isomorphic to IRz and use

Exercise 9.
12. Let V = V(y2 - 3x2z + 2) C IR3and let LA be the linear mapping on IR3 defined by the

matrix

(20 I)A = I I 0 .
o I I

a. Verify that LA is an isomorphism from IR3 to IR3•
b. Find the equation of the image of V under LA.

13. In this exercise, we will rotate the twisted cubic in IR3•
a. Find the matrix A of the linear mapping on IR3 that rotates every point through an angle

of 71'/ 6 counterclockwise about the z-axis.
b. What are the equations of the image of the standard twisted cubic curve under the linear

mapping defined by the rotation matrix A?
14. This exercise will outline another proof that V = V(yS - xz) c IRz is not isomorphic to

IRas a variety. This proof will use the algebraic structure of IR[VI.We will show that there
is no ring isomorphism from IR[V] to IR[/] . (Note that Rjr] is the coordinate ring of IR.)
a. Using the techniques of §3, explain how each element of IR[V] can be uniquely
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represented by a polynomial of the form a(y) + b(y)x, where a , b E lR[y].
b. Express the product (a + bx)(a' + b'x) in IR[V] in the form given in part a.
c. Aiming for a contradiction, suppose that there were some ring isomorphism ex : lR[t] -..

IR[V]. Since ex is assumed to be onto, x = ex(f(t» and y = {3(g(t) for some polyno-
mials t, g . Using the unique factorizations of t ,g and the product formula from part b,
deduce a contradiction.

IS. Let V C 1R3 be the tangent surface of the twisted cubic curve.
a. Show that the usual parametrization of V sets up a one-to-one correspondence between

the points of V and the points of IR2• Hint: Recall the discussion of V in Chapter 3, §3.
In light of part a, it is natural to ask whether V is isomorphic to IR2• We will show that
the answer to this question is no.

b. Show that V is singular at each point on the twisted cubic curve by using the method of
Exercise 12 of Chapter 3, §4. (The tangent surface has what is called a "cuspidal edge"
along this curve.)

c. Show that if ex : 1R2 -.. V is any polynomial parametrization of V , and ex(a , b) is
contained in the twisted cubic itself, then the derivative matrix of ex must have rank
strictly less than 2 at (a , b) (in other words, the columns of the derivative matrix must
be linearly dependent there). (Note: ex need not be the standard parametrization, although
the statement will be true also for that parametrization.)

d. Now suppose that the polynomial parametrization ex has a polynomial inverse mapping
{3 : V -.. 1R2 • Using the chain rule from multivariable calculus, show that part c gives a
contradiction if we consider (a , b) such that ex(a, b) is on the twisted cubic.

§5 Rational Functions on a Variety

The ring of integers can be embedded in many fields. The smallest of these is the field of
rational numbers <Q because <Q is formed by constructing fra.ctions ;,-, wherem, n E 71..
Nothing more than integers was used. Similarly, the polynomial ring k[X I, . •• , ·x,,] is
included as a subring in the field of rational functions

{
f (x !> . . . ,XII) }

k(XI , . .• , XII) = : f , g E k[XI, . .. , XII]' g i= 0 .
g(XI, ... , XII)

Generalizing these examples, if R is any integral domain, then we can form what is
called the quotient field, or field offractions of R, denoted QF (R) . The elements of
QF (R) are thought of as " fractions" r/ s, where r, s E Rand s i= O. We add and
multiply elements of Q F(R) as we do rational numbers or rational functions :

rls + t Iu = (ru + ts)/su and r/s· t fu = rt lsu,

Note that the assumption that R is an integral domain ensures that the denominators of
the sum and product will be nonzero. In addition, two of these fractions r/ s and r' / s'
represent the same element in the field of fractions if rs' = r's . Itcan be checked easily
that QF(R) satisfies all the axioms of a field (see Exercise I) . Furthermore , QF(R)
contains the subset (r/1 : r E R) which is a subring isomorphic to R itself. Hence,
the terminology "quotient field, or field of fractions of R" is fully justified.
Now if V C k" is an irreducible variety, then we have seen in §I that the coordinate

ring k[V] is an integral domain. The field of fractions QF(k[ V)) is given the following
name.
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Definition 1. Let V be an irreducible affine variety in k" , We call QF(k[V]) the
function field (or field of rational functions) on V , and we denote this field by key) .

Note the consistency of our notation. We use k[XI, .. . , XII] for a polynomial ring
and k[ V] for the coordinate ring of V . Similarly, we use k(X I , . . . , XII) for a rational
function field and k( V) for the function field of V .
We can write the function field key) of V C k" explicitly as

key) = {¢N : ¢ , 1/1 E k[V], 1/1 i= O}

= ([!l/[g] : ! , g E k[XI, .. . , XII], g If I(V)} .
As with any rational function , we must be careful to avoid zeros of the denominator if
we want a well-defined function value in k. Thus, an element ¢/1/1 E key) defines a
function only on the complement of V v (1/1).
The most basic example of the function field of a variety is given by V = k". In this

case, we have k[V] = k[XI, . . . , XII) and, hence,

key) = k(x\, . . . , XII)'

We next consider some more complicated examples.

Example 2. In §4, we showed that the curve

V = vel - x 2) C lR2

is not isomorphic to lR because the coordinate rings of V and lR are not isomorphic. Let
us see what we can say about the function field of V. To begin, note that by the method
of §2, we can represent the elements of lR[V) by remainders modulo G = {y5 - x 2 } ,
which is a Groebner basis for I(V) with respect to lex order with X > yin lR[x, y).
Then lR[V] = laCy) +xb(y) : a , b ElR[yJ} as areal vector space, and multiplication
is defined by

(I) (a + xb) . (c + xd) = (ac + l .bd) + x(ad + bd) .

In Exercise 2, you will show that V is irreducible, so that lR[V) isan integral domain.
Now, using this description of lR[V), we can also describe the function field !R(V)

as follows. If c + xd i= 0 in lR[V] , then, in the function field, we can write

=

a +xb

c+xd

a + xb e - xd= ---. ---
e + xd e - xd

(ac - ySbd) + x(be - ae)
e2 _ y 5d2

ae - y5bd be - ad
= e2 _ y5d2 + X c2 _ y5d2 .

This is an element of !R(y) + xlR(y). Conversely, it is clear that every element of
lR(y) +xlR(y) defines an elementoflR(V) .Hence, the field !R(V) can be identified with
the set offunctions lR(y) +xlR(y) ,where the addition and multiplication operations are
defined as before in !R[V], only using rational functions of y rather than polynomials.
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Now consider the mappings:

a : V ---+ JR. (x, y) r-+ xli,

fJ : JR ---+ V. u r-+ (US. u2) .

Note that a is defined except at (0. 0) E V, whereas fJ is a polynomial parametrization
of V. As in §4, we can use a and fJ to define mappings "going in the opposite direction"
on functions. However, since a itself is defined as a rational function, we will not stay
within JR[V] if we compose a with a function in JR[u]. Hence, we will consider the
maps

a' : JR(u) ---+ JR(V),

fJ' : JR(V) ---+JR(u),
feu) r-+ f(x/i),

a(y) + xb(y) r-+ a(u2) + uSb(u 2).

(2)

We claim that a' and fJ' are inverse ring isomorphisms. That a' and fJ' preserve
sums and products follows by the argument given in the proof of Proposition 8 from §4.
To check that a' and fJ' are inverses, first we have that, for any feu) E JR(u), a'(f) =
f(x/y2) . Hence, fJ'(a'(f» = f(u 5/(u2)2) = feu) .Therefore, fJ'ca' is the identity
on JR(u). Similarly, if a(y) + xb(y) E JR(V), then fJ'(~ + xb) = a(u2) + uSb (u2),
so

a'(fJ'(a + xb» = a«x/i)2) + (x/y2)sb«x/i) 2)
= a(x2/y4) + (X5jylO)b(X2/y4).

However, in JR(V), x 2 = yS, so X2/y4 = y , and xSjylO == xy IO/y10 = x. Hence,
a' o fJ' is the identity on JR(V) . Thus, a' , f3* define ring isomorphisms between the
function fields JR(V) and JR(u).

Example 2 shows that it is possible for two varieties to have the same (i.e., isomorphic)
function fields, even when they are not isomorphic. It also gave us an example of
a rational mapping between two varieties . Before we give a precise definition of a
rational mapping, let us look at another example .

Example 3. Let Q = V(x 2 + v'> Z2 - I), a hyperboloid of one sheet in JR3. and let
W = V(x + 1), the plane x = -1. Let p = (I , 0, 0) E Q. For any q E Q - (p}, we
construct the line Lq joining p and q, and we define a mapping ¢ to W by setting

¢(q) = Lq n W

if the line intersects W. (If the line does not intersect W, then ¢ (q) is undefined.) We
can find an algebraic formula for ¢ as follows. If q = (xo. Yo, zo) E Q, then L q is
given in parametric form by

x = 1+ t(xo - 1),

y = tyo .

Z = t zo·

At ¢(q) = Lq n W, we must have 1+ t(xo - 1), so t = X,~! I ' From (2), it follows
that

(3) (
-2yo -2Z0 )l!J(q) = -1, --, -- .
Xo - 1 Xo - 1
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This shows that ¢ is defined on all of Q except for the points on the two lines

Q n Vex - I) = {(1, t , t) : t E IR} U {(1, t . -t) : t E IRI.

We will call ¢ : Q - VQ (x - I) ~ W a rational mapping on Q since the components
of ¢ are rational functions . [We can think of them as elements of IR(Q) if we like.]
Going in the other direction, if (-I. a , b) E W, then the line L through p = O. 0, 0)

and (-I . a, b) can be parametrized by

x = I - 2t ,

y = ta ,
z = tb.

Computing the intersections with Q, we find

L n Q = {(1, 0, 0), (:~ =:~.: a2 _ ~2 + 4' a2 _~ + 4)}.
Thus, if we let H denote the hyperbola Vw(a 2 - b2 + 4) , then we can define a second
rational mapping

1/1 : W - H -----* Q

by

(
a2 - b2 - 4 4a 4b)

(4) 1/I (-I ,a,b)= a2-b2+4 ' a2-b2+4' a2-b2+4 .

From the geometric descriptions of ¢ and 1/1, ¢ 0 1/1 is the identity mapping on the
subset W - HeW. Similarly, we see that 1/1 0 ¢ is the identity on Q - VQ(x - I).
Also, using the formulas from equations (3) and (4), it can be checked that ¢* 0 1/1* and
1/1* 0 ¢* are the identity mappings on the function fields. (We should mention that as
in the second example , Q and W are not isomorphic varieties. However this is not an
easy fact to prove given what we know.)
We now introduce some general terminology that was implic it in the above examples.

Definition 4. Let V C k" and W C k" be irreducible affine varieties. A rational
mappingfrom V to W is a function ¢ represented by

(
fl (XI, . . . ,xm )(5) c/J(XI, .. . . Xm ) = , .. . ,
gl(XI , . •. , Xm )

where !i/gi E k(xt, ... , xm) satisfy:
(i) ¢ is defined at some point of V .
(ii) For every (a i, ... ,am) E V where ¢ is defined. ¢(al ' .. . , am) E W.

Note that a rational mapping c/J from V to W may fail to be a function from V to
W in the usual sense because, as we have seen in the examples, ¢ may not be defined
everywhere on V. For this reason , many authors use a special notation to indicate a
rational mapping :

¢:V--~w.
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We will follow this convention as well. By condition (i) , the set of points of V where
the rational mapping ¢J in (5) is not defined is Vv (gl, . . . , gil), a proper subvariety of
V.
Because rational mappings are not defined everywhere on their domains, we must

exercise some care in studying them. In particular, we will need the following precise
definition of when two rational mappings are to be considered equal.

Definition 5. Let ¢J, 1/1 : V - - ~ W be rational mappings represented by

¢J= (f', ...,f,,)
gl gil (

hI hll )and 1/1 = - , . . . , - .
k l kll

Then we say that ¢J = 1/1 if for each i . 1 ~ i ~ n,

f.k, - h.g, E I(V) .

We have the following geometric criterion for the equality of rational mappings.

Proposition 6. Two rational mappings Cp, 1/1 : V - - ~ Ware equal if and only
if there is a proper subvariety V ' C V such that ¢J and 1/1 are defined on V - V' and
¢J(p) = 1/I(p)forall p E V - V'.

Proof. We will assume that e = (f1/gl, . . . ,f,,/gll)and1/l = (hIlkl, . . . ,hll/kll).
First, suppose that ¢J and 1/1 are equal as in Definition 5 and let VI = VV (g I , .. . , gil)
and V2 = Vv (k I, . . . , kll ). By hypothesis, VI and V2 are proper subvarieties of V, and
since V is irreducible, it follows that V' = VI U V2 is also a proper subvariety ofV.
Then ¢J and 1/1 are defined on V - V' , and since /; k, - hi gi E I( V), it follows that /; / gi
and hi / k, give the same function on V - V' . Hence, the same is true for ¢J and 1/1.
Conversely, suppose that e and 1/1 are defined and equal (as functions) on V - V '. This

implies that for each i ;we have /; / gi = h;/ k, on V - V' . Then /;k; - higi vanishes
on V - V' , which shows that V = V(/;ki - hig i) U V'. Since V is irreducible and V'
is a proper subvariety, this forces V = V(/;ki - higi) . Thus , /;ki - lug, E I(V), as
desired . 0

As an example, recall from Example 3 that we had rational maps ¢J : Q - - ~
Wand 1/1 : W - - ~ Q such that 1/1 0 ¢J was the identity on W - HeW.
By Proposition 6, this proves that 1/1 0 ¢J equals the identity map Iw in the sense of
Definition 5.
We also need to be careful in dealing with the composition of rational mappings.

Definition 7. Given ¢ : V - - ~ Wand 1/1 : W - - ~ Z. we say that 1/1 0 ¢ is
defined if there is a point p E V such that ¢ is defined at p and 1/1 is defined at ¢J(p) .

When a composition 1/1 0 ¢ is defined, it gives us a rational mapping as follows .

Proposition 8. Let ¢ : V - - ~ Wand 1/1 : W - - ~ Z be rational mappings
such that 1/1 0 ¢J is defined. Then there is a proper subvariety V ' C V such that :
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(i) ¢J is defined on V - V' and 1/1 is defined on ¢J(V - V').
(ii) 1/1 0 ¢J : V - - -+ Z is a rational mapping defined onV - V'.

Proof. Suppose that ¢ and 1/1 are represented by

(
fl(x), . . . • XIII) f,,(x J, . . . • XIII))

¢J(x), . ... XIII) = • .. . • •
gl(Xl•.. .• XIII) g"(Xl • . ..• XIII)

_ (hl(yl • . ..• y") h/(yl •. ..• y"))1/I(YI• . . . • y,,) - , . . . . .
k1(yl •. ..• y,,) k/(yl• . ..• y,,)

Then the jth coordinate of 1/1 0 ¢J is

hj(fl/gl • . . . • f,,/g,,)
kj(fl/gl • . . . • f,,/g,,) •

which is clearly a rational function in XI • . . • • XIII' To get a quotient of polynomials. we
can write this as

Pj (gl " . g,,)Mhj(fl / gl• .. .• f,,/g,,)
Qj (gl " . g,,)Mkj (fl/ g l•...• f,,fg,,) '

when M is sufficiently large.
Now set

V' = Vv([Qtl•. . .• [Qtl. [gl . . . s-D C V.

It should be clear that ¢ is defined on -V - V' and 1/1 is defined on ¢J( V - V'). It remains
to show that V' :f: V . But by assumption. there is p E V such that ¢ (p) and 1/I(¢J(p))
are defined. This means that gi (p) :f: 0 for I ~ i ~ nand

for I ~ j ~ 1.It follows that Qj(p) :f: 0 and consequently. p E V - V'. 0

In the exercises. you will work out an example to show how 1/1 0 ¢ can fail to be
defined. Basically. this happens when the domain of definition of 1/1 lies outside the
image of ¢.
Examples 2 and 3 illustrate the following alternative to the notion of isomorphism

of varieties.

Definition 9.
(i) Two irreducible varieties V C kill and W C k" are said to be birationally

equivalent if there exist rational mappings ¢ : V - - -+ Wand W - - -+ V
such that ¢ 0 1/1 is defined (as in Definition 7) and equal to the identity map Iw (as
in Definition 5), and similarly for 1/1 0 ¢.

(ii) A rational variety is a variety that is birationally equivalent to k" for some n.

Just as isomorphism of varieties can be detected from the coordinate rings. birational
equivalence can be detected from the function fields.
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Theorem 10. Two irreducible varieties V and Ware birationally equivalent if and
only if there is an isomorphism 01function fields key) ::;: k(W) which is the identity
on k . (By definition, two fields are isomorphic if they are isomorphic as commutative
rings.)

Proof. The proof is similar to what we did in Theorem 8 of §4. Suppose first that V
and W are birationally equivalent via ¢ : V - - - W and 1/1 : W - - _ V.
We will define a pullback mapping ¢* : k(W) - key) by the rule ¢*(f) = 10 ¢
and show that ¢* is an isomorphism . Unlike the polynomial case, it is not obvious that
¢*(f) = 10 ¢ exists for all 1 E k(W)-we need to prove that 1 0 ¢ is defined at
some point of W.
We first show that our assumption ¢ 0 1/1 = Iw implies the existence of a proper

subvariety W' C W such that

1/1 is defined on W - W',
(6) ¢ is defined on 1/I(W - W'),

¢ 0 1/1 is the identity function on W - W'.

To prove this, we first use Proposition 8 to find a proper subvariety WI C W such that
1/1 is defined on W - WI and ¢ is defined on 1/I(W- W'). Also, from Proposition 6!we
get a proper subvariety W2 C W such that ¢ 0 1/f is the identity funct ion on W - W2•

Since W is irreducible, W' = WI U W2 is a proper subvariety, and it follows easily that
(6) holds for this choice of W'.
Given f E k(W), we can now prove that f 0 ¢ is defined. If 1 is defined on

W - W" C W, then we can pick q E W - (W' U W") since W is irreducible . From
(6), we get p = 1/f(q) E V such that ¢(p) is defined, and since ¢(p) = q fj W",
we also know that f is defined at ¢(p). By Definition 5, ¢*(f) = 10 ¢ exists as an
element of keY) .
This proves that we have a map ¢* : k(W) _ key), and ¢* is a ring homomorphism

by the proof of Proposition 8 from §4. Similarly, we get a ring homomorphism 1/f* :
key) _ k(W). To show that these maps are inverses of each other, let us look at

(1/f* 6 ¢*)(f) = 1 0 ¢ 0 1/f

for 1 E k(W). Using the above notation, we see that f 0 ¢ 0 1/f equals 1 as a function
on W - (W' U W") , so that f 0 ¢ 0 1/f = 1 in k(W) by Proposition 6. This shows that
1/f* 0 ¢" is the identity on k(W), and a similar argument shows that ¢* 0 1/f* = lk(v) .

Thus, ¢* : k(W) - key) is an isomorphism of fields. We leave it to the reader to
show that ¢* is the identity of the constant functions k C k(W).
The proof of the converse implication is left as an exercise for the reader. Once again

the idea is basically the same as in the proof of Theorem 9 of §4. 0

In the exercises, you will prove that two irreducible varieties are birationally
equivalent if there are "big" subsets (components of proper subvarieties) that can
be put in one-to-one correspondence by rational mappings. For example, the curve
V = V(y5 - x 2 ) from Example 2 is birationally equivalent to W = IR. You should
check that V - {(O, O)} and W - {OJ are in a one-to-one correspondence via the ra-
tional mappings 1 and g from equation (I). The birational equivalence between the
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hyperboloid and the plane in Example 3 works similarly. This example also shows that
outside of the "big" subsets, birationally equivalent varieties may be quite different
(you will check this in Exercise 14).
As we see from these examples, birational equivalence of irreducible varieties is a

weaker equivalence relation than isomorphism. By this , we mean that the set of varieties
birationally equivalent to a given variety will contain many different nonisomorphic va-
rieties. Nevertheless, in the history of algebraic geometry, the classification of varieties
up to birational equivalence has received more attention than classification up to iso -
morphism, perhaps because constructing rational functions on a variety is easier than
constructing polynomial functions . There are reasonably complete classifications of
irreducible varieties of dimensions I and 2 up to birational equivalence, and, recently,
significant progress has been made in dimension 3. However, the classification of irre-
ducible varieties of dimension ~ 4 up to birational equivalence is still incomplete and
is an area of current research.

EXERCISES FOR§S

1. Let R be an integral domain, and let QF(R) be the field of fractions of R as described in
the text.
a. Show that addition is well-defined in Q F(R) .This means that if r/ s = r' / s' and t [u =
t' [u', then you must show that (ru + tsrtsu = (r'u' + t's ')/s'u '. Hint: Remember what
it means for two elements of QF (R) to be equal.

b. Show that multiplication is well-defined in QF(R) .
c. Show that the field axioms are satisfied for QF(R) .

2. As in Example 2,1et V = V(y5 - x 2) C IR2•
a. Show that y5 - x 2 is irreducible in IR[x, y] and prove that I(V) = (y5 - x2).
b. Conclude that IR[V] is an integral domain.

3. Show that the singular cubic curve V(y2 - x 3) is a rational variety (birationally equivalent
to k) by adapting what we did in Example 2.

4. Consider the singular cublic curve V,. = V(y2 - cx 2+ x 3) studied in Exercise 8 of Chapter
I , §I. Using the parametrization given there, prove that V,. is a rational variety and find
subvarieties V,~ C V, and W C k such that your rational mappings define a one-to-one
correspondence between Vc - V,~ and k - W. Hint: Recall that t in the parametrization of
Vc is the slope of a line passing through (0, 0).

5. Verify that the curve ]fCC) from Exercise 7 of §4 is a rational variety. Hint: Todefine a
rational inverse of the parametrization we derived in that exercise, you need to solve for t as
a function of x and y on the curve. The equation of the hyperbola may be useful.

6. In Example 3, verify directly that (3) and (4) define inverse rational mappings from the
hyperboloid of the one sheet to the plane.

7. Let S = V(x2+ y2 + Z2 - I) in IR3 and let W = V(z) be the (x, y)-plane . In this exercise,
we will show that Sand W are birationally equivalent varieties, via an explicit mapping
called the stereographic projection. See also Exercise 6 of Chapter I, §3.
a. Derive parametric equations as in (2) for the line Lq in 1R3 passing through the north pole

(0,0, I) of S and a general point q = (xo, Yo, ze) =I' (I, O. 0) in S.
b. Using the line from part a, define a rational mapping t/J : S - - -+ 1R2 by setting

t/J(q) = Lq n W. This is called the stereographic projection mapping.
c. Show that the rational parametrization of S given in Exercise 6 of Chapter I, §3 is the

inverse mapping of t/J .
d. Deduce that Sand W are birationally equivalent varieties and find subvarieties S' C S
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and W' C W such that c/J and 1/! put S - S' and W - W' into one-to-one correspondence.
8. In Exercise 10 of §1, we showed that there were no nonconstant polynomial mappings from

IR to V = V(y2 - x J + x) . Are there any nonconstant rational mappings? Is V birationally
equivalent to IR?

9. Let V beanirreduciblevarietyandletf E k(V).Ifwewritef = c/J11/!.wherec/J . 1/! E k[VJ.
then we know that f is defined on V - Vv (y,). What is interesting is that f might make
sense on a larger set. In this exercise. we will work out how this can happen on the variety
V = V(xz - yw) C te 4

•

a. Prove that xz - yw E te[x. y, z. wJ is irreducible. Hint: Look at the total degrees of its
factors .

b. Use unique factorization in te[x , y , z, w J to prove that (xz - yw) is a prime ideal.
c. Conclude that V is irreducible and that I(V) = (xz - yw).
d. Let f = [xJ/[yJ E te(V) so that f is defined onV - Vv ([yJ) . Show that Vv([yJ) is the

union of planes (0, O. z, w) : z. wE te} u (x. O.O. w) : x, wE te} .
e. Show that f = [wJ/[zl and conclude that f is defined everywhere outside of the plane

{(x, 0, O. w) : x, w, E te} .
Note that what made this possible was that we had two fundamentally different ways of
representing the rational function f. This is part of why rational functions are subtle to deal
with.

10. Consider the rational mappings c/J : IR - - ~ IRJ and y, : IR3 - - ~ IR defined by

2 X + yzc/J(l) = (t. lit, t) and y,(x . y. z) =
x - yz

Show that y, 0 c/J is not defined .
II. Complete the proof of Theorem 10 by showing that if V and W are irreducible varieties and

k(V) 2: k(W) is an isomorphism of their function fields which is the identity on constants,
then there are inverse rational mappings c/J : V - - ~ W and 1/! : W - - ~ V. Hint:
Follow the proof of Theorem 9 from §4.

12. Suppose that c/J : V - - ~ W is a rational mapping defined on V - V' . If W' c W is a
subvariety. then prove that

V" = V' U (p E V - V' : c/J(p) E W'}

is a subvariety of V. Hint: Find equations for V" by substituting the rational functions
representing c/J into the equations for W' and setting the numerators of the resulting functions
equal to zero .

13. Suppose that V and Ware birationally equivalent varieties via c/J : V - - ~ W and
y, : W - - ~ V. As mentioned in the text after the proof of Theorem 10. this means that
V and W have "big" subsets that are the same. More precisely. there are proper subvarieties
VI C V and WI C W such that c/J and y, induce inverse bijections between subvarieties
V - VI and W - WI. Note that Exercises 4 and 7 involved special cases of this result.
a. Let V' C V be the subvariety that satisfies the properties given in (6) for c/J 0 1/!. Similarly.

we get W' C W that satisfies the analogous properties for y, 0 c/J. Let

v = (p E V - V' : c/J(p) E W - W') .

W = (q E W - W' : y,(q) E V - V'} .

Show that we have bijections c/J : V ~ W and y, : W ~ V which are inverses of each
other.

b. Use Exercise 12 to prove that V = V - VI and W = W - WI for proper subvarieties
VI and WI.
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Parts a and b give the desired one-to-one correspondence between "big" subsets of V and
W.

14. In Example 3, we had rational mappings 4> : Q - - --. W and '" : W - - --. Q.
a. Show that 4> and v induce inverse bijections 4> : Q - VQ(x - I) --. W - Hand
'" : W - H --. Q - VQ(x - I), where H = V w(a 2 - b2 + 4).

b. Show that H and VQ(x - I) are very different varieties that are neither isomorphic nor
birationally equivalent.

§6 (Optional) Proof of the Closure Theorem

This section will complete the proof of the Closure Theorem begun in §2 of Chapter 3.
We will use many of the concepts introduced in Chapters 4 and 5, including irreducible
varieties and prime ideals from Chapter 4 and quotient rings and fields of fractions from
this chapter.
We begin by recalling the basic situation. Let k be an algebraically closed field, and

let n, : k" ~ k,,-I is projection onto the last n - 1 components . If V = V(I) is an
affine variety in k"; then we get the lth elimination ideal I, = In k[X'+I, . . . , x,,], and
§4 of Chapter 4 proved the first part of the Closure Theorem, which asserts that V(I,)
is the smallest variety in k,,-I containing 1f1(V). In the language of Chapter 4, this says
that V(II) is the Zariski closure of 1f1(V).
The remaining part of the Closure Theorem tells us that 1f1(V ) fills up "most" of

V(II) in the following sense.

Theorem 1 (The Closure Theorem, second part). Let k be algebraically closed, and
let V = V(I) c k".IIV i= 0 , then there is an affine variety W ~ V(lI) such that

V(lI) - W C 1f1(V) ,

Proof. In Chapter 3, we proved this for 1 = I using resultants . Before tackling the case
1 > I, we note that V(lI) depends only on V since it is the Zariski closure of 1f1(V ).
This means that any defining ideal I and V gives the same V(lI ). In particular, since
V = V(I(V», we can replace I with I(V). Hence, if V is irreducible, we can assume
that I is a prime ideal.
Our strategy for proving the theorem is to start with the irreducible case. The following

observations will be useful:

(1)
I is prime ==> II is prime

V is irreducible ==> V(It) is irreducible .

The first implication is straightforward and is left as an exercise. As for the second ,
we've seen that we can assume that I = I(V), so that I is prime. Then II is prime,
and the algebra-geometry dictionary (Corollary 4 of Chapter 4, §5) implies that V(II)
is irreducible.
Now suppose that V is irreducible. Wewill show that 1f1(V) has the desired property

by using induction on 1 to prove the following slightly stronger result: given a variety



§6. (Optional) Proof of the Closure Theorem 255

Wo ~ V, there is a variety WI ~ V(1/) such that

(2)

We begin with the case I = 1. Since Wo 1= V, we can find (ai, ... , a,,) E V - Woo
Then there is I E I(Wo) such that f ia«, .. . , a,,) 1= O. The polynomial I will playa
crucial role in what follows. At this point, the proof breaks up into two cases :
CaseI: Suppose that for all (bz, . . . ,b,,) E V(lI),wehave(bl ,bz, ... , b,,) E V

for all b, E k. In this situation, write I as a polynomial in XI :
m

1= L gi(XZ, . .. , x,,)x; .
i=O

Now let WI = V(lI) n V(gO, . . . , gm).This variety is strictly smaller than V(li) since
I(al, . . . , all) 1= 0 implies that gi (az , .. . , all) 1= 0 for some i . Thus (az, . .. , all) E
V(lI) - WI, so that WI 1= V(lI).
We next show that (2) is satisfied. If (cz, . .. , CII)(E V(lI) - W" then some gi

is nonvanishing at (cz, . . . , CII)' so that I(XI, cz, . . . , CII) is a nonzero polynomial.
Since k is infinite (Exercise 4 of Chapter 4, §I), we can find CI E k such that
I(CI, Cz, . . . , clI ) 1= O. By the assumption ofCase I, the point (CI , . . . , clI ) is in V, yet
it can 't be in Wo since I vanishes on WooThis proves that (cz, . . . , CII) E 1T)(V - Wo),
which proves (2) in Case I.

Case II: Suppose thatthere is some (bz, ... , bll) E V(ll) and some b, E k such that
(b l , bz, .. . , b,,) ¢ V. In this situat ion, we can find h E I such that hib«, ... , b,,) 1=
o (h exists because I = I(V». Write h as a polynomial in XI :

(3)
r

h = L Ui(XZ, . .. , xlI)x; .
i =O

Then htb», .. . , bll) 1= 0 implies ui(bz, . .. , bll) 1= 0 for some i . Thus, u, ¢ II for
some i. Furthermore, if Ur E IJ, then h - urxr is also nonvanishing at (bz, . .. , bll ) ,
so that we can replace h with h - urxr . Repeating this as often as necessary, we can
assume u, ¢ II in (3).
The next claim we want to prove is the following :

r

(4) there exist Vi E k[xz , . . . , Xn] such that L Vi/ E I and vo ¢ II .
i=O

To prove this, we will regard I and h as polynomials in XI and then divide I by h.
But rather than just use the division algorithm as in §5 of Chapte r I, we will replace I
with U~I I ,where NI is some positive integer. We claim that if NI is sufficiently large,
we can divide U - rN1I without introducing any denominators. This means we get an
equation of the form

u~ I = qh + VIO+ VllXI + ... + Vt.r-IX~-I ,

where q E k[Xl, . . . , XII] and Vii E k[xz, .. . , XII]. We leave the proof of this as
Exercise 2, though the reader may also want to consult §5 of Chapter 6, where this
process of pseudodivision is studied in more detail. Now do the above "division" not
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just to f but to all of its powers 1, f, f2, . •.• r. This gives equations of the form
Ni f)' h r-l(5) Ur = qj + VjO + VjlXI + ...Vj.r_IX,

for 0 s j s r ,
Now we will use quotient rings and fields of fractions. We have already seen that

II = I(V(ld), so that by §2, the quotient ring k[X2, ... , xlIlIII is naturally isomorphic
to the coordinate ring k[V(ld] . As in §5, this ring is an integral domain since V(ld
is irreducible, and hence has a field of fractions, which we will denote by K. We will
regard k[X2• . . . , xlI]/ II as a subset of K , so that a polynomial v E k [X2 , .. •• XII] gives
an element [v] E k[X2, • . • ,xlIlIIt c K. In particular, the zero element of K is [0],
where 0 E k[X2, ..• ,XII] is the zero polynomial.
The polynomials Vji of (5) give a (r + 1) x r matrix

(

[V~] . . . [Vo. ~-tl)

[vro] [vr.r- J1
with entries in K . The rows are r + 1 vectors in the r-dimensional vector space K" ,
so that the rows are linearly dependent over K .Thus there are cPo , .. • ,cPr E K, not alI
zero, such that L:J=ocPj [vji ] = [0] in K for 0 ::: i ::: r - 1. If we write each cPj as a
quotient of elements of k[X2, . • • ,xlI]/ II and multiply by a common denominator, we
can assume that cPj = [Wj] for some Wj E k[X2• . . • , xn]' Further, the cPj being notall
zero in k[X2, . • • , xlI]/ II c K means that at least one Wj is not in II .Then Wo, . • . , Wr
have the property that

r

~)Wj][Vj;] = [0],
j=O

which means that
r

L wiv» Ell'
j=O

FinalIy, if we multiply each equation (5) by the corresponding W j and sum for
os j s r, we obtain

r
LWjU~ifj E I
j=O

N ·by (6) and that fact thath E I. Let Vj =WjurJ.Sinceur ¢ II and w, ¢ II for some
i. it follows that Vj ¢ It for some j since II is prime by (1).
It remains to arrange for Vo ¢ II. So suppose Vo , • •. , Vt-I E I) but VI ¢ h. It

follows that
r

P L v,fj-t E I.
j=t

Since I is prime and f ¢ I, it follows immediately that L:J=t v,jj-t E I . After
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relabeling so that VI is Vo , we get (4) as desired.
The condition (4) has the following crucial consequence:

(7) )11 (V) n (k',-I - V(vo)) C )11 (V - Wo).

This follows because L;=o Vir E I , so that for any (CI , .. . , cll ) E V , we have
r

vo(cz,·· · , CIl)+ f(CI , " " CIl)L Vi(cz, ... , cll)f(cJ, .. . , cll / -
t = 0.

i=1

Then Vo(cz, . . . , CIl) # °forces f(Ct, ···, CIl) # 0, which in turns implies
(CI, .. . ,CIl) rt Wo (since f vanishes on Wo). From here, (7) follows easily.
We can finally prove (2) in Case II. Since, u- , vo rt It and II is prime, we see

that g = UrVo rt I I . Thus WI = V(g) n V(ll) ~ V(lI) . To show that (2) holds,
let (cz, . . . , CIl) E V(lt) - WI . This means that both u, and Vo are nonvanishing at
(cz, . . . , CIl)'
If I = (fl ' . . . , I,), then h E I implies that I = (h, ft, . . . , I,). Since

ur(cz, . .. , cll ) # 0, the I = I case of the Closure Theorem proved in Chapter 3
implies that there is some (CI, . .. , CIl) 'E V . Then , by (7) and vo(cz, .. . , CIl) # 0, we
see that (cz, . . . , CIl) E )1t (V ~ Wo), and (2) is proved in Case II.
We have now completed the proof of (2) when I = 1. In the exercises , you will

explore the geometric meaning of the two cases considered above.
Next, suppose that (2) is true for I - I. To prove that it holds for I, take Wo ~ V,

and apply what we proved for I = I to find WI ~ V(ltl such that

V(lI) - WI C )11(V - Wo).

Now observe that 1/ is the (l - I)st elimination ideal of It. Furthermore, V(ltl is
irreducible by (1). Thus , our induction hypothesis, applied to WI ~ V(ll) , implies that
there is W/ ~ V (1/) such that

V(!{) - W/ err/_I (V(lI) - Wt),

where rr/_ I: k"- 1 -+ k"- I is projection onto the last (n - 1) - (I - 1) = n - I
components. However, since zr, = rr/_1. 0·)11 (see Exercise 4), it follows that

V(I/) - W/ C rr/-I(V(ltl - WI) C rr/_I ()11 (V - Wo)) = )1/(V - Wo).

This completes the proof of (2), so that Theorem 1 is true for all irreducible varieties.
We can now prove the general case of the theorem. Given an arbitrary variety V C k'i,

we can write V as a union of irreducible components (Theorem 2 of Chapter 4, §6):

V = VI u ·· · U Vm •

Let V/ be the Zariskiclosure of )1/(Vi ) C k"-1•We claim that

(8) V(I/) = V; U . . . U V:,.

To prove this, observe that V;U ... U v,:, is a variety containing )1/(V;)U . . .U)1/(V;,) =
)1/ (V). Since V(I/) is the Zariski closure of )1/(V), if follows thatV(l/) c V;U · · ·U V;,.
Forthe opposite inclusion , note that for each i, we have)1/(Vi ) C )1/ (V) C V(l/), which
implies V;' C V (1/) since V;' is the Zariski closure oix,(Vi) . From here, (8) follows
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easily.
From (I), we know each V( is irreducible, so that (8) gives a decomposition ofV(I,)

into irreducibles. This need not be minimal decomposition, but we can still find at least
one of them which is contained in none of the others. By relabeling, we can assume
V{ rt V( for 2 s i s m.
Applying (2) to the irreducible variety VI (with Wo = 0), there is a variety WI ~ V{

such that

V{ - WI C 1r'(VI)

since V{ is the Zariski closure of 1r,(V\l. If we let W = WI U V~ U . .. U V,:" then
W C V(I,), and one easily sees that

V(lil - W = V{ U . .. U V:, - (WI U V~ U·· · U V:,)

c V{ - (WI U V~ U ... U V:.l

. c V{ - WI C 1r'(VI) C 1r,(V) .

It remains to show that W of: V(I,). But if W were equal to V(I,), then in particular,
we would have V{ C WI U V~ U ... U V~,. Since V{ is irreducible, Exercise 5 below
shows that V{ would then lie in one of WI, V~ , ... V~,. This is impossible by the way
we chose V{ and WI. Hence, we have a contradiction, and the theorem is proved. 0

We can use the Closure Theorem to give a precise description of 1rt(V) as follows.

Corollary 2. Let k be algebraically closed. and let V C k" be an affine variety. Then
there are affine varieties Z, C Wj C k"- I for I ~ i ~ P such that

p

1rt(V) = U(Wj - z».
j=1

Proof. First let WI = V(I,). By the Closure Theorem, there is a variety 2 I ~ WI such
that WI - 2 I C 1r,(V) . Then, back in k", consider the set

VI = V n «ai, . . . , all) E k" : (a'+I, . . . , all) E Zr},

One easily checks that VI is an affine variety (see Exercise 7), and furthermore, VI ~ V
since otherwise we would have 1r,(V) C 2 1, which would imply WI C 2 1 by Zariski
closure. Moreover, one can check that

(9)
(see Exercise 7).
If VI = 0, then we are done . If VI is nonempty, let W2 be the Zariski closure of

1r'(VI).Applying the Closure Theorem to VI, we get 2 2 ~ W2 with W2 - 22 C l'!i(VI) .
Then, repeating the above construction, we get the variety

V2 = VI n {(ai , ... , all) E k" : (a'+10 . .. , all) E 2 2}

such that V2 ~ VI and

1r/(V) = (WI - 2 1) U (W2 - 22) U 1r'(V2)'
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If V2 = 0, we are done, if not, we repeat this process again to obtain W3, 23 and
V3 ~ V2. Continuing in this way, we must eventually have V,v = 0 for some N , since
otherwise we would get an infinite descending chain of varieties

V ~ VI ~ V2 ~ • • • ,

which would contradict Proposition I of Chapter 4, §6. Once we have VN =
desired formula for Ir t (V) follows easily.

In general , a set of the form described in Corollary 2 is called constructibLe.

EXERCISES FOR §6

0, the
o

1. Th is exerc ise is concerned with (I) in the proof of Theorem 1.
a. Prove that I prime impl ies I , prime . Your proof should work for any field k,
b. In the text, we showed V irreducible implies V(I,) irreducible when the field is

algebraically closed. Give an argument that works over any field k.
2. Letg , h E k[XI, • •• , XII]' and assume that h has positive degree r in X" so that h =
L:;=Q U;(X2, • • • , xn)x;.Use induction on the degree of g in XI to show that there is some
integer N such that u~ g = qh + s' where q, g' E k[X I, •• •• xn ] and g' has degree < r in
XI'

3. In this exerci se, we will study the geometric mean ing of the two cases encountered in the
proof of Theorem 1. For concreteness. let us assume that k = ceo Recall that we have
V c ce" irreducible and the project ion Jrl : ce" --+ cen-I. Given a point y E cen- I , let

v,. = (x E V : JrI(X) = y l.

We call V\ the fiber over y of the projection Jrl.
a. Prove that V,. C ce x (yl , and that V,. # 0 if and only if y E Jrl (V) .
b. Show that in Case I of the proof of Theorem 1. 11" I (V ) = V(II ) and V\. = ce X {y I for

all y E Jrl (V ). Thus , this case means tha~all nonempty fibers are as big as eossible.
c. Show that in Case II. there is a variety W C cen - I such that Jrl (V ) et. W and every

nonempty fiber not over a point ofWis finite . Thus, this case ,!!1eans that "most" nonempty
fibers are finite . Hint: If h is as in (3) and u, ¢ I" then let W = V (u, ).

d. If V = V(X2 - XIX3) C ce3, then show that "most" fibers V.,. consist of a single point. Is
there a fiber which is infinite?

4. Given Jrl : k" --+ k":", 11", : k" -+ kn- ' and rr'_1 : kn- I --+ k": ' as in the proof of Theorem
I. show that tt, = rr'-l 0Irl.

5. Let V C k" be an irreducible variety. Then prove the following assertions.
a. If VI. V2 C kn are varieties such that V C VI U V2, then either V C VI or V C V2•
b. More generally. if VI•. . . , V", c k" are varieties such that V C VI U . . . U V"" then
V c Vi for some i ,

6. In the proof of Theorem I. the variety W C V(I[) we constructed was rather large-it
contained all but one of the irreducible components of V(I,). Show that we can do better by
proving that there is a variety W C V(I[) which contains no irreducible component of V(I,)
and satisfies V(I,) - W C Jr,(V). Hint: First, explain why each irreducible component of
V(I,) is V; for some j .Then apply the construction we did for V; to each of these Vi's.

7. This exercise is concerned with the proof of Corollary 2.
a. Verify that VI = V n { (a " . . . , an) E k" : (a'+I • . .. , an) E Zd is an affine variety.
b. Verify that Jr,(V ) = (WI - Z I) UJr[(Vd.
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8. Let V =V(y - xz) c eel.Corollary 2 tells us that Jr/(V) c ee2is a constructible set. Find
an explicit decomposition of Jr. (V) of the form given by Corollary 2. Hint: Your answer will
involve WI> ZI and W2•

9. When dealing with affine varieties. it is sometimes helpful to use the minimum principle.
which states that among any collection of varieties in k"• there is a variety which is minimal
with respect to inclusion. More precisely, this means that if we are given varieties Va . IX E
A. where A is any index set, then there is some f3 E A with the property that for any
IX E A. Va C V~ implies Va = Vp.
a. Prove the minimum principle . Hint: Use Propos ition I of Chapter 4. §6.
b. Formulate and prove an analogous maximum principle for ideals in k[x\ • . . . • xu].

10. As an example of how to use the minimum principle of Exercise 9. we will give a different
proofof Corollary 2. Namely, consider the collection of all varieties V C k" for which tt, (V)
is not constructible. By the minimum principle, we can find a variety V such that Jr{(V) is
not construct ible but n, (W) is constructible for every variety W ~ V . Show how the proof
of Corollary 2 up to (9) can beused to obtain a contradiction and thereby prove the corollary .

II . In this exercise. we will generalize Corollary 2 to show that if k is algebraically closed . then
tt, (C) is constructible whenever C is any constructible subset of k" .
a. Show that it suffices to show that tt, (V - W) is constructible whenever V is an irreducible

variety in k" and W ~ V .
b. If V is irreducible and W. is the Zariski closure of x, (V), then (2) implies we can find a

variety ZI ~ WI such that WI - ZI C Jr/(V - W). Ifwe set VI = {x E V : Jr{(x) E z. ),
then prove that VI # V and 7f/(V - W) = (WI - Zd U Jr/(V I - W) .

c. Now use the minimum principle as in Exercise 10 to complete the proof.
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Robotics and Automatic
Geometric Theorem Proving

In this chapter we will consider two recent applications ofconcepts and techniques from
algebraic geometry in areas of computer science. First, continuing a theme introduced in
several examples in Chapter I, we will develop a systematic approach that uses algebraic
varieties to describe the space of possible configurations of mechanical linkages such
as robot "arms." We will use this approach to solve the forward and inverse kinematic
problems of robotics for certain types of robots.
Second, we will apply the algorithms developed in earlier chapters to the study of

automatic geometric theorem proving, an area that has been of interest to researchers
in artificial intelligence. When the hypotheses of a geometric theorem can be expressed
as polynomial equations relating the cartesian coordinates of points in the Euclidean
plane, the geometrical propositions deducible from the hypotheses will include all
the statements that can be expressed as polynomials in the ideal generated by the
hypotheses .

§1 Geometric Description of Robots

To treat the space of configurations of a robot geometrically, we need to make some
simplifying assumptions about the components of our robots and their mechanical
properties . We will not try to address many important issues in the engineering of
actual robots (such as what types of motors and mechanical linkages would be used
to achieve what motions, and how those motions would be controlled) . Thus, we will
restrict ourselves to highly idealized robots. However, within this framework. we will
be able to indicate the types of problems that actually arise in robot motion description
and planning.
We will always consider robots constructed from rigid links or segments, connected

by joints of various types. For simplicity, we will consider only robots in which the
segments are connected in series, as in a human limb. One end of our robot "arm" will
usually be fixed in position. At the other end will bethe "hand" or "effector," which will
sometimes be considered as a final segment of the robot. In actual robots, this "hand"
might be provided with mechanisms for grasping objects or with tools for performing
some task. Thus, one of the major goals is to be able to describe and specify the position
and orientation of the "hand."

261
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Since the segments of our robots are rigid , the poss ible motions of the entire robot
assembly are determined by the motions of the joints. Many actual robots are constructed
using
• planar revolute joints, and
• prismatic joints.
A planar revolute joint permits a rotation of one segment relative to another. We will

assume that both of the segments in question lie in one plane and all motions of the
joint will leave the two segments in that plane. (This is the same as saying that the axis
of rotation is perpendicular to the plane in question.)

a revolute joint

A prismatic joint permits one segment of a robot to move by sliding or translation
along an axis.The following sketch shows a schematic view of a prismatic joint between
two segments of a robot lying in a plane. Such a joint permits translational motion along
a line in the plane .

partially
extended

a prismaticjoint

If there are several joints in a robot, we will assume for simplicity that the joints all
lie in the same plane, that the axes of rotation of all revolute joints are perpendicular to
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that plane, and, in addition , that the translation axes for the prismatic joints all lie in the
plane of the joints. Thus , all motion will take place in one plane . Of course , this leads to
a very restricted class of robots. Real robots must usually be capable of 3-dimensional
motion. To achieve this, other types and comb inations of joints are used. These include
"ball" joints allowing rotation about any axis passing through some point in IR3 and
helical or "screw" joints combining rotation and translation along the axis of rotation in
IR3. It would also be possible to connect several segment s of a robot with planar revolute
joints, but with nonparallel axes of rotation . All of these possible configurations can be
treated by methods similar to the ones we will present, but we will not consider them
in detail. Our purpose here is to illustrate how affine varieties can be used to describe
the geometry of robots , not to present a treatise on practical robotics . The planar robots
provide a class of relatively uncomplicated but illustrative examples for us to consider.

Example 1. Consider the following planar robot "arm" with three revolute joints and
one prismatic joint. All motions of the robot take place in the plane of the paper.

join l I -+

(- segment I

segment 2

jo int z (- segme nt 5
(the hand)

(- jo int ol
(fully ext ended)

For easy reference, we number the segments and joints of a robot in increasing order
out from the fixed end to the hand. Thus , in the above figure, segment 2 connects joints
I and 2, and so on. Joint 4 is prismatic, and we will regard segment 4 as having variable
length , depending on the setting of the prismatic joint. In this robot, the hand of the
robot comprises segment 5.

In general, the position or setting of a revolute joint between segments i and i + I can
be described by measuring the angle () (counterclockwise) from segment i to segment
i + I. Thus, the totality of settings of such a joint can be parametrized by a circle
Sl or by the interval [0. 2rr] with the endpoints identified . (In some cases, a revolute
joint may not be free to rotate through a full circle , and then we would parametrize the
possible settings by a subset of S l .)
Similarly, the setting of a prismatic joint can be specified by giving the distance

the joint is extended or, as in Example I, by the total length of the segment (i.e., the
distance between the end of the joint and the previous joint) . Either way, the sett ings
of a prismatic joint can be parametrized by a finite interval of real numbers.
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If the joint settings of our robot can be specified independently, then the possible
settings of the whole co1lection of joints in a planar robot with r revolute joints and p
prismatic joints can be parametrized by the Cartesian product

.1 = s' x . . . X SI X I, x ' " x Ip ,

where there is one Sl factor for each revolute joint, and I j gives the settings of the jth
prismatic joint. We will ca1l .1 the joint space of the robot.
We can describe the space of possible configurations of the "hand" of a planar robot

as fo1lows. Fixing a Cartesian coordinate system in the plane, we can represent the
possible positions of the "hand" by the points (c , b) ofa region U C 1R2• Similarly, we
can represent the orientation of the "hand" by giving a unit vector aligned with some
specific feature of the hand. Thus, the possible hand orientations are parametrized by
vectors u in V = S'. For example, if the "hand" is attached to a revolute joint, then we
have the fo1lowing picture of the hand configuration:

the point (a.b )
specifies the
hand position (a7~

:' .: the unit vector u
.:.... specifies the

hand orientation

We wi1l ca1lC = U x V the configuration space or operational space of the robot 's
"hand."
Since the robot 's segments are assumed to be rigid, each co1lection of joint settings

wi1l place the "hand" in a uniquely determined location, with a uniquely determined
orientation. Thus, we have a function or mapping

f:.1-+C

which encodes how the different possible joint settings yield different hand configura-
tions.
The two basic problems we will consider can be described succinctly in terms of the

mapping f : .1 -+ C described above:
• (Forward Kinematic Problem) Can we give an explicit description or formula for
f in terms of the joint settings (our coordinates on .1) and the dimensions of the
segments of the robot "arm"?

• (Inverse Kinematic Problem) Given c E C, can we determine one or a1l the j E .1
such that f(j ) = c?
In §2, we wi1l see that the forward problem is relatively easily solved. Determining

the position and orientation of the "hand" from the "arm" joint settings is mainly a
matter of being systematic in describing the relative positions of the segments on either
side of a joint. Thus, the forward problem is of interest mainly as a preliminary to
the inverse problem. We will show that the mapping f : .1 ~ C giving the "hand"
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configuration as a function of the joint settings may be written as a polynomial mapping
as in Chapter 5, §I.
The inverse problem is somewhat more subtle since our explicit formulas will not

be linear if revolute joints are present. Thus, we will need to use the general results on
systems of polynomial equations to solve the equation

(I) f(j) = c.

One feature of nonlinear systems of equations is that there can be several different
solut ions, even when the entire set of solutions is finite. We will see in §3 that this is
true for a planar robot arm with three (or more) revolute joints. As a practical matter, the
potential nonuniqueness of the solutions of the systems (I) is sometimes very desirable.
For instance, if our real world robot is to work in a space containing physical obstacles or
barriers to movement in certain directions, it may be the case that some of the solutions
of (I) for a given c E C correspond to positions that are not physically reachable:

+- barrier

To determine whether it is possible to reach a given position , we might need to determine
all solutions of (1) , then see which one(s) are feasible given the constraints of the
environment in which our robot is to work .

EXERCISES FOR §l

I. Give descriptions of the joint space .:J and the configuration space C for the planar robot
picture in Example I in the text. For your description of C, determine a bounded subset of
U C IR2 containing all possible hand positions . Hint: The description of U will depend on
the lengths of the segments.

2. Cons ider the mapp ing f : .:J --.,. C for the robot pictured in Example I in the text. On
geometric grounds , do you expect f to be a one-to-one mapping ? Can you find two different
ways to put the hand in some particu lar position with a given orientation? Are there more than
two such positions?

The text discussed the jo int space .:J and the configuration space C for planar robots. In the
following problems , we consider what.:J and C look like for robots capable of motion in three
dimensions.

3. What would be configuration space C look like for a 3-dimensional robot? In particu lar, how
can we descr ibe the possible hand orientations?
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4. A "ball" joint at point B allows segment 2 in the robot pictured below to rotate by any angle
about any axis in IR3 passing through B. (Note: The motions of this joint are similar to those
of the "joystick" found in some computer games .)

.....

a ball joint

this segment
rotates freely in
three dimensions

a. Describe the set of possible joint settings for this joint mathematically. Hint: The distinct
joint settings correspond to the possible direction vectors of segment 2.

b. Construct a one-to-one correspondence between your set of joint settings in part a and
the unit sphere S2 C IR3. Hint: One simple way to do this is to use the spherical angular
coordinates fjJ . (J on S2.

5. A helical or "screw" joint at point H allows segment 2 of the robot pictured below to extend
out from H along the the line L in the direction of segment I, while rotating about the axis L.

.'

a helical or "screw" joint

The rotation angle (J (measured from the original . unextended position of segment 2) is given
by (J = I . Ct. where I E [0.m] gives the distance from H to the other end of segment 2 and
a is a constant angle. Give a mathematical description of the space of joint settings for this
jo int.

6. Give a mathematical descript ion of the joint space :J for a 3-dimensional robot with two "ball"
joints and one helical joint.
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§2 The Forward Kinematic Problem

In this section, we will present a standard method for solving the forward kinematic
problem for a given robot "arm." As in §I, we will only consider robots in IR2, which
means that the "hand" will be constrained to lie in the plane. Other cases will be studied
in the exercises.
All of our robots will have a first segment that is anchored, or fixed in position.

In other words, there is no movable joint at the initial endpoint of segment I. With
this convention, we will use a standard rectangular coordinate system in the plane to
describe the position and orientation of the "hand." The origin of this coordinate system
is placed at joint I of the robot arm, which is also fixed in position since all of segment
I is. For example:

Y,

joint !

x,

+- segment I

anchor

The Global (XI . YI ) Coordinate System

In addition to the global (XI, YJ)coordinate system, we introduce a local rectangular
coordinate system at each of the revolute joints to describe the relative positions of the
segments meeting at that joint. Naturally, these coordinate systems will change as the
position of the "arm" varies.
At a revolute joint i, we introduce an (Xi+J, Yi+I) coordinate system in the following

way. The origin is placed at joint i , We take the positive Xi+l-axis to lie along the
direction of segment i + I (in the robot's current position) . Then the positive Yi+l-axis
is determined to form a normal right-handed rectangular coordinate system. Note that,
for each i ::: 2, the (Xi, Yi) coordinates of joint i are (Ii, 0) , where l, is the length of
segment i.
Our first goal is to relate the (Xi+l, Yi+d coordinates of a point with the (Xi , Yi)

coordinates of that point. Let 8i be the counterclockwise angle from the Xi -axis to the
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The Local Coordinate Systems at a Revolute loint i

Xj+I-axis. This is the same as the joint setting angle OJ described in §I. From the diagram
above, we see that if a point q has (Xj+I. Yj+I) coordinates

q = (ai+ I, bj+j) ,

then to obtain the (Xj, Yj) coordinates of q, say

q = (ai. bi),

we rotate by the angle 0i (to align the x, - and xj+l-axes), and then translate by the vector
(I i . 0) (to make the origins of the coord inate systems coincide). In the exercises, you
will show that rotation by OJ is accomplished by multiplying by the rotation matrix

(
COS OJ - sin OJ )
sin OJ cos OJ .

It is also easy to check that translation is accomplished by ading the vector (I j , 0). Thus,
we get the following relat ion between the (Xi, Yi) and (Xj+ I , Yj+I) coordinates of q:

( ': ) = (~~~;; ~~~no~i). (~;:: )+ ( ~ ) .
This coordinate transformation is also commonly written in a shorthand form using a
3 x 3 matrix and 3-component vectors:

(I)
(
a, ) ( cos o.
~j = Si~Oj

- sin Oi
cos OJ
o

This allows us to combine the rotation by Oi with the translation along segment i into
a single 3 x 3 matrix Aj.

Example1. With this notation in hand, let us next consider a general plane robot "arm"
with three revolute joints:
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length I,

We will think of the hand as segment 4, which is attached via the revolute joint 3 to
segment 3. As before, l, will denote the length of segment i ,We have

-sine} O~)
cos e l
o

(2)

since the origin of the (xz, yz) coor dinate system is also placed at jo int I . We also have
matrices Az and A3 as in formula (I ). The key observat ion is that the global coordinates
of any point can be obtained by starting in the (X4. Y4) coordinate system and working
our way back to the global (XI . YI) sys tem one jo int at a time. That is, we multiply the
(X4. Y4) coordinate vector of the point A3. Az, A I in turn:

Using the trigonometric addition formulas , this equation can be written as

(
XI) ( COSCO' + e-z + 03) - sinCO ) + 02 + 03) /3COSCO) + 02) + /2cos 0) ) ( X4)
YI = sinCO) + e-z + 03) COSCOI + e-z + OJ) /3 sinCO) + 02) + /2 sin 01 Y4 .
1 0 0 I 1

Since the (X4. Y4) coordinates of the hand are (0, 0) (because the hand is attached
directly to joint 3), we obtain the (XI , YI) coordinates of the hand by settingx, = Y4 = 0
and computing the matrix product above. The result is

(

XI ) ( 13 cos (81+ 8z) + l: cos 81)
~I = 13sin(8l + 8~ ) + lzsin 81 •

The hand orientation is determined if we know the angle betwe en the xa-axis and
the direction of any particular feature of interest to us on the hand . For instance. we
might simply want to use the direct ion of the xa-axis to specify this orientation. From
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our computations, we know that the angle between the x I-axis and the x4-axis is simply
e, + e2 + e).Knowing the ej allows us to compute this angle also.
If we combine this fact about the hand orientation with the formula (2) for the hand

position, we get an explic it description of the mapping / : .J --+ C introduced in §I.
As a funct ion of the joint angles e j • the configuration of the hand is given by

(
/) cos(e, + e2) + /2cosel )

/ (el. 82. e)) = ls sinCe, + e2)+ /2 sin el .
el + e2+ e3

The same ideas will apply when any number of planar revolute joints are present. You
will study the explict form of the function / in these cases in Exercise 7.

Example 2. Prismatic joints can also be handled within this framework. For instance,
let us consider a planar robot whose first three segments and joints are the same as those
of the robot in Exampl e I, but which has an additional prismati c jo int between segment
4 and the hand. Thus, segment 4 will have variable length and segment 5 will be the
hand.

length l ,

The translation axis of the prismatic joint lies along the direction of segment 4. We
can describe such a robot as follows. The three revolute jo ints allow us exactly the same
freedom in placing joint 3 as in the robot studied in Example 1. However, the prismatic
joint allows us to change the length of segment 4 to any value betweeen /4 = m, (when
retra cted) and /4 = m 2 (when fully extended). By the reasoning given in Example 1, if
the setting /4 of the prismatic jo int is known, then the position of the hand will be given
by multipl ying the product matrix A I A2A) times the (X4, Y4) coordinate vector of the
hand , namel y (/4, 0). It follows that the configuration of the hand is given by
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As before. 1z and 13 are constant. but 14 E [m1. mz] is now another variable. The hand
orientation will be given by 01 + Oz + 03 as before since the setting of the prismatic
joint will not affect the direction of the hand.

We will next discuss how formulas such as (3) and (4) may be converted into repre-
sentations of f and g as polynomial or rational mappings in suitable variables. The joint
variables for revolute and for prismatic joints are handled differently. For the revolute
joints. the most direct way of converting to a polynomial set of equations is to use an
idea we have seen several times before, for example, in Exercise 8 of Chapter 2. §8.
Even though cos 0 and sin 0 are transcendental functions, they give a parametrization

x = cos s,
y = sin 0

of the algebraic variety V(xz+ yZ - I) in the plane. Thus, we can write the components
of the right-hand side of (3) or. equivalently. the entries of the matrix A I AzA3 in (2) as
functions of

c; = COSOi.

s, = sin Oi.

subject to the constraints

(5) C; + s; - I = 0

for i = I . 2, 3. Note that the variety defined by these three equations in IR6 is a concrete
realization of the joint space .:J for this type of robot. Geometrically, this variety is just
a Cartesian product of three copies of the circle .
Explicitly. we obtain from (3) an expression for the hand position as a function of the

variables CI. S). Cz , S2 , C3, S3. Using the trigonometric addition formulas. we can write

Similarly,

sin(OI + 02) = sin 01 cos O2 + sin O2 cos 01 = 51CZ + 52CI.

Thus. the (XI, YI) coordinates of the hand position are:

(6) (13 (Cl C2 - SI sz) + [ZCI )
[3 (51 C2 + 52CI) + [2SI .

In the language of Chapter 5. we have defined a polynomial mapping from the variety
.:J = V(x~ + y~ - I, xi + yi - I, xj + yj - I) to IR2• Note that the hand position
does not depend on 03 • That angle enters only in determining the hand orientation.
Since the hand orientation depends directly on the angles OJ themselves, it is not

possible to express the orientation itself as a polynomial in c, = cos OJ and s, = sin OJ.
However, we can handle the orientation in a similar way. See Exercise 3.
Similarly, from the mapping g in Example 2, we obtain the polynomial form

(7) ([4(CI (C2 C3 - 5253) - 51 (CZ53 + C353» + [3 (Cl C2 - 515Z) + [2CI )
14 (5 1(C2C3 - 5Z53) + CI (cZ53 + C3SZ» + [3 (51Cz + 52CI ) + [25)
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for the (XI, YI) coordinates ofthe hand position. In this case.:J is the subset V x [m I, m2]
of the variety V x JR, where V= V(x? + Y? - I, xi + yi - I, xi + yi - I) . The
length l4 is treated as another ordinary variable in (7) , so our component functions are
polynomials in ls, and the c, and s..
A second way to write formulas (3) and (4) is based on the rational parametrization

I - t 2
x=

I + t 2 '(8)
2t

y=
I + t 2

of the circle introduced in §3 of Chapter I. [In terms of the tr igonometric parametriza-
tion , t = tan(e/2).J This allows us to express the mapping (3) in termsof three variables
t, = tan(e; /2). We will leave it as an exercise for the reader to work out this alternate ex-
plicit form of the mapping f : .:J ~ C in Example I. In the language of Chapter 5, the
variety .:J for the robot in Example 1 is birationally equivalent to JR3. We can construct
a rational parametrization p : JR3~ .:J using three copies of the parametrization (8).
Hence, we obtain a rational mapping from JR3 to JR2, expressing the hand coordinates
of the robot arm as functions of t l , tz, t3 by taking the composition of p with the hand
coordinate mapping in the form (6).

Both of these forms have certain advantages and disadvantages for practical use. For
the robot of Example I, one immediately visible advantage of the rational mapping
obtained from (8) is that it involves only three variables rather than the six variables
S; , c., i = 1, 2 , 3 needed to describe the full mapping f as in Exercise 3. In addition, we
do not need the three extra constraint equations (5) . However, the t i values corresponding
to joint positions with (J; close to IT are awkwardly large, and there is no t, value
corresponding to (J; = IT . We do not obtain every theoretically possible hand position
in the image of the mapping f when it is expressed in this form. Of course, this might
not actually be a problem if our robot is constructed so that segment i + 1 is not free
to fold back onto segment i (that is, the joint setting (J; = IT is not possible). The
polynomial form (6) is more unwieldy, but since it comes from the trigonometric (unit-
speed) parametrization of the circle, it does not suffer from the potential shortcomings
of the rational. form . It would be somewhat better suited for revolute joints that can
freely rotate through a full circle.

EXERCISES FOR §2

1. Consider the plane JR2 with an orthogonal right-handed coordinate system (XI , Yl )' Now
introduce a second coordinate system (X2• ."2) by rotat ing the first counterclockwise by an
angle e. Suppose that a point q has (XI , YI) coordinates (a l. bl) and (X2, Y2) coordinates
(a2. bi) -We claim that

(
a I ) = (c~se -sine) .(a2 ) •
b2 Sin e cos e b2

To prove this, first express the (Xl. Yl ) coordinates of q in polar form as

q = (ai, bI> = (r cos Ct. r sin Ct).
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a. Show that the (xz, yz) coordinates of q are given by

q = (az , bz) = (r cos(a + 8) , r sin(a + 8)) .

b. Now use trigonometric identities to prove the desired formula .
2. InExamples I and 2, we used a 3 x 3 matrix A to represent each of the changes of coord inates

from one local system to another. Those changes of coordinates were rotations, followd by
translat ions . These are special types of affine transformations .
a. Show that any affine transformation in the plane

x' = ax + by + e ,
y' = ex + dy + f

can be represented in a similar way:

(~) (~~ ~) .(~) .
b. Give a similar representation for affine transformations of JR3 using 4 x 4 matrices .

3. In this exercise, we will reconsider the hand orientation for the robots in Examples I and
2. Namely, let a = 81 + 8z + 83 be the angle giving the hand orientation in the (XI , yd
coordinate system .
a. Using the trignomometric addition formulas , show that

e = cos a, s = sin a

can be expressed as polynomials in c, = cos 8j and s, = sin 8;. Thus , the whole mapping
f can be expressed in polynomial form, at the cost of introducing an extra coordinate
function for C.

b. Express e and S using the rational parametrization (8) of the circle .
4. Consider a planar robot with a revolute joint I, segment 2 of length Ii , a prismatic joint 2 with

settings 13 E [0, m3], and a revolute jo int 3, with segment 4 being the hand.
a. What are the joint and configuration spaces .:J and C for this robot?
b. Using the method of Examples I and 2, construct an explicit formula for the mapping
f : .:J --+ C in terms of the trigonometric functions of the joint angles .

c. Convert the function f into a polynomial mapping by introducing suitable new coordinates.
5. Rewrite the mappings f and g in Examples I and 2, respectively , using the rational

parametrization (8) of the circle for each revolute joint. Show that in each case the hand posi-
tion and orientation are given by rationa l mappings on JR" . (The value of n will be different
in the two examples .)

6. Rewrite the mapping f for the robot from Exercise 4, using the rational parametrization (8)
of the circle for each revolute joint.

7. Consider a planar robot with a fixed segment I as in our examples in this section and with n
revolute joints linking segments of length li , . .. , In' The hand is segment n + I , attached to
segment n by joint n.
a. What are the joint and configuration spaces for this robot?
b. Show that the mapping f : .:J --+ C for this robot has the form

(

"n- I ("j))L.;=I 1;+1 cos L.j=1 ej
f(e J, ...,en) = " ,,-I I sin (,,; eo) .L..n :: 1 1+1 L.,J=I J

I:;'=lej
Hint: Argue by induction on n.
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8. Another type of 3-dimensional jo int is a "spin" or nonplanar revolute joint that allows one
segment to rotate or spin in the plane perpendicular to the other segment. In this exercise. we
will study the forward kinematic problem for a 3-dimensional robot containing two "spin"
joints. As usual . segment I of the robot will be fixed. and we will pick a global coordinate
system (x, . Yl> z,) with the origin at joint 1 and segment 1 on the zj-axis. Joint 1 is a "spin"
jo int with rotation axis along the z.-axis, so that segment 2 rotates in the (XI. Y,j-plane. Then
segment 2 has length /2 and joint 2 is a second "spin" joint connecting segment 2 to segment
3. The axis for joint 2 lies along segment 2. so that segment 3 always rotates in the plane
perpendicular to segment 2.
a. Construct a local right -handed orthogonal coordinate system (X2. Y2. Z2) with origin at

joint I . with the x2-axis in the direction of segment 2 and the Y2-axis in the (XI . YI )-plane.
Give an explicit formula for the (x,. Yr. z ,) coordinates of a general point , in terms of its
(X2. Y2. Z2) coordinates and of the joint angle 0,.

b. Express your formula from part a in matrix form. using the 4 x 4 matrix representation
for affine space transformations given in part b of Exercise 2.

c. Now. construct a local orthogonal coordinate system (xJ . YJ. zJ) with origin at joint 2. the
xraxis in the direction of segment 3. and the zJ-axis in the direction of segment 2. Give
an exp licit formula for the (X2. Y2. Z2) coordinates of a point in terms of its (xJ. YJ. zJ)
coordinates and the joint angle O2 ,

d. Express your formula from part c in matrix form.
e. Give the transformation relating the (xJ . YJ . zJ) coordinates of a general point to its

(XI . YI. zd coordinates in matrix form. Hint: This will involve suitably multiplying the
matrices found in parts b and d.

9. Consider the robot from Exercise 8.
a. Using the result of part c of Exercise 8. give an explicit formula for the mapping f : .J -+ C

for this robot.
b. Express the hand position for this robot as a polynomial function of the variables c, = cos Bi

and s, = sin Oi.
c. The orientation of the hand (the end of segment 3) of this robot can be expressed by giving

a unit vector in the direction of segment 3. expressed in the global coordinate system. Find
an expression for the hand orientation.

§3 The Inverse Kinematic Problem and Motion Planning

In this section. we will continue the discussion of the robot kinematic problems in-
troduced in §1. To begin, we will consider the inverse kinematic problem for the
planar robot ann with three revolute joints studied in Example 1 of §2. Given a point
(XI, YI) = (a, b) E 1R2 and an orientat ion, we wish to determine whether it is possible
to place the hand of the robot at that point with that orientation. If it is possible, we
wish to find all combinations of joint settings that will accomplish this. In other words,
we want to determine the image of the mapping [ : .J ~ C for this robot; for each C

in the image of I, we want to determine the inverse image [-I (e).
It is quite easy to see geometrically that if l3 = l2 = l , the hand of our robot can be

placed at any point of the closed disk of radius 2l centered at joint I-the origin of the
(XI, YI) coordinate system . On the other hand, if ls t= l2, then the hand positions fill out
a closed annulus centered at joint 1. (See, for example, the ideas used in Exercise 14 of
Chapter 1,§2.) Wewill also beable to see this using the solution of the forward problem
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derived in equation (6) of §2. In addition, our solution will give explicit formulas for
the joint settings necessary to produce a given hand position . Such formulas could be
built into a control program for a robot of this kind.
For this robot, it is also easy to control the hand orientation. Since the setting of joint

3 is independent of the settings of joints 1 and 2, we see that, given any 81 and 82, it is
possible to attain any desired orientation a = 81+82+83by setting 83 = a - (81 +82)
accordingly.
To simplify our solut ion of the inverse kinematic problem, we will use the above

observation to ignore the hand orientation . Thus, we will concentrate on the position of
the hand, which is a function of 8J and 82 alone. From equation (6) of §2, we see that
the possible ways to place the hand at a given point (XI , YI) = (a, b) are described by
the following system of polynomial equations:

a = 13(CIC2 - SIS2) + hCI,

b = 13(CIS2 + C2SI) + i2s l ,

o= c~ + s~ - 1,

0= ci + si - 1

for SI, CI, S2 , C2 .To solve these equations , we compute a Groebner basis using lex order
with the variables ordered

Our solutions will depend on the values of a, b, Iz. ls. which appear as symbolic
parameters in the coefficients of the Groebner basis:

a2+ b2 - 12 _ 12
C 2 3
2 - 2i2/3. '

a2+ b2 a2b + b3+ b(li - I~)
S2 + --- St - --~~--:--=---='-

al3 2a/2/3
b a2 + b2 + ii - I~

(2) CI + - SI - ----=----=-
a 2al2
a2b + b3+ b(i 2 _ 12)sf + 2 3 SI

12(a2+ b2)

+ (a2+ b2)2+ (li - 1~)2 - 2a2(li + I~) + 2b2(ii - I~)

4ii(a2+ b2)

In algebraic terms, this is the reduced Groebner basis for the ideal I generated by
the polynomials in (1) in the ring lR(a, b, 12, 13)[Slt CI , S2, c2l. That is, we allow
denominators that depend only on the parameters a , b, 12, 13 .
This is the first time we have computed a Groebner basis over a field of rational

functions and one has to be a bit careful about how to interpret (2). Working over
lR(a , b, 12, i3) means that a, b, 12, 13 are abstract variables over lR, and, in particular,
they are algebraically independent [i.e., if p is a polynomial with real coefficients such
that pea, b, i2 , i3) = 0, then p must be the zero polynomial]. Yet, in practice, we want
a, b, i2 , 13 to be certain specific real numbers . When we make such a substitution, the
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polynomials (I) generate an ideal 1 C IR[c\ , SI , C2 , S2] corresponding to a specific
hand position of a robot with specific segment lengths. The key question is whether (2)
remains a Groebner basis for 1 under this substitution. In general, the replacement of
variables by specific values in a field is calIed specialization, and the question is how
a Groebner basis behaves under specialization.
A first observation is that we expect problems when a specialization causes any of

the denominators in (2) to vanish. This is typical of how specialization works : things
usualIy behave nicely for most (but not alI) values of the variables. In the exercises,
you wilI prove that there is a proper subvariety W C IR4 such that (2) specializes to a
Groebner basis ofl whenever a, b, 12 , 13 take values in IR4 - W.We also will see that
there is an algorithm for finding W. The subtle point is that , in general, the vanishing of
denominators is not the only thing that can go wrong (you will work out some examples
in the exercises). Fortunately, in the example we are considering, it can be shown that W
is, in fact, defined by the vanishing of the denominators. This means that if we choose
values 12 =1= 0,13 =1= 0, a =1= 0, and a2 + bZ =1= 0, then (2) still gives a Groebner basis
of (I). The details of the argument wilI be given in Exercise 9.
Given such a specialization, two observations follow immediately from the form of

the leading terms of the Groebner basis (2). First, any zero 51 of the last polynomial
can be extended uniquely to a full solution of the system. Second, the set of solutions
of (I) is afinite set for this choice of a, b, lz , 13 • Indeed , since the last polynomial in (2)
is quadratic in SJ , there can be at most two distinct solutions . It remains to see which
a , b yield real values for SI (the relevant solutions for the geometry of our robot) .
To simplify the formulas somewhat, we will specialize to the case 12 = 13 = I. In

Exercise I, you will show that by either substituting lz = 13 = I directly into (2) or
setting lz = 13 = I in (I) and recomputing a Groebner basis in IR(a, b)[51 , CI, 5Z, cz] ,
we obtain the same result:

aZ+ b2 - 2
Cz - 2

a 2 + b2 a2b + b3
S2 + ---5) 2aa

b a2 + bZ
CI + - 5J -

a 2a
aZb + b3 (a 2 + b2 ) 2 _ 4a2

5f + --,,-----::- 5 I + ----::----::---
(liZ + b2 ) 4(a 2 + b2 )

Other choices for 12 and 13 will be studied in Exercise 4. [Although (2) remains a
Groebner basis for any nonzero values of lz and 13 , the geometry of the situation changes
rather dramaticalIy if l: =1= 13 . ]
It follows from our earlier remarks that (3) is a Groebner basis for (I) for all spe-

cializations of a and b where a =1= 0 and aZ+ b2 =1= O. Thus , the hand positions with
a = 0 or a = b = 0 appear to have some special properties. We will consider the
general case a =1= 0 first. Note that this implies aZ+ b2 =1= 0 as well since a , b E IR.
Solving the last equation in (3) by the quadratic formula, we find that

(3)
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Note that the solution(s) of this equation are real if and only if 0 < a Z + bZ ~ 4, and
when a Z + bZ = 4, we have a double root. From the geometry of the system, that is
exactly what we expect. The distance from joint I to joint 3 is at most lz + 13 = 2, and
positions with l: + 13 = 2 can be reached in only one way-by setting 8z = 0 so that
segment 3 and segment 2 are pointing in the same direction .
Given St, we may solve for c" Sz. Cz using the other elements of the Groebner basis

(3). Since a i= 0, we obtain exactly one value for each of these variables for each
possible SI value. (In fact, the value of Cz does not depend on si-see Exercise 2.)
Further, since cr+ sr - I and c~ + s~ - I are in the ideal generated by (3), the values
we get for SI, Ct , Sz . C\ uniquely determine the joint angles 81 and 8z • Thus , the cases
where a i= 0 are easily handled.
We now take up the case of the possible values of Sl , CI • Sz, Cz when a = b = O.

Geometrically, this means that joint 3 is placed at the origin of the (XI, Yt) system-at
the same point as joint I. Most of the polynomials in our basis (2) are undefined when
we try to substitute a = b = 0 in the coefficients . So this is a case where specialization
fails. With a little thought , the geometric reason for this is visible . There are actually
infinitely many different possible configurations that will place joint 3 at the origin
since segments 2 and 3 have equal lengths. The angle 81 can be specified arbitrarily,
then setting 8z = 7f will fold segment 3 back along segment 2, placing joint 3 at (0, 0).
These are the only joint settings placing the hand at (a, b) = (0, 0). You will derive
the same results by a different method in Exercise 3.
Finally, we ask what happens if a = 0 but b i= O. From the geometry of the robot

arm, we would guess that there should be nothing out of the ordinary about these points.
Indeed, we could handle them simply by changing coordinates (rotating the X,-, YI-
axes, for example) to make the first coordinate of the hand position any nonzero number.
Nevertheless, there is an algebraic problem since some denominators in (2) vanish at
a = O. This is another case where specialization fails. In such a situation, we must
substitute a = 0 (and tz = 13 = I) into (1) and then recompute the Groebner basis.
We obtain

(4)

b
SI - 2

Note that the form of the Groebner basis for the ideal is different under this special-
ization. One difference between this basis and the general form (2) is that the equation
for SI now has degree 1. Also, the equation for CI (rather than the equation for St) has
degree 2. Thus, we obtain two distinct real values for CI if Ibl < 2 and one value for
CI if Ibl = 2. As in the case a i= 0 above, there are at most two distinct solutions , and
the solutions coincide when we are at a point on the boundary of the disk of radius 2.
In Exercise 2, you will analyze the geometric meaning of the solutions with a = 0 and
explain why there is only one distinct value for St in this special case.
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This completes the analys is of our robot ann. To summarize. given any (a . b) in
(XI . y)) coordinates. to place joint 3 at (a , b). there are
• infinitely many distinct settings of joint I when a2 + b2 = O.
• two distinct settings of joint I when a2 + b2 < 4.
• one setting of joint I when a2 + b2 = 4.
• no possible settings of joint 1 when a2 + b2 > 4.
The cases a2+b2 = 0, 4 (but not the special cases a = 0, b =1= 0) are examples of what
are known as kinematic singularities for this robot. We will give a precise definition of
this concept and discuss some of its meaning below.
In the exercises. you will consider the robot ann with three revolute joints and one

prismatic joint introduced in Example 2 of §2. There are more restrictions here for the
hand orientation. For example. if14 lies in the interval [0. I[. then the hand can beplaced
in any position in the closed disk of radius 3 centered at (XI. Yt) = (0.0). However.
an interesting difference is that points on the boundary circle can only be reached with
one hand orientation.
Before continuing our discussion of robotics. let us make some final comments

about specialization. In the example given above. we assumed that we could compute
Groebner bases over function fields. In practice. not all computer algebra systems can
do this directly-some systems don't allow the coefficients to lie in a function field. The
standard method for avoiding this difficulty will be explored in Exercise 10. Another
question is how to determine which specializations are the bad ones. One way to attack
this problem will be discussed in Exercise 8. Finally, we should mention that there is
a special kind of Groebner basis, called a comprehensive Groebner basis, which has
the property that it remains a Groebner basis under all specializations. Such Groebner
bases are discussed in the appendix to BECKER and WEISPFENNING (1993).
We will conclude our discussion of the geometry of robots by studying kinematic

singularities and some of the issues they raise in robot motion planning. The following
discussion will use some ideas from advanced multivariable calculus that we have not
encountered before.
Let f : :J ~ C be the function expressing the hand configuration as a function of

the joint settings. In the explicit parametrizations of the space :J that we have used.
each component of f is a differentiable function of the variables Oi ' For example, this
is clearly true for the mapping f for a planar robot with three revolute joints:

(5)

Hence. we can compute the Jacobian matrix (or matrix of partial derivatives) of f with
respect to the variables 0,,02,03. We write f; for the ith component function of f .
Then . by definition, the Jacobian matrix is
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For example, the mapping f in (5) has the Jacobian matrix

(

- 13 sin(e\ + e2) - 12 sin e l -h sin(e\ + e2)
(6) If(e), e2, e3) = 13 cos(el + e~) + 12 cos e\ 13 COS(~I + e2)

From the matrix of functions Jt- we obtain matrices with constant entries by substi-
tuting particular values j = (e\, e2, e3).We will write Jf(j) for the substituted matrix,
which plays animportant role in advanced multivariable calculus. Its key property is
that Jf (j) defines a linear mapping which is the best linear approximation of the func-
tion f at j E .]. This means that, near i . the function f and the linear function given
by Jf (j) have roughly the same behavior. In this sense, Jf (j) represents the derivative
of the mapping f at j E .].
To define what is meant by a kinematic singularity, we need first to assign dimensions

to the joint space.] and the configurat ion space Cfor our robot , to be denoted by dim(.])
and dim(C) , respectively. We will do this in a very intuitive way. The dimension of .],
for example, will be simply the number of independent "degrees of freedom " we have
in setting the joints. Each planar joint (revolute or prismatic) contributes I dimension
to .]. Note that this yields a dimension of 3 for the joint space of the plane robot with
three revolute joints. Similarly, dim (C) will be the number of independent degrees of
freedom we have in the configuration (position and orientation) of the hand. For our
planar robot, this dimension is also 3.
In general , suppose we have a robot with dim(.]) = m and dim(C) = n. Then

differentiating f as before , we will obtain an n x m Jacobian matrix of functions .
If we substitute in j E .], we get the linear map If(j) : IRI1I

~ 1R" that best
approximates f near i . An important invariant of a matrix is its rank, which is the
maximal number of linearly independent columns (or rows). The exercises will review
some of the properties of the rank. Since 1f (j) is an n x m matrix, its rank will always
be less than or equal to min(m, n). For instance, consider our planar robot with three
revolute joints and 12 = 13 = I. If we let j = (0, l' J)' then formula (6) gives us

Jr(O.~. j) ~ (:' ~' n
This matrix has rank exactly 3 (the largest possible in this case) .
We say that' Jf(j) has maximal rank if its rank is min(m, n) (the largest possible

value), and, otherwise, Jf(j) has deficient rank .When a matrix has deficient rank, its
kernel is larger and image smaller than one would expect (see Exercise 14). Since Jf (j)
closely approximates f, Jf (j) having deficient rank should indicate some special or
"singular" behavior of f itself near the point j, Hence, we introduce the following
definition .

Definition 1. A kinematicsingularity for a robot is a point j E .] such that Jf (j)
has rank strictly less than min(dim(.]), dim(C».

For example, the kinematic singularities of the 3-revolute joint robot occur exactly
when the matrix (6) has rank ~ 2. For square n x n matrices, having deficient rank is
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equivalent to the vanishing of the determinant. We have

o= det(11) = sin(81 + (2) cos 81 - COS(81 + (2) sin 8\

= sin 82

if and only if 82 = 0 or 82 = n . Note that 82 = 0 corresponds to a position in
which segment 3 extends past segment 2 along the positive x2-axis , whereas 82 = tt
corresponds to a position in which segment 3 is folded back along segment 2. These are
exactly the two special configurations we found earlier in which there are not exactly
two joint settings yielding a particular hand configuration.
Kinematic singularities are essentially unavoidable for planar robot arms with three

or more revolute joints.

Proposition 2. Let f : J ~ C be the configuration mapping for a planar robot with
n 2: 3 revolute joints. Then there exist kinematic singularities j E J.

Proof. By Exercise 7 of §2, we know that f has the form

(
,,£;': ,11;+, cos ("£~=I OJ))

f(OI , . .. , Oil) = "£;':111i+1s;n ("£~=I 8j ) •

"£;=1 8,
Hence, the Jacobian matrix 11 will be the 3 x n matrix

. . . -In sin(8n _ l ) 0 )

. . . In cos(8n_ J) 0 •

I

Since we assume n 2: 3, by the definition, a kinematic singularity is a point where the
rank of 11 is :::: 2. If j E J is a point where all 8; E {O, rr ], then every entry of the
first row of 11 (j) is zero . Hence, rank 11 (j) :::: 2 forthose j . 0

Descriptions of the possible motions of robots such as the ones we have developed
are used in an essential way in planning the motions of the robot needed to accomplish
the tasks that are set for it. The methods we have sketched are suitable (at least in
theory) for implementation in programs to control robot motion automatically. The
main goal of such a program would be to instruct the robot what joint setting changes
to make in order to take the hand from one position to another. The basic problems
to be solved here would be, first, to find a parametrized path c(t) E Cstarting at the
initial hand configuration and ending at the new desired configuration, and, second, to
find a corresponding path j (r) E J such that f(j (I)) = c(t) for all t, In addition, we
might want to impose extra constraints on the paths used such as the following:
I. If the configuration space path c(t) is closed (i.e ., if the starting and final configura-

tions are the same), we might also want path j (t) to be a closed path . This would be
especially important for robots performing a repetitive task such as making a certain
weld on an automobile body. Making certain the joint space path is closed means
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that the whole cycle of joint setting changes can simply be repeated to perform the
task again.

2. In any real robot, we would want to limit the joint speeds necessary to perform the
prescribed motion. Overly fast (or rough) motions could damage the mechanisms.

3. We would want to do as little total joint movement as possible to perform each
motion.
Kinematic singularities have an important role to play in motion planning. To see the

undesirable behavior that can occur, suppose we have a configuration space path c(t)
such that the corresponding joint space path j (t) passes through or near a kinematic
singularity. Using the multivariable chain rule, we can different iate c(t) = f(j(t»
with respect to t to obtain

(7) c'(r) == lJ(j(t» . j'(t).

We can interpret c'(r) as the velocity of our configuration space path, whereas j'(t) is
the corresponding jo int space velocity. If at some time to our joint space path passes
through a kinematic singularity for our robot, then , because 1J (j (to» is a matrix of
deficient rank, equation (7) may have no solution for j'(to) , which means there may be
no smooth joint paths j (t) corresponding to configuration paths that move in certain
directions. As an example, consider the kinematic singularities with 82 = rr for our
planar robot with three revolute joints. If 81 = 0, then segments 2 and 3 point along
the xI-axis:

9, = 0
segment 3 ~::::\ ~ ~_ ': It

segment 2

segment I

Can the hand move
in the x,-direction?

At a Kinematic Singularity

With segment 3 folded back along segment 2, there is no way to move the hand in the
XI -direction. More precisely, suppose that we have a configuration path such that c'(to)
is in the direction of the XI-axis. Then, using formula (6) for 1J' equation (7) becomes

( O~ -°Il O~) . j"(to).c'(to) = lJ(to) . j'(to) =

Because the top row of lJ(to) is identically zero, this equation has no solution for j'(to)
since we want the XI component of c'(to) to be nonzero. Thus , c(t) is a configuration
path for which there is no corresponding smooth path in joint space. This is typical of
what can go wrong at a kinematic singularity.
For j (to) near a kinematic singularity, we may still have bad behavior since 1J(j (to»

may be close to a matrix of deficient rank. Using techniques from numerical linear al-
gebra, it can be shown that in (7), if I f (j (to» is close to a matrix of deficient rank,
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very large joint space velocities may be needed to achieve a small configuration space
velocity. For a simple example of this phenomenon, again consider the kinematic sin -
gularities of our planar robot with 3 revolute joints with 82 = tt (where segment 3 is
folded back along segment 2). As the diagram below suggests, in order to move from
position A to position B, both near the origin, a large change in 8, will be needed to
move the hand a short distance.

Near a Kinematic Singularity

To avoid undesirable situations such as this, care must be taken in specifying the
desired configuration space path c(t) . The study of methods for doing this in a system-
atic way is an active field of current research in robotics, and unfortunately beyond the
scope of this text. For readers who wish to pursue this topic further, a standard basic
reference on robotics is the text by PAUL (1981). The survey by BUCHBERGER (1985)
contains another discussion of Groebner basis methods for the inverse kinematic prob-
lem. A readable introduction to much of the more recent work on the inverse kinematic
problem and motion control , with references to the original researach papers, is given
in BAILLIEUL ET AL. (1990) .

EXERCISES FOR§3

I. Consider the specialization of the Groebner basis (2) to the case Iz = I) = 1.
a. First, substitute -S = I) = 1 directly into (2) and simplify.
b. Now, set l: = /) = 1 in (1) and compute a Groebner basis for the "specialized" ideal

generated by (I), again using lex order with Cz > $z > CI > $1. Compare with your
results from part a. (Your results should be the same.)

2. This exercise studies the geometry of the planar robot with three revolute jo ints discussed in
the text with the dimensions specialized to l : = /) = 1.
a. Draw a diagram illustrating the two solutions of the inverse kinematic problem for the

robot in the general case a #- 0, a Z+ bZ #- 4. Why is Cz independent of $ 1 here? Hint:
What kind of quadrilateral is formed by the segments of the robot in the two possible
settings to place the hand at (a , b)? How are the two values of 9z related?

b. By drawing a diagram , or otherw ise, explain the meaning of the two solutons of (4) in the
case a = O. In particular, explain why it is reasonable that $1 has only one value. Hint:
How are the two values of 9. in your diagram related?



§3. The Inverse Kinematic Problem and Motion Planning 283

3. Consider the robot arm discussed in the text with /z = /3 = I. Set a = b = 0 in (I) and
recompute a Groebner basis for the ideal. How is this basis different from the bases (3) and
(4)? How does this difference explain the properties of the kinematic singularity at (0. O)?

4. In this exerc ise. you will study the geometry of the robot discussed in the text when li =/= /3,
a. Set /z = I, /3 = 2 and solve the system (2) for SI. CI. Sz. Cz. Interpret your results

geometrically. identifying and explaining all special cases. How is this case different
from the case /z = /3 = I done in the text?

b. Now. set /z = 2. /3 = I and answer the same questions as in part a.
As we know from the examples in the text. the form of a Groebner basis for an ideal can change
if symbolic parameters appearing in the coefficients take certain special values . In Exercises 5-9.
we will study some further examples of this phenomenon and prove some general results .
5. We begin with another example of how denominators in a Groebner basis can cause prob-

lems under specialization. Cons ider the ideal 1 = (f. g). where f = XZ - y. g =
(y - IX)(y - I) = - IXy + IZX + yZ - t y ; and I is a symbolic parameter. We will use
lex order with x > y.
a. Compute a reduced Groebner basis for 1 in JR(I)[X. y) .What polynomials in I appear in

the denominators in this basis?
b. Now set I = 0 in f . g and recompute a Groebner basis . How is this bas is different from

the one in part a? What if we clear denominators in the basis from part a and set I = O?
c. How do the points in the variety V(!) C JRz depend on the choice of I E JR. Is it

reasonable that I = 0 is a special case?
d. The first step of Buchberger's algorithm to compute a Groebner basis for 1 would be to

compute the S-polynomial S(f. g) . Compute this S-polynomial by hand in JR(I)[X. y) .
Note that the special case I = 0 is already distinguished at this step.

6. This exercise will explore a more subtle example of what can go wrong during a specializa-
tion . Consider the ideal 1 = (x + ty . X+ y) C JR(I)[X. y) , where I is a symbolic parameter.
We will use lex order with x > y .
a. Show that [x , y} is a reduced Groebner basis of I . Note that neither the original basis nor

the Groebner basis have any denominators .
b. Let I = I and show that Ix+y} is a Groebner basis for the specialized ideal! C JR[x. y].
c. To see why I = I is special , express the Groebner basis Ix. y} in terms of the original

basis Ix + ty ; x .+ y} . What denominators do you see? In the next problem. we will
explore the general case of what is happening here .

7. In this exercise. we will der ive a condition under which the form of a Groebner basis does
nOI change under specialization. Consider the ideal

1 = (f;(IJ, . . . • 1m• X l • •• •• X,,) : I ~ i ~ s)

in k(tJ, . . .• Im)[XJ, . .. • xn ) and fix a monomial order. We think of II• . . .• 1m as symbolic
parameters appearing in the coefficients of fl • . . . • j.. By dividing each f; by its leading
coefficient [which lies in k(tl • . . . , t.;»), we may assume that the leading coefficients of the
fi are all equal to I . Then let Igi. . . .• g,} be a reduced Groebner basis for I. Thus the
leading coefficients of the gj are also I . Finally . let (II • . . . • I",) t-+ (al • . .. • a",) E k'" be
a specialization of the parameters such that none of the denominators of the f; or gj vanish
at (a J, . . . • a",) .
a. If we use the division algorithm to find Aij E k(ll • . . . • I",)[XI • . . . ,x,,) such that

t

f; = L Aijg j.
j;1

then show that none of the denominators of Aij vanish at (al • . . . • a",) .
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b. We also know that g j can be written
,

s, =L Bjif; .
;= 1

for some B j ; E k(t l• . . . • tm)[x .. . . . • x,,]. As Exercise 6 shows. the Bj ; may introduce
new denominators. So assume. in addition. that none of the denom inators of the Bji
vanish underthe specialization (rl •...• tm) t-? (a... . . . am)' Let 7 denote the ideal in
k[x " .. . • x,,1 generated by the specialized f; . Under these assumptions. prove that the
specialized gj form a basis of 7.

c. Show that the specialized g j form a Groebner basis for 7.Hint: The monomial order used
to compute I only deals with terms in the variables x. .The parameters t j are "constants"
as far as the ordering is concerned.

d. Let d., . . . . dM E k[t" . ..• tm] be all denominators that appear among f;. gj . and Bji.
and let W = V(d l . d2 • • . dm ) C k'", Conclude that the g j remain a Groebner basis for
the f; under all specializations (tl •...• tm) t-? (a" .. .• am) E k" - W.

8. We next describe an algorithm for finding which specializations preserve a Groebner basis.
We will use the notation of Exercise 7. Thus. we want an algorithm for finding the denomi-
nators d., .. . d..., appearing in the f;, gj. and Bj ; .This is easy to do for the I;and gj. but the
Bj ; are more difficult. The problem is that since the f; are not a Groebner basis. we cannot
use the division algorithm to find the Bj ; . Fortunately. we only need the denominators. The
idea is to work in the ring k[tl • . . . • tm• XI • •. .• x" I. If we multiply the f; and gj by suitable
polynomials in k[tt • . . . • tmI.we get

] ;, g j E k[tl • . . . • tm•Xl • • • . • x"l.
Let i C k[t, •. . .• t«. x" .. . x"] be the ideal generated by the 1;.
a. Suppose g j = :L:=t Bjif; in k(r t•.. . • tm)[x" . . . • x,,1 and letd E k[t" . ..• tml be a

polynomial that clears all denominators for the gj, the f;. and the Bji. Then prove that

d E (i : g j) n k[t l• . . . • tm].
where i : g j is the ideal quotient as defined in §4 of Chapter 4.

b. Give an algorithm for computing (i : g j) n k[t l• .. . • tm] and use this to describe an
algorithm for finding the subset W C k'" described in part d of Exercise 7.

9. The algorithm described in Exercise 8 can lead to lengthy calculations which may be too
much for some computer algebra systems. Fortunately, quicker methods are available in
some cases. Let f; . g j E k(t" . . . tm)[X I • . . . • X"I be as in Exercises 7 and 8. and suppose
we suspect that the g j will remain a Groebner basis for the f; under all specializations where
the denominators of the f; and gj do not vanish. How can we check this quickly ?
a. Let d E k[t" .. .• tm] be the least common multiple of all denominators in the f; and

g j and let ] ;. i, E k[tl • . . . • tm•XI •. . .• x"I be the polynomials we get by clearing
denominators. Finally. let i be the ideal in k[t" . . .• tm•XI • .. .• x,,] generated by the
] ;. If dgj E i for all i. then prove that specialization works for all (r I •.. .• tm ) t-?

(al . . . . am ) E km - V(d).
b. Describe an algorithm for checking the criterion given in part a. For efficiency. what

monomial order should be used?
c. Apply the algorithm of part b to equations (1) in the text. This will prove that (2) remains

a Groebner basis for (1) under all specializations where [2 =P 0, [3 =P O. a =P O. and
a2 + b2 =P O.

10. In this exercise . we will learn how to compute a Groebner basis for an ideal in .
k(r" . .. • tm)[XI• . . . • x,,1 by working in the polynomial ring k[t .. . . . • t,«, X" .. .• x" l.This
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is useful when computing Groebner bases using computer algebra systems that won 't allow
the coefficients to lie in a function field. The first step is to fix a term order such that any
monomial involving one of the x;'s is greater than all monomials in fl • •• •• f", alone. For
example . one could use a product order or lex order with X I > . . . > Xn > fl > ... > f",.
a. If I is an ideal in k (fJ, . . .• f",)[XI • . . . • xn ] . show that I can be written in the form

I = (f;(t ), ... • f", . Xl •• • . • xn ) : I :5 i :5 s).

where each f; E k[fl •. · . • t«. X l . · · ·. xn ] .
b. Now let i be the ideal in k[fJ, . . . • t.; Xl • • • •• xn ] generated by fl . . . . . f,. and let

g l • .. .• g, be a reduced Groebner basis for i with respect to the above term order. If any
of the g; lie in k[f), . ..• fn ] show that I = k(tJ, .. . • f"')[X ), . . . • xn ] .

c. Let gl • . . .• g, be the Groebner basis of i from part b. and assume that none of the gi lie
in k[fl • . . . • f",] . Then prove that gl •... • g, are a Groebner basis for I (using the term
order induced on monomials in x ), . . .• xn ) .

11. Consider the planar robot with two revolute joints and one prismatic joint described in
Exercise 4 of §2.
a. Given a desired hand position and orientation. set up a system of equat ions as in (I) of this

section whose solut ions give the possible joint settings to reach that hand configuration.
Take the length of segment 2 to be I.

b. Using a computer algebra system. solve your equat ions by computing a Groebner basis
for the ideal generated by the equations from part a with respect to a suitable lex order.
Note: Some experimentation may be necessary to find a reasonable variable order.

c. What is the solution of the inverse kinematic problem for this robot. That is. which hand
positions and orientat ions are possible? How many different joint settings yield a given
hand configuration? (Do not forget that the setting of the prismatic joint is limited to a
finite interval in [0. m3] C JR.)

d. Does this robot have any kinematic singularities according to Definit ion I? If so. describe
them.

12. Consider the planar robot with three joints and one prismatic joint studied in Example 2 of
§2.
a. Given a desired hand position and orientation. set up a system of equations as in (I) of this

section whose solut ions give the possible joint settings to reach that hand configurat ion,
Assume that segments 2 and 3 have length I. and that segment 4 varies in length between
I and 2. Note: Your system of equations for this robot should involve the hand orientation .

b. Solve your equations by computing a Groebner basis for the ideal generated by your equa-
tions with respect to a suitable lex order. Note: Some experimentation may be necessary
to find a reasonable variable order. The "wrong" variable order can lead to a completely
intractable problem in this example .

c. What is the solution of the inverse kinematic problem for this robot? That is. which hand
positions and orientations are possible? How does the set of possible hand orientations
vary with the position? (Do not forget that the setting 14 of the prismatic joint is limited
to the finite interval in [I . 2] C JR.)

d. How many different joint settings yield a given hand configuration in general? Are these
special cases ?

e. Does this robot have any kinematic singularities accord ing to Definition I? If so. describe
the corresponding robot configurations and relate them to part d.

13. Consider the 3-dimensional robot with two "spin" joints from Exercise 8 of §2.
a. Given a desired hand position and orientation. set up a system of equations as in (I) of this

section whose solutions give the possible joint settings to reach that hand configuration.
Take the length of segment 2 to be 4. and the length of segment 3 to be 2. if you like.
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b. Solve your equations by computing a Groebner basis for the ideal generated by your
equations with respect to a suitable lex order. Note: In this case there will be an element
of the Groebner basis that depends only on the hand position coordinates. What does this
mean geometrically? Is your answer reasonable in terms of the geometry of this robot?

c. What is the solution of the inverse kinematic problem for this robot? That is, which hand
positions and orientations are poss ible?

d. How many different joint settings yield a given hand configuration in general? Are these
special cases?

e. Does this robot have any kinematic singularities according to Definition I?
14. Let A be anm x n matrix with real entries . We will study the rank of A, which is the maxima l

number of linearly independent columns (or rows) in A. Multiplication by A gives a linear
map LA : 1R" ~ IR"', and from linear algebra. we know that the rank of A is the dimension
of the image of LA' As in the text, A has maximal rank ifits rank is min(m, n). To understand
what maximal rank means, there are three cases to consider.
a. If m = n, show that A has maximal rank <:> det(A) # 0 <:> LA is an isomorphism of

vector spaces.
b. Ifm < n, show that A has maximal rank <:> the equat ion A . x = b has a solut ion for all

b E IR'" <:> LA is a surjective (onto) mapping .
c. If m > n, show that A has maximal rank <:> the equation A . x = b has at most one

solut ion for all b E IR'" <:> LA is an injective (one-to-one) mapping.
15. A robot is said to be kinematically redundant if the dimension of its joint space :1 is larger

than the dimension of its configuration space C.
a. Which of the robots considered in this section (in the text and in Exercises 11-13 above)

are kinematically redundant?
b. (This part requires knowledge of the Implicit Function Theorem.) Suppose we have a

kinematically redundant robot and j E :1 is not a kinematic singularity. What can be
said about the inverse image f-I (f (j» in :1? In particular, how many different ways are
there to put the robot in the configuration given by f(j)?

16. Verify the chain rule formula (7) explicitly for the planar robot with three revolute joints.
Hint: Substitute B; = B;(t) and compute the derivative of the configuration space path
f(B I (t) , B2(t), B3(t » with respect to I.

§4 Automatic Geometric Theorem Proving

The geometric descript ions of robots and robot motion we studied in the first three
sections of this chapter were designed to be used as tools by a control program to help
plan the motions of the robot to accomplish a given task. In the process, the control
program could be said to be "reasoning" about the geometric constraints given by the
robot 's design and its environment and to be "deducing" a feasible solution to the given
motion problem. In this section and in the next, we will examine a second subject which
has some of the same flavor-automated geometric reasoning in general. We will give
two algorithmic methods for determining the validity of general statements in Euclidean
geometry. Such methods are of interest to researchers both in artificial intelligence (AI)
and in geometric modeling because they have been used in the design of programs that,
in effect, can prove or disprove conjectured relationships between, or theorems about,
plane geometric objects .
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Few people would claim that such programs embody an understanding of themeaning
of geometric statements comparable to that of a human geometer. Indeed, the whole
quest ion of whether a computer is capable of intelligent behavior is one that is still
completely unresolved. However, it is interesting to note that a number of new (that
is, apparently previously unknown) theorems have been verified by these methods . In
a limited sense, these " theorem provers" are capable of "reasoning" about geometric
configurations, an area often considered to be solely the doma in of human intelligence .
The basic idea underlying the methods we will consider is that once we introduce

Cartesian coordinates in the Euclidean plane , the hypotheses and the conclusions of a
large class of geometric theorems can be expressed as polynomial equations between
the coordinates of collections of points specified in the statements. Here is a simple but
representative example .

Example 1. Let A, B, C, D be the vertices of a parallelogram in the plane , as in the
figure below.

c D

A B

It is a standard geometric theorem that the two diagonals AD and BC of any paral-
lelogram intersect at a point (N in the figure) which bisects both diagonals. In other
words, AN = DNand BN = CN, where , as usual, XY denotes the length of the line
segment XY joining the two points X and Y . The usual proof from geometry is based
on showing that the triangles 6.ANC and 6.BND are congruent. See Exercise I.
10'relate this theorem to algebraic geometry, we will show how the configuration of

the parallelogram and its diagonals (the hypotheses of the theorem ) and the statement
that the point N bisects the diagonals (the conclusion of the theorem) can be expressed
in polynom ial form.
The properties of parallelograms are unchanged under translations and rotations in

the plane. Hence, we may begin by translating and rotating the parallelogram to place it
in any position we like, or, equivalently by choosing our coordinates in any convenient
fashion . The simplest way to proceed is as follows. We place the vertex A at the origin
and align the side AB with the horizontal coordinate axis. In other words, we can take
A = (0, 0) and B = (u I , 0) for some u I =f. 0 E JR. In what follows we will think of
Ut as an indeterminate or variable whose value can be chosen arbitrarily in JR - {OJ .
The vertex C of the parallelogram can be at any point C = (U 2 . U3) , where U2, U3 are
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new indeterminates independent of U (, and U3 :f:. O. The remaining vertex D is now
completely determined by the choice of A, B, C.
It will always be true that when constructing the geometric configuration described

by a theorem, some of the coordinates of some points will be arbitrary, whereas the
remaining coordinates of points will be determined (possibly up to a finite number of
choices) by the arbitrary ones. To indicate arbitrary coordinates, we will consistently
use variables u., whereas the other coordinates will be denoted x j' It is important to
note that this division of coordinates into two subsets is in no way uniquely specified
by the hypotheses of the theorem. Different constructions of a figure, for example, may
lead to different sets of arbitrary variables and to different translations of the hypotheses
into polynomial equations.
Since D is determined by A, B, and C, we will write D = (Xl. x2).One hypothesis

of our theorem is that the quadrilateral ABDC is a parallelogram or, equivalently, that
the opposite pairs of sides are parallel and, hence, have the same slope. Using the slope
formula for a line segment, we see that one translation of these statements is as follows :

AB II CD:

AC II BD :

0 - X2 - U3- ,
Xl,- U2

U3 X2=---

Clearing denominators, we obtain the polynomial equations

(1)

( Below, we will discuss another way to get equations for Xl and X2 .)
Next, we construct the intersection point of the diagonals of the parallelogram. Since

the coordinates of the intersection point N are determined by the other data, we write
N = (X3, X4) . Saying that N is the intersection of the diagonals is equivalent to saying
that N lies on both of the lines AD and BC, or to saying that the triples A, N, D and
B, N, C are collinear. The latter form of the statement leads to the simplest formulation
of these hypotheses . Using the slope formula again, we have the following relations:

A,N,D collinear : X4 U3=
X3 XI

B,N.C collinear : X4 U3=
X3 - UI U2 - UI

Clearing denominators again, we have the polynomial equations

(2)

The system of four equations formed from (1) and (2) gives one translation of the
hypotheses of our theorem.
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The conclusions can be written in polynomial form by using the distance formula
for two points in the plane (the Pythagorean Theorem) and squaring:

AN = ND x~ + x: = (X3 - XI)Z + (X4 - XZ)z,
BN = NC (X3 - u))z + x~ = (X3 - UZ)Z + (X4 - U3)Z.

Cancelling like terms , the conclusions can be written as

g\ = x~ - 2XI X3 - 2X4XZ + xi = 0,

gz = 2X3UI - 2X3U2 - 2X4U3 - uT+ u~ + u~ = O.

Our translation of the theorem states that the two equations in (3) should hold when the
hypotheses in (I) and (2) hold.
As we noted earlier, different translations of the hypotheses and conclusions of a

theorem are possible. For instance, see Exercise 2 for a different translation of this
theorem based on a different construction of the parallelogram (that is, a different
collection of arbitrary coordinates) . There is also a great deal of freedom in the way that
hypotheses can be translated . For example, the way we represented the hypothesis that
ABDC is a parallelogram in (1) is typical ofthe way a computerprogrammight translate
these statements, based on a general method for handling the hypothesis AB II CD .But
there is an alternate translation based on the observation that, from the parallelogram
law for vector addit ion, the coordinate vector of the point D should simply be the vector
sum of the coordinate vectors B = (u I, 0) and C = (U2, U3)' Writing D = (XI, xz) ,
this alternate translation would be

h'l = XI - UI - Uz = 0,

h; = Xz - U3 = O.

These equations are much simpler than the ones in (I). Ifwe wanted to design a geo-
metric theorem-prover that could translate the hypothesis"AB DC is a parallelogram"
directly (without reducing it to the equivalent form "AB II CD and AC II BD"), the
translation (4) would be preferable to (1).
Further , we could also use h; to eliminate the variable Xz from the hypotheses and

conclusions, yielding an even simpler system of equations. In fact, with complicated
geometric constructions, preparatory simplifications of this kind can sometimes be
necessary. They often lead to much more tractable systems of equations.

The following proposition lists some of the most common geometric statements that
can be translated into polynomial equations.

Proposition 2. Let A, B, C, D, E , F be points in the plane. Each of the following
geometric statements can be expressed by one or more polynomial equations:

(i) AB is parallel to CD .
(i i) AB is perpendicular to CD.
(iii) A, B, C are collinear.
(iv) The distance from A to B is equal to the distance from C to D: AB = CD .
(v) C lies on the circle with center A and radius AB.
(vi) C is the midpoint of AB .
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(vii) The acute angle L.ABC is equal to the acute angle L.DEF.
(viii) BD bisects the angle L.ABC .

Proof. General methods for translating statements (i), (iii), and (iv) were illustrated
in Example I; the general cases are exactly the same. Statement (v) is equivalent to
AC =: AB. Hence, it is a special case of (iv) and can be treated in the same way.
Statement (vi) can be reduced to a conjunction of two statements: A, C, B are collinear,
and AC =: C B.We, thus, obta in two equations from (iii) and (iv). Finally, (ii), (vii) ,
and (viii) are left to the reader in Exercise 4. 0

Exercise 3 gives several other types of statements that can be translated into polyno-
mial equations. Wewill say that a geometric theorem is admissible if both its hypotheses
and its conclusions admit translations into polynomial equations.There are always many
'different equivalent formulations of an admissible theorem; the translation will never
be unique.
Correctly translating the hypotheses of a theorem into a system of polynomial equa -

tions can be accomplished most readily if we think of constructing a figure illustrating
the configuration in question point by point. This is exactly the process used in Example
I and in the following example.

Example 3. We will use Proposition 2 to translate the following beautiful result into
polynomial equations.

Theorem (The Circle Theorem ofApollonius). Let b.ABC be a right triangle in the
plane , with right angle at A. The midpoints a/the three sides and the foot ofthe altitude
drawn from A to BC all lie on one circle.

The theorem is illustrated in the following figure:

c

B

In Exercise I, you will give a conventional geometric proofof the Circle Theorem. Here
we will make the translation to polynomial form, showing that the Circle Theorem is
admissible. We begin by constructing the triangle . Placing A at (0, 0) and B at (u I, 0),
the hypothe sis that L.CAB is a right angle says C =: (0, U2). (Of course, we are taking a
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shortcut here; we could also make C a general point and add the hypothesis CA 1- AB ,
but that would lead to more variables and more equations .)
Next , we construct the three midpoints of the sides. These points have coordinates

M, = (Xl , 0) , M 2 = (0, X2) , and M) = (x ) , X4)' As in Example I, we use the
convention that U I, U2 are to be arbitrary, whereas the X j are determined by the values
of UI , U2. Using part (vi) of Proposition 2, we obtain the equations

hI = 2Xl - UI = 0,
h2 = 2X2 - U2 = 0,
h) = 2x) - U I = 0,
h4 = 2X4 - U2 = O.

The next step is to construct the point H = (xs, X6) , the foot of the altitude drawn from
A.We have two hypotheses here:

AH 1- BC : hs = XSUI - X6U2 = 0,
B, H , C collinear : n« = XSU2 + X6UI - UIU2 = O.

Finally, we must consider the statement that M " M2 ' M) , H lie on a circle . A general
collection of four points in the plane lies on no single circle (this is why the statement of
the Circle Theorem is interesting). But three noncollinear points always do lie on a circle
(the circumscribed circle of the triangle they form). Thus, our conclusion can be restated
as follows: if we construct the circle containing the noncollinear triple M), M2 , M),
then H must lie on this circle also. To apply part (v) of Proposition 2, we must know
the center of the circle, so this is an additional point that must be constructed. We call
the center 0 = (X7, Xg) and derive two additional hypotheses:

MIO = M 20 : h7 = (XI -X7)2 +xi -xi - (Xs -X2)2 = 0,

M ) 0 = M 30 : hs = (XI - X7)2 + (0 - xs)2 - ( X3 - X7)2 - (X4 - Xs)2 = o.
Our conclusion is H 0 = M I 0, which takes the form

(8) g = (xs - X7)2 + (X6 - xg)2 - (XI - X7)2 - xi = O.

We remark that both here and in Example I, the number of hypotheses and the number
of dependent variables Xj are the same. This is typical of properly posed geometric
hypotheses. We expect that given values for the Ui» there should be at most finitely
many different combinations of X j satisfying the equations.

We now consider the typical form of an admissible geometric theorem. We will have
some number of arbitrary coordinates, or independent variables in our construction,
denoted by U I, . . . , u"'. In addition , there will be some collection of dependent vari-
ables X I , . . . , XI/ ' The hypotheses of the theorem will be represented by a collection of
polynomial equations in the ui , X i : As we noted in Example 2, it is typical of a prop-
erly posed theorem that the number of hypotheses is equal to the number of dependent
variables , so we will write the hypotheses as

(9)
hl/(UI, . .. , Un" XI, .• • , x,,) = O.
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The conclusions of the theorem will also be expressed as polynomials in the u. , xi - It
suffices to cons ider the case of one conclusion since if there are more, we can simpl y
treat them one at a time. Hence, we will write the conclusion as

g(UI • . . . , UIII•XI, · · ·, XII) = O.

The question to be addressed is: how can the fact that g follows from h i . ... , li; be
deduced algebraically?The basic idea is that we want g to vanish whenever hi , . . . , h ll
do. We observe that the hypotheses (9) are equations that define a variety

v = V (h i , ... , hll ) C JRIII +II.

This leads to the following definition .

Definition 4. The conclusion g follows strictly from the hypotheses h i , .. .• h., if
g E I(V) C JR[UI • . . . , UIII • x I , .• . , XII], where V = V(h l • . . . , h,,).

Although this definition seems reasonable, we will see later that it is too strict. Most
geometric theorems have some "degenerate" cases that Definition 4 does not take into
account. But for the time being , we will use the above notion of " follows strictl y."
One drawback of Definition 4 is that because we are working over IR, we do not

have an effect ive method for determining I (V ). But we still have the following useful
criterion .

Proposition S. If g E J (h I , .. . • hll ) , then g follows strictly from h J, ••• • hn •

Proof. The hypothesis g E J (h J, •• • • h ,,) implies that g o' E (h I , . .. • h,,) for some s .
Thus. go' = L: ;'=I Ajh j •where Aj E JR[U I' . . . , U III• XI • ... ,XII ]' Then go'. and. hence .
g itself. must vanish whenever hI • . . . • h ll do. 0

Note that the converse of this proposition fails whenever J (h) , . . . , h,,) ~ I (V),
which can easily happen when working over JR. Nevertheless. Proposition 5 is still
useful because we can test whether g E J (h I • . . . • h,,) using the radical mem-
bership algorithm from Chapter 4, §2. Let 7 = (h I, . .. , h" , I - yg ) in the ring
JR[u I, . . . • ';m. X l • . ..• X". y ]. Then Proposition 8 of Chapter 4, §2 implies that

g E J(h I, . . . • h,,) {:::::::} {I} is the reduced Groebner basis of 7.
If this condition is satisfied, then g follows strictly from h, • . . . , h.;
If we work over (['. we can get a better sense of what g E "';"(h' I-.-. -. -. •' he-,,') means.

By allowing solutions in ([', the hypotheses h i ; • • • , h; define a variety Va:: C ([, 11I+".
Then . in Exercise 9, you will use the Strong Nullstellensatz to show that

g EJ(h l • . . •• h,,) C IR[UI , . . . , UIII• Xl • . . .• XII]

{:::::::} g E I ( Va:: ) C (['[UI • . .. • Um , Xl • .. . , x,,].

Thus, g E J (h I , . . . , h ,,) means that g .. follows strictly over ([''' from h, • . . . , h ll •
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Let us apply these concepts to an example. This will reveal why Definition 4 is too
strong.

Example (continued). To see what can go wrong if we proceed as above, consider the
theorem on the diagonals of a parallelogram from Example I, taking as hypotheses the
four polynomials from (1) and (2):

hi = Xz - u3 ,

hz = (XI - UI)U3 - uzxz,

h 3 = X4XI - x3 u3 ,

h 4 = X4(UZ - UI) - (X3 - UI)U3.

We will take as conclusion the first polynomial from (3):

g = x~ - 2XIX3 - 2X4XZ + xi-

To apply Proposition 5, we must compute a Groebner basis for

Y= (hI, ha. h 3, hs, I - yg) E lR[u) , Uz , U3, X I> Xz , X3 , X4, y] .

Surprisingly enough , we do not find {l}. (You will use a computer algebra system in
Exercise 10 to verify this.) Since the statement is a true geometric theorem, we must
try to understand why our proposed method failed in this case .
The reason can be seen by computing a Groebner basis for I = (hI, hz . h 3, h 4) in

lR[u I , Uz, u 3, Xl, Xz , X3, x41, using lex orderwith x, > Xz > X3 > X4 > U) > Uz > U3.

The result is

II = X IX4 + X4UI - X4UZ - U I U3 ,

h = X I U3 - U I U3 - UZU3,

h = Xz - U3,

14 = X3U3 + X4U) - X4UZ - U4U3,

Z 1 z IIs = X4uI - X4UI UZ - ZU IU3 + ZUI UZU3 ,

1 Z
16 = X4U I U3 - ZUIU 3 ,

The variety V = V (h I, hz, h 3, h 4) = V (f), ... , 16) in lR7 defined by the hypotheses
is actually reducible . To see this, note that h factors as (XI - U I - Uz)U 3 , which implies
that

Since Is and 16 also factor, we can continue this decomposition process .Things simplify
dramatically if we recompute the Groebner basis at each stage, and, in the exercises,
you will show that this leads to the decomposition

V = V' U VI U Vz U V3
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into irreducible varieties, where

(
UI +UZ U3)V' = V XI - UI - UZ, Xz - U3. X3 - 2 ' X4 - 2 '

U, = V(XZ , X4. U3) .

Vz = V(XI . XZ, UI - UZ. U3).

V3 = VeX, - ui , Xz - U3 . X3U3 - X4UZ. u,).

You will also show that none of these varieties are contained in the others, so that
V' , VI. Uz- V3 are the irreducible components of V.
The problem becomes apparent when we interpret the components VI , Ui- V 3 C V

in terms of the parallelogram AB DC. On V I and Vz , we have U3 = O. This is troubl ing
since U3 was supposed to be arbitrary. Further, when U3 = 0, the vertex C of our
paralleogram lies on AB and. hence we do not have a parallelogram at all. This is a
degenerate case of our configuration, which we intended to rule out by the hypothesis
that ABDC was an honest parallelogram in the plane. Similarly, we have U I = 0 on
V 3. which again is a degenerate configuration.
You can also check that on VI = V(xz , X4 . U3) , our conclusion g becomes g =

x~ - 2X ,X3, which is not zero since XI and X 3 are arbitrary on V I' This explains why
our first attempt failed to prove the theorem. Once we exclude the degenerate cases
VI, Uz. V3, the above method easily shows that g vanishes on V'. We leave the details
as an exercise.

Our goal is to develop a general method that can be used to decide the validity of a
theorem, taking into account any degenerate speci al cases that may need to be excluded.
To begin, we use Theorem 2 of Chapter 4, §6 to write V = V(h lo • • • , hll ) C 1R"'+11
as a finite union of irreducible varieties,

(10)

As we saw in the continuation of Example I , it may be the case that some polynomial
equation involving only the u, holds on one or more of these irreducible components of
V. Since our intent is that the u, should be essentially independent, we want to exclude
these components from consideration if they are present. We introduce the following
terminology,

Definition 6. Let W be an irreducible variety in the affine space 1R"'+11 with coordi-
nates u I, . . .• U"', XI, . . . , XII' We say that the functions u I, . . . , u'" are algebraically
independent on W if no nonzero polynomial in the u, alone vanishes identically on W.

Equivalently, Definition 6 states that U I, .. . , u'" are algebraically independent on
W ifl(W) n IR[UI, . . . , u",l = (OJ.
Thus , in the decomposition of the variety V given in (10), we can regroup the

irreducible components in the following way:

(II) V = WI U · · · U w, U VI U · ·· U u. ,



§4. Automatic GeometricTheorem Proving 295

where the u, are algebraically independent on the components Wi and are not alge-
braically independent on the components U]. Thus, theU, represent "degenerate" cases
of the hypotheses of our theorem. To ensure that the variables u, are actually arbitrary
in the geometric configurations we study, we should consider only the subvariety

V' = WI U . . . U w, C V.

Given a conclusion g E IR[u I, . . • , Unr, XI, ••• , XII1we want to prove, we are
not interested in how g behaves on the degenerate cases. This leads to the following
definition .

Definition 7. The conclusion g follows generically from the hypotheses hi, . . . , h ll if
g E I(V') C IR[u), . .. , Unr, XI , .•. , XII ], where. as above. V' C IRIIl+1I is the union
ofthe components ofthe variety V = V (h 1, •.• , hll ) on which the u, are algebraically
independent.

Saying a geometric theorem is "true " in the usual sense means precisely that its
conclusion(s) follow generically from its hypotheses. The question becomes, given a
conclusion g: Can we determine when g E I(V')? That is, can we develop a crite-
rion that determines whether g vanishes on every component of V on which the u,
are algebraically independent, ignoring what happens on the possible "degenerate"
components?
Determining the decomposition of a variety into irreducible components is not always

easy, so we would like a method to determine whether a conclusion follows generically
from a set of hypotheses that does not require knowledge of the decomposition (11).
Further, even if we could find V', we would still have the problem of computing I(V').
Fortunately, it is possible to show that g follows generically from hi , ... , h ll without

knowing the decomposition of V given in (II). We have the following result.

Proposition 8. In the situation described above, gfollows genericallyfrom hi • . . . , h;
whene ver there is some nonzero polynomial ciu, , . . . , um) E IR[UI, .. . , unrl such that

c · g E -Jii,

where H is the ideal generated by the hypotheses hi in IR[u I, ••• , U"', XI, • • . , XII1.

Proof. Let Vj be one of the irreducible components of V' . Since c . g E .JH, we see
that c . g vanishes on V and, hence, on Vj • Thus, the product c . g is in I(Vj ) . But Vj
is irreducible, so that I(Vj ) is a prime ideal by Proposition 3 of Chapter 4, §5. Thus,
c . g E I(Vj ) implies either cor g is in I(Vj ) . We know c ¢. I(Vj ) since no nonzero
polynomial in the u, alone vanishes on this component. Hence, g E I(Vj ) , and since
this is true for each component of V ', it follows that g E I(V '). 0

For Proposition 8 to give a practical way ofdetermining whether a conclusion follows
generically from a set of hypotheses, we need a criterion for deciding when there is
a nonzero polynom ial c with c . g E JH.This is actually quite easy to do. By the
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definition of the radical , we know that c . g E .JH if and only if

"(c ·g )S = LAjh j
j = 1

for some A j E IR[u I, . . . , Um • XI• . . . , x,,] and s ::: I. If we divide both sides of this
equation by c' , we obtain

" A ·
g' = L -fh j ,

j = 1 c

which shows that g is in the radical of the ideal 11 generated by hi , .. .• h.; over the
ring IR(u I •... , Um )[XI, ... •x,,] (in which we allow denominators depending only on
the u;) . Conversely, if g E IH, then

"
e' = L Bjh j•

j=1

where the Bj E IR(UI •. . . •Unr)[XI• . . . , x,,] . If we find a least common denominator
c for all terms in all the B, and multiply both sides by c' (clearing denominators in the
process) , we obtain

"(c ·g)S = LBjh j ,
j=1

where Bj E IR[UI, . . . , U nr . XI , . . . • x,, ] and c depends only on the ui. As a result,
c . g E .JH.These calculations and the radical membership algorithm from §2 of
Chapter 4 establish the following corollary of Proposition 8.

Corollary 9. In the situation of Proposition 8. the following are equivalent:
(i) There is a nonzero polynomial c E IR[u I • .. . , um ] such that c . g E .JH.
(ii) g E IH. where 11 is the ideal generated by the h j in IR(u I , . .. •UI1l )[XI , .• . , x,,].
(iii) {I} is the reduced Groebner basis of the ideal

(hi • .. .• h" . I - yg ) C .IR(UI •.. . , Unr)[XI •.. .• X" . y].

If we combine part (iii) of this corollary with Proposition 8. we get an algorithmic
method for proving that a conclusion follows generically from a set of hypotheses. We
will call this the Groebner basis method in geometric theorem proving.
To illustrate the use of this method , we will consider the theorem on parallelograms

from Example I once more . We compute a Groebner basis of (hi . h2• h3, h4, I - yg)
in the ring IR(ul. U2. U3)[XI . X2 . X3. X4 , y ]. This computation does yield {I} as we
expec t. Making UI , U2, U3 invertible by passing to IR(u 1, U2 , U3) as our field of coef-
ficients in effect removes the degenerate cases encountered above. and the conclusion
does follow generically from the hypotheses. Moreover, in Exercise 12, you will
see that g itself (and not some higher power) actually lies in (h I , h2, h3, h4) c
IR(u I . U2, U2)[XI. X2, X3, X4].
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Note that the Groebner basis method does not tell us what the degenerate cases are.
The information about these cases is contained in the polynomial c E JR[uI, .. . , um ] ,

for c . g E ,JH tells us that g follows from hi, . . . , h., whenever c does not vanish (this
is because c . g vanishes on V). In Exercise 14, we will give an algorithm for finding c.
Over C, we can think of Corollary 9 in terms of the variety V([' = V(h l , ... , h,,) C

<c1II+" as follows . Decomposing V([' as in (II), let V~ C V([' be the union of those
components where the u, are algebraically independent. Then Exercise 15 will use the
Nullstellensatz to prove that

3c =I- 0 in JR[UI, . .. , u m ] with c · g E J(h l , •• • , h,,) C JR[UI, . . . , UIII , XI ,· ··, XII]

<===} g E I(V~) C <C[U I, . . . , Um , XI, . · ., XII]'

Thus, the conditions of Corollary 9 mean that g " follows generically over <C" from the
hypotheses hi , .. . , h".
This interpretation points out what is perhaps the main limitation of the Groebner

basis method in geometric theorem proving : it can only prove theorems where the
conclusions follow generically over <C, even though we are only interested in what
happens over JR. In particular, there are theorems which are true over JR but not over
<C [see 5TURMFELS (1989) for an example] . Our methods will fail for such theorems.
When using Corollary 9, it is often unnecessary to consider the radical of H. In

many cases, the first power of the conclusion is in H already. So most theo~m proving
programs in effect use an ideal membership algorithm first to test if g E H, and only
go on to the radical membership test if that initial step fails.
To illustrate this, we continue with the Circle Theorem of Apollonius from Exam-

ple 3.Our hypotheses are the eight polynomials hLfrom (5)-(7).Webegin by computing
a Groebner basis (using lex order) for the ideal H, which yields

II = XI - ul/2 ,
h = X2 - u2I2,

!J = X3 - UI/2,

14 = ,X4 - u2I2,
UIU~

Is = Xs-
u~ + u~'

U~U2
16 = X6 - u2 + u i '

I 2

h = X7 - u l/4,

Is = Xg - u2I4.

We leave it as an exercise to show that the £onclusion (8) reduces to zero on division
by this Groebner basis. Thus, g itself is in H, which shows that g follows generically
from hi, .. . , hg. Note that we must have either U I =I- 0 or U2 =I- 0 in order to solve
for Xs and X6. The equations U I = 0 and U2 = 0 describe degenerate right "triangles"
in which the three vertices are not distinct, so we certainly wish to rule these cases
out. It is interesting to note, however, that if either U I or U2 is nonzero, the conclusion
is still true. For instance, if U I =I- 0 but U2 = 0, then the vertices C and A coincide.
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From (5) and (6), the midpoints M) and M3 coincide, Mz coincides with A, and H '
coincides with A as well . As a result, there is a circle (infinitely many of them in fact)
containing M" Mz, M3, and H in this degenerate case. In Exercise 16, you will study
what happens when u 1 = Uz = O.
We conclude this section by noting that there is one further subtlety that can occur

when we use this method to prove or verify a theorem. Namely, there are cases where
the given statement of a geometric theorem conceals one or more unstated "extra"
hypotheses. These may very well not be included when we make a direct translation to
a system of polynomial equations. This often results in a situation where the variety V'
is reducible or, equivalently, where p ~ 1 in (II). In this case, it may be true that the
intended conclusion is zero only on some of the irreducible components of V', so that
any method based on Corollary 9 would fail. We will study an example of this type in
Exercise 17. If this happens, we may need to reformulate our hypotheses to exclude the
extraneous, unwanted components of V' .

EXERCISES FOR §4

1. This exercise asks you to give geometric proofs of the theorems studied in Examples I and
3.
a. Give a standard Euclidean proof of the theorem of Example I. Hint: Show 6ANC ~

6BND.
b. Give a standard Euclidean proof of the Circle Theorem of Apollonius from Example 3.

Hint: First show that ABand M2M) are parallel.
2. This exercise shows that it is possible to give translations of a theorem based on different

collections of arbitrary coordinates. Consider the parallelogram ABDC from Example 1
and begin by placing A at the origin.
a. Explain why it is also possible to consider both of the coordinates of D as arbitrary

variables: D = (UI' U2).
b. With this choice, explain why we can specify the coordinates of Bas B = (u) , XI). That

is, the x-coordinate of B is arbitrary, but the y-coordinate is determined by the choices
ofu l ,u2,u).

c. Complete the translation of the theorem based OIi this choice of coordinates.
3. Let A, B, C, D, E, F, G, H be points in the plane.

a. Show that the statement AB is tangent to the circle through A, C, D can be expressed
by polynomial equations. Hint: Construct the center of the circle first. Then, what is true
about the tangent and the radius of a circle at a given point?

b. Show that the statement AB . CD = EF . GH can be expressed by one or more
polynomial equations.

c. Show that the statement 2~ = ~~ can be expressed by one or more polynomial
equations.

d. The cross ratio of the ordered 4-tuple of distinct collinear points (A , B, C, D) is defined
to be the real number

AC ·BD
AD · BC.

Show that the statement "The cross ratio of (A, B, C, D) is equal to p E 1R"can be
expressed by one or more polynomial equations.

4. In this exercise, you will complete the proof of Proposition 2 in the text.
a. Prove part (ii).
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b. Show that if a , {3 are acute angles , then a = {3 if and only if tan a = tan {3 . Use this fact
and part c of Exercise 3 to prove part (vii) of Proposition 2. Hint: To compute the tangent
of an angle , you can construct an appropriate right triangle and compute a ratio of side
lengths .

c. Prove part (viii) .
5. Let tJ.ABC be a triangle in the plane. Recall that the altitude from A is the line segment from

A meeting the opposite side BC at a right angle. (We may have to extend BC here to find the
intersection point.) A standard geometric theorem asserts that the three altitudes of a triangle
meet in a single point H , often called the orthocenter of the triangle . Give a translation of
the hypotheses and conclusion of this theorem as a system of polynomial equations.

6. Let tJ.ABC be a triangle in the plane. It is a standard theorem that if we let MI be the
midpoint of BC, M2 be the midpoint of AC and M) be the midpoint of AB, then the
segments AMJ, BM2 and CM) meet in a single point M, often called the centro id of the
triangle. Give a translat ion of the hypotheses and conclusion of this theorem as a system of
polynomial equations.

7. Let tJ.ABC be a triangle in the plane . It is a famous theorem of Euler that the circumcenter
(the center of the circumscribed circle), the orthocenter (from Exercise 5), and the centroid
(from Exercise 6) are always collinear. Translate the hypotheses and conclusion of this
theorem into a system of polynomial equations. (The line containing the three "centers" of
the triangle is called the Euler line of the triangle.)

8. A beautiful theorem ascribed to Pappus concerns two collinear triples of points A, B, C and
A' , B', C'. Let

p=AB'nA'B ,

Q = AC' n A'C ,

R = BC' n B'C

be as in the figure:

A B c

Then it is always the case that P, Q, R are collinear points. Give a translation of the
hypotheses and conclusion of this theorem as a system of polynomial equations.

9. Given a j , .b; E IR[UJ, . . . U""XJ, ... , ,t,,], let Vcr = V(hl , . . . ,h,,) c ec"'+".If
g E IR[u J, , U"' , X I , . • . , x,,], the goal of this exercise is to prove that

g EJ(h J , • • • , h,,) C IR[UI, . . " U"' , XI, " " x,,]

¢:=} g E I(Vcr} C ec[UI, . . . , U"', XJ, .. . , x ,,].

a. Prove the => implication .
b. Use the Strong Nullstellensatz to show that if g E I(Vcr), then there are polynomials

A j E ec[UI , . . . , U"', XI , "" x,,] such that gS= 2:;=1 A jh j for some s ::: I.
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c. Explain why Aj can be written Aj = Aj + i A'~ . where Aj. Aj are polynom ials with real
coefficients . Use this to conclude that s' = tz: ajh j • which will complete the proof
of the ¢= implication. Hint: g and hi • . . .• h, have real coefficients .

10. Verify the claim made in Example I that (I I is not the unique reduced Groebner basis for
the ideal i = (h i. h2• h ) . I - yg).

II . Th is exercise will study the decomposition into irreducible components of the variety defined
by the hypotheses of the theorem from Example I.
a. Verify the claim made in the continuation of Example I that

V = V(fl. XI - UI - U2 . f) • . . . • f 6) U V(fl . u). !J, . . .. f 6) = VI U V2·

b. Compute Groebner bases for the defining equations of VI and V2•Some of the polynomials
should factor and use this to decompose VI and V2•

c. Bycontinuing this process. show that V is the union of the varieties V' . VI. V2• V ) defined
in the text.

d. Prove that V' . VI. V2 • V) are irreducible and that none of them are contained in the union
of the others . This shows that V' , VI, V2• V3 are the irreducible components of V.

e. On which irreducible component of V is the conclusion of the theorem valid?
f. Suppose we take as hypothe ses the four polynomials in (4) and (2). Is W

V(h 'I' h; . h). h 4 ) reducible ? How many components does it have?
12. Verify the claim made in Example I that the conclusion g itself (and not some higher power)

is in the ideal generated by h lohi, h). h4 in IR(uloU2, U ))[XI. X 2. X ) . x41.
13. By applying part (iii) of Corollary 9, verify that g follows gener ically from the h j for ea<;b

of the following theorems. What is the lowest power of g which is conta ined in the ideal H
in each case?
a. the theorem on the orthocenter of a triangle (Exercise 5).
b. the theorem on the centroid of a triangle (Exerc ise 6).
c. the theorem on the Euler line of a triangle (Exerc ise 7),
d. Pappus 's Theo rem (Exercise 8).

14. In this exercise . we will give an algorithm for finding a nonzero c E IR[ul•. .. , u",l such
that c . g E ../H. assuming that such a c exists. We will work with the ideal

H = (h i• . . . , h" . I - yg ) C IR[ul . . . . . Un" Xl.. . . , X." yl.

a. Show that the conditions of Corollary 9 are equivalent to H n IR[uI • . .. • U", I t- [O}.
Hint: Use conditi on (iii) of the corollary.

b. If c E H n IR[uI, .. . , u'"I. prove that c . g E ../H.Hint: Adapt the argument used in
equations (2)-(4) in the proof of Hilbert's Nullstellensatz in Chapter 4. §I.

c. Descr ibe an algorithm for computing H n IR[uI •. . .• u'"I.For maximum efficiency. what
monom ial order should you use?
Parts a-c give an algorithm which decides if there is a nonzero c with c . g E ../H
and simultaneously produces the required c. Parts d and e below give some interesting
properties of the ideal H n IR[uI• . . . • u",].

d. Show that if the conclusion g fails to hold for some choice of U I•. . . . U"' . then
(UIo •• . , u", ) E W = V (H n IR[U I•.. . , u",)) C IR"'. Thus. W records the degenerate
cases where g fails.

e. Show that J""H"'-n- IR- [u-I.-.-. -. -.u-.-"I gives all c 's for which c -g E ../H.Hint: One direction
follows from part a. If c . g E ../H.note the H contains (c . g)' and I - gy . Now adapt
the argument given in Proposi tion 8 of Chapter 4. §2 to show that c' E H.

15. As in Exercise 9. suppose that we have h lo .. . • n; E IR[U Io . . . , U"' , XI . .. .• x,,]. Then
we get V4: = V(h 10 • • • , h,,) C <r"'+" . As we did with V. let V~ be the union of the
irreducible components of V~ where U I•... • u" are algeb raically independent. Given g E
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JR[UI •. .. • u"'. x " . . . •x,,].we want to show that

3c i= 0 in lR[ul • . . . . u",) with c · g E J(hl • . . . • h,,) C lR[ul • . . .• U"' . Xl •.. . • x,,)= g E I(V~) C IL[ul . . . . • U"' .XI • • • . • X,,) .

a. Prove the~ implicat ion. Hint: See the proof of Proposition 8.
b. Show that if g E I(V~). then there is a nonzero polynomial c E <C[U I•. ..• u",] such that

c -g E I(Ver). Hint: Write VlL = V~U V;u · ·· u V~. where u. . . . . • u'" are algebraically
dependent on each Vj. This means there is a nonzero polynomial Cj E <C[UI • . . . u",]
which vanishes on Vj.

c. Show that the polynomial C of part b can be chosen to have real coefficients . Hint: If c
is the polynomial obtained from C by taking the complex conjugates of the coefficients,
show that cchas real coefficients .

d. Once we have C E JR[u" . .. • u",] with c . g E I(VlL) , use Exercise 9 to complete the
proof of the ¢:: implication.

16. This exercise deals with the Circle Theorem of Apollonius from Example 3.
a. Show that the conclusion (8) reduces to 0 on division by the Groebner basis (12) given

in the text.
b. Discuss the case U I = U2 = 0 in the Circle Theorem. Does the conclusion follow in this

degenerate case?
c. Note that in the diagram in the text illustrating the Circle Theorem. the circle is shown

passing through the vertex A in addition to the three midpoints and the foot of the altitude
drawn from A. Does this conclusion also follow from the hypotheses?

17. In this exercise , we will study a case where "a direct translation of the hypotheses of a
"true" theorem leads to extraneous components on which the conclusion is actually false.
Let t.A BC be a triangle in the plane. We construct three new points A'. B' . C' such that the
triangles t.A' BC . t.AB'C . t.ABC' are equilateral.The intended construction is illustrated
in the figure below.

Our theorem is that the three line segments AA'. BB'. CC' all meet in a single point S.
(We call S the Steiner point of the triangle . If no angle of the original triangle was greater
than ¥, it can be shown that the three segments AS , BS. CS form the network of shortest
total length connecting the points A. B. C.)
a. Give a convent ional geometric proof of the theorem , assuming the construction is done

as in the figure.
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b. Now. translate the hypotheses and conclusion of this theorem directly into a set of
polynomial equations .

c. Apply the test based on Corollary 9 to determine whether the conclusion follows gener-
ically from the hypotheses . The test should fail. Note: This computation may require a
great deal of ingenuity to push through on some computer algebra systems. This is a
complicated system of polynomials.

d. (The key point) Show that there are other ways to construct a figure which is consistent
with the hypotheses as stated, but which do not agree with the figure above. Hint: Are
the points A'. B'. C' uniquely determ ined by the hypotheses as stated? Is the statement
of the theorem valid for these alternate constructions of the figure? Use this to explain
why part c did not yield the expected result . (These alternate constructions correspond to
points in different components of the variety defined by the hypotheses.)

e. How can the hypotheses of the theorem be reformulated to exclude the extraneous
components?

§5 Wu's Method

In this section , we will study a second commonly used algorithmic method for prov-
ing theorems in Euclidean geometry based on systems of polynomial equations. This
method, introduced by the Chinese mathematician Wu Wen-Tsiin, was developed be-
fore the Groebner basis method given in §4. It is also more commonly used than the
Groebner basis method in practice because it is usually more efficient.
Both the elementary version of Wu's method that we will present, and the more

refined versions, use an interesting variant of the division algorithm for multivariable
polynomials introduced in Chapter 2, §3. The idea here is to follow the one-variable
polynomial division algorithm as closely as possible, and we obtain a result known as
the pseudodivision algorithm . To describe the first step in the process, we consider t"':'o
polynomials in the ring k[XI , •• • , XII' Y] , written in the form

f = cpyp + + CIY + Co,

g = dlllylIl + + d1y + do.

where the coefficients c., dj are polynom ials in XI • • • . ,XII ' Assume that m S p.
Proceed ing as in the one-variable division algorithm for polynomials in y, we can
attempt to remove the leading term cpyP in f by subtracting a multiple of g. However,
this is not possible directly unless dill divides Cp in k[XI , • . • • XII]' In pseudodivision ,
we first multiply t by dm to ensure that the leading coefficient is divisible by dm , then
proceed as in one-variable division. We can state the algorithm formally as follows.

Proposition 1. Let [, g E k[XI , •• • , XII' y] be as in (1) and assum e m S p and
g # O.
(i) There is an equation

d/~J = qg + r,

where q, r E k[XI, ••• , XII' y], S ~ O. and either r = 0 or the degree ofr in y is
less than m.
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(ii) r E (f, g) in the ring k[Xt • . . . • XII ' y ].

Proof. (i) Polynomials q , r satisfying the conditions of the proposit ion can be con-
structed by the following algorithm , called pseudodivision with respect to y. We use
the notation deg(h. y ) for the degree of the polynomial h in the variable y and LC(h, y)
for the leading coefficient of h as a polynomial in y-that is, the coefficient of ydeg(h.yl
in h.

Input: f ,g
Output: q. r

r := f; q := 0
WHILE r i= 0 AND degtr, y) ~ m DO

r := dmr - LC(r. y )gydeg(r.Yl-m
q := dmq + LC(r. y )ydeg(r.Yl-m

Note that if we follow this procedure , the body of the WHILE loop will be executed
at most p - m + 1 times. Thus, the power s in d~J = qg + r can be chosen so that
s .::: p - m + 1. We leave the rest of the proof, and the consideration of whether q, r
are unique. to the reader as Exercise 1.
From d;:J = qg + r , it follows that r = d~J - qg E (f, g), which completes the

proof of the proposition. 0

The polynomials q , r are known as a pseudoquotient and a pseudoremainder of
f on pseudodivision by g, with respect to the variable y . We will use the notation
Rem(f. g. y) for the pseudoremainder produced by the algorithm given in the proof of
Proposition 1. For example, if we pseudodivide f = x 2y 3 - y by g = x 3y - 2 with
respect to y by the algorithm above, we obtain the equat ion

(x 3 ) 3 f = (x 8y2 + 2x 5y + 4x 2 - x 6 )g + 8x2 - 2x 6 •

In particular, the pseudoremainder is Rem(f, g , y ) = 8x 2 - 2x 6•
'We note that there is a second. "slicker" way to understand what is happening in this

algorithm. The same idea of allowing denominators that we exploited in §4 shows that
pseudodivision is the same as
• ordinary one-variable polynomial division for polynomials in y, with coefficients in
the rational function field K = k(XI , ...• XII)' followed by

• clearing denominators. You will establish this claim in Exercise 2, based on the ob-
servation that the only term that needs to be inverted In division of polynomials in
K [y] (K any field) is the leading coefficient dill of the divisor g . Thus, the denomi -
nators introduced in the process of dividing f by g can all be cleared by multiplying
by a suitable power d;:, . and we get an equation of the form d;:. f = qg + r ,

In this second form, or directly , pseudodivision can be readily implemented in most
computer algebra systems. Indeed, some systems include pseudodivision as one of the
built-in operations on polynomials.
We recall the situation studied in §4, in which the hypotheses and conclusion of a theo-

rem in Euclidean plane geometry are translated into a system of polynomials in variables
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U I, . . . , U"', xI • • • . , X", with hi, . .. , h" representing the hypotheses and g giving the
conclusion. As in equation (11) of §4, we can group the irreducible components of the
variety V = V(h l , . . . , h,,) C lR"'+" as

V = V' U U,

where V' is the union of the components on which the u, are algebraically independent.
Our goal is to prove that g vanishes on V'.
The elementary version of Wu's method that we will discuss is tailored for the case

where V' is irreducible . We note, however, that Wu's method can be extended to the
more general reducible case also. The main algebraic tool needed (Ritt's decomposition
algorithm based on characteristic sets for prime ideals) would lead us too far afield,
though , so we will not discuss it. Note that, in practice, we usually do not know in
advance whether V' is irreducible or not. Thus, reliable "theorem-provers" based on
Wu's method should include these more general techniques too.
Our simplified version of Wu's method uses the pseudodivision algorithm in two

ways in the process of determining whether the equation g = 0 follows from h j = O.
• Step 1 of Wu's method uses pseudodivision to reduce the hypotheses to a system of
polynomials h that are in triangular form in the variables XI , . .. , X" . That is, we
seek

II = II(Ut, .··,U""XI),

[: = h(UI, . .. , U"', XI, Xz),

(2)
1" = f,,(UI, ... , Urn , XI • . . . ,X,,)

such that V(fl, . .. , I,,) again contains the irreducible variety V', on which the u,
are algebraically independent.

• Step 2 of Wu's method uses successive pseudodivision of the conclusion g with
respect to each of the variables Xj to determine whether g E I(V') . We compute

R,,_I = Rem(g, 1", x,,) ,
R,,-z = Rem(R,,_I, In-h X,,_I),

(3)
R1 = Rem(Rz, h Xz),

Ro = Rem(R} , II, XI) .

• Then Ro = 0 implies that g follows from the hypotheses hj under an additional
condition, to be made precise in Theorem 4.
Toexplain howWu's method works, we need to explain each of these steps, beginning

with the reduction to triangular form.

Step 1. Reduction to Triangular Form
In practice, this reduction can almost always be accomplished using a procedure very
similar to Gaussian elimination for systems of linear equations: We will not state any
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general theorems concerning our procedure. however. because there are some excep-
tional cases in which it might fail. (See the comments in 3 and 4 below.) A completely
general procedure for accomplishing this sort of reduction may be found in CHOU
(1988) .
The elementary version is performed as follows. We work one variable at a time.

beginning with XII'

I. Among the hj . find all the polynomials containing the variable X" . Call the set of such
polynomials S. (If there are no such polynomials. the translation of our geometric
theorem is most likely incorrect since it would allow XII to be arbitrary.)

2. If there is only one polynomial in S. then we can rename the polynomials. making
that on polynomial 1,;. and our system of polynomials will have the form

(4)

f,; = f,;(Ut, . .. , U"" XI, . . . ,XII).

3. If there is more than one polynomial in S. but some element of S has degree lin
XII. then we can take 1,; as that polynomial and replace all the other hypotheses in
S by their pseudoremainders on division by 1,; with respect to X". [One of these
pseudoremainders could conceivably be zero. but this would mean that 1,; would
divide d' h, where h is one of the other hypothesis polynomials and d = LC(J,;, XII) '
This is unlikely since V'is assumed to be irreducible.) We obtain a system in the
form (4) again . By part (ii) of Proposition I, all the Ii are in the ideal generated by
the hl :

4. If there are several polynomials in S. but none has degree I. then we repeat the steps :
a. pick a , b E S where 0 < deg(b. XII) ~ deg(a. x,,);
b. compute the pseudoremainder r = Rem(a , b. XII);
c. replace S by (S - {a}) U {r} (leaving the hypotheses not in S unchanged).
until eventually we are reduced to a system of polynomials of the form (4) again.
Since the degree in XII are reduced each time we compute a pseudorernainder, we will
eventually remove the XII terms from all but one of our polynomials . Moreover, by
part (ii) of Proposition I, each of the resulting polynomials is contained in the ideal
generated by the hl- Again, it is conceivable that we could obtain a zero pseudore-
mainder at some stage here. This would usually. but not always, imply reducibility.
so it is unlikely. We then apply the same process to the polynomials 1[. . . . . 1,;-1 in
(4) to remove the XII-l terms from all but one polynomial. Continuing in this way.
we will eventually arrive at a system of equations in triangular form as in (2) above.
Once we have the triangular equations. we can relate them to the orig inal hypotheses

as follows .

Proposition 2. Suppose that II = . . . = f" = 0 are the triangular equations
obtained from h I = . . . = h" = 0 by the above reduction algorithm. Then

V ' c v c V(fl • . . .• f, ,).
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Proof. As we noted above. all the Ii are contained in the ideal generated by the hl :Thus.
(fl,""f,,) C (hi , . .. , hll) and. hence. V = V(h lo. ·., h ll ) C V(ft, . . . • 1,,)
follows immediately. Since V' C V. we are done. 0

Example 3. To illustrate the operation of this triangulation procedure, we will apply
it to the hypotheses of the Circle Theorem of Apollonius from §4. Referring back to
(5)-(7) of §4, we have

hi =2xI - u t ,

h 2 = 2x2 - U2 ,

h3 = 2x 3 - U t .

h 4 = 2X4 - U2 .

hs = U2XS + UtX6 - UIU2,

h6 = UtXS - U2X6,

h 7 = x~ - xi - 2xtX7 + 2X2XS,

h s = x~ - 2XIX7 - x i + 2X3X7 - x~ + 2X4XS .

Note that this system is very nearly in triangular form in the xi- In fact, this is often
true. especially in the cases where each step ofconstructing the geometric configuration
involves adding one new point.
At the first step of the triangulation procedure, we see that h7 • hs are the only poly-

nomials in our set containing xs . Even better. h s has degree I in xs . Hence. we proceed
as in step 3 of the triangulation procedure, making fs = hs• and replacing h7 by

h = Rem(h7 • hs• xs)

= (2XIX2 - 2X2X3 - 2XIX4)X7 - X~X2 -f x2xi + X~X4 - X~X4 + X2X~ ,

As this example indicates. we often ignore numerical constants when computing re-
mainders. Only h contains X7. so nothing further needs to be done there. Both h6 and
hs contain X6 . but we are in the situation of step 3 in the procedure again. We make
f6 = h6 and replace hs by

fs = Rem(hs . h6. X6) = (ui + u~)xs - UIU~ .

The remaining four polynomials are in triangular form already, so we take [t = hi for
i = 1,2.3,4.

Step 2. Successive Pseudodivision
The key step inWu's method is the successive pseudodivsion operation given in equation
(3) computing the final remainder Ro. The usefulness of this operation is indicated by
the following theorem.

Theorem 4. Consider the set ofhypotheses and the conclusionfora geometric theorem.
Let Ro be the final remainder computed by the successive pseudodivision of g as in
(3) , using the system ofpolynomials f lo .. . ,1" in triangular form (2). Let d j be the
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leading coefficient of h as a polynomial in Xj (so dj is a polynomial in UI, . . . , Urn
and XI • . . . , Xj_I) . Then:
(i) There are nonnegative integersSl , . . . , Sll and polynomials A I , . . . , All in the ring

JR[UI, . . . • Urn,XI • . . . , XII] such that

dJ' . . . d;:"g = Adl + .. .+ AliI" + Ro.

(ii) If Rois the zeropolynomial. then g is zero at every point ofV' - V(dld2 .. . d,,) C
JRIII+Il .

Proof. Part (i) follows by applying Proposition 1 repeatedly. Pseudodividing g by 1"
with respect to XII' we have

RIl - 1 = d;:"g - q"f".

Hence, when we pseudodivide again with respect to XII-I:

R,,-2 = d;:':~ (d~" g - qllfn) - qll-If,,-I
= d;:':;d;;"g - qll-If,,-I - d:":;q"f".

Continuing in the same way, we will eventually obtain an expression of the form

Ro = dJ' .. . d;;"g - (Adl + .,.+ A"f,,),

which is what we wanted to show.
(ii) By the result of part (i), if Ro = 0, then at every point of the variety W

V(fl, . . . , 1,,), either g or one of the d? is zero. By Proposition 2, the variety V' is
contained in W, so the same is true on V'. The assertion follows. 0

Even though they are not always polynomial relations in the u, alone, the equations
d, = 0, where d, is the leading coefficient of h, can often be interpreted as loci
defining degenerate special cases of our geometric configuration.

Example 3 (continued). For instance , let us complete the application ofWu 's method
to the Circle Theorem of Apollonius. Our goal is to show that

g = (xs - X7)2 + (X6 - XS)2 - (XI - X7)2 - x~ = 0

is a consequence of the hypotheses h, = '" = hs = 0 (see (8) of §4). Using
fl' . . . , Is computed above, we set Rs = g and compute the successive remainders

Ri - I = Rem(Ri , /;. Xi)

as i decreases from 8 to I. When computing these remainders, we always use the
minimal exponent s in Proposition I, and in some cases, we ignore constant factors of
the remainder. We obtain the following remainders.

R7 = X4X~ - 2X4XSX7 + X4X~ - X4X~ + 2X4XI X7 +X6X~ - 2X6X'X7
22 2- X6x3 + x6X3 x7 - X6X4
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R 22 22 · 2 22 3 22
6 = X4XIXS - X4X\XS - X4XIX6X3 + X4XIX6 - X4Xt X6 + X4X2XS

22 3 3 2 2
- X4X2Xl - X2X4 XS + X2X4Xl - X2XtX4Xs - X2 XI X4 X6

2 2 2 2 2
+ X2 X3X4XS + X2X3X4X6 - X2X3X4Xl + X4X I X6X3 + X4X2X6XI

222 2
- X4X2X6X3 + X2Xt X4XS - X2X3X4XS + X2X3X4XI

R 222 222 222 222 23
S = U2X4XI XS - U2X4X j Xs + U2X4 X2 XS - U2X 4X2X\ - U2X2X4XS

23 222222
+ U2X2X4 XI - X4U2X2XIXS + X4U2X2X3XS - X4U2X2X3XI

2 2 2 2 2 2 3
+X4U2X2X\XS - X4U2X2X3XS +X4U2X2X3Xl - UIXSU2X4 XI

2 2 2
+ X4UIXSU2X2XI -X4UIXSU2XIX3 - X4UIXSU2X2X3

2 222 22 22
+ X4U\XSU2X I X3 + U 1X5X4XI - X4U,X5X2XI + X4UIX5X2X3

R 4 2 422 4 2 43
4 = - U2X4X2X3XI - U2X 4X2XI + U2X4X2X3XI + U2X4X2Xl

2 2 2 2222 2 2 2
- U2X4UIX2X3X l - U2X4UIX2X\ +U2X4UIX2X3X ,

+ U~X~UiX2XI - UiX~UIX2 - u~x~uix, + uix;u lxi
42 2 3 22 3 2 2 4 2

- U2X4UIX1 +U2X4UIX2XI - U2X4UIXIX3 - U2X4UIX2X3

4 2 322 322 422
+ U2X4UIX2XI - U2X4UIX2X3 + U2X4UIXIX3 + U2X4U 1XI

- UiX4Uix2XI + UiX4Uix2X3

R 4 s 2 4 S 2 4 5 2 45 23 = U2X2X3 XI - U2UIX2X3 + U2UI X2 XI - U2X2X3X,

- 3u~UiX2X\ + 4u~uix2X3 - 4uiuixIX~ - 4uiuixix3

+2uiuixix, + 4uiuix~X3 - 4u~uix2X3X~ + 4uiuix2X~XI

- 2u~xixl - 2u~ulx? + 2u~ulxi + U~UTXt + UiX2X,

- UiUI X2

R 2 s 22 S 2 2 4 2 2 2 6 2
2 = U2UI X2XI - U2UI X2 XI + U2U 1X2XI - U2X 2XI

- 2U~UIX~ + 2u~ulxi + U~UTXl + UiX2X, - UiUIX2

53 243224322332 34
+ u2U1X2 - u 2U,X2 + u 2u,X 1 - u2U1X2XI +U2U,X2XI

- uiUixl

R 2 6 2 44 62 2 4 3 2I = - U2UIX1 - u 2U 1XI + u 2U 1x l + U2u 1x t

Ro=0

By Theorem 4,Wu's method confirms that the Circle Theorem is valid when none
of the leading coefficients of the h is zero. The nontrivial conditions here are

ds = uT + u~ =1= 0,

d6 = U2 =1= 0,

d7 = 2XIX2 - 2X2X3 - 2X\X4 =1= 0,

ds = - 2 X4 =1= 0.

The second condition in this list is U2 =1= 0, which says that the vertices A and C of
the right triangle 6.ABC are distinct [recall we chose coordinates so that A = (0,0)
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and C = (0. U2) in Example 3 of §4]. This also implies the first condition since UJ

and U2 are real. The condition -2X4 i= 0 is equivalent to U2 i= 0 by the hypothesis
h4 = O. Finally. d7 i= 0 says that the vertices of the triangle are distinct (see Exer-
cise 5). From this analysis. we see that the Circle Theorem actually follows generically
from its hypotheses as in §4.

The elementary version of Wu's method only gives g =0 under the side conditions
d, i= O. In particular. note that in a case where V' is reducible. it is entirely conceiv-
able that one of the d , could vanish on an entire component of V'. If this happened.
there would be no conclusion concerning the validity of the theorem for geometric
configurations corresponding to points in that component.
Indeed. a much stronger version of Theorem 4 is known when the subvariety V' for

a given set of hypotheses is irreducible. With the extra algebraic tools we have omitted
(Ritt's decomposition algorithm), it can be proved that there are special triangular form
sets of h (called characteristic sets) with the property that Ro = 0 is a necessary and
sufficient condition for g to lie in I(V') . In particular. it is never the case that one of
the leading coefficients of the fj is identically zero on V' . so that Ro = 0 implies
that g must vanish on all of V' .We refer the interested reader to CHOU (1988) for the
details. Other treatments of characteristic sets and the Wu-Ritt algorithm can be found
in MISHRA (1993) and WANG (1994b). There is also a Maple package called "charsets"
which implements the method of characteristic sets [see WANG (1994a)] .
Finally. we will briefly compare Wu's method with the method based on Groebner

bases introduced in §4. These two methods apply to exactly the same class of geometric
theorems and they usually yield equivalent results. Both make essential use of a division
algorithm to determine whether a polynomial is in a given ideal or not. However. as we
can guess from the triangulation procedure described above. the basic version ofWu's
method at least is likely to be much quicker on a given problem. The reason is that simply
triangulating a set of polynomials usually requires much less effort than computing a
Groebner basis forthe ideal they generate. or for the ideal 'jj = (h I •. . .• hll • 1 - yg).
This pattern is especially pronounced when the original polynomials themselves are
nearly in triangular form . which is often the case for the hypotheses of a geometric
theorem. In a sense. this superiority ofWu's method is only natural since Groebner bases
'contain much more information than triangular form sets . Ncte that we have not claimed
anywhere that the triangular form set of polynomials even generates the same ideal as
the hypotheses in either Rla. ... .• Um, XI • • • • • XII] orIR(u j, . .. • um)[x\ , . . . , XII]' In
fact. this is not true in general (Exercise 4). Wu's method is an example of a technique
tailored to solve a particular problem. Such techniques can often outperform general
techniques (such as computing Groebner bases) that do many other things besides.
For the reader interested in pursuing this topic further. we recommend CHOU (1988),

the second half of which is an annotated collection of 512 geometric theorems proved
by Chou's program implementing Wu's method. Wu (1983) is a reprint of the original
paper that introduced these ideas .

EXERCISES FOR §S

1. This problem completes the proof of Proposition 1 begun in the text.
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a. Complete the proof of (i) of the proposition.
b. Show that q. r in the equat ion d;;,f ::;: qg + r in the proposition are definitely not unique

if no condition is placed on the exponent s.
2. Establish the claim stated after Proposition 1 that pseudodivision is equivalent to ordinary

polynomial division in the ring K[y], where K = k(xl •. . .• XII)'

3. Show that there is a unique minimal s ~ p - m + I in Proposition I for which the equation
d;;, / = qg+ r exists.and that q and r are unique when s is minimal. Hint: Use the uniqueness
of the quotient and remainder for division in k(x i • . . . • xlI)[y] .

4. Show by example that applying the triangulation procedure described in this section to two
polynomials h i . h: E k[xi . xz] can yield polynomials / 1. fz that generate an ideal strictly
smaller than (h I . hz).The same can be true for larger sets of polynomials as well.

5. Show that the nondegeneracy condition d7 :j: 0 for the Circle Theorem is automatically
satisfied if U I and Uz are nonzero .

6. Use Wu's method to verify each of the following theorems. In each case, state the conditions
d, :j: 0 under which Theorem 4 implies that the conclus ion follows from the hypotheses . If
you also did the corresponding Exercises in §4, try to compare the time and/or effort involved
with each method.
a. The theorem on the diagonals of a parallelogram (Example 1 of §4).
b. The theorem on the orthocenter of a triangle (Exercise 5 of §4).
c. The theorem on the centroid of a triangle (Exercise 6 of §4).
d. The theorem on the Euler line of a triangle (Exercise 7 of §4).
e. Pappus 's Theorem (Exercise 8 of §4).

7. Consider the theorem from Exercise 17 of §4 (for which V' is reducible according to a direct
translation of the hypotheses) .
a. Apply Wu's method to this problem . (Your final remainder should be nonzero here.)
b. Does Wu's method succeed for the reformulation from part e of Exercise 17 from §4?
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7

Invariant Theory of Finite Groups

Invariant theory has had a profound effect on the development of algebraic geometry.
For example, the Hilbert Basis Theorem and Hilbert Nullstellensatz, which playa
central role in the earlie r chapters in this book, were proved by Hilbert in the course of
his investigations of invariant theory.
In this chapter, we will study the invariants of finite groups. The basic goal is to

describe all polynomials which are unchanged when we change variables according to
a given finite group of matrices . Our treatment will be elementary and by no means
complete. In particular, we do not presume a prior knowledge of group theory.

§1 Symmetric Polynomials

Symmetric polynomials arise naturally when studying the roots of a polynomial. For
example , consider the cubic I = x 3 + bxZ+ ex + d and let its roots be aI , az, a3.
Then

x 3+ bx z + ex + d = (x - a l)(x - a z)(x - (3) '

Ifwe expand the right-hand side, we obtain

x 3+ bxz + ex + d = x' - (al + az + (3)x z+ (alaZ + ala3 + aZ(3)x - ataZa3,

and, thus ,

c = alaz + ala3 + aZa3,

d = -ataZa3.

This shows that the coefficients of I are polynomials in its roots . Further, since changing
the orderof the roots does not affect I, it follows that the polynomials expressing b, c, d
in terms of aI , az , a3 are unchanged if we permute aI, az , a3. Such polynomials are
said to be symmetric.The general concept is defined as follows.

Definition 1. A polynomial I E k[Xl , . . . , XI!] is symmetric if
I(Xi" .. . , x;J = I(XI, . .. , XI!)

311
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for every possible permutation Xi" .. . , Xi. ofthe variables XI , ..• , XII'

For example , if the variables are X, y, and z, then x 2+ y2 + Z2 and xyz are obviously
symmetric. The following symmetric polynomials will play an important role in our
discussion.

Definition 2. Given var iables XI, . • • , XII' we define 001 • • • • • all E k[x i • . . . , XII1by
theformulas

001 =XI + ... + XII.

a; = L Xi tXi z " ° Xi ",
; 1< ;2< " ' <;"

all = XIXz .. . XII'

Thus, a; is the sum of all monomials that are products of r distinct variables . In
particular, every term of a, has total degree r .To see that these polynomials are indeed
symmetric, we will generalize observation (I ). Namely, introduce a new variable X and
consider the polynomial

(2) f (X ) = (X - XI )(X - x z) · · · (X - XII)

with roots X I , .. . , XII' If we expand the right-hand side, it is straightforward to show
that

f (X ) = X II - a1X
II- 2 + azXII- Z+ .. .+ (-l)"-l all _ IX + ( - 1)110011

(we leave the details of the proof as an exercise). Now suppose that we rearrange
XI, .. . , XII' This changes the order of the factors on the right-hand side of (2), but f
itself will be unchanged . Thus , the coefficient s ( - I Ya, of f are symmetric functions .
One corollary is that for any polynomial with leading coefficient 1, the other coeffi-

cients are the elementary symmetric functions of its roots (up to a factor of ± 1). The
exercises will explore some interesting consequences of this fact.
From the elementary symmetric functions, we can construct other symmetric

funct ions by taking polynomials in 001 • • • • • all ' Thus, for example ,

001 - 001003 = x 2i + x 2yz + x 2ZZ+ xiz + xY Z2+ izz

is a symmetric polynomial. What is more surprising is that all symmetric polynomials
can be represented in this way.

Theorem 3 (The Fundamental Theorem of Symmetric Polynomials). Every sym -
metric polynomial in k[XI , ... , XII1can be written uniquely as a polynomial in the
elementary symmetric funct ion s 001, • • • • an-

Proof. We will use lex order with XI > X2 > . _. > XII' Given a nonzero symmetric
polynomial f E k[XI , . . . , XII1, let LT(/) = axu . If a = (a I , . . . • a ll ), we first claim
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that a, ::=: a2 ::=: ' " ::=: all ' To prove this, suppose that a, < ai+1 for some i. Let {3
be the exponent vector obtained from a by switching a, and ai+l. We will write this
as {3 = (.. . , a i+I , a. , ., .). Since ax" is a term of I , it follows that axil is a term of
1(· . . , Xi+' , Xi, . . .). But I is symmetric, so that 1(· . . , Xi+' , Xi, .. .) = I, and, thus,
axf3 is a term of I .This is impossible since {3 > a under lex order, and our claim is
proved.
Now let

To compute the leading term of h, first note that LT(ar ) = XIX2 ' . . x, for 1 ::: r ::: n.
Hence,

(3)

LT(h) = LT(a~ '-"2a;2-'" . . . a,~")

=LT(ad"-"ILT(a2)"2-"_' '" LT(all )""
=xf'-"2(XIX2)"2-"-' .. . (Xl" . XII)""

= X~IX;2 • • . X~" = xa

It follows that I and ah have the same leading term, and, thus,

multideg(f - ah) < multideg(f)

whenever I - ah =1= O.
Now set I, = I - ah and note that II is symmetric since I and ah are. Hence,

if I, =1= 0, we can repeat the above process to form I: = I, - a1h" where a, is
a constant and h , is a product of ai, . . . . o; to various powers . Further, we know
that LT(!z) < LT(f,) when !z =1= O. Continuing in this way, weget a sequence of
polynomials I , I" 12, . . . with

multideg(f) < rnultidegf jj ) < multideg(f2) < . .. .

Since lex order is a well-ordering, the sequence must be finite. But the only way the
process terminates is when !r+1 = 0 for some t , Then it follows easily that

1= ah +a,h, + ' " +a,hro
which shows that I is a polynomial in the elementary symmetric functions.
Finally, we need to prove uniqueness. Suppose that we have a symmetric polynomial

I which can be written

1= g\(a', ... , all) = g2(al, , all)'

Here, g, and g2 are polynomials in n variables, say Y" , YII' We need to prove that
gl = s: in k[Y,, · ··, Ylll·
Ifwesetg = gl - g2, theng(a" ... , a,J = 0 ink[xl ' . . . , XII]' Uniqueness will be

proved if we can show that g = 0 in k[y" ... , YII l-So suppose that g =1= O. If we write
~ 13 h ( ) . f th I . I 13, 131 13"g = L-f3af3Y .t eng aI , . . . .o; is asum o epoynomtasgf3 = af3al a2 · · · all ,

where {3 = ({31, . . . , {311) ' Furthermore, the argument used in (3) above shows that

LT(gf3) = af3xf'+'-+f3"xf2+--+f3" . . . xt"·
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It is an easy exercise to show that the map

(/31, .. . , /311) ~ (/31 + .. , + /311' /32 + ... + /311' ... , /311)

is inject ive. Thus, the g{3 's have distinct leading terms. In particular, if we pick /3 such
that LT(g{3) > LT(gy) for all y ¥ /3, then LT(g{3) will be greater than all terms of the
gy's. It follows that there is nothing to cancel LT(g{3) and, thus, g(al • . . . •all) cannot
be zero in k[xi • . . . • x1I1. This contradiction completes the proof of the theorem. 0

The proof just given is due to Gauss, who needed the properties of symmetric poly-
nomials for his second proof (dated 1816) of the fundamental theorem of algebra. Here
is how Gauss states lex order : "Then among the two terms

Maab{3cY •• • and Maa'b{3'cY' • ••

superior order is attributed to the first rather than the second, if

either a > a'. or a = a /and /3 > /3' , or a = a' . /3 = /3'and y > y ', or etc ."

[see p. 36 of GAUSS (1876)1. Th is is the earliest known explicit statement of lex order.
Note that the proof of Theorem 3 gives an algorithm for writing a symmetric

polynomial in terms of al • ... . all ' For an example of how this works , cons ider

I = x3y + x3z+ xi + xz 3+ iz + YZ3 E k[x, y. zl.
The leading term of I is x 3y = LT(aI

2a2), which gives

II = I - a~a2 = -2x2l- 5x2yz - 2X2Z2 - 5xlz - 5xyz? - 2lz2.

The leading term is now _2X2y2 = -2LT(af), and, thus,

h = I - a~a2 + 2ai: = -x2yZ - xlz - xYZ2 .

Then one easily sees that

h = I - a~a2 + 2af + ala3 = 0

and, hence,

I = a~a2 - 2af - ala3

is the unique expression of I in terms of the elementary symmetric polynomials.
Surprisingly, we do not need to write a general algorithm for expressing a symmetric

polynomial in ai , . .. , all' for we can do this process using the division algorithm from
Chapter 2. We can even use the division algorithm to check for symmetry. The precise
method is as follows.

Proposition 4. In the ring k[XI, . . . , XII ' YI, . . . , Y1I1, fix a monomial order where
any monomial involving one of XI, . . . ,XII is greater than all monomials in
k[yt. . . . , Y1I1 . Let G be a Groebner basis of the ideal (al - YI, ...• all - YII ) C
k[Xlo" " XII. YI, . . .• Y1I1 . Given f E k[XI, .. . , XII], let g =7G

be the remainderof
f on division by G. Then:
(i) f is symmetric if and only if g E k[YI• . . . • Y1I1.
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(ii) If f is symmetric, then f = g(al , .. . , all) is the unique expression of f as a
polynomial in the elementary symmetric polynomials ai , . . . • all '

Proof. As above, we have f E k[xi • . . . • xlll, and g E k[XI, . . . , XII' YI, . . . , Ylll is
its remainder on division by G = {g I, , g, }. This means that

f = Alg i + + A ,g, + g.

where AI , . . . , A, E k[xi • . . . , XII' YI •. . . , xlll. We can assume that gi -1= 0 for all i.
To prove (i) , first suppose that g E k[YI , . .. , Ylll. Then for each i, substitute

a, for Yi in the above formula for f . This will not affect f since it involves only
XI • . . . , XII' The crucial observation is that under this substitution, every polynomial in
(al - YI •... , an - YII) goes to zero. Since gl , ... , gt lie in this ideal , it follows that

f = g(al • . . . • all)'

Hence, f is symmetric.
Conversely, suppose that f E k[XI , . . .• xlll is symmetric. Then f = g (ai , . .. , all)

for some g E k[YI , . .. , Ylll. Wewant to show that g is the remainder of f on division by
G. To prove this. first note that in k[x I, . . . , XII ' YI, . . . , Ylll. a monomial in al • . . . , all
can be written as follows:

a~ ' . . . a,~" = (YI + (al - YI»U, . . . (YII + (all - YII)t"

= y~ ' .. . Y~" + BI . (al - YI) + ...+ BII . (all - YII)

for some B I , . . . • BII E k[xl • ...• XII' YI, . . . , Ylll . Multiplying by an appropriate
constant and adding over the exponents appearing in g, it follows that

g(al • . . . , a ll) = g(YI • . . . , YII) + CI . (al - Yt) + ... + CII . (all - YII),

where CI , .. . • CII E k[XI •. . . , XII. YI.· .· , Ylll . Since f = g(al ," " all) , we can
write this as

(4) f = CI . (al - yt> + ... + CII . (all - YII) + g(YI , . .. , YII)'

We want to show that g is the remainder of f on division by G.
The first step is to show that no term of g is divisible by an element of LT(G).lf this

were false, then there would be gi E G, where LT(g i) divides some term of g . Hence,
LT(gi) would involve only YI •. .. , YII since g E k[YI, . .. , Ylll . By our hypothesis on
the ordering. it would follow that gi E k[YI • . . . , Ylll. Now replace every Yi with the
corresponding a.. Since gi E (al - YI •. . .• all -- YII), we have already observed that
gi goes to zero under the substitution Yi t-+ a.,Then gi E k[YI, . . . , Ylll would mean
gi(ai , . . . • al/) = O.By the uniqueness part of Theorem 3, this would imply gi = 0,
which is impossible since gi -1= O. This proves our claim.
It follows that in (4), no term of g is divisible by an element of LT(G), and since

G is a Groebner basis, Propos ition I of Chapter 2, §6 tells us that g is the remainder
of f on division byD. This proves that the remainder lies in k[YI, . .. , Ylll when f is
symmetric .
Part (ii) of the proposition follows immediately from the above arguments and we

are done . 0
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A seem ing drawback to the above proposition is the necess ity to compute a Groebner
basis for (a ) - YI • . . . • all - YII}' However, when we use lex order, it is quite simple to
write down a Groebne r basis for this ideal. We first need some notation . Given variables
UI , .. • , u, .let

hi (u l , . . . , us) = L u"
lal= i

be the sum of all monomi als of total degree i in U I, .. . , 11., . Then we get the following
Groebner basis.

Proposition S. Fix lex order on k [x i • . . . , XII' YI, . . . , Yll l with XI > . . . > XII >
YI > . . . > YII' Then the polynomials

k

gk = hk(Xb . . . • XII ) + L (_ l) ihk -i (Xb . .. , XII)Yi . k = I, ... , n,
i= 1

f orm a Groebner basisfor the ideal (a l - YI• ... . o; - YII )'

Proof. We will sketch the proof, leaving most of the details for the exercises. The first
step is to note the polynomial identity

(5)
k

0= hk(Xb ... , XII ) + L (-I /hk - i(xb . . . , xlI)ai'
i=1

(6)

The proof will be covered in Exercises 10 and 11.
The next step is to show that g l , . . . , gil form a basis of (al - YI, . .. , all - YII)' If

we subtract the identity (5) from the definition of gb we obtain

k

gk = L (-I )ih k_i (Xb . . . , XII)(Yi -ai) ,
i= 1

which proves that (g l ' .. . • gil) C (al - YI • . . . • all - YII ) ' To prove the opposite
inclusion, note that since ho = I . we can write (6) as

k- l

(7) gk = (_l)k( Yk - ad + L (-I )ih k-i (xb . .. , xlI)(Yj - rr.) .
;= 1

Then induction on k shows that (al - YI , .. . • all - YII) C (gl, ... • gil ) (see Exercise
12).
Finally, we need to show that we have a Groebner basis. In Exerc ise 12, we will ask

you to prove that

Th is is where we use lex order with XI > . . . > XII > YI > . . . > YII' Thus . the
leading terms of g l • . . . , g k are relatively prime . and using the theory developed in §9
of Chapter 2, it is easy to show that we have a Groebner basis (see Exercise 12 for the
details ). This completes the proof. 0
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In dealing with symmetric polynomials, it is often convenient to work with ones that
are homogeneous. Here is the definition.

Definition 6. A polynomial I E k[XI , "" x ,,] is homogeneous of total degree k
provided that every term appearing in I has total degree k .

As an example, note that the ith elementary symmetric function a, is homogeneous
of total degree i . An important fact is that every polynomial can be written uniquely as
a sum of homogeneous polynomials. Namely, given I E k[XI, .. . , x,,], let I k be the
sum of all terms of I of total degree k . Then each !k is homogeneous and I = Lk Ik.
We call Ik the kth homogeneous component 01 I .
We can understand symmetric polynomials in terms of their homogeneous compo-

nents as follows .

Proposition 7. A polynomial I E k[XI, . . . , x,,] is symmetric if and only if all 01 its
homogeneous components are symmetric.

Proof. Given a symmetric polynomial I, let Xi" .. . , Xi" be a permutation of
Xl , .. . , x". This permutation takes a term of I of total degree k to one of the same
total degree. Since I(Xi , , . . . , Xi.,) = I(x ), . . . , X,,). it follows that the kth homoge-
neous component must also be symmetric. The converse is trivial and the proposition
is proved. 0

Proposition 7 tells us that when working with a symmetric polynomial. we can assume
that it is homogeneous. In the exercises, we will explore what this implies about how
the polynomial is expressed in terms of a), ... , a".
The final topic we will explore is a different way of writing symmetric polynomials.

Specifically, we will consider the power sums

Sk = x~ + xi + ...+ x~.

Note that Sk is symmetric. Then we can write an arbitrary symmetric polynomial in
terms of Sl, . .. , s" as follows .

Theorem 8. II k is a field containing the rational numbers <Q, then every symmet-
ric polynomial in k[x[, . . . , x,,] can be written as a polynomial in the power sums
Sl , . . . , SIl O

Proof. Since every symmetric polynomial is a polynomial in the elementary symmet-
ric functions (by Theorem 3), it suffices to prove that a[, ... , a" are polynomials in
Sl, . . . , SIlO For this purpose, we will use the Newton identities, which state that

Sk - alSk-1 + + (-I)k- lak_1s[ + (-I)kkak = 0, I ~ k ~ n,

Sk - alsk_[ + + (_I),,-la,,_lsk_,,+1 + (-l)"a"sk-" = 0, k > n .

The proof of these identities will be given in the exercises.
We now prove by induction on k that ak is a polynomial in Sl , . . . , SIl oThis is true

for k = 1 since a\ = S [ . If the claim is true for I, 2, . . . , k :- I, then the Newton
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identit ies imply that

I
(lk = (_I)k-I k(Sk - alsk_1 + .. .+ (-I)k-lak_lsl )'

We can divide by the integer k because <Q is contained in the coefficient field (see
Exercise 16 for an example of what can go wrong when <Q (/. k). Then our inductive
assumption and the above equation show that ak is a polynomial in SI , . . . , SII' 0

As a consequence of Theorems 3 and 6, every elementary symmetric function can
be written in terms of power sums, and vice versa. For example,

S2 = a~ - 2a2

Power sums will be unexpectedly useful in §3 when we give an algorithm for finding
the invariant polynomials for a finite group.

EXERCISES FOR §l

1. Prove that [ E k[x, y , z] is symmetric if and only if [(x, y, z) = [(y ox, z) = fey , z, x).
2. (Requires abstract algebra) Prove that [ E k[x )• . . . , x ,,] is symmetric if and only if

[ (XI , X2. X3 ' • •• • x,,) = [ (X 2, X I . X3 • . . . • x,,) = [ (X2. X3 • • . • Xn , XI) . Hint: Show that the
cyclic permutations ( 1, 2) and ( 1, 2, . . . • n) generate the symmetric group S". See Exercise
11 in §2.IO of HERSTEIN (1975) .

3. Let at' be the ith elementary symmetric function in variables XI , .. .• X" . The superscript n
denote s the number of variables and is not an exponent. We also set a~ = I and at = 0 if
i < 0 or i > n. Prove that at = a;n- I + x" a:~~1 for all n > I and all i. This identity is
useful in induction arguments involving elementary symmetric functions.

4. As in (2). let [ ( X ) = (X - x ,)(X - X2)' " (X - x,,). Prove that [ = X n - a IX ,,- 1 +
a2X,,- 2+ .. .+ (_ I),,- lan_1X + (- 1)"0'". Hint: You can give an induction proof using the
identit ies of Exercise 3.

5. Cons ider the polynomial

[ = (x 2 + /)(x 2 + Z2)( / + Z2) E k[x , y, z].

a. Use the method given in the proof of Theorem 3 to write [ as a polynomial in the
elementary symmetric functions 0' 1, 0'2 . 0'3 .

b. Use the method described in Proposition 4 to write [ in terms of 0'1 ,0'2 ,0'3,
You can use a computer algebra system for both parts of the exercise . Note that by stripping
off the coefficients of powers of X in the polynomial (X - x)(X - y)(X - z), you can get
the computer to generate the elementary symmetric functions .

6. If the variables are XI • • . . ,X" , show that L ;;< j X;Xj = 0',0'2 - 30'3. Hint: If you get stuck,
see Exercise 13. Note that a computer algeb ra system cannot help here!

7. Let [ = x" + a l x n - ' + ...+ ao E k[x] have roots a l ,"" a".which lie in some bigger
field K containing k .
a. Prove that any symmetric polynom ial g (a " . .. , a,,) in the roots of t can be expressed

as a polynomial in the coefficients a l. . . .• a" of [ .
b. In part icular, if the symmetric polynomial g has coefficients in k, conclude that

g(al • .. . , an) E k.
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8. As in Exercise 7,Iet f = x" + a,x"-' + ...+ aD E k[x] have roots al • . . . , a", which lie
in some bigger field K containing k. The discriminant of f is defined to be

D(f) = Il« - a j) .
i h

a. Use Exercise 7 to show that D(f) is a polynomial in a i , . .. , a".
b. When n = 2, express D(f) in terms of al and a2' Does your result look familiar?
c. When n = 3, express D(f) in terms of a, . a2, a3.
d. Explain why a cubic polynomial x 3+ a,x z+ a2X + a3 has a multiple root if and only if

4afa3 + a~a~ + 18a,a2a3 - 4ai - 27ai = O.
9. Given a cubic polynomial f = x 3+ a\ x 2 + a2X + a3, what condition must the coefficients

of f satisfy in order for one of its roots tobe the average of the other two? Hint: If a, is
the average of the other two , then 2a, - az - a3 = O. But it could happen that az or a3
is the average of the other two. Hence, you get a condition stating that the product of three
expressions similar to 2a, - a2 - a3 is equal to zero . Now use Exerc ise 7.

10. As in Proposition 5, let h j(x" . .. , x ,,) be the sum of all monomials of total degree i in
x " .... x.: Also, let (Jo = I and a, = 0 if i > n. The goal of this exercise is to show that

k

0= L(-I);hk-i(Xl, . . . , X")(Ji(X' , . . . , x,,) .
;=0

In Exercise II, we will use this to prove the closely related identity (5) that appears in the
text . To prove the above identity, we will compute the coefficients of the monomials XO that
appear in hk- i(Jj . Since every term in hk_i(J i has total degree k, we can assume that XO has
total degree k.We will let a denote the number of variables that actually appear in x" ,
a. If XO appears in hk_j(J;, show that i ~ a . Hint: How many variables appear in each term

of (Jj?
b. If j ~ a , show that exactly e) terms of (J; involve only variables that appear in XO.Note

that all of these terms have total degree i .
c. If i ~ a, show that XO appears in hk_ i(Ji with coefficient e).Hint: This follows from part

b because hc.; is the sum of all monomials of total degree k - i , and each monomial has
coefficient I.

d. Conclude that the coefficient of XO in L~=o hi.;«, is L;'=o(-I)t). Then use the bino-
mial theorem to show that the coefficient of XO is zero . This will complete the proof of
our identity.

II. In this exercise, we will prove the identity

k

0= hk(x" . . . , x ,,) + L(-I/hk-i(xb . . . • x")(J;(x, , .. . , x,,)
;=1

used in the proof of Proposition 5. As in Exercise 10, let (Jo = I, so that the identity can be
written more compactly as

k

0= L(-I)ihk_;(xb . . . , x" )(Jj (x ,, . .. , x,, ).
;=0

The idea is to separate out the variables x" .. . •Xk- \ .To this end, if S c {I, .. . ,k - I}, let
X S be the product of the corresponding variables and let lSI denote the number of elements
in S.
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a. Prove that

a; (x, • . . . • x,,)

where we set aj = 0 if j < O.
b. Prove that

L xSai_ ISI(Xko . . .• x,,).
SC{I . ..... -e I]

k

L(-I/h._i(x.. . . . • x,,)ai(xi • . . . • x,,)
; ;:;0

c. Use Exercise 10 to conclude that the sum inside the parentheses is zero for every S. This
proves the desired identity. Hint: Let j = i-lSI.

12. This exercise is concerned with the proof of Proposition 5. Let g. be as defined in the
statement of the proposition.
a. Use equation (7) to prove that (a, - YI, . . . • a" - Yn) C (gl ' . . . • g,,).
b. Prove that LT(g.) = x;.
c. Combine part b with the results from §9 of Chapter 2 (especially Theorem 3 and

Proposition 4 of that section) to prove that g" ... •g. form a Groebner basis.
13. Let f be a homogeneous symmetric polynomial of total degree k.

a. Show that f can be written as a linear combination (with coefficients in k) of polynomials
of the form a: 'a~2 . .. a,~" where k = i, + 2i2 + ... + nin o

b. Let m be the maximum degree of XI that appears in f. By symmetry, m is the maximum
degree in f of any variable . If a:' a~2 . . . a~" appears in the expression of f from part a.
then prove that i l + i2 + ...+ i" ~ m.

C. Show that the symmetric polynomial I:>"j x/Xj can be written as aa,a2 + ba, for some
constants a and b. Then determine a and b. Compare this to what you did in Exercise 6.

14. In this exercise. you will prove the Newton identities used in the proof of Theorem 8. Let
the variables be XI , .. .• X" .
a. As in Exercise 3, set ao = I and a, = 0 if either i < 0 or i > n, Then show that the

Newton identities are equivalent to

S. - a,s'_1 + ... + (_l)k-lak_,SI + (-I)kkuk = 0

for all k ::: 1.
b. Prove the identity of part a by induction on n. Hint: Write a, as uf'. where the exponent

denotes the number of variables, and similarly write s. as sf'. Use Exercise 3. and note
that sf' = sf'-' + x~.

IS. This exercise will use the identity (5) to prove the following nonsymmetric Newton identities

x; - U,X;-I + + (_l)k-l uk_I X; + (-I)·u. = (-I)·iTf. I ~ k < n.

x; - UIX;- I + + (-I),,-IUn_IX;-n+1 + (-I)na"x;-" =0, k ::: n,

where iTf = Uk(Xj • . . . • Xj-I . Xi+l •. . .• xn ) is the kth elementary symmetric function of all
variables except Xi. We will then give a second proof of the Newton identities .
a. Show that the nonsymmetric Newton identity for k = n follows from (5).Then prove that

this implies the nonsymmetric Newton identities for k ::: n, Hint: Treat the case i = n
first.

b. Show that the nonsymmetric Newton identity for k = n - I follows from the one for
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k = n . Hint: a" = XiU;_I'
c. Prove the nonsymmetric Newton ident ity for k < n by decreasing induction on k. Hint:

By Exercise 3. ak = a1+ Xia; _I'
d. Prove thatL;'~ I u; = (n - k )Uk' Hint: A termXi, ...Xi,.where 1 :::: i , < . . . < ik :::: n.

appears in how many of the a1's?
e. Prove the Newton identit ies.

16. Consider the field IF! = {D . II consisting of two elements. Show that it is impossible
to express the symmetric polynomial x y E IFZ[X. y] as a polynomial in 51 and sz with
coefficients IFz. Hint: Show that S2 = s~ !

17. Express S4 as a polynomial in a l • . . . • a4 and express a4 as a polynomial in 5 1• •-: • • S4.
18. We can use the division algorithm to automate the process of writing a polynomial

g (a l • . . . • a,,) in terms of SI• . . . • SIlONamely. regard a ,•. .. • a". s, •. . . • SOl as variables
and consider the polynomials

Show that if we use the correct lex order. the remainder of g(a l • . . . • a,,) on division by
gl • . . .• g" will be a polynomial h( sl • .. . • SOl) such that g(aJ, . . . • a,,) = h(sJ, .. . • SOl) '
Hint: The lex order you need is not a l > az > . .. > au > 51 > . . . > SOl '

§2 Finite Matrix Groups and Rings of Invariants

In this section. we will give some basic definitions for invariants of finite matrix groups
and we will compute some example s to illustrate what questions the general theory
should address. For the rest of this chapter. we will always assume that our field k
contain s the rational numbers <Q. Su ch fields are sai d to be of characteris tic zero.

Definition 1. Let GL (n. k ) be the set of all invertible n x n matrices with entries in
the field k .

If A and B are invertible n x n matrices. then linear algebra implie s that the product
AB and inverse A - I are also invertible (see Exercise I). Also, recall that the n x n
identity matrix /" has the properties that A . /" = L;> A = A and A . A -I = /" for
all A E GL(n, k). In the terminology of Appendix A. we say that GL(n , k ) is a group .
Note that A E GL (n , k ) gives an invertible linear map A : k" --+ k" via matrix

multiplication. Since every linear map from k" to itself arises in this way, it is customary
to call GL(n, k) the general linear group.
We will be most interested in the following subsets of GL (n , k).

Definition 2. A fin ite subset G C GL(n, k ) is called a finite matrix group provided
it is nonempty and closed under matrix multiplication. The number of elements of G is
called the order of G and is denoted IGI.

Let us look at some examples of finite matrix group s.
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Example 3. Suppose that A E GL(n, k) is a matrix such that Am = I II for some
positive integer m. If m is the smallest such integer, then it is easy to show that

Cm {III'A, A2, • •• , Am-I} C GL(n, k)

is closed under multiplication (see Exercise 2) and. hence, is a finite matrix group. We
call Cm a cyclic group of order m. An example is given by

(0 -1)A = I ° E GL(2 . k) .

One can check that A4 = h. so that C4 = {I2. A, A2• A3 } is a cyclic matrix group of
order 4 in GL(2, k).

Example 4. An important example of a finite matrix group comes from the per-
mutations of variables discussed in §1. Let r denote a permutation Xi I ' ••• ,Xi" of
XI, • . . • XII ' Since r is determined by what it does to the subscripts. we will set
il = r(l), i2 = r(2), . . . , ill = r(n) . Then the corresponding permutation of
variables is Xr(I) , .. . , x r (II ) '
We can create a matrix from r as follows. Consider the linear map that takes

(XI •. • •• XII) to (X r(I) •. . . , x r (II » ' The matrix representing this linear map is denoted
M, and is called a permutation matrix. Thus, M, has the property that under matrix
multiplication, it permutes the variables according to r :

(

XI ) (xr(\»)M,.> .: = : .

XII X r (lI )

We leave it as an exercise to show that M r is obtained from the identity matrix by
permuting its columns according to !. More precisely. the r (i)th column of M r is the
ith column of I" . As an example. consider the permutation r that takes (x , y. z) to
(y. z, x). Here. r(l) = 2, r(2) = 3. and r(3) = 1, and one can check that

Since there are n! ways to permute the variables. we get n! permutation matrices .
Furthermore, this set is closed under matrix multiplication, for it is easy to show that

where vr is the permutation that takes ito v(r(i» (see Exercise 4). Thus , the permuta-
tion matrices form a finite matrix group in GL(n, k). We will denote this matrix group
by SII ' (Strictly speaking . the group of permutation matrices is only isomorphic to SII
in the sense of group theory. We will ignore this distinction.)

Example S. Another important class of finite matrix groups comes from the symmetries
of regular polyhedra. For example . consider a cube in IR3 centered at the origin. The
set of rotations of IR3 that take the cube to itself is clearly finite and closed under
multiplication. Thus, we get a finite matrix group in GL(3. IR). In general , all finite
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matrix groups in GL(3, IR) have been classified, and there is a rich geometry associated
with such groups (see Exercises 5-9 for some examples). To pursue this topic further,
the reader should consult BENSON and GROVE (1985), KLEIN (1884), or COXETER (1973) .

Finite matrix groups have the following useful properties.

Proposition 6. Let G C GL(n, k) be a finite matrix group. Then:
(i) I" E G.
(ii) If A E G. then AfII = I" for some positive integerm.
(iii) If A E G i then A:' E G.

Proof. Take A E G. Then lA , A2 , A3, ••. J c G since G is closed under multipli-
cation. The finiteness of G then implies that Ai = A j for some i > i. and since
A is invertible , we can multiply each side by A- j to conclude that Alii = I", where
m = i - j > O. This proves (ii).
To prove (iii), note that (ii) implies In = Alii = A . Am-1 = Am-I . A. Thus,

A -I = A fII
-
1 E G since G is closed under multiplication. As for (i), since G i= 0, we

can pick A E G, and then, by (ii), In = A fII E G. 0

We next observe that elements of GL(n, k) act on polynomials in k[XI , . . . , xn ]. To
see how this works, let A = (aU) E GL(n, k) and f E k[XI, . . . , xn].Then

(1) g(XI, ... , xn) = f(allxl + ... + alt,X", . . . , anlx l + ...+ a,ll/xn)

is again a polynomial in k[XI, .. . , xn ]. To express this more compactly, let x denote
the column vector of the variables Xl, .. . , x.: Thus,

x = ( ~I).
Xn

Then we can use matrix multiplication to express equation (1) as

g(x) = f(A . x).

If we think of A as a change of basis matrix, then g is simply f viewed using the new
coordinates.
For an example of how this works, let f(x, y) = x2 +. xy + y2 E IR[x, y] and

1(IA=v'2 1 -1)I E GL(2, IR).

Then

g(x, y) = f(A . x) = f (X :rzY , x;/)
= (x:zyr+ x :zy . x~y + ( x~yr

3 1= _x2 + - i.2 2
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Geometrically. this says that we can eliminate the x y term off by rotating the axes 4SO .
A remarkable fact is that sometimes this process gives back the same polynomial we

started with. For example. if we let hi» , y ) = x2 + y2 and use the above matrix A.
then one can check that

h (x) = h(A . x).

In this case, we say that h is invariant under A.
This leads to the following fundamental definition.

Definition 7. Let G C GL(n . k) be a finite matrix group. Then a polynomial f(x) E
k[x i• . . . , xlll is invariant under G if

f (x) = f(A . x)

for all A E G. The set ofall invariant polynomials is denoted k[XI, ...• xlIlG.

The most basic example of invariants ofa finite matrix group is given by the symmetric
polynomials.

Example 8. If we consider the group SII C GL(n. k) of permutation matrices. then it
is obvious that

k[XI , . . . • xlIls" = (all symmetric polynomials in. k[Xl• .. .. xlIll.

By Theorem 3 of §1. we know that symmetric polynomials are polynomials in the
elementary symmetric function s with coefficients in k. We can write this as

k[xl ... . ,xllls.. = k[O"\. · ··.O"II]·

Thus, every invariant can be written as a polynomial in finitely many invariants (the ele-
mentary symmetric functions ). In addition, we know that the representation in terms of
the elementary symmetric functions is unique. Hence. we have a very expl icit knowledge
of the invariants of SII'

One of the goals of invariant theory is to examine whether all invariants
k[xi . . . . , xlIlG are as nice as Example 8. To begin our study of this question, we first
show that the-set of invariants k[xi • . . . , xlIlG has the following algebraic structure.

Proposition 9. LetG C GL(n . k) beafinite matrix group. Then the setk[xl, . . . •xlllG
is closed under addition and multiplication and contains the constant polynomials.

Proof. We leave the easy proof as an exercise. o
MUltiplication and addition in k[xi • . . . , xlI]G automatically satisfy the distributive,

associative. etc .. properties since these properties are true in k[xi • . . . • xlll. In the ter-
minology of Chapter 5, we say that k[XI, . . . • xlI]G is a ring . Furthermore. we say that
k[xi • . . . . xlllG is a subring of k[x\, .. .• XII]'

SO far in this book . we have learned three ways to create new rings. In Chapter 5.
we saw how to make the quotient ring k[x \, ...• xlI]/ I of an ideal I C k[xi • . . . •xlIl
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and the coordinate ring k[V] of an affine variety V C k" . Now we can make the ring
of variants k[XI , .. . ,xII]G of a finite matrix group G C GL(n, k). In §4, we will see
how these constructions are related .
In §I, we saw that the homogeneous components of a symmetric polynomial were

also symmetric. We next observe that this holds for the invariants of any finite matrix
group .

Proposition 10. Let G C GL(n , k) be a finite matrix group. Then a polynomial
f E k[XI, . . . , XII] is invariant underG ifand only ifall ofits homogeneous components
are.

Proof. See Exercise 11. o

In many situations, Proposition 10will allow us to reduce to the case of homogeneous
invariants . This will be especially useful in some of the proofs given in §3.
The following lemma will prove useful in determining whether a given polynomial

is invariant under a finite matrix group .

Lemma 11. Let G C GL(n , k) be a finite matrix group and suppose that we have
A I , . .. , Am E G such that every A E G can be written in the form

where B; E (AI , . .. , Am} for every i (we say that AI, . . . , Am generate G). Then
f E k[x" . .. , XII] is in k[XI , .. . , xII]G ifand only if

[(x) = [(A, . x) = .. . = [(Am ' x) .

Proof. We first show that if f is invariant under matrices BI, .. . , B/, then it is also
invariant under their product B, . . . B/. This is clearly true for t = I. If we assume it
is true for t - I, then

f«B 1 • •• Bt) . x) = f((B 1 •• • Bt-I> . Blx)

= f(Blx)

= f(x)
(by our inductive assumption)

(by the invariance under B/). _

Now suppose that f is invariant under AI, . . . , Am. Since elements A E G can be
written A = BI . .. B/, where every B; is one of AI, . . . , Am' it follows immediately
that f E k[XI, . . .• xlI]G. The converse is trivial and the lemma is proved. 0

We can now compute some interesting examples of rings of invariants .

Example 12. Cons ider the finite matrix group

V4 = { (±~ ±~)} c GL(2, k) .
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This is sometimes called the Klein four-group. We use the letter V4 because "four" in
German is "vier." You should check that the two matrices

generate V4• Then Lemma II implies that a polynomial f E k[x. y] is invariant under
V4 if and only if

f(x, y) = fe-x, y) = f(x , -y).

Writing f = Lij aijxiv'. we can understand the first of these conditions as follows:

f(x ,y) = f(-x,y) {:::::::} :L>ijXiyj = I>ij(-X)i y j

ij ij

{:::::::} L aijX iv' = L (_I)iaijxiy j
ij ij

{:::::::} aij = (_l)i aij for all i, j

{:::::::} aij = 0 for i odd .

It follows that x always appears to an even power. Similarly, the condition f (x, y) =
f t», -y) implies that y appears to even powers. Thus, we can write

f(x , y) = g(x2 ,l )
for a unique polynomial g(x , y) E k[x, yl. Conversely, every polynomial f of this
form is clearly invariant under V . This proves that

k[x, Ylv, = k[x2, y21.
Hence, every variant of V can be uniquely written as a polynomial in the two homoge-
neous invariants x 2 and y2. In particular, the invariants of the Klein four-group behave
very much like the 'symmetric polynomials.

Example 13. For a finite matrix group that is less well-behaved, consider the cyclic
group C2 = (±121 C GL(2 , k) of order 2. In this case, the invariants consist of the
polynomials f E k[x. yj for which f(x, y) = fe-x . -y). We leave it as an exercise
to show that this is equivalent to the condition

f t», y) = L aijxiv" , where aij = 0 whenever i + j is odd.
ij

This means that f is invariant under C2 if and only if the exponents of x and y always
have the saine parity (i.e., both even or both odd). Hence, we can write a monomial
Xiv! appearing in f in the form

Xiyj = {X2kv" = (X2)k(y2)1 if i, j are even
x2k+ 1y l1+ 1 = (X 2)k(l i x y ifi, j are odd.

This means that every monomial in f, and, hence, f itself, is a polynomial in the
homogeneous invariants x 2, y 2 and xy. We will write this as

k[x , yfl = k[x2.l ,x y].
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Note also that we need all three invariants to generate k[x , yf2.
The ring k[x2, y2, xy] is fundamentally different from the previous examples because

uniqueness breaks down: a given invariant can be written in terms of x2, y2, xy in more
than one way. For example, x 4y2 is clearly invariant under C2 , but

x4l = (x 2)2 . l = x2 . (xy)2.

In §4, we will see that the crux of the matter is the algebraic relation x 2 • y2
(xy)2 between the basic invariants. In general, a key part of the theory is determining
all algebraic relations between invariants. Given this information, one can describe
precisely how uniqueness fails.

From these examples, we see that given a finite matrix group G, invariant theory has
two basic questions to answer about the ring of invariants k[Xl , . .. , xll]G:
• (Finite Generation) Can we find finitely many homogeneous invariants fl, ... , fIll
such that every invariant is a polynomial in fl, . .. , fm?

• (Uniqueness) In how many ways can an invariant be written in terms of fl, . . . , f,,,?
In §4, we will see that this asks for the algebraic relations among [v , . . . , 1,,,.

In §§3 and 4, we will give complete answers to both questions. We will also describe
algorithms for finding the invariants and the relations between them.

EXERCISES FOR §2

1. If A, B E GL(n, k) are invertible matrices, show that AB and A-I are also invertible.
2. Suppose that A E GL(n, k) satisfies Am = In for some positive integer. If m is the smallest

such integer, then prove that the set em = [In, A, A2 , • • • , Am-II has exactly m elements
and is closed under matrix multiplication.

3. Write down the six permutation matrices in GL(3. k ).
4. Let M , be the matrix of the linear transformation taking X I, .•. • x; to Xnl l • . . . • Xnnl' This

means that if e" . .. • en is the standard basis of k"; then M, . (L j x je j) = L j x 'li )ej '
a. Show that M, . e' li) = e. . Hint: Observe that L j x je j = L j x ,(j)e n j) '
b. Prove that the r (i) th column of M, is the ith column of the identity matrix.
c. Prove that M, . M,. = M,., . where Ill: is the permutation taking ito v (r (i ».

5. Consider a cube in IRJ centered at the origin whose edges have length 2 and are parallel to
the coordinate axes.
a. Show that there are finitely many rotations or IRJ about the origin which take the cube

to itself and show that these rotations are closed under composition. Taking the matrices
representing these rotations , we get a finite matrix group G c GL(3 , IR).

b. Show that G has 24 elements. Hint: Every rotation is a rotation about a line through the
origin . So you first need to identify the "lines of symmetry" of the cube .

c. Write down the matrix of the element of G corresponding to the 120° counterclockwise
rotation of the cube about the diagonal connecting the vertices (-I , -I , -1) and (1. 1. 1).

d. Write down the matrix of the element of G corresponding to the 90° counterclockwise
rotation about the z-axis.

e. Argue geometrically that G is generated by the two matrices from parts c and d.
6. In this exercise, we will use geometric methods to find some invariants of the rotation group

G of the cube (from Exercise 5).
a. Explain why x2+ y2+ Z2 E lR[x, y. zIG. Hint: Think geometrically in terms of distance

to the origin .
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b. Argue geometrically that the union of the three coordinate planes V(xyz) is invariant
under G.

c. Show that I(V(xyz» = (xyz) and conclude that if 1 =xyz , then for each A E G, we
have I(A . x) = axyz for some real numbera.

d. Show that 1 = xyz satisfies I(A . x) = ±xyz for all A E G and conclude that
X2y2z2 E k[x , y , z]G. Hint: Use part c and the fact that Am = ls for some positive
integer m ,

e. Use similar methods to show that the polynomials

(X + Y + z)(x + Y - z)(x - y + z)(x - Y - Z)r,( X2 - i)(x2 - z2)(i - Z2)r
are in k[x, y , z]G.Hint: The plane x + y + z = 0 is perpend icular to one of the diagonals
of the cube .

7. This exercise will continue our study of the invariants of the rotation group G of the cube
begun in Exercise 6.
a. Show that a polynomial 1 is in k[x , y, zlG if and only if f i», y, z) = I(y , z. x ) =
I(-y, x , z). Hint: Use parts c, d, and e of Exercise 5.

b. Let

1 = xyz ,

g = (x + Y + z)(x + Y - z)(x - y + z)(x - y - z),

h = (x 2 - i)(x2 - z2)(i - Z2).

In Exercise 6, we showed that 12, s' ,h2 E k[x , y, z]G. Show that I , h rj k[x , y, z]G,
but g, fh E k[x, y, zIG. Combining this with the previous exercise . we have invariants
x2+ y2 + Z2, g , 12, f h, and h2of degrees 2, 4, 6, 9. and 12. respectively, in k[x, y , zl'' . In
§3. we will see that h2 can be expressed in terms of the others.

8. In this exercise . we will consider an interest ing "duality" that occurs among the regular
polyhedra.
a. Consider a cube and an octahedron in IR3• both centered at the origin . Suppose the edges

of the cube are parallel to the coordinate axes and the vertices of the octahedron are on
the axes. Show that they have the same group of rotations . Hint: Put the vertices of the
octahedron at the centers of the faces of the cube.

b. Show that the dodecahedron and the icosahedron behave the same way. Hint: What do
you get if you link the up centers of the 12 faces of the dodecahedron?

c. Parts a and b show that in a certain sense . the "dual" of the cube is the octahedron and the
"dual" of the dodecahedron is the icosahedron. What is the "dual " of the tetrahedron?

9. (Requ ires abstract algebra) In this problem, we will consider a tetrahedron centered at the
origin of IR3•
a. Show that the rotations of IR3 about the origin which take the tetrahedron to itself give us

a finite matrix group G of order 12 in GL(3. IR).
b. Since every rotation of the tetrahedron induces a permutation of the four vertices, show

that we get a group homomorphism p : G -+ S4.
c. Show that p is injective and that its image is the alternating group A4• This shows that

the rotation group of the tetrahedron is isomorphic in A4 •

10. Prove Proposit ion 9.
II. Prove Propos ition 10. Hint: If A = (aij) E GL(n, k) and x:' . . . x:;' is a monomial of total

degree k = i I + .. .+ i" appearing in I . then show that
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is homogeneous of total degree k,
12. In Example 13. we studied polynomials f E k[x. y] with the property that f i», y) =
f(-x , -y). If f = Lij aijxiv', show that the above condition is equivalent to aij = 0
whenever i + j is odd.

13. In Example 13. we discovered the algebraic relation x2 . y2 = (x y )2 between the invariants
x2, y2. and xy. We want to show that this is essentially the only relation. More precisely.
suppose that we have a polynomial g(u , u, w) E k[u, u, w) such that g(x2• y2. xy) = O.
We want to prove that g(u . v, w) is a multiple (in k[u . u, w]) of uv - w2 (which is the
polynomial corresponding to the above relation).
a. If we divide g by uv - w2 using lex order with u > v > ur, show that the remainder can

be written in the form uA(u. w) + vB(v . w) + C(w).
b. Show that a polynomial r = uA(u, w) + vB(v. w) + C(w) satisfies r(x 2, y2, xy) = 0

if and only if r = O.
14. Consider the finite matrix group C4 C GL(2. CC) generated by

(
i 0)A = 0 -i E GL(2. CC)

a. Prove that C4 is cyclic of order 4.
b. Use the method of Example 13 to determine CC[x. y]C'.
c. Is there an algebraic relation between the invariants you found in part b? Can you give

an example to show how uniqueness fails?
d. Use the method of Exercise 13 to show that the relation found in part c is the only relation

between the invariants.
15. Consider

a. Show that V4 is a finite matrix group of order 4.
b. Determine k[x, y) v' .
c. Show that any invariant can be written uniquely in terms of the generating invariants you

found in part b.
16. In Example 3, we introduced the finite matrix group C4 in GL(2. k) generated by

(0-1)A = 1 0 E GL(2. k)

Try to apply the methods of Examples 12 and 13 to determine k[x . yf' . Even if you cannot
find all of the invariants. you should be able to find some invariants of low total degree . In
§3, we will determine k[x. Yf' completely.

§3 Generators 'for the Ring of Invariants

The goal of this section is to determine, in an algorithmic fashion, the ring of invariants
k[XI, . . . , XII IG of a finite matrix group G C GL(n , k). As in §2, we assume that
our field k has characteristic zero. We begin by introducing some terminology used
implicitly in §2.
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Definition 1. Given fl' ... ,fm E k[XI, . .. , X,,] , we let k[fl, .. . , f,,,] denote the
subset of k[XI, ... ,x,,] consisting of all polynomial expressions in fl ' .. . , fm with
coefficients in k.

This means that the elements f E k[fl, . . . , fm] are those polynomials which can
be written in the form

f = g(fl, "" f,,,) ,

where g is a polynomial in m variables with coefficients in k.
Since k[fl , ... , fm] is closed under multiplication and addition and contains the

constants, it is a subring of k[XI , . . . , x,,] .We say that k[fl, . . . , f,1I] is generated by
fl ' . .. , f,1I over k . One has to be slightly careful about the terminology: the subring
k[fl , " " f ml and the ideal (fl , " " f,1I) are both "generated" by fl , "" f, 1I ' but in
each case, we mean something slightly different. In the exercises , we will give some
examples to help explain the distinction.
An important tool we will use in our study ofk[XI , . .. , x"lc is theReynolds operator,

which is defined as follows.

Definition 2. Given a finite matrix group G C GL(n, k) , the Reynolds operator of
G is the map Rc : k[XI , ... , x,,] ~ k[XI, . . . , x"l defined by theformula

I
Rc(f)(x) = - L f(A · x)

IGI AeC

f or f(x) E k[XI , ... , xlIl.

One can think of Rc(f) as "averaging" the effect of G on f . Note that division by
IGI is allowed since k has characteristic zero. The Reynolds operator has the following
crucial properties .

Proposition 3. Let Rc be the Reynolds operator of the finite matrix group G.
(i) Rc is k -linear in f.
(ii) Iff E k[XI, , x"l, then Rc(f) E k[Xl, .. . , x"lc .
(iii) Iff E k[Xl , , x,,]c, then Rc(f) = f.

Proof. We will leave the proof of (i) as an exercise . To prove (ii), let BEG. Then

1 1
Rc(f)(Bx) = - L f(A . Bx) = - L f(AB . x).

IGI AeC IGI AeC

Writing G = {AI, . . . , Alcl}, note that AiB =1= A jB when i =1= j (otherwise,
we could multiply each side by B- 1 to conclude that Ai = Aj ) . Thus, the subset
{A1B, . . . , AICIB) C G consists of IGIdistinct elements of Gand, hence, must equal
G. This shows that

G = {AB : A E G).
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Consequently, in the last sum of (1), the polynomials f(AB . x) are just the f(A . x),
possibly in a different order. Hence,

1 1- L f(AB . x) = - L f(A . x) = Rc(f)(x) ,
IGI AeG IGI AeG

and it follows that RG(f)(B . x) = RG(f)(x) for all BEG. This implies Rc(f) E
k[XI, ... , xlI]G .
Finally, to prove (iii), note that if f E k[XI, . . . , xlI]G, then

1 1
RG(f)(x) = - L f(A . x) = - L f(x) = f(x)

IGI AeG IGI AeG

since f is invariant. This completes the proof.

One nice aspect of this proposition is that it gives us a way of creating invariants. Let
us look at an example.

Example 4. Consider the cyclic matrix group C4 C GL(2, k) of order 4 generated by

A=(~ -b)'
By Proposition 11 of §2, we know that

k[x,y]c, = (f Ek[x,y] : f(x,y) = f(-y,x)} .

One can easily check that the Reynolds operator is given by

I
Rc.(f)(x, y) = 4 (f(x, y) + f(-y, x) + fe-x, -y) + fey, -x»

(see Exercise 3). Using Proposition 3, we can compute some invariants as follows:

Rc.(x2) = ~ (x 2 + (_y)2 + (_X)2 + y2) = 1(x 2 + y2),

Rc.(xy) = . ~ (xy + (-y)x + (-x)(-y) + y(-x» = 0,
Rc,(x3y) = . ~ (x 3y + (_y)3X + (_x)3(_y) + y3(_x» = 1(x 3y - xl),
Rc,(x2l ) = ~ (X2y2 + (_y)2X2 + (_X)2(_y)2 + y2(_X)2) = X2y2 .

Thus, x 2+y2, x 3Y - xy3, x 2y2 E k[x, y f' .Wewill soon see that these three invariants
generate k[x, yr-.
It is easy to prove that, for any monomial x", the Reynolds operator gives us a

homogeneous invariantRG(xCl
) of totaldegree lalwhenever it isnonzero.The following

wonderful theorem of Emmy Noether shows that we can always find finitely many of
these invariants that generate k[XI, . . . , xlI]G .

Theorem S. Given a finite matrix group G C GL(n, k), we have

k[Xl," " xlI]G = k[Rc(x.8) : 1.81 ~ IGI].
In particular. k[XI , . . . , xlI]G is generated byfinitely many homogeneous invariants.
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Proof. If f = La caxa E k[Xt, •.. , x,,]c, then Proposition 3 implies that

f = Rc(f) = Rc (~caxa) = ~ caRc(xa).

Hence, every invariant is a linear combination (over k) of the Rc(xa). Consequently, it
suffices to prove that for all a, Rc(xa) is a polynomial in the Rc(x fJ ) , /,81 ::: IGI.
Noether 's clever idea was to fix an integer k and combine all Rc (x") of total degree k

into a power sum of the type considered in § I . Using the theory of symmetric functions,
this can be expressed in terms of finitely many power sums , and the theorem will follow.
The first step in implementing this strategy is to expand thekth power (XI +...+x"l

into a sum of monomials xa with laI = k:

(2) (XI + .. . + x"l = L aaxa.
lal=k

In Exercise 4, you will prove that aa is a positive integer for all ]e] = k.
To exploit this identity, we need some notation. Given A = (aij) E G, let Ai denote

the ith row ofA. Thus, Ai·x = ailxl + ...+aillx", Then, if a = (a), ... ,aw) E Z~o'

let -

(A · x)" = (AI' x)'" ... (All' x)"•.

In this notation, we have
I

Rcix") = - L(A. x)".
IGI AeC

Now introduce new variables u I, ... , UrI and substitute u, Ai • x for Xi in (2). This
gives the identity

(uiA I . x+ ... + u"A II • xl =L aa(A . x)aua.
la l= k

If we sum over all A E G, then we obtain

s, = L (al A I • X + ... + UrI An . X)k = L aa (L (A . xt ) u"
AeG lal =k AeC

= L baRc(xa)ua,

lal=k

where b., = /Glaa. Note how the sum on the right encodes all Rc(xa) with [c] =
k. This is why we use the variables u), • • • , UrI : they prevent any cancellation from
occurring.
The left side of (3) is the kth power sum Sk of the IGI quantities

indexed by A E G. We write this as S, = Sk(VA : A E G). By Theorem 80f§l ,every
symmetric function in the IGI quantities VA is a polynomial inS) , ... , SICI' Since Sk
is symmetric in the VA, it follows that

Sk = F(SI, ... , SICI)
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for some polynomial F with coefficients in k. Substituting in (3), we obtain

L baRG(xa)ua =F(L bpRG(xP)uP, . . . , L bpRC<XP)uP).
lal=k IPI=I IIII=IGI

Expanding the right side and equating the coefficients of u" , it follows that

baRG(xa) = a polynomial in the RC<xP) , 1.81.:::: IGI.

Since k has characteristic zero, the coefficient ba = IGlaa is nonzero in k, and, hence,
RG(x") has the desired form . This completes the proof of the theorem. 0

This theorem solves the finite generation problem stated at the end of §2. In the
exercises, you will give a second proofof the theorem using the Hilbert Basis Theorem.
To see the power of what we have just proved, let us compute some invariants .

Example 6. Wewill return to the cyclic group C4 C GL(2, k) of order 4 from Example
4. To find the ring of invariants , we need to compute Rc• (Xi yj) for all i + j .:::: 4. The
following table records the results:

xiy j Rc. (Xi yj) xiyj Rc.(xiyj)

X 0 xy2 0
Y 0 y3 0
x 2 4(x 2 + yl) x 4 4(x 4 + y4)

xy 0 x 3y 4(x 3y - y3X)
y2 4(x 2 + y2) X2y2 X2y2
x 3 0 xy3 - 4(x 3y - x y3)

x 2y 0 y4 4(x 4 + y4)

By Theorem 5, it follows that k[x, yf· is generated by the four invariants x 2 + y2,
x 4+ y4, x 3y _ xy3 and x 2y2. However, we do not need x 4 + y4 since

x 4 + y4 = (x 2 + yl)2 _ 2x2i.

Thus, we have proved that

k[x , yf' = k[x2 + i, x 3y - xl, x2il.

The main drawback of Theorem 5 is that when IGI is large, we need to compute
the Reynolds operator for lots of monomials. For example, consider the cyclic group
Cs C GL(2, IR) of order 8 generated by the 45° rotation

-1)I E GL(2, IR).

In this case, Theorem 5 says that k[x , y] is generated by the 44 invariants RC,(xi yj),
i + j .:::: 8. In reality, only 3 are needed. For larger groups, things are even worse,
especially if more variables are involved . See Exercise 10 for an example.
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Fortunately, there are more efficient methods for finding a gene rating set of invariants.
The main tool isMolien 's Theorem, which enables one to predict in advance the number
of linearly independent homogeneous invariants of given total degree. Th is theorem
can be found in Chapter 7 of BENSON and GROVE (1985) and Chapter 2 of STURMFELS
(1993) . The latter also gives an efficient algorithm, based on Molien's Theorem, for
finding invariants that generate k[XI' . .. , xlI)G .
Once we know k[XI, . . . , xlI)G = k[fl, . .. , fm) ,we can ask if there is an algorithm

for writing a given invariant f E k[xt , . .. , xlI)G in terms of [v - . . . , [«. For example,
it is easy to check that the polynomial

(4) f(x, y) = x 8 + 2x 6l - x 5y3 + 2x4y4 + x 3i + 2x2l + l
satisfies f(x, y) = f( -y, x), and, hence, is invariantunderthe group C4 from Example
4. Then Example 6 implies that f E k[x, yf4 = k[x 2+ y2, x 3y - xy3, x 2y2). But
how do we write f in terms of these three invariants? To answer this question, we will
use a method similar to what we did in Proposition 4 of §I .
We will actually prove a bit more, for we will allow fl , .. . , 1,11 to be arbitrary

elements of k[XI, " " XII)' The following proposition shows how to test whether a
polynomial lies in k[fl, .. . , 1,,,) and, if so, to write it in terms of [v- . . . , 1,11'

Proposition 7. Suppose that f l , . . . , 1,11 E k[x" . . . , XII) are given. Fix a monomial
order in k[XI, ... , XII' y" .. . , Ym) where any monomial involving one ofXI , .. . , XII
is greater than all monomials in k[YI, . . . , Ym) . Let G be a Groebner basis ofthe ideal
(/1 - YI, · · ·, 1,,, - Ym) C k[XI, " " XII' YI , . · . , Ym). Given f E k[Xi, "" x,,], let
g = yGbe the remainder of f on division by G. Then:
(i) f E k[fJ, . . . , 1,11) ifandonlyifg E k[y" , Ym) .
(ii) If f E k[fl, " " fm)' then f = g(f" , 1,,,) is an expression of f as a

polynomial in fv, .. . , f m·

Proof. The proof will be similar to the argument given in Proposition 4 of §I (with
one interesting difference). When we divide f E k[x" . . . , XII) by G = (g" . . . , gt),
we get an expression of the form

with At, .. . At, g E k[XI, . . . , X", Yt, ···, XII)'
To prove (i), first suppose that g E k[YI, . . . , Yilt). Then for each i, substitute fi

for Yi in the above formula for f .This substitution will not affect f since it involves
only XI, • •• , XII' but it sends every polynomial in (fl - YI, , f m - Ym) to zero.
Since g" . . . , g, lie in this ideal, it follows that f = g(!I, , fm). Hence, f E

k[ft, . . . , 1,,,) .
Conversely, suppose that f = g(f" ... , fm) for some g E k [YI' . . . , Yilt) .Arguing

as in §I, one sees that

(5) f = C, . (ft - YI> + ... + CII . (fm - Ym) + g(YI, .. . , Ym)

[see equation (4) of §I) . Unlike the case of symmetric polynomials, g need not be the
remainder of f on division by G-we still need to reduce some more .
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Let G' = G n k[YI , .. . , YIII) consist of those elements of G involving only
YI, . . . , YIII ' Renumbering if necessary. we can assume G' = (gl, . . . , gs), where
s ::: t . If we divide g by G', we get an expression of the form

(6) g = BIg1+ .. .+ Bsgs + s'.
where BI , . . . , B." g' E k[YI, ... , YIII)' If we combine equations (5) and (6), we can
write I in the form

1= C; . (fl - Yd + ...+ C; . (I,,, - YIII) + g'(Yt, ... , YIII) '

This follows because, in (6), each gi lies in (f) - Yt, . .. , 1,,, - YIIl}' We claim that
g' is the remainder of I on division by G. This will prove that the remainder lies in
k[YI, . .. , Ym) '
Since G is a Groebner basis, Proposition 1 of Chapter 2, §6 tells us that g' is the

remainder of I on division by G provided that no term of g' is divisible by an element
of LT(G). To prove that g' has this property, suppose that there is gi E G where
LT(gi) divides some term of s'. Then LT(gi) involves only YI , . .. , YIIl since g' E
k[YI, . .. , YIIl]' By our hypothesis on the ordering, it follows that gi E k[YI, . . . , Ym]
and , hence, gi E G'. Since g' is a remainder on division by G', LT(gi) cannot divide
any term of g' . This contradiction shows that g' is the desired remainder.
Part (ii) of the proposition follows immediately from the above arguments, and we

are done. 0

In the exercises, you will use this proposition to write the polynomial

f tx , y) = x 8 + 2x 6l - x 5l + 2x 4 / + x 3l + 2x 2l + i
from (4) in terms of the generating invariants x 2 + l, x 3y - xy3 , x 2y2 of k[x , Yf'.
The problem of finding generators for the ring of invariants (and the associated

problem of finding the relations between them-see §4) played an important role in
the development of invariant theory. Originally, the group involved was the group of all
invertible matrices over a field. A classic introduction can be found in HILBERT (1993),
and STURMFELS (1993) also discusses this case . For more on the invariant theory of finite
groups. we recommend BENSON (1993). BENSON and GROVE (1985), SMITH (1995) and
STURMFELS (1993).

EXERCISES FOR §3

I. Given fl , ... , f,,, E k[xi • . . . •x,,}. we can "generate" the following two objects:
• The ideal (flo . . .• f,,,) C k[XI • . . . , x,,] generated by flo . . . . f,,,. This consists of all
expressions L;'~I hili. where hi. .. . •h.; E k[x lo . . . •x,,].

• The subring k[fl , . . . , f",] C k[x! • . .. • x,,] generated by fl , . . . , f,,, over k. This con-
sists of all expressions g(fl ....• f,,,). where g is a polynomial in m variables with
coefficients in k.

To illustrate the differences between these. we will consider the simple case where fl
x2 E k[x] .
a. Explain why I E k[x 2] but I rf. (x2) .
b. Explain why x3 rf. k[x 2] but x3 E (x2) .

2. Let G be a finite matrix group in GL(n. k) . Prove that the Reynolds operator RG has the
following properties:
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a. If a. b E k andf. g E k[x" .. .• x,,]. then Rdaf + bg) = aRoCf) + bRdg).
b. RG maps k[x l• . . . , x,,] to k[xi• . . . • x,,]G and is onto.
c. RG 0 RG = RG •
d. If f E k[x" . ..• x"IG andgE k[x l• .... x ,,]. then Rdfg) = f · Rdg) .

3. In this exercise. we will work with the cyclic group C4 C GL(2. k) from Example 4 in the
text.
a. Prove that the Reynolds operator of C4 is given by

Rc.(j )(x . y) = ~ (I (x . y ) + fe-y ox) + fe-x. -Y) + fey . -x») .

b. Compute Rc• (x ;yi ) for all i + j ~ 4. Note that some of the computations are done in
Example 4. You can check your answers against the table in Example 6.

4. In this exercise. we will study the identity (2) used in the proof of Theorem 5. We will use
the multinomial coefficients. which are defined as follows. For a = (al • . . . , a,,) E Z::o.
let la l = k and define -

a. Prove that (:) is an integer: Hint: Use induction on n and note that when n = 2. (:) is a
binomial coefficient.

b. Prove that

t '" (k) Ct(XI + ...+ x,,) = L... a x .
ICt I~t

In particular. the coefficient aCt in equation (2) is the positive integer (:) . Hint: Use
induction on n and note that the case n = 2 is the binomial theorem .

5. Let G C GL(n. k) be a finite matrix group. In this exercise. we will give Hilbert 's proof
that k[x" . . . • x" IG is generated by finitely many homogeneous invariants. To begin the
argument. let I C k[xi • . . . • x,,] be the ideal generated by all homogeneous invariants of
positive total degree.
a. Explain why there are finitely many homogeneous invariants fl . . . . , f, ,, such that

I = (flo . . .• f,,,). The strategy of Hilbert 's proof is to show that k[xi • . . . , x,,]G =
k[fl• . . . . f,,,]. Since the inclusionk[fi• . .. • f,,,] C k[x" . . . • x.]G is obvious. we must
show that k[xi • . . . • x.IG r::. ki], . . . . . f,,,] leads to a contradiction.

b. Prove that k[XI, . . . , x ,,]G r::. k[fl • . . . • f,,, I implies there is a homogeneous invariant f
of positive degree which is not in k[fl, . . . • f, ,,].

c. For the rest of the proof. pick f as in part b with minimal total degree k. By definition.
f E l.sothatf = ,£;'~,'h ;f; forh" . . . • hm E k[xl . ... , x,,]. Prove that for each i .
we can assume h, [; is 0 or homogeneous of total degree k.

d. Use the Reynolds operator to conclude that f = '£::1 Rdh;)[; . Hint: Use Proposition
3 and Exercise 2. Also show that for each i, RG (h i) [; is 0 or homogeneous of total degree
k.

e. Since f ; has positive total degree. conclude that RG (h;) is a homogeneous invariant of
total degree < k . By the minimality of k, Rdh;) E k[fl • . . . • f,,,I for all i. Prove that
this contradicts f ¢ k[fl . . .. .; t: I.

This proof is a lovely application of the Hilbert Basis Theorem. The one drawback is that it
does not tell us how to find the generators-the proof is purely nonconstructive. Thus. for
our purposes . Noether 's theorem is much more useful.

6. If we have two finite matrix groups G and H such that G C H C GL(n. k). prove that
k[x l.. .. • X,,]H C k[xl • . . . • x.]G .



§3. Generators for the Ring of Invariants 337

7. Consider the matrix

(0-1)A = I -1 E GL(2 ,k).

a. Show that A generates a cyclic matrix group C3 of order 3.
b. Use Theorem 5 to find finitely many homogeneous invariants which generate k[x, yf ).
c. Can you find fewer invariants that generate k[x , y f ' ? Hint: If you have invariants

fl " ' " I.,,,you can use Proposition 7 to determine whether fl E k[h, ·· ·, I.,,] .
8. Let A be the matrix of Exercise 7.

a. Show that -A generates a cyclic matrix group C6 of order 6.
b. Show that -/2 E C6.Then use Exercise 6 and §2 to show that k[x , yf6 C k[x 2, y2, xy].

Conclude that all nonzero homogeneous invariants of C6 have even total degree.
c. Use part b and Theorem 5 to findk[x , yf6 .Hint: There are still a lot of Reynolds operators

to compute. You should use a computer algebra program to design a procedure that has
i , j as input and RC6 (X i y j) as output.

9. Let A be the matrix

1(I -I)A =...ti 1 I E GL(2, k).

a. Show that A generates a cyclic matrix group Cg C GL(2 , k) .
b. Give a geometric argument to explain why x2 + y2 E k[x , y f ' .Hint: A is a rotation

matrix.
c. As in Exercise 8, explain why all homogeneous invariants of Cg have even total degree.
d. Find k[x , Yf' .Hint: Do not do this problem unless you know how to design a procedure

(on some computer algebra program) that has i, j as input and Rc, (Xi, y j) as output.
10. Cons ider the finite matrix group

G={(±~ ±~ ~)}CGL(3'k) .° 0 ±I .
Note that G has order 8.
a. If we were to use Theorem 5 to determine k[x, y, z]G, for how many monomials would

we have to compute the Reynolds operator?
b. Use the method of Example 12 in §2 to determine k[x, y , zIG.

11. Let f be the polynomial (4) in the text.
a. Verify that f E k[x , Yf" = k[x 2+ y2, x3y - xi, X2y2].
b. Use Propos ition 7to express f as a polynomial in x2+ i, x3Y - xy3, x 2i .

12. In Exercises 5, 6, and 7 of §2. we studied the rotation group G C GL(3, IR) of the cube in
IR3 and we found that k[x, y . zIG contained the polynomials

f l = x2+ i + Z2 ,

h = (x + Y + z)(x + Y - z)(x - y + z)(x - Y - z) ,

f3=x2iz2,
f4 = xyz(x2 - i)(x2 - z2)(i - Z2 ).

a. Give an elementary argument using degrees to show that f4 If. k[f" h , f3].
b. Use Proposition 7 to show that!J tf. k[fl' hI .
c. In Exercise 6 of §2, we showed that

(X2 _ i)(x2 _ z2)(i - Z2»)2 E k[x , y, ziG .
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Prove that this polynomial lies in k [flo [i- hI. Why can we ignore f 4? Using Mol ien 's
Theorem and the methods of STURMFELS (1993), one can prove that k[x , y , ziG
k [f), jz, [s , f41.

§4 Relations Among Generators
and the Geometry of Orbits

Given a finite matrix group G C GL(n , k), Theorem 5 of §3 guarantees that there are
finitely many homogeneous invariant s fl , . . . , I; such that

k[Xi , "" xlllG = k[fi , " " 1,,,].
In this section, we will learn how to describe the algebraic relations among f l• . . . , 1,,,
and we will see that these relations have some fascinating algebraic and geometric
implicat ions.
We begin by recalling the uniqueness problem stated at the end of §2. For a sym-

metric polynomial f E k[Xi .. . . . xll ls" = k[at , ...• all], we proved that f could
be written uniquely as a polynomial in a I , .. . , all' For a general finite matrix group
G C GL (n . k ), if we know that k[x l • . . . , xlI]G = k[fl • . . . , 1,,,], then one could
similarly ask if f E k[XI, . .. , xll lGcan be uniquely written in terms of fl • . . . •1,,, .
To study this question , note that if g t and gz are polynomials in k[Yi , . .. , Y".l, then

g l (/1, . .. , 1,,, ) = gZ(/I . . . . , 1,11 ) ¢:=} h(/I , . .. , fm ) = 0,

where h = gl - gz . It follows that uniquene ss fails if and only if there is a nonzero
polynom ial h E k[Yl ' .. . , Ym] such that h(/I •. . . , f ill ) = O. Such a polynomial is a
nontri vial algebraic relation among fl, ... , f m.
If we let F = (/1, . . . , fm)' then the set

(I) IF = [h E k[YI, . . . , Ym ] : h(/I , . .. , f ill) = 0 in k[XI• .. . , XII]}

records all algebraic relat ions among f l . . . . , f ill ' This set has the follow ing properties.

Proposition l. If k[Xi• . . . ,x1I 1G = k[fl, " " f ill] , let IF C k[YI, ... , Ym ] be as
in (1). Then:
(i) h is a prime ideal ofk[YI' . . . , Ym].
(ii) Suppose that f E k[x l . . . . ,x,,]G and that f = g(/I , . . . . fm) is one represen-

tation of f in terms of f l• . . . , 1,,,. Then all such representations are given by

f = g(/I . .. · , fm ) + h(/I , .. . , 1,,,) ,

as h varies over IF.

Proof. For (i), it is an easy exerci se to prove that IF is an ideal. To show that it is
prime. we need to show that f gE l F implies thatf ElF or g E l F (see Definition 2
of Chapter 4, §5). But f g E lF means that f (/I, . . . , f, ,,)g (/I , , 1,,, ) = O. This is a
product of polynom ials in k[XI, . . . , XII], and , hence, f (/J, 1,,, ) or g (/l, . . . , 1,,, )
must be zero. Thus . f or g is in IF.
We leave the proof of (ii) as an exercise. 0
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We will call IF the ideal of relations for F = (fl •.. .• fm) . Another name for
I F used in the literature is the syzygy ideal. To see what Proposition 1 tells us about
the uniqueness problem, consider Cz = (±hl C GL(2 , k). We know from §2 that
k[x, y]C l = k[xz, yZ, xy], and, in Example 4, we will see thatlF = (uv - wZ) C
k[u, v , w]. Now consider x 6 + x 3y3 E k[x, yfl. Then Proposition 1 implies that all
possible ways of writing x 6 + x 3y3 in terms of x Z, y2, xy are given by

(x Z)3+ (xy)3 + (x z · l - (x y)z) . b(xz, l, xy)
since elements of (uv - wz) are of the form (uv - wz) . btu , v, w) .
As an example of what the ideal of relations IF can tell us, let us show how it can be

used to reconstruct the ring of invariants.

Proposition 2. If k[XI, . .. ,xlI]G = k[fl , ... ,fill], let IF C k[YI, . . . , Ym] be the
ideal of relations. Then there is a ring isomorphism

k[YI • . . . , YIIl]/ IF ~ k[XI , . .. , xll]G

between the quotient ring of IF (as defined in Chapter 5, §2) and the ring ofinvar iants.

Proof. Recall from §2 of Chapter 5 that elements of the quotient ring k[YI, . .. , YIII]/ IF
are written [g] for g E k[YI , . . . • Ym], where [gIl = [gz] if and only if gl - s: ElF.
Now define cP : k[YI • . . . , YIIl]/ IF ~ k[XI , . . . , x lI]G by

cP(lgl) = stJ« . . .. , fill ) '
We leave it as an exercise to check that cP is well-defined and is a ring homomorphism.
We need to show that cP is one-to-one and onto .
Since k[XI, .. . ,xlI]G = k[fl , . . . , f,,,], it follows immediately that cP is onto. To

prove that cP is one-to-one, suppose that cP ([gil) = cP([gz]) . Then gl (fl , . . . , f,,,) =
gZ(fI, . . . , f ill), which implies that gl - gz E h· Thus , [gIl = [gz] , and, hence, cP is
one-to-one.
It is a general fact that if a ring homomorphism is one-to-one and onto , then its inverse

function is a ring homomorphism. This proves that cP is a ring isomorph ism. 0

A more succinct proof of this proposition can be given using the Isomorphism
Theorem of Exercise 16 in Chapter 5, §2.
For our purposes, another extremely important property of IF is that we can compute

it explicitly using elimination theory. Namely, consider the system of equations

YI = fl(XI , .. . , XII),

YIIl = flll(XI, ... , XII)'

Then IF can be obtained by eliminating XI , .•. , XII from these equations .

Proposition 3. Ifk[xl , . . . , xlI]G = k[fl • . . . , fill], consider the ideal

iF = (fl - Yl, ···. f m - YIIl) C k[XI, . .. •XII' YI , · ··. Ym].
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(i) IF is the nth elimination ideal of JF . Thus . IF = JF n k[YI, . . . , y",] .
(ii) Fix a monomial order in k[XI, . . . , X" , YI, . . . , Y",] where any monomial involving

one ofXI, ... , x; is greater than all monomials in k[YI • . . . , y",] and let G be a
Groebner basis of JF . Then G n k[YI • . . . • Y",] is a Groebner basis for IF in the
monomial order induced on k[Y I, . . . • y",] .

Proof. Note that the ideal JF appeared earlier in Proposition 7 of §3. To relate JF to
the ideal of relations IF. we will need the following characterization of iF: if p E
k[xi • . . . , X" , YI• ... • Y",] . then we claim that

(2) p E iF ¢=:} p(xl, ... , x" . f l • .. . • f",) =Oink[xl • .. . , x ,,] .

One implication is obvious since the substitution Yi t-+ f; takes all elements
of JF = (fl - YI , . .. , /'11 - Y",) to zero. On the other hand. given p E
k[XI, .. . , XII' YI, . . . , y",], if we replace each Yi in p by f; - (f; - Yi) and expand.
we obtain

P(XI, . . . , XII' YI . · · ·, Y",) = P(XI, . . . , XII' f l , " " /'11)

+ B I • (fl - YI) + + B", . (f", - Y",)

for some B I , . . . , B", E k[XI , , XII' YI, , Y",] (see Exercise 4 for the details) . In
particular. if P(XI, . . . , X" , fl' , /'11) = O. then

P(XI, . . . , XII ' YI , . . . , Y",) = BI . (fl - YI) + . .. + B", . (f", - y",) E iF.
This completes the proof of (2).
Now intersect each side of (2) with k[YI, . . . , y",] . For p E k[YI, . . . , Y",]' this

proves

P E iF n k[YI , .. . , Y",] ¢=:} P(fl , . ' " /'11) = 0 in k[X I ,· ··. XII]'

so that iF n k[YI , . .. , J",] = IF by the definition of IF.Thus . (i) is proved and (ii) is
then an immediate consequence of the elimination theory of Chapter 3 (see Theorem 2
and Exercise 5 of Chapter 3, §I). 0

We can use this proposition to compute the relations between generators.

Example 4. In §2. we saw thatthe invariants ofCz = {±lzl C GL(2, k) are given by
k[x,yfl = k[xz,yZ ,xy].LetF = (xz,yZ,xy)andletthenewvariablesbeu,v ,w.
Then the ideal of relations is obtained by eliminating x, y from the equations

u = Xz,

v = yZ,

W = xy .

If we use lex order with X > Y > u > v > w, then a Groebner basis for the ideal
Jr = (u - xZ, v -yZ. w - xy) consists of the polynomials

x Z - u, xy - w, xv - yw, xw - yu. y2 - v , uv - wZ.

It follows from Proposition 3 that
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IF = (uv - w2 ) .

This says that all relations between x 2• y2, and xy are generated by the obvious relation
x 2 . y2 = (xy)2 . Then Proposition 2 shows that the ring of invariants can be written as

k(x. y]c2 ;;:: k[u. v, w]/{uv - w2).

Example S. In §3, we studied the cyclic matrix group C4 C GL(2. k) generated by

A=(~ -~)
and we saw that

k(x, yf' = k[x2 + l , x 3y +xl, x2l] .
Putting F = (x 2 + y2 , x 3y - xy3, x 2y2), we leave it as an exercise to show that
IF C k(u, u, w] is given by IF = (u2w - v2 - 4w 2) . So the one nontrivial relation
between the invariants is

(x 2+ l)2 . X2y2 = (x 3y - xl)2+ 4(x2l)2 .

By Proposition 2, we conclude that the ring of invariants can be written as

k[x. yf· ;;:: k(u , V. w]/{u2w - v2 - 4w2).

By combining Propositions I, 2, and 3 with the theory developed in §3 of Chap-
ter 5. we can solve the uniqueness problem stated at the end of §2. Suppose that
k[XI , ... , xll]G = k[/I, . . . , 1m] and let IF C k(YI • . . . , Ym] be the ideal of rela-
tions. If IF =1= {OJ, we know that a given element I E k[xi • . . . , xlI]G can be written
in more than one way in terms of II, . . . , 1m. Is there a consistent choice for how to
write I?
To solve this problem, pick a monomial order on k( YI • . . . , Ym] and use Proposi -

tion 3 to find a Groebner basis G of IF ' Given g E k(y l • ... , Ym], let gG be the
remainder of g on division by G. In Chapter 5, we showed that the remainders gG
uniquely represent elements of the quotient ring k(YI, ... , Ym]/ I ,.. (see Proposition 1
of Chapter 5, §3). Using this together with the isomorphism

k[y l • . . . ' Ym] / I F ;;:: k(xi • . .. ,xlI]G

of Proposition 2, we get a consistent method for writing elements of k(xi • . . . • xlI]G
in terms of II, . . .. 1m.Thus , Groebner basis methods help restore the uniqueness lost
when IF =1= {OJ .

SO far in this section, we have explored the algebra associated with the ideal of
relations I F. It is now time to tum to the geometry. The basic geometric object associated
with an ideal is its variety. Hence, we get the following definition.

Definition 6. Ifk(xJ, .. . ,xllf = k[fI, ... ,lm],letIF C k[YI''' ' , YIII] be the
ideal of relations for F = (/1 • .. . , 1m) . Then we have the affine variety

VF = V(l,..) C r:
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The variety Vp has the following properties.

Proposition 7. Let IF and VFbe as in Definition 6.
(i) VF is the smallest variety in kill containin g the parametrization

YI = fl (x ), ... , x,,),

YIII = f m(xl, . . . , x,,) .

(ii) lp = I (VF), so that lp is the ideal ofall polynomial functions vanishing on VF.
(iii) VF is an irreducible variety.
(iv) Let k [VFl be the coordinate ring of Y« as defined in §4 ofChapter 5. Then there

is a ring isomorphism

Proof. By Proposition 3, IF is the nth elimination ideal of JF = (fl - YI, .. . f m- YIII )'
Then part (i) follows immediately from the Polynomial Implicitization Theorem of
Chapter 3 (see Theorem I of Chapter 3, §3). .
Turn ing to (ii), note that we always have I» C I (V(lF» = I(VF ) . To prove the

oppo sition inclusion, suppose that h E I (VF)' Given any point (a i , . . . ,a,,) E k" , part
(i) implies that

(f'(al, . .. . a" ), . . . , f,,, (a l .. . . , a,,» E VF .

Since h vanishes on VF , it follows that

h(fl(aI , . . . . a,,), . . . , f, ,,(al , .. . , all» = 0

for all (a I, ... , all) E k". By assumption, k has characteristic zero and, hence, is
infinite. Then Propo sition 5 of Chapter 1, §1 implies that h(fl , ... , fm) = 0 and,
hence, hElp.
By (ii) and Propos ition 1, I (VF) = lp is a prime ideal , so that VF is irreducible by

Proposition 4 of Chapter 5, §I. (We can also use the parametrization and Proposition 5
of Chapter 5, §5 to give a second proof that VF is irreducible.)
Finally, in Chapter 5, we saw that the coordinate ring k[ VF1could be written as

k[VFl ~ k[Yl ," " Ylll l/I (VF)

(see Theorem 7 of Chapter 5, §2). Since I (VF) = IF by part (ii), we can use the
isomorphism of Proposition 2 to obtain

(3 ) k[VFl ~ k[YI• . . . , Ylll l / IF ~ k[XI , ... , xlllG.

Thi s completes the proof of the proposition. o
Note how the isomorphisms in (3) link together the three methods (coordinate rings ,

quotient rings and rings of invariants ) that we have learned for creating new rings.
When we write k[XI, ... , xlIlG = k[fl , " " f ml, note that f l'" .., 1,,, are not

uniquely determined. So one might ask how changing to a different set of generators
affects the variety VF . The answer is as follows.
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Corollary 8. Suppose that k[XI, .. . ,x"lG = k[fl , .. . , fm1 = k[f[ , . . . , f~"llf
we set F = (fl, . . . , fm) and F' = (f( , . . . , f~,,), then the varieties VF C k'" and
Vp C km' are isomorphic (as defined in Chapter 5, §4).

Proof. Applying Proposition 7 twice, we then have isomorphisms k[VFl;;:::
k[XI, . . . , x"lG :;: k[Vd, and it is easy to see thatthese isomorphisms are the identity
on constants. But in Theorem 9 of Chapter 5, §4, we learned that two varieties are
isomorphic if and only if there is an isomorphism of their coordinate rings which is the
identity on constants. The corollary follows immediately. 0

One of the lessons we learned in Chapter 4 was that the algebra-geometry correspon-
dence works best over an algebraically closed field k. So for the rest of this section, we
will assume that k is algebraically closed.
To uncover the geometry of VF, we need to think about the matrix group G C

GL(n, k) more geometrically. So far, we have used G to act on polynomials: if f(x) E
k[XI, .. . , x"l , then a matrix A E G gives us the new polynomial g(x) = f(A . x).
But we can also let G act on the underly ing affine space k" . We will write a point
(a i , . .. , a,,) E k" as a column vector a. Thus,

a=(a/).
a"

Then a matrix A E G gives us the new point A . a by matrix multiplication.
We can then use G to describe an equivalence relation on k": given a, b E k", we

say that a ~G b if b = A . a for some A E G. We leave it as an exercise to verify
that ~G is indeed an equivalence relation . It is also straightforward to check that the
equivalence class of a E k" is given by

{b E k" : b ~G a} = {A . a : A E G}.

These equivalence classes have a special name.

Definition 9. Given a finite matrix group G C GL(n , k) and a E k", the G-orbit of
a is the set

G . a = {A . a : A E G} .

The set ofall G-orbits in k" is denoted k" / G and is called the orbit space.

Note that an orbit G . a has at most IGI elements . In the exercises, you will show
that the number of elements in an orbit is always a divisor of IGI.
Since orbits are equivalence classes, it follows that the orbit space k" / G is the set

of equivalence classes of ~G' Thus , we have constructed k" / G as a set. But for us, the
objects of greatest interest are affine varieties . So it is natural to ask if k" / G has the
structure of a variety in some affine space. The answer is as follows.
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Theorem 10. Let G C GL(n, k) be a finite matrix group. where k is algebraically
closed. Suppose that k[XI, . . . , xlI]G = k[fJ, . . . , fm]. Then:
(i) The polynomial mapping F : k" -+ VF defined by F(a) = (f, (a) , . . . • f,1I (a)) is

surjective .Geometrically. thismeans that theparametrization Yi = f; (x, • . . . , XII )
covers all of VF.

(ii) The map sending the G-orbit G . a C k" to the point F(a) E VF induces a
one-to-one correspondence

Proof. We prove part (i) using elimination theory. Let JF = (f, - y" ... • fm - YIII)
be the ideal defined in Proposition 3. Since IF = JF n k[y " . . . , Ym] is an elimination
ideal of Jr, it follows that a point (b l , . . . , bill) E VF = V(IF) is a partial solution of
the system of equations

Y, = fl(xl , . . . , XII) ,

If we can prove that (bl, .. " bm) E V(IF) extends to (al,"" all, bs, . . . , bill) E
V(h), then Fta« , .. . , all) = (b l , . . . , bm) and the surjectivity of F : k" -+ VF will
follow.
We claim that for each i , there is an element Pi E JF n k[XI, . . . , XII ' YI, . . . , Ym]

such that

(4) Pi = xi' + terms in which Xi has degree < N,

where N = IGI. For now, we will assume that the claim is true.
Suppose that inductively we have extended (b l , ... , bm ) to a partial solution

(ai+I , . . . , all, bi , . . . , bm) E V(JF n k[Xi+I, . .. , XII' YI,· · ·, Ym] '
Since k is algebraically closed , the Extension Theorem of Chapter 3, §I asserts that we
can extend to (ai , a,+I , ... , all , b l , , bm), provided the leading coefficient in Xi of
one of the generators of JF n k[Xi , , XII' YI, . .. , Ym] does not vanish at the partial
solution. Because of our claim, this ideal contains the above polynomial Pi and we
can assume that Pi is a generator (just add it to the generating set). By (4), the leading
coefficient is I, which never vanishes, so that the required a, exists (see Corollary 4 of
Chapter 3, §I).
It remains to prove the existence of Pi. We will need the following lemma.

Lemma 11. Suppose that G C GL(n , k) is a finite matrix group and f E
k[XI, . . . , XII]' Let N = IGI. Then there are invariants gl, . . . , s» E k[x" .. . , xlI]G
such that

r +«r": + ... + s» = O.
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Proof of Lemma. Consider the polynomial nAeG(X - f(A . xj). If we multiply it
out, we get

n(X - f(A . xj) = X N + g, (x)XN- 1 + ...+ g,v(x),
AeG

where the coefficients gl, . •. , gN are in k[x" • .. , XII] ' We claim that g" .•. , gN are
invariant under G. To prove this, suppose that BEG. In the proof of Proposition 3 of
§3, we saw that the f(A B . x) are just the f(A . x), possibly in a different order. Thus

n(X - f(AB . x) =n(X - f(A • xj) ,
..leG ..leG

and then multiplying out each side implies that

XN + g, (B · X)XN - I + . .. + g,v(B . x) = XN + g, (X)X,v-1 + ... + g,v(x)

for each BEG. This proves that g" . •. , gN E k[XI, ... , xlI]G .
Since one of the factors is X - fUll ' x) = X - f(x), the polynomial vanishes

when X = f ,and the lemma is proved. 0

We can now prove our claim about the polynomial Pi. If we let f = Xi in Lemma
11, then we get

(5 N N-I + + 0) Xi + glXi . . . s» = ,

where N = IGI and gl," " gN E k[Xl t " " xn]G . Using k[XI, ... , xll ]G =
k[fl,"" fm], we can write gj = hj(fl, . •. , fm) for j = I, . . . , N. Then let

Pi(Xi, y\, . • . , Ym) = Xi
N + hl(y,,·· ·, Ym)x~-I + .. .+ hN(YI , .. . , YIII)

in k[Xi, Y" . .• , Ym] . From (5), it follows that P(Xi, fl, . •. , f,1I) = 0 and, hence, by
(2) , we see that Pi E iF. Then Pi E iF n k[Xi, . . . , XII' YI, . . . , YIII], and our claim is
proved.
To prove (ii), first note that the map

F : k"/G --+ VF

defined by sending G . a to F (a) = (fl (a), . . . , f,1I (a» is well-defined since each f; is
invariant and, hence, takes the same val~ on all points of a G-orbit G . a . Furthermore,
F is onto by part (i) and it !?llows that F is also onto.
It remains to show that F is one-to-one. Suppose that G . a and G . b are distinct

orbits . Since ......G is an equivalence relation, it follows that the orbits are disjoint. We
will construct an invariant g E k[XI, ... , xlI]G such that g(a) =1= g(b) . To do this, note
that S = G . bUG· a - {a} is a finite set of points in k" and, hence, is an affine variety.
Since a rf. S, there must be some defining equation f of S which does not vanish at a.
Thus, for A E G, we have

{
0 if A . a =1= a

f(A . b) = 0 and f(A· a) = f(a) =1= 0 if A . a = a .

Then let g = Rd/). We leave it as an exercise to check that

M
g(b) = 0 and g(a) = iGI f(a) =1= 0,
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where M is the number of elements A E G such that A . a = a. We have. thus. found
an element g E k[xl • . .. • x,,]G such that g(a) =F g (b).
Now write g as a polynomial g = hUt . . . . . 1m) in our generators. Then g(a) =F

g(b) implies that Ii (a) =F Ii (b) for some i, and it follows that F takes different values
on G . a and G . b. The theorem is now proved. 0

Theorem 10 shows that there is a bijection between the set k" / G and the variety
VF . This is what we mean by saying that k" / G has the structure of an affine variety.
Further, whereas IF depends on the generators chosen for k[xi • . . . • x,,]G, we noted in
Corollary 8 that VF is unique up to isomorphism. This implies that the variety structure
on k" / G is unique up to isomorphism.
One nice consequence of Theorem 10 and Proposition 7 is that the "polynomial

functions" on the orbit space k" / G are given by

Note how natural this is: an invariant polynomial takes the same value on all points of
the G-orbit and, hence, defines a function on the orbit space . Thus, it is reasonable to
expectthat k[xi • . . . • x,,]Gshould be the "coordinate ring" of whatever variety structure
we put on k" / G.
Still. the bijection k" / G ;;: VF is rather remarkable if we look at it slightly differently.

Suppose that we start with the geometric action of G on k" which sends a to A . a for
A E G. From this, we construct the orbit space k" / G as the set of orbits. To give this
set the structure of an affine variety, look at what we had to do:
• we made the action algebraic by letting G act on polynomials;
• we considered the invariant polynomials and found finitely many generators ; and
• we formed the ideal of relations among the generators.
The equations coming from this ideal define the desired variety structure VF on k" / G.
In general. an important problem in algebraic geometry is to take a set of interesting

objects (G-orbits, lines tangent to a curve, etc.) and give it the structure of an affine
(or project ive-see Chapter 8) variety. Some simple examples will be given in the
exercises.

EXERCISES FOR §4

1. Given f l• . . .• j,,, E k[xl> . .. • X,,). let I = (g E k[ylo .. .• y",) : g(/I •.. .• j,,,) = OJ.
a. Prove that I is an ideal of k[YI• . . . • y",] .
b. If f E k[fl• . . .• j,,,] and f = g(!J, ... • j,,,) is one representation of f in terms

of flo .. . . j,,,. prove that all such representations are given by f = g (/1 • . . .• j,,,) +
h (/1 . . . . • j,,,) as h varies over I .

2. Let f l• . . . • j,,, E k[xi • . . . • x,,] and let I c k[YI • . . . • y",] be the ideal of relations defined
in Exercise 1.
a. Prove that the map sending a coset [g] to g(/Io . . .. j, ,,) defines a well-defined ring

homomorph ism

tP : k[ylo . .. • y",]/ I ---+ k[fl • ... • j,,,].

b. Prove that the map tP of part a is one-to-one and onto. Thus. tP is a ring isomorphism.
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c. Use Exercise 13 in Chapter 5. §2 to give an alternate proof that k[ yJ, ... • y..,]/I
and k[fJ, . . . • f,n) are isomorph ic. Hint: Consider the ring homomorphism ct> :
k [yJ, . ..• y..,] --+ k [flo . .. • f,.) which sends Yi to f,.

3. Although Propositions I and 2 were stated for k[x I • .. . • x,,]G. we saw in Exercises I and
2 that these results held for any subring of k[x i • . . . • xn ] of the form k[fl• . . . • [,,,]. Give a
similar generalization of Proposition 3. Does the proof given in the text need any changes?

4. Given p E k[xJ, . . . • x.: YI •. . . • y..,]. prove that

p(xJ, . .. • Xn• yl. ·· · . y.., ) = P(XI • . . . • Xn• f l•. .. • f, ,,)
+ BI . (fl - YI)+ ... + B.., . (f,,, - Y..,)

for some BJ, . . . • B.., E k[ xi • . . . • X,,, YI •. . . • y..,]. Hint: In p, replace each occurrence of
Yi by fi - (f; - Yi ). The proof is similar to the argument given to prove (4) in §l.

5. Complete Example 5 by showing that IF C k[u. u, w] is given by h = (u2w - v2 - 4w 2)
when F = (x 2 + y2• xJy _ xyJ. x2y 2).

6. In Exercise 7 of §3. you were asked to compute the invariants of a certain cyclic group
CJ C GL(2. k) of order 3. Take the generators you found for k[x. yf; and find the relations
between them.

7. Repeat Exercise 6. this time using the cyclic group C6 C GL(2. k) of order 6 from Exercise
8 of §3.

8. In Exercise 12 of §3. we listed four invariants fl. h . fs. f4 of the group of rotations of the
cube in IRJ .
a. Using (f4/XYZ)2 and part c of Exercise 12 of §3. find an algebraic relat ion between

f l. s; fJ. A
b. Show that there are no nontrivial algebraic relations between f l . h. fJ.
c. Show that ' the relation you found in pan a generates the ideal of all relations between
fl . h . fs - f 4' Hint: This is a big problem. Your computer may run out of memory or you
may run out of time .

9. Given a finite matrix group G C GL(n . k). we defined the relation -c on k" by a »:o b if
b = A . a for some A E G.
a. Verify that - G is an equivalence relation.
b. Prove that the equ ivalence class of a is the set G . a defined in the text.

10. Consider the group of rotations of the cube in IRJ • We studied this group in Exercise 5 of §2.
and we know that it has 24 elements.
a. Draw'a picture of the cube which shows orbits consisting of 1.6. 8. 12 and 24 elements.
b. Argue geometrically that there is no orbit consisting of four elements.

II. (Requires abstract algebra) Let G C GL(n . k) be a finite matrix group . In this problem. we
will prove that the number of elements in an orbit G . a divides IG I.
a. Fix a E k" and let H = {A E G : A . a = a}. Prove that H is a subgroup of G. We

call H the isotropy subgroup or stabilizer of a .
b. Given A E G.wegetthe/eftcosetAH = {AB : B E H}ofH inGandweletG/H

denote the set of all left cosets (note that G/ H will not be a group unless H is normal).
Prove that the map sending AH to A . a induces a bijective map G/ H ;;: G . a . Hint:
You will need to prove that the map i-s well-defined. Recall that two cosets AH and BH
are equal if and only if B- 1A E H .

c. Use part b to prove that the number of elements in G . a divides IGI.
12. As in the proof of Theorem 10. suppose that we have disjoint orbits G . a and G . b. Set

S = G . b UG· a - (a}. and pick f E k[ xl • .. . • x,,] such that f = 0 on all points of S
but f(a) # O. Let g = Rd/). where Rc is the Reynolds operator of G .
a. Explain why g (b) = O.
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b. Explain why g(a) = ~ !(a) i= 0, where M is the number of elements A E G such
that A . a = a.

13. In this exercise, we will see how Theorem 10 can fail when we work over a field that is not
algebraically closed . Consider the group of permutation matrices S: C GL(2 , IR).
a. We know that IR[x, y ]S2 = IR[CTI , CTZ]. Show that h = [01 when F = (CTI, CTZ), so that

YF = IRz. Thus. Theorem 10 is concerned with the map F : IRz/Sz -+ IRz defined by
sending Sz . (x, y) to (Y1.vz) = (x + y, xy) .

b. Show that the image of F is the set {(YI, yz) E IRz : y~ ~ 4YzI c IRz. This is the
region lying below the parabola y~ = 4yz. Hint: Interpret y, and Yz as coefficients of the
quadratic XZ - YI X + yz.When does the quadratic have real roots?

14. There are many places in mathematics where one takes a set of equivalences classes and puts
an algebraic structure on them. Show that the construction ofaquotient ring k[XI , . .. ,x,,]/ I
is an example. Hint: See §2 of Chapter 5.

IS. In this exercise, we will give some examples of how something initially defined as a set
can tum out to be a variety in disguise . The key observation is that the set of nonvertical
lines in the plane k Z has a natural geometric structure. Namely, such a line L has a unique
equation of the form y = mx +b, so that L can be identified with the point (m, b) in another
2-dimensional affine space, denoted k Zv • (If we use projective space-to be studied in the
next chapter-then we can also include vertical lines.)

Now suppose thai we have a curve C in the plane. Then consider all lines which are
tangent to C somewhere on the curve. This gives us a subset C V C kZv • Let us compute this
subset in some simple cases and show that it is an affine variety.
a. Suppose our curve C is the parabola y = x Z•Given a point (xo, Yo) on the parabola , show

that the tangent line is given by y = 2xox - x5 and conclude that CV is the parabola
mZ + 4b = 0 in kZv •

b. Show that C V is an affine variety when C is the cubic curve y = Xl .

In general, more work is needed to study C V
• In particular, the method used in the above

examples breaks down when there are vertical tangents or singular points. Nevertheless, one
can develop a satisfactory theory of what is called the dual curve C V of a curve C C kZ•
One can also define the dual variety y v of a given irreducible variety Y C k" ,
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Projective Algebraic Geometry

So far, all of the varieties we have studied have been subsets of affine space k", In this
chapter, we will enlarge k" by adding certain "points at 00" to create n-dimensional
projective space IP" (k) . We will then define projective varieties in IP" (k) and study
the projective version of the algebra-geometry correspondence. The relation between
affine and projective varieties will be considered in §4; in §5, we will study elimination
theory from a projective point of view. By working in projective space. we will get a
much better understanding of the Extension Theorem from Chapter 3. The chapter will
end with a discussion of the geometry of quadric hypersurfaces and an introduction to
Bezout 's Theorem.

§1 The Projective Plane

This section will study the project ive plane IP2(IR) over the real numbers JR.Wewill see
that, in a certain sense, the plane JR2 is missing some "points at 00 ," and by adding them
to JR2, we will get the projective plane IP2(JR) . Then we will introduce homogeneous
coordinates to give a more systematic treatment of IP2(JR).
Our starting point is the observation that two lines in JR2 intersect in a point , except

when they are parallel. We can take care of this except ion if we view parallel lines
as meeting at some sort of point at 00. As indicated by the picture at the top of the
following page, there should be different points at 00, depending on the direction of the
lines. To approach this more formally, we introduce an equivalence relat ion on lines in
the plane by setting L( ~ L2 if L 1 and L2 are parallel. Then an equivalence class [Ll
consists of all lines parallel to a given line L. The above discussion suggests that we
should introduce one point at 00 for each equivalence class [L]. We make the following
provisional definition .

Definition 1. The projective plane over JR,denoted IP2(IR) , is the set

IP2(JR) = JR2U {one point at oofor each equivalence class of parallel lines}.

349
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meet at a point at ~
! !

x

i i
meet at a different point at ee

We will let [Ll oo denote the common point at 00 of all lines parallel to L . Then we
call the set I = L U [Lloo C.lP2(lR) the projective line corresponding to L. Note that
two projective lines always meet in exactly one point: if they are not parallel, they meet
at a point in lR2; if they are parallel, they meet at their common point at 00.
At first sight , one might expect that a line in the plane should have two points at 00,

corresponding to the two ways we can travel along the line. However, the reason why
we want only one is contained in the previous paragraph: if there were two points at
00, then parallel lines would have two points of intersection. not one. So. for example,
if we parametrize the line x = y via (x, y) = (t , t), then we can approach its point at
00 using either t --+ 00 or t --+ -00.

A common way to visualize points at 00 is to make aperspective drawing. Pretend
that the earth is flat and consider a painting that shows two roads extending infinitely
far in different directions:

vanishing point
J,

vanishing point
J,

For each road, the two sides (which are parallel, but appear to be converging) meet at
the same point on the horizon, which in the theory ofperspective is called a vanishing
point, Furthermore, any line parallel to one of the roads meets at the same vanish ing
point, which shows that the vanishing point represents the point at 00 of these lines.
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The same reasoning applies to any point on the horizon, so that the horizon in the
picture represents points at 00. (Note that the horizon does not contain all of them-it
is missing the point at 00 of lines parallel to the horizon.)
The above picture reveals another interesting property of the projective plane: the

points at 00 form a special projective line, which is called the line at 00. It follows that
IP2(IR) has the projective lines r = L U [Lloo, where L is a line in IR2, together with
the line at 00. In the exercises, you will prove that two distinct projective lines in the
IP2(IR) determine a unique point and two distinct points in IP2(IR) determine a unique
projective line. Note the symmetry in these statements : when we interchange "point"
and "projective line" in one, we get the other. This is an instance of the principle of
duality, which is one of the fundamental concepts of projective geometry.
For an example of how points at 00 can occur in other contexts, consider the

parametrization of the hyperbola x2 - y2 = I given by the equations

I + (2

X = 1 _ (2'

2t
y = I - (2'

When t i= ± I, it is easy to check that this parametrization covers all of the hyperbola
except (-1,0). But what happens when t = ± I? Here is a picture of the hyperbola:

2

If we let ( 4- 1-, then the corresponding point (x, y) travels along the first quadrant
portion of the hyperbola, getting closer and closer to the asymptote x = y. Similarly, if
( 4- 1+, we approach x = y along the third quadrant portion of the hyperbola. Hence,
it becomes c1earthatt = 1should correspond to the point at 00 of the asymptote x = y .
Similarly, one can check that t = -I corresponds to the point at 00 of x = -yo (In
the exercises, we will give a different way to see what happens when ( = ±1.)
Thus far, our discussion of the projective plane has introduced some nice ideas, but it

is not entirely satisfactory. For example, it is not really clear why the line at 00 should
be called a projective line. A more serious objection is that we have no unified way
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of naming points in lP2(JR). Points in JR2 are specified by its coordinates , but points
at 00 are specified by lines. To avoid this asymmetry, we will introduce homogeneous
coordinates on lP2(JR).
To get homogeneous coordinates, we will need a new definition of projective space.

The first step is to define an equivalence relation on nonzero points of JR3 by setting

(x), Yl, ZI) ~ (X2, Y2 , Z2)

if there is a nonzero real number Asuch that (XI, YI, Z\) = A(X2, Y2, Z2).One can easily
check that ~ is an equivalence relation on JR3 - (O} (where as usual 0 refers to the
origin (0, 0, 0) in JR3).Then we can redefine projective space as follows.

Definition 2. lP2(JR) is the set ofequivalence classes of~ on JR3 - {OJ. Thus, we can
write

lP2(JR) = (JR3 - {O})/ ~ .

Ifa triple (x, y, z) E JR3 - (O} corresponds to a point p E lP2(JR), we say that (x, y , z)
are homogeneous coordinates of p.

At this point, it is not clear that Definitions 1 and 2 give the same object , although
we will see shortly that this is the case.
Homogeneous coordinates are different from the usual notion of coordinates in that

they are not unique. For example, (1, 1, I) , (2,2,2), (rr, Jr, rr) and (.../2, .../2, .../2)
are all homogeneous coordinates of the same point in projective space. But the
nonuniqueness of the coordinates is not so bad since they are all multiples of one
another.
As an illustration of how we can use homogeneous coordinates. let us define the

notion of a projective line.

Definition 3. Given real numbers A, B, C, not all zero, the set

(p E lP2(JR) : p has homogeneous coordinates (x, Y, z)

with Ax + By + C; = O}

is called a projective llrie oflP2(JR).

An important observation is that if Ax + By + Cz = 0 holds for one set (x , y, z) of
homogeneous coordinates of p E lP2(JR). then it holds for all homogeneous coordinates
of p. This is because the others can be written A(X, y, z) = (Ax, Ay, AZ), so that
A . Ax + B . Ay+ C . AZ = A(Ax + By + Cz) = O.Later in this chapter, we will
use the same idea to define varieties in projective space.
To relate our two definitions of projective plane, we will use the map

(1)

defined by sending (x, y) E JR2 to the point p E lP2(JR) whose homogeneous
coordinates are (x, y, 1). This map has the following properties.
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Proposition 4. The map (1) is one-to-one and the complement of its image is the
projective line Hoo defined by z = o.

Proof. First, suppose that (x, y) and (x ' , y') map to the same point p in IP2(1R).
Then (x, y , 1) and (x', y', 1) are homogeneous coordinates of p, so that (x, y, 1) =
A(X', y', 1) for some A.Looking at the third coordinate, we see that A = 1and it follows
that (x , y) = (x', y').
Next, let (x, y, z) be homogeneous coordinates of a point p E IP2(1R). If z = 0,

then p is on the projective line Hoo• On the other hand, if z =1= 0, then we can multiply
by liz to see that (xlz, Ylz , I) gives homogeneous coordinates for p. This shows that
p is in the image of map (I). We leave it as an exercise to show that the image of the
map is disjoint from Hoo, and the proposition is proved . 0

We will call Hoo the line at 00. It is customary (though somewhat sloppy) to identify
1R2 with its image in IP2(1R), so that we can write projective space as the disjoint union

This is beginning to look familiar. It remains to show that Hoo consists of points at 00
in our earlier sense. Thus, we need to study how lines in 1R2 (which we will call affine
lines) relate to projective lines. The following table tells the story:

affine line
L: Y = mx +b ~

L:x=c ~

projective line
I : y = mx + bz
I: x = cz

point at 00
(I , m, 0)
(0, 1,0)

To understand this table, first consider a nonvertical affine line L defined by y = mx+b.
Under the map (I), a point (x, y) on L maps to a point (x, y, 1) of the projective line
I defined by y = mx + bz: Thus, L can be regarded as subset of I . By Proposition 4,
the remaining points of I come from where it meets z = O. But the equations z = 0
and y = mx + bz clearly imply y = mx, so that the solutions are (x, mx , 0) . We have
x =1= 0 since homogeneous coordinates never simultaneously vanish, and dividing by
x shows that (I, m, 0) is the unique point of In Hoo•The case of vertical lines is left
as an exercise.
The table shows that two lines in IR2 meet at the same point at 00 if and only if they are

parallel. For nonverticallines, the point at 00 encodes the slope, and for vertical lines,
there is a single (but different) point at 00. Be sure you understand this. In the exercises,
you will check that the points listed in the table exhaust all of Hoo• Consequently,
Hoo consists of a unique point at 00 for every equivalence class of parallel lines. Then
1P2(1R) = 1R2 U Hoo shows that the projective planes of Definitions I and 2 are the
same object.
We next introduce a more geometric way of thinking about points in the projective

plane. Let (x, y, z) be homogeneous coordinates of a point p in IP2(1R), so that all other
homogeneous coordinates for p are given by A(X, y, z) for A E IR - {OJ. The crucial
observation is that these points all lie on the same line through the origin in 1R3:
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y

r
linethrough theorigin

The requirement in Definition 2 that (x, y. z) #- (0, 0, 0) guarantees that we get a
line in IR3. Conversely, given any line L through the origin in IR3, a point (x, Y. z)
on L - (OJ gives homogeneous coordinates for a uniquely determined point in 1P2(IR)
[since any other point on L - {OJ is a nonzero multiple of (x , y. z)]. This shows that
we have a one-to-one correspondence.

(2) ]p2(IR) :;: {lines through the origin in IR3}.

Although it may seem hard to think of a point in 1P2(IR) as a line in IR3, there is a
strong intuitive basis for this identification. We can see why by studying how to draw a
3-dimensional object on a 2-dimensional canvas. Imagine lines or rays that link our eye
to points on the object. Then we draw according to where the rays intersect the canvas:

object
J,

cf2....... . ... ..... .

....Q
~canvas

. .. .. .. . . ....... :: ii ii i ii lt O f- eye

r
rays

Renaissance texts on perspective would speak of the "pyramid of rays" connecting the
artist's eye with the object being painted. For us, the crucial observation is that each
ray hits the canvas exactly once, giving a one-to-one correspondence between rays and
points on the canvas.
To make this more mathematical, we will let the "eye" be the origin and the "canvas"

be the plane z = I in the coordinate system pictured at the top of the next page. Rather
than work with rays (which are half-lines), we will work with lines through the origin.
Then. as the picture indicates. every point in the plane z = I determines a unique line
through the origin. This one-to-one correspondence allows us to think of a point in the
plane as a line through the origin in IR3 [which by (2) is a point in 1P2(IR)). There are
two interesting things to note about this correspondence:
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y. ...

z point

~ the planez= I

. .. . .. . ..

. . . . .. . . . . . . . . . . .

r
line

• A point (x , y) in the plane gives the point (x, y, 1) on our "canvas" z = 1. The
corresponding line through the origin is a point p E )p2(IR) with homogeneous
coordinates (x, y , I). Hence, the correspondence given above is exactly the map
IR2 -+ )p2(IR) from Proposition 4.

• The correspondence is not onto since this method will never produce a line in the
(x , y)-plane. Do you see how these lines can be thought of as the points at oo?

In many situations, it is useful to beable to think of )p2(IR) both algebraically (in terms
of homogeneous coordinates) and geometrically (in terms of lines through the origin) .
As the final topic in this section, we will use homogeneous coordinates to examine

the line at 00 more closely. The basic observation is that although we began with
coordinates x and y, once we have homogeneous coordinates, there is nothing special
about the extra coordinate z-it is no different from x or y . In particular, if we want,
we could regard x and z as the original coordinates and y as the extra one.
To see how this can be useful , consider the parallel lines L , y = x + 1/2 and

L2 : y = x - 1/2 in the (x , y)-plane:

L,
J.,

x

The (x, y)-Plane
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We know that these lines intersect at 00 since they are parallel. But the picture does not
show their point of intersection. To view these lines at 00, consider the projective lines

I, : y = x + {I/2)z,

I 2 : y = x - {I/2)z

determined by L I and L 2 • Now regard x and z as the original variables. Thus, we map
the (x, zj-plane 1R2 to IP2(1R) via (x, z) 1-+ (x, I, z), As in Proposition 4, this map
is one-to-one, and we can recover the (x , zj-plane inside IP2 (IR) by setting y = 1.
If we do this with the equations of the projective lines I, and I 2, we get the lines
L ; : z = -2x + 2 and L; : z = 2x - 2. This gives the following picture in the
(x, zj-plane:

L'
1 L'2

,=0
J.

The (x. zj-Plane

x

In this picture, the x-axis is defined by z = 0, which is the line at 00 as we originally set
things up in Proposition 4. Note that L; and L; meet when z = 0, which corresponds
to the fact that L1 and L2 meet at 00. Thus , the above picture shows how our two lines
behave as they approach the line at 00. In the exercises, we will study what some other
common curves look like at 00.
It is interesting to compare the above picture with the perspective drawing of two

roads given earlier in the section. It is no accident that the horizon in the perspective
drawing represents the line at 00. The exercises will explore this idea in more detail.
Another interesting observation is that the Euclidean notion of distance does not play

a prominent role in the geometry of projective space. For example, the lines L 1 and
L2 in the (x, y)-plane are a constant distance apart, whereas L'I and L; get closer and
closer in the (x, z)-plane. This explains why the geometry of IP2(1R) is quite different
from Euclidean geometry.
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EXERCISES FOR§1

I. Using )p2(JR) as given in Definition I , we saw that the project ive lines in )p2(JR) are I =
L U [Llex> ' and the line at 00.
a. Prove that any two distinct projective lines in )p2 (JR) determine a unique projective line.

Hint: There are three cases to consider, depend ing on how many of the points are points
at 00.

b. Prove that any two distinct projective lines in )p2(JR) meet at a unique point. Hint: Do
this case-by-case .

2. There are many theorems that initially look like theorems in the plane, but which are really
theorems in )p2(JR) in disguise. One classic example is Pappus's Theorem , which goes as
follows. Suppose we have two collinear triples of points A, B, C and A' , B'. C. Then let

p=AB'nA'B,

Q = AC' n NC ,
R = BC' n B'C.

Pappus's Theorem states that P, Q, R are always collinear points. In Exercise 8 of Chapter 6,
§4, we drew the following picture to illustrate the theorem:

c

A B c

a. If we let the points on one of the lines go the other way, then we can get the following
configuration of points and lines:
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Note that P is now a point at 00. Is Pappus 's Theorem still true [in IP2(lR)] for the picture
on the preceding page?

b. By moving the point C in the picture for part b, show that you can also make Q a point
at 00. Is Pappus 's Theorem still true? What line do P, Q, R lie on? Draw a picture to
illustrate what happens .
If you made a purely affine version of Pappus's Theorem that took cases b and c into

account , the resulting statement would be rather cumbersome. By working in IP2(lR), we
cover these cases simultaneously .

3. We will continue the study of the parametrization (x , y) = «I + (2)/(1 - (2),2(/(1 - (2»

of x 2 - y2 = I begun in the text.
a. Given t, show that (x, y) is the point where the hyperbola intersects the line of slope

( going through the point (-I , 0). Illustrate your answer with a picture. Hint: Use the
parametrization to show that ( = y/(x + I).

b. Use the answer to part a to explain why ( = ± I maps to the asymptotes of the hyperbola .
Illustrate your answer with a drawing.

c. Using homogeneous coordinates, show that we can write the parametrization as

and use this to explain what happens when ( = ±1. Does this give the same answer as
part b?

d. We can also use the technique of part c to understand what happens when ( --+ 00.

Namely, in the parametrization (x, y, z) = (I + (2, 2(, I - (2), substitute / = 1/u.Then
clear denominators (this is legal since we are using homogeneous coordinates) and let
u --+ O. What point do you get on the hyperbola?

4. This exercise will study what the hyperbola x 2 - y2 = I looks like at 00.
a. Expla in why the equation x 2 - l = Z2 gives a well-defined curve C in IP2(lR). Hint:

See the discuss ion following Definition 3.
b. What are the points at 00 on C? How does your answer relate to Exercise 3?
c. In the (x, z) coordinate system obtained by setting y = I. show that C is still a hyperbo la.
d. In the (y, z) coordinate system obtained by setting x = I, show that C is a circle.
e. Use the parametrization of Exercise 3 to obtain a parametrization of the circle from part

d.
5. Consider the parabola y = x 2•

a. What equation should we use to make the parabola into a curve in IP2(lR)?
b. How many points at 00 does the parabola have?
c. By choos ing appropriate coordinates (as in Exercise 4), explain why the parabola is

tangent to the line at 00.
d. Show that the parabola looks like a hyperbola in the (y, z) coordinate system.

6. When we use the (x , y) coordinate system inside IP2(lR), we only view a piece of the
project ive plane. In particular, we miss the line at 00. As in the text, we can use the (x , z) to
view the line at 00. Show that there is exactly one point in IP2(lR) that is visible in neither
(x, y) nor (x. z) coordinates. How can we view what is happening at this point?

7. In the proof of Proposition 4, show that the image of the map (2) is disjoint from H"".
8. As in the text, the line Hoc is defined by z = O.Thus, points on Hoc have homogeneous

coordinates (a , b, 0), where (a, b) # (0,0).
a. A vertical affine line x = c gives the projective line x = cz. Show that this meets H"" at

the point (0, 1,0) .
b. Show that a point on H""different from (0. 1,0) can be written uniquely as (I , m, 0) for

some real number m.
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9. In the text , we viewed parts of IP2(IR) in the (x, y ) and (x, z) coordinate systems. In the
(x , z) picture, it is natural to ask what happened to y. To see this , we will study how (x, y)
coordinates look when viewed in the (x , zj-plane.
a. Show that (a , b) in the (x , y)-plane gives the point ia j b, I /b) in the (r , z)-plane.
b. Use the formula of part a to study what the parabolas (x , y ) = (r , t 2) and (x, y) = (t2, t)

look like in the (x, z) -plane. Draw pictures of what happens in both (x, y) and (x, z)
coordinates.

10. In this exercise, we will discuss the mathematics beh ind the perspective drawing given in the
text. Suppose we want to draw a picture of a landscape, which we will assume is a horizontal
plane . We will make our drawing on a canvas, which will be a vertical plane . Our eye will
be a certain distance above the landscape, and to draw, we connect a point on the landscape
to our eye with a line , and we put a dot where the line hits the canvas:

the origln-»

-" '"
f- the canvas y =1

r
the landscape z =I

To give formulas for what happens, we will pick coordinates (x, y , z) so that our eye is
the or igin , the canvas is the plane y = I, and the landscape is the plane z = I (thus, the
positive z-axis points down).
a. Starting with the point (a , b, I) on the landscape, what point do we get in the canvas

y = I?
b. Explain how the answer to part a relates to Exercise 9. Write a brief paragraph discuss ing

the relation between perspective drawings and the projective plane .
11. As in Definition 3, a projective line in IP2(IR) is defined by an equation of the form Ax +

By + Cz = 0, where (A, B , C) 'i= (0,0,0) .
a. Why do we need to make the restriction (A, B , C) 'i= (0,0, O)?
b. Show that (A , B, C) and (A' , B', C') define the same projective line if and only if

(A, B, C) = A(A', B' , C') for some nonzero real number A. Hint: One direction is
easy . For the other dire ction, take two distinct points (a , b, c) and(a' , b', c' ) on the line
Ax + By + Cz = 0. Show that (a , b, c) and(a ' , b' , c') are linearly independent and con-
clude that the equations Xa + Yb + Zc = Xa' + Yb' + Zc' = °have a I-dimensional
solution space for the variables X, Y, Z .

c. Conclude that the set of projective lines in IP2(IR) can be identified with the set
{(A , B , C) E 1R3 : (A, B, C) 'i= (0 ,0, O)}/ < , This set is called the dual projective
plane and is denoted !p2v (IR)" ,

d. Describe the subset of !p2(IR) v corresponding to affine lines .
e. Given a point p E IP2(1R), consider the set pof all projective lines L containing p. We

can regard pas a subset of IP2(IR)v . Show that p is a projective line in IP2(IR)v . We call
the p the pencil of lines through p.
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f. The Cartesian product IP2(IR) x IP2(IR)v has the natural subset

I = {(p oL) E IP2(IR) x IP2(IR)V : pEL}.

Show that I is descr ibed by the equation Ax + By + Cz = O. where (x . y. z) are
homogeneous coordinates on IP2(IR) and (A . B. C) are homogeneous coordinates on the
dual. We will study varieties of this type in §5.

Parts d. e. and f of this exercise illustrate how collections of naturally defined geometric
objects can be given an algebraic structure.

§2 Projective Space and Projective Varieties

The construction of the real projective plane given in Definition 2 of §I can be gen-
eralized to yield projective spaces of any dimension n over any field k. We define an
equivalence relat ion ~ on the nonzero points of k"+1 by setting

(X~ • . . . • x:,) '"" (xo, . •. ,XII)

if there is a nonzero element). E k such that (xb• . . . , x;,) = ).(xo, . . . ,XII)' If we let°denote the origin (0, . . . , 0) in k"+I , then we define projecti ve space as follows.

Definition 1. n-dlmensional projective space over the field k , denoted IP"(k), is the
set ofequivalence classes of>- on k"+1 - {OJ. Thus,

1P"(k) = (k"+1 - {O})/ '"" .

Each nonzero (n + I)-tuple (xo, . .. , XII ) E k"+1 defines a point pin IP"(k), and we
say that (xo , . . . , XII ) are homogeneous coordinates of p.

Like IP2(lR), each point p E IPn(k ) has many sets of homogeneous coordinates. For
example , in IP3(<c) , the homogeneous coordinates (0, ../2,0, i ) and (0, 2i. 0, -../2)
describe the same point since (0, u.0, -../2) = .J2i" (0 , ../2, 0, i). In general, we will
write p = (xo , . . . • XII) to denote that (xo , ... , XII) are homogeneous coordinates of
p E IP" (k) .
As in §I , we can think of IP"(k) more geometrically as the set of lines through the

origin in k"+1• More precisely, you will show in Exercise I that there is a one-to -one
correspondence

(I) IP/(k) ~ {lines through the origin in k"+I ) .

Just as the real projective plane contains the affine plane lR2 as a subset, IP/(k)
contains the affine space k" .

Proposition 2. Let

Vo = {(xo, ... , x,,) E IP"(k) : Xo ::/= 0).

Then the map ¢ taking (al . . . . • all) in k" to the point with homogeneous coordinates
(1 , a l • . . . , all) in IP"(k ) is a one-to-one correspondence between k" and Vo C IP" (k).
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Proof. Since the first component of ¢ (ai, . . . , all) = (I, ai, . . . , all) is nonzero, we
get a map ¢ : k" -)0 U»-We can also define an inverse map 1/1 : Uo -)0 k" as follows.
Given p = (xo, • . . , XII) E Uo since Xo =1= 0 we can multiply the homogeneous
coordinates by the nonzero scalar A. = ...!.. to obtain p = (I , ~ , . . . , &). Then set

Xn .\ 0 .t o

1/I(p) = (~ , .. . , &) E k" . We leave it as an exercise for the reader to show that
III Xu

1/1 is well-defined and that ¢ and 1/1 are inverse mappings . This establishes the desired
one-to-one correspondence. 0

By the definition of Ue. we see that !P" (k) = Uo U H, where

(2) H = (p E !P"(k) : p = (0, XI, • . . , XII)}'

Ifwe identify Uowith the affine space k", then we can think of H as the hyperplaneat
infinity. It follows from (2) that the points in H are in one-to-one correspondence with
n-tuples (XI , . . . , XII)' where two n-tuples represent the same point of H if one is a
nonzero scalar multiple of the other Oust ignore the first component of points in H). In
other words, H is a "copy" of !p"-I (k), the projective space of one smaller dimension.
Identifying Uo with k" and H with !p"-I (k), we can write

(3) !P"(k) = k" U !P"-I(k).

To see what H !P"-I(k) means geometrically, note that, by (1), a point p E
!PII-I(k) gives a line L C k" going through the origin. Consequently, in the decompo-
sition (3), we should think of p as representing the asymptotic direction of all lines in
k" parallel to L. This allows us to regard p as a point at 00 in the sense of §1, and we
recover the intuitive definition of the projective space given there. In the exercises , we
will give a more algebraic way of seeing how this works.
A special case worth mentioning is the projective line !pI (k) . Since !po(k) consists

of a single point (this follows easily from Definition 1), letting n = 1 in (3) gives us

!p1(k) = k l U !p°(k) = k U [co},

where we let 00 represent the single point of !p°(k). If we use (I) to think of points in
!pI (k) as lines through the origin in k 2, then the above decomposition reflects the fact
these lines are characterized by their slope (where the vertical line has slope 00). When
k = <C, it is customary to call

!pI (<C) = <C U {oo}

the Riemann sphere.The reason for this name will be explored in the exercises .
For completeness, we mention that there are many other cop ies of k" in !P" (k) besides

U«. Indeed the proof of Proposition 2 may be adapted to yield the following results.

Corollary 3. Foreach i = 0, .. . n, let

U, = {(xo, . • . , XII) E !P"(k) : Xi =1= OJ .
(i) The points ofeach U, are in one-to-one correspondencewith the points ofk".
(ii) The complement W" (k) - U, may be identified with !p"-I (k) .
(iii) Wehave !P1I(k) = U;'=oUi •
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Proof. See Exerc ise 5. o

Our next goal is to extend the definition of varieties in affine space to projecti ve space .
For instance, we can ask whether it makes sense to cons ider V(f) for a polynom ial f E
k[xo. . . . . XII ]'A simple example shows that some care must be taken here. For instance ,
in JP2(IR), we can try to construct Vex, - xi) .The point p = (xo . X"X2) = (1, 4. 2)
appears to be in this set since the components of p sat isfy the equat ion XI - xi = O.
However. a problem arises when we note that the same point p can be represented
by the homogeneous coordinate s p = 2(1 , 4. 2) - (2, 8. 4). If we substitute these
components into our polynomial , we obtain 8 - 42 = -8 =1= O.We get different resul ts
depending on which homogeneous coordinates we choose.
To avoid problems of this type, we use homogeneous polynom ials when working in

JP" (k). From Definition 6 of Chapter 7, § I, recall that a polynomial is homogeneous of
total degree d if every term appearing in f has total degree exactly d. The polynomial
f = x, - xi in the example is not homogeneous, and this is what caused the inconsis-
tency in the values of f on different homogeneous coordinates representing the same
point. For a homogeneous polynomial , this does not happen.

Proposition 4. Let f E k[xo, . . . , x , ] be a homogeneous polynomiaL. If f vanishes
on anyone set ofhomogeneous coordinates for a point p E JPII, then f vanishes for
all homogeneous coordinates of p.ln particular V(f) = (p E JP II (k ) : f (p ) = OJ is
a well-defined subset OfJPII (k) .

Proof. Let (ao, .. . , all) and (}"ao . . . . , }"all) be homogeneous coord inates for p E
JPII(k) and assume that f (ao• . . . , all ) = O. If f is homogeneous of total degree k , then
every term inf has the form

where ao+ ... + all = k .When we substitute x, = }"aj, this term becomes

c( }"ao)"" .. . (}"a )"" = >...kca"" . .. a":" 0 II •

Summing over the terms in f , we find a common factor of )"k and, hence ,

f (>...ao• . . . • >"'all) = >... k f (ao, . . . , all) = O.

This proves the proposition. o

Notice that even if f is homogeneous, the equation f = a does not make sense in
JP" (k ) when 0 =1= a E k . The equation f = 0 is special because it gives a well-defined
subset of JPII (k). We can also consider subsets of JPII(k) defined by the vanishing of a
system of homogeneous polynom ials (poss ibly of different total degrees ). The correct
generalization of the affine varieties introduced in Chapter I. §2 is as follows.

Definition 5. Let k be a field and let f l ' . . . ,f, E k[xo, . .. , XII] be homogeneous
polynomials. We set

V(f" .. . ,Is) = {(ao, ... , an) E JPn(k) : f;(ao, ... , an) = Ofor all I S i S sj.
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We call V(/I. . . . , j, ) the projective variety defined by fl • . . . • f. ,

For example, in jp" (k ) , any homogeneous polynom ial of degree I .

i(xo , . . . . XII ) = COXo + .. .+ CIlXII '

defines a projective variety V(e) called a hyperplane. One example we have seen is the
hyperplane at infinity, which was defined as H = V(xo). When n = 2. we call V(e)
a projective line , or more simply a line in jp2(k) . Similarly, when n = 3, we call a
hyperplane a plane in 1P3(k ). Varieties defined by one or more linear polynom ials (ho-
mogeneous polynomials of degree I) are called linear varieties in jp" (k ). For instance,
V(XI . X2) C jp3(k) is a linear variety which is a projective line in jp3(k).
The projective varieties V(/) defined by a single homogeneous equ ation are known

collectively as hypersurfaces. However, individual hypersurfaces are usually classified
according to the total degree of the defining equation. Thus, if f has total degree 2 in
k[xo, . . . • XII ], we usually call V(/) a quadric hypersurface, or quadric for short . For
instance, V(-x5 + x~ + xi) C jp3(IR) is quadric. Simil arly, hypersurface s defined
by equations of total degree 3, 4, and 5 are known as cubics , quartics, and quintics,
respectively.
To get a better understanding of projective variet ies. we need to discover what the cor-

responding algebraic objects are. This leads to the not ion of homogeneous ideal,which
will be discussed in §3. We will see that the entire algebra- geometry correspondence
of Chapter 4 can be carried over to projective space .
The final topic we will consider in this section is the relation between affine and

projective varieties. As we saw in Corollary 3, the subsets V i C jp" (k) are copies of
k" . Thu s, we can ask how affine varieties in V i ~ k" relate to projective varieties in
1P" (k) . First, if we take a projective variety V and intersect it with one of the Vi, it
makes sense to ask whether we obtain an affine variety. The answer to this question
is always yes , and the defining equations of the variety V n U, may be obtained by a
process called dehomogenization.We illustrate this by considering V n Vo. From the
proof of Proposition 2, we know that if p E Ua, then p has homo geneous coord inates
of the form (I , XI • • . • , XII) ' If f E k[xo, .. .. XII] is one of the defining equations of V,
then the polynomial g (X I , • • • ,'x lI ) = f (l , X l • • • . , XII) E k[x\ • . . . . XII I vanishes at
every point of V n Ue, Setting Xo = 1 in f produces a "dehomogenized" polynomial g
which is usually nonhomogeneous. We claim that V n Vo is prec isely the affine variety
obta ined by dehomogenizing the equations of V .

Proposition 6. Let V = V(/1 , ... , j ,) be a projective vari ety. Then W = V n Vo
can be identified with the affine variety V (g l , .. . • g,) C k" , where gi(y \ , .. . • YII ) =
f i(I . Yl , . . . , y,,) for each 1 SiS s.

Proof. The comments before the statement of the propo sit ion show that using the
mapping 1/1 : Vo --+ k" from Proposition 2, 1/I (W ) C V(gl , " " g,) . On the other
hand , if (a " . . . , all) E V(g" . .. . g,), then the point with homogeneous coordinates
( I , ai , . .. • a,,) is in Vo and it satisfies the equations

f i(l, al, " " all) = gj(al • . . . , a,,) = O.
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Thus, ¢ (V(gl • . . . • g, )) C W . Since the mappings ¢ and 1{f are inverses, the points of
W are in one-to-one correspondence with the points of V(gl , ... , g,). 0

For instance , cons ider the projective variety

(4)

To intersect V with Vo, we dehomogenize the defining equations, which gives us the
affine variety

V(x~ - X2 , x~ - X3) C IRJ .

We recognize this as the familiar twisted cubic in IR3•
We can also dehomogenize with respect to other variables . For example, the above

proof shows that, for any projective variety V C jp3(IR) , V n V I can be identified with
the affine variety in IR3 defined by the equations obtained by setting gi(xo, X2. X3) =
f i(xo, I. X2. X3). When we do this with the projective variety V defined in (4) , we see
that V n VI is the affine variety VO - X2XO. I - X3XJ). See Exercise 9 for a general
statement.
Going in the opposite direction , we can ask whether an affine variety in Vi can be

written as V n Vi in some project ive variety V . The answer is again yes, but there is
more than one way to do it, and the result s can be somewhat unexpected.
One natural idea is to reverse the dehomogenization process described earl ier and

"homogenize" the defining equations of the affine variety. For example, consider the
affine variety W = V (X2 - x~ + x~) in Vo = IR2 . The defining equat ion is not
homogeneous. so we do not get a projective variety in jp2 (IR ) directly from this equation.
But we can use the extra variable Xo to make f = X2 - x ~ + x~ homogeneous. Since
f has total degree 3. we modify f so that every term has total degree 3. This leads to
the homogeneous polynomial

f h = X2XJ - x~ + x~xo .

Moreover. note that dehomogenizing f h gives back the original polynomial f in XI, X2.
The general pattern is the same.

Proposition 7. Let g(x i• . . . , XII ) E k[xl • . . . ,XII]be a polynomial of total degree d.
(i) Let g = 'L1=0 gi be the expansion of g as the sum ofits homogeneous components

where gi has total degree i . Then
d

gh(xo• . . . •XII ) =L gi(XI . . . . ,x,,)xg- i
i=O

= gd(XI , ... , XII) + gd- I(XI , .. . , xlI )xo
+ ... + go(xi • . . . ,x,,)xg

is a homogeneous polynomial oftotal degree d in k[xo• . . . , XII]' We will call gh
the homogenization ofg.

(ii) The homogenization of g can be computed using the formula

l = xg . g (~ . .. . , XII) .
Xo Xo



§2. Projective Space and Projective Varieties 365

(iii) Dehomogenizing e" yields g. That is, gh(I, XI , • •• , XII) = g(XI , . . . , XII)'
(iv) Let F(xo, ... , XII ) be a homogeneous polynomial and let Xobe the highest power

of Xo dividing F. If f = F(l, XI, • • . , XII) is a dehomogenization of F. then
F = xo' fh.

Proof. We leave the proof to the reader as Exercise 10. o
As a result of Proposition 7, given any affine variety W = V(gl , " " gs) C k",

we can homogenize the defining equations of W to obtain a projective variety
V = V(g7, . . . , g7) C \p " (k) . Moreover, by part (iii) and Proposition 6, we see that
V n Uo = W.Thus, our original affine variety W is the affine portion of the projective
variety V .
As we mentioned before, though, there are some unexpected possibilities.

Example 8. In this example, we will write the homogeneous coordinates of points in
\pz(k) as (x, y, z). Numbering these as 0, 1,2, we see that Ui is the set of points with
homogeneous coordinates (x, y , 1), and X and yare coordinates on U2 2:: k2• Now
consider the affine variety W = V(g) = V(y - x 3 + x) C U2• We know that W is
the affine portion V n U2 of the projective variety V = V(gh) = V(yzz - x 3 + xzz).
The variety V consists of W together with the points at infinity V n V(z) . The affine

portion W is the graph of a cubic polynomial , which is a nonsingular plane curve. The
points at infinity, which form the complement of W inV, are given by the solutions of
the equations

0= YZ2 - x 3 + xz2,
0= z.

It is easy to see that the solutions are z = x = 0 and since we are work ing in \P2(k) ,we
get the unique point p = (0, 1,0) in V n V(z). Thus, V = W U {pl . An unexpected
feature of this example is the nature of the extra point p.
To see what V looks like at p, let us dehomogenize the equation of V with respect

to v and study the intersection V nUl. We find

W' - V· nUl = V(gh(x, 1, z) = V(Z2 + x 3 + xz2 ) .
From the discussion of singularities in §4 of Chapter 3, one can easily check that p,
which becomes the point (x, z) = (0,0) E W', is a singular point on W':

x



366 8. Projective Algebraic Geometry

Thus, even if we start from a nonsingular affine variety (that is, one with no singular
points), homogenizing the equations and taking the corresponding projective variety
may yield a more complicated geometric object. In effect, we are not "seeing the whole
picture" in the original affine portion of the variety. In general, given a projective
variety V C IP"(k), since IP"(k) = U;'=oUi, we may need to consider V n Vi for each
i = a, . . .,n to see the whole picture of V.
Our next example shows that simply homogenizing the defining equations can lead

to the "wrong" projective variety.

Example 9. Consider the affine twisted cubic W = V(X2 - x?, X3 - x?) in 1R3. By
Proposition 7, W = V n Vo for the projective variety V = V(X2XO - x?, X3X~ - x?) C
IP3(IR). As in Example 8, we can ask what part of V we are "missing" in the affine
portion W. The complement of Wand V is V n H, where H = V(xo) is the plane at
infinity. Thus. V n H = V(X2XO - x? X3X~ - x?, xo), and one easily sees that these
equations reduce to

x? = a.
x? = a,
Xo = a.

The coordinates X2 and X3 are arbitrary here. so V n H is the projective line V(xo, XI) C
IP3(IR). Thus we have V = W U V(xo. XI)'
Since the twisted cubic W is a curve in 1R3, our intuition suggests that it should

only have a finite number of points at infinity (in the exercises, you will see that this is
indeed the case). This indicates that V is probably too big; there should be a smaller
projective variety V' containing W. One way to create such a V'is to homogenize other
polynomials that vanish on W . For example, the parametrization (r, t 2 , t 3 ) of W shows
that XIX3 - xi E I(W). Since XIX3 - xi is already homogeneous. we can add it to the
defining equations of V to get

V' = V(hto - x{, X3XJ - x? , XIX3 - xi) c v.

Then V'is a projective variety with the property that V' n Vo = W, and in the
exercises you will show that V' n H consists of the single point p = (a , a, a. 1). Thus,
V' = W U {p}. so that we have a smaller projective variety that restricts to the twisted
cubic . The difference between V and V'is that V has an extra component at infinity.
In §4, we will show that V'is the smallest projective variety containing W.
In Example 9. the process by which we obtained V was completely straightforward

(we homogenized the defining equations of W). yet it gave us a projective variety that
was too big. This indicates that something more subtle is going on. The complete answer
will come in §4, where we will learn an algorithm for finding the smallest projective
variety containing W C k" ~ Vi.

EXERCISES FOR §2

I. In this exercise. we will give a more geometricway to describe the construction of IP" (k).
Let L denote the set of lines through the origin in k"+1 .
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a. Show that every element of E can be represented as the set of scalar mult iples of some
nonzero vector in k"+I.

b. Show that two nonzero vectors u' and v in k": I define the same element of E if and only
if v' ~ v as in Definition I .

c. Show that there is a one-to-one correspondence between IP"(k) and L ,
2. Comp lete the proof of Proposition 2 by showing that the mappings 4> and 1/1 defined in the

proof are inverses.
3. In this exercise, we will study how lines in JRn relate to points at infinity in IP"(JR). We will

use the decomposition IP"(JR) = JRn U lPn- I(JR) given in (3) . Given a line L in JR", we can
parametrize L by the formula a + bt , where a ELand b is a nonzero vector parallel to L.
In coordinates, we write this parametrization as (a l + b it • . . . , a" + b"t ).
a. We can regard L as lying in IP"(JR) using the homogeneous coordinates

(I . al + b it • ... • a" + b.J ),

To find out what happens as t ->- ± oo, div ide by t to obtain

(
I al a,,)-, - + bs, . . . , -- + b; .
t t t

As t ->- ± oo, what point of H = IP,,-I (JR) do you get?
b. The line L will have many parametrizations . Show that the point of IP,, -I (JR) given by

part a is the same for all parametrizations of L. Hint: Two nonzero vectors are parallel if
and only if one is a scalar multiple of the other.

c. Parts a and bshow that a line L in JR" has a well-defined point at infinity in H = IP,,-I (JR).
Show that two lines in IR" are parallel if and only if they have the same point at infinity.

4. When k = JRor <C. the projective line IPI (k) is easy to visuali ze.
a. In the text, we called IPI(<c) = <C U (oo) the Riemann sphere. To see why this name

is jus tified, use the parametrization from Exercise 6 of Chap ter I, §3 to show how the
plane corresponds to the sphere minus the north pole. Then explain why we can regard
<C U (00I as a sphere.

b. What common geometr ic object can we use to represent IPI (IR)? Illustrate you reasoning
with a picture .

5. Prove Corollary 3.
6. This problem stud ies the subsets Vi C IP" (k) .

a. In IP4 (k ) , identify the points that are in the subsets V2 , V2 n V3, and V, n V3 () V4 •

b. Give an identificati on of IP4 (k) - V2• IP4 (k) - (V2 U V3). and IP4 (k) - (VI U V3U V4 )
as a "copy" of another projective space.

c. In IP4 (k), which points are in n~=oVi?

d. In general, desc ribe the subset Vi, n .. . n Vi, C IP"(k) , where

I :::: i l < i : < . .. < i, :::: n.

7. In this exercise. we will study when a nonhomogeneous polynomial has a well -defined zero
set in IPn(k). Let k be an infinite field. We will show that if f E k[xo• . .. , xnl is not
homogeneous, but f vanishes on all homogeneou s coordinates of some p E IP"(k). then
each of the homogeneous components /; of f (see Definition 6 of Chapter 7. §I) must vanish
at p.
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a. Write I as a sum of its homogeneous components I = Li /;. If P = (ail • . . . • al).
then show that

I(Aao• . . . • Aall) = L /;(Aao • . . . • Aa,,)

=L Ai /;(ao • . . . • all) '
i

b. Deduce that if I vanishes for all A =/:0 E k, then /; (ao• . . . • all) = 0 for all i.
8. By dehomogenizing the defining equations of the projective variety V, find equations for the

indicated affine varieties.
a. Let 1P2(k) have homogeneous coordinates (x , y. z) and let V = V(x2 + y2 - Z2) C

1P2(1R) . Find equations for V n U« , V n V2 • (Here U« is where x =/:0 and V2 is where
z =/: 0.) Sketch each of these curves and think about what this says about the projective
variety V .

b. V = V(XOX2 - X3X4. X~X3 - xl xi) C 1P4 and find equations for the affine variety
V n o; c k4• Do the same for V n V3•

9. Let V = V(fl •. ..• I,) be a projective variety defined by homogeneous polynomials [, E
k[xo • . . . , x,,]. Show that the subset W = V n Vi can be identified with the affine variety
V(g lo . . . , g,) c k" defined by the dehomogenized polynomials

where the I is substituted for Xi in Ii . Hint: Follow the proof of Proposition 6. using
Corollary 3.

10. Prove Proposit ion 7.
II. Using part (iv) of Proposit ion 7,show that if I E k[xlo .. .. XII]and F E k[xo• . .. . XII] is any

homogeneous polynomial satisfy ing F(l . Xlo . ..• XII) = Iv«. .. . ,XII). then F = x'Olh
for some e ~ O.

12. What happens if we apply the homogenization process of Proposition 7 to a polynomial g
that is itself homogeneous?

13. In Example 8. we were led to consider the variety W' = V(Z2 - x 3 + xz2 ) C k 2 • Show
carefully that (x, z) = (0,0) is a singular point of W'. Hint: Use Definition 3 from Chapter 3,
§4.

14. For .each of the following affine varieties W , apply the homogen ization process given in
Proposition 7 to write W = V n Vo•where V is a projective variety. In each case identify
V - W = V n H. where H is the hyperplane at infinity.
a. W = V(y2 - x3 - ax - b) C 1R2• a, b E IR. Is the point V n H singular here? Hint:

Let the homogeneous coordinates on 1P2(1R) be (z, x, y), so that U« is where z =/: O.
b. W = V(X,X3 - xi, xf - X2) C 1R3. Is there an extra component at infinity here?
c. W = V(xj - xf - xi) C 1R3•

15. From Example 9, consider the twisted cubic W =V(X2 - xf. X3 - xf) C 1R3.
a. If we parametrize W by (t, (2 , (3) in 1R3 • show that as ( --. ±oo, the point (I . t , (2. (3)

in 1P3(1R) approaches (0. 0, 0, I). Thus. we expect W to have one point at infinity.
b. Now consider the projective variety

V' = V(X2XO - xf , X3X~ - xf. XIX3 - xi) c IP\IR).

Show that V' n Vo = Wand that V' n H = (0,0, O. I)}.
c. Let V = V(X2XO - xf. x3x5 - x~) be as in Example 9. Prove that V = V' U V(xo. xil.

This shows that V is a union of two proper projective varieties.
16. A homogeneous polynomial I E k[xo• . . . • XII]can also be used to define the affine variety

C = V"(f) in k"+1 •where the subscr ipt denotes we are working in affine space. We call C
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the affine cone over the projective variety V =V(f) C IP"(k). We will see why this is so
in this exercise .
a. Show that if C conta ins the point P =F (0 , . .. , 0) , then C contains the whole line through

the origin in k"+l spanned by P.
b. Now, consider the point p in IP" with homogeneous coordinates P. Show that p is in the

projective variety V if and only if the line through the origin determined by P is conta ined
in C. Hint: See (1) and Exercise 1.

c. Deduce that C is the union of the collection of lines through the origin in k"+l corre-
sponding to the points in V via (I). This explains the reason for the "cone" terminology
since an ordinary cone is also a union of lines through the origin . Such a cone is given by
part c of Exercise 14.

17. Homogeneous polynomials satisfy an important relation known as Euler's Formula. Let
f E k[xo, . .. , x, I be homogeneous of total degree d. Then Euler 's Formula states that

" afLXi' - . = d . f.
;=0 ax,

a. Verify Euler 's Formula for the homogeneous polynomial f = xl - XIX? + 2xlxi .
b. Prove Euler 's Formula (in the case k = IR) by considering f(AXo , . . . , AX,,) as a function

of Aand differentiating with respect to Ausing the chain rule.
18. In this exercise , we will consider the set of hyperplanes in IP" (k) in greater deta il.

a. Show that two homogeneous linear polynomials,

o= aoxo+ + a"x" ,
0= boxo+ + b.x.;

define the same hyperplane in IP"(k) if and only if there is some A =F 0 E k such that
b, = sa, for all i = 0, . .. , n. Hint: Generalize the argument given for Exercise II of
§1.

b. Show that the map sending the hyperplane with equation aoxo + '.' . + a"x" = 0 to the
vector (ao, .. . , a,,) gives a one-to-one correspondence

4> : {hyperplanesinIP"(k)}--.. (k"+l - {OD/ < ,

where ~ is the equivalence relat ion of Definition 1. The set on the right is called the
dual projective space and is denoted IP"(k)v. Geometrically, the points of IP"(k)Vare
hyperplanes in IP"(k) .

c. Describe the subset of IP"(k)V corresponding to the hyperplanes containing p =
(1,0, .. . , 0).

19. Let k be an algebraically closed field (<C. for example) . Show that every homogeneous
polynomial Itx«. x I> in two variables with coefficients in k can be completely factored into
linear homogeneous polynomials in k[xo, xll:

d

f(xo, xI> = n(a;xo + b;Xl)'
;=1

where d is the total degree of f .Hint: First. dehomogenize f .
20. In §4 of Chapter 5, we introduced the pencil defined by two hypersurfaces V = V(f),

W = V(g) . The elements of the pencil were the hypersurfaces V(f + cg) for c E k.Setting
c = 0, we obtain V as an element of the pencil. However, W is not (usually) an element
of the pencil when it is defined in this way. to include W in the pencil, we can proceed as
follows .
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a. Let (a , b) be homogeneous coordinates in !pI (k) . Show that V(af + bg ) is well-defined
in the sense that all homogeneous coordinates (a , b) for a given point in !p I (k) yield the
same variety V(af + bg) . Thus, we obtain a family of varieties parametrized by !pI (k ) ,
which is also called the pencil of varieties defined by V and W.

b. Show that both V and W are contained in the pencil V(af + bg) .
c. Let k = <C. Show that every affine curve V(j) C <c2 defined by a polynomial f of

total degree d is contained in a pencil of curves V(a F + bG) parametrized by !p I (<C),
where V( F ) is a union of lines and G is a polynomial of degree strictly less than d .Hint:
Consider the homogeneous components of f. Exercise 19 will be useful.

21. When we have a curve parametrized by t E k, there are many situations where we want to
let t -+ 00. Since !p1(k) = k U [oo], this suggests that we should let our parameter space
be !p I (k ) . Here are two examples of how this works.
a. Consider the parametrization (x , y) = «(I +t2)/(I-t2),2t/(I-t2» of the hyperbola
x 2 - y 2 = 1 in 1R2. To make this projective, we first work in IP2(1R) and write the
parametrization as

(see Exercise 3 of §l). The next step is to make t projective. Given (a , b) E !pI (IR),
we can write it as (I, t) = (1, b/ a) provided a =1= O. Now substitute t = b/ a into
the right-hand side and clear denominators . Explain why this gives a well-defined map
IPI (IR) -+ IP2(1R).

b. The twisted cubic in 1R3 is parametrized by (r. t 2 , t 3 ) . Apply the method of part a to
obtain a projective parametrization !p1(IR) -+ IP3(1R) and show that the image of this
map is precisely the projective variety V' from Example 9.

§3 The Projective Algebra-Geometry Dictionary

In this section, we will study the algebra-geometry dictionary for projective varieties.
Our goal is to generalize the theorems from Chapter 4 concerning the V and I corre-
spondences to the projective case, and, in particular, we will prove a projective version
of the Nullstellensatz.
To begin, we note one difference between the affine and projective cases on the

algebraic side of the dictionary. Namely, in Definition 5 of §2, we introduced projective
varieties as the common zeros of collections of homogeneous polynomials. But being
homogeneous is not preserved under the sum operation in k[xQ, . .. , xlIl. For example,
if we add two homogeneous polynomials-ofdifferent total degrees, the sum will never be
homogeneous. Thus, if we form the ideal I = (fl' . .. , f f) C k [xQ, . .. , XII]generated
by a collection of homogeneous polynomials, I will contain many nonhomogeneous
polynomials and these would not be candidates for the defining equations of a projective
variety.

Nevertheless, each element of I vanishes on all homogeneous coordinates of every
point of V = V(fl, .. . , [s) .This follows because each gEl has the form

(I)
.f

g = LAj/j
j = 1
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for some Aj E k[xo , . . . , x,,]. Substituting any homogeneous coordinates of a point in
V into g will yield zero since each Ii is zero there.
A more important observation concerns the homogeneous components of g. Suppose

we expand each Aj as the sum of its homogeneous components:

dAj = LA j i •
i=1

If we substitute these expressions into (I) and collect terms of the same total degree,
it can be shown that the homogeneous components of g also lie in the ideal I =
(fl . ... , f ,)· You will prove this claim in Exercise 2.
Thus, although I contains nonhomogeneous elements g, we see that I also contains

the homogeneous components of g.This observation motivates the following definition
of a special class of ideals in k[xo• . . . , XII]'

Definition 1. An ideal I in k[xo, . . . , x,,] is said to be homogeneous iffor each f E I,
the homogeneous components Ii of f are in I as well.

Most ideals do not have this property. For instance, let I = (y - x 2) C k[x, y].
The homogeneous components of f = y - x2 are fl = y and h = _x2. Neither
of these polynomials is in I since neither is a multiple of y - x2• Hence, I is not a
homogeneous ideal. However, we have the following useful characterization of when
an ideal is homogeneous.

Theorem 2. Let I C k[xo , ... , XII] be an ideal. Then the following are equivalent:
(i) I is a homogeneous ideal ofk[xo , . . . , x,,].
(ii) I = (f" .. . , j ,) . where I I, .. . , Is are homogeneous polynomials.
(iii) A reduced Groebner basis of I (with respect to any monomial ordering) consists

ofhomogeneous polynomials.

Proof. The proof of (ii) =} (i) was sketched above (see also Exercise 2). To prove
(i) =} (ii), let I be a homogeneous ideal. By the Hilbert Basis Theorem, we have
I = (FI , . . . , F,) for some polynomials h E k[xo, . .. , XII] (not necessarily homoge-
neous). If we write Fj as the sum of its homogeneous components, say Fj = L; Fj i ,
then each Fj ; E I since I is homogeneous. Let I' be the ideal generated by the homo-
geneous polynomials Fj i • Then I C I' since each Fj is a sum of generators of I'. On
the other hand, I' C I since each of the homogeneous components of rj is in I. This
proves I = I' and it follows that I has a basis of homogeneous polynomials. Finally,
the equivalence (ii) {:> (iii) will be covered in Exercise 3. 0

As a result of Theorem 2, for any homogeneous ideal I C k[xo• . . . •XII] we may
define

V(l ) = (p E lP"(k) : f(p) = 0 for all f E I},

as in the affine case. We can prove that V(l) is a projective variety as follows.
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Proposition 3. Let I C k[xQ . ...• XII] be a homogeneous ideal and suppose that
I = (fl ... .. f,). where fl . . . . , f , are homogeneous. Then

V(I) = V(fl , .. . , f s).

so that V(I) is a projective variety.

Proof. We leave the easy proof as an exercise. o
One way to create a homogeneous ideal is to consider the ideal generated by the

defining equations of a projective variety. But there is another way that a projective
variety can give us a homogeneous ideal.

Proposition 4. Let V C 1P" (k) be a projective variety and let

I(V) = If E k[xQ • . . . • xn] : f(aQ, "" all) = 0 for all (aQ , . . . •all) E V}.

(This means that f must be zero for all homogeneous coordinates ofall points in V .)
If k is infinite, then I(V) is a homogeneous ideal in k[xQ, .. . , XII] '

Proof. I(V) is closed under sums and closed under products by elements of
k[xQ , . . . • XII] by an argument exactly parallel to the one forthe affine case. Thus, I(V)
is an ideal in k[xQ, . . . •XII]' Now take f E I(V) and fix a point p E V. By assump-
tion, f vanishes at all homogeneous coordinates (aQ , . . . , all) of p:Since k is infinite,
then Exercise 7 of §2 implies that each homogeneous component f; of f vanishes at
(aQ . . . . • an). This shows that f; E I(V) and, hence, I(V) is homogeneous . 0

Thus, we have all the ingredients of a dictionary relating projective varieties in
1P"(k) and homogeneous ideals in k[xQ , . . . , XII]' The following theorem is a direct
generalization of part (i) of Theorem 7 of Chapter 4, §2 (the affine ideal-variety
correspondence).

Theorem S. Let k be an infinite field. Then the maps

projecti ve varieties~ homogeneous ideals

and

homogeneous ideals~ projective varieties

are inclusion-reversing. Furthermore,for any projective variety, we have

V(I(V» = V.

so that I is always one-to-one.

Proof. The proof is the same as in the affine case. o
To illustrate the use of this theorem, let us show that every projective variety can be

decomposed to irreducible components. As in the affine case, a variety V C 1P" (k) is
irreducible if it cannot be written as a union of two strictly smaller projective varieties.
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Theorem 6. Let k be an arbitraryfield.
(i) Given a descending chainofprojective varieties in ]P"(k) .

there is an integerN such that VN = VN+I = .. -,
(ii) Every projective variety V C IP"(k) can be written uniquely as a finite union of

irreducibleprojective varieties

where Vi rt. Vj for i ::j:. j .

Proof. Since I is inclusion-reversing, we get the ascending chain of homogeneous
ideals

I(V» C I(V2) C I(V3) C ...

in k[xo • . . . ,XII] ' Then the Ascending Chain Condition (Theorem 7 of Chapter 2, §5)
implies that I(VN) = I(VN+I) = .. . for some N . By Theorem 5, I is one-to-one and
(i) follows immediately.
As in the affine case, (ii) is an immediate consequence of (i). See Theorems 2 and 4

of Chapter 4, §6. 0

The relation between operations such as sums, products, and intersections of homo-
geneous ideals and the corresponding operations on projective varieties is also the same
as in affine space. We will consider these topics in more detail in the exercises below.
We define the radical of a homogeneous ideal as usual:

.Jl = {f E k[xo • . . . , XII] : f" E I for some n 2: I}.

As we might hope, the radical of a homogeneous ideal is always itself homogeneous.

Proposition 7. Let I C k[xQ' ... , XII] be a homogeneous ideal. Then ../l is also a
homogeneous ideal.

Proof. If f E -J], then fill E I for some m ::: 1. Now decompose f into its
homogeneous components

f = L Ii = flllax + L f;,
i i <ma:c

where flllax is the nonzero homogeneous component of maximal total degree in f .
Expanding the power fill, it is easy to show that

(flll)lIIax = (flllaxY'.

Since I is a homogeneous ideal, (f1ll)lIIax E I .Hence , (flllax)1II E I, which shows that
flll ax E ../l.
If we let g = f - flllax E ../land repeat the argument, we get glllax E ../l.But gillax

is also one of the homogeneous components of f .Applying this reasoning repeatedly
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shows that all homogeneous components of fare in .Ji. Since this is true for all
f E -Jl.Definition I implies that.Ji is a homogeneous ideal. 0

The final part of the algebra-geometry dictionary concerns what happens over an
algebraically closed field k, Here, we expect an especially close relation between pro-
jective varieties and homogeneous ideals. In the affine case , the link was provided by two
theorems proved in Chapter 4, the Weak Nullstellensatz and the Strong Nullstellensatz.
Let us recall what these theorems tell us about an ideal 1 C k[XI , ...• x,,] :
• (The Weak Nullstellensatz) VaU) = 0 in k" {:::=} 1 = k[X l, ... , x,,] .
• (The Strong Nullstellensatzj c/f = I,,(V,,(l)) in k[x ," . . . , x,,].
(To prevent confusion, we use L, and Va to denote the affine versions of I and V.) It is
natural to ask if these results extend to projective varieties and homogeneous ideals.
The answer, surprisingly, is no . In particular, the Weak Nullstellensatz fails for

certain homogeneous ideals. To see how this can happen, consider the ideal 1 =
(xo, , x,,) c CC[xo, . . . , x,,]. Then V(l) C lP"(CC) is defined by the equations
Xo = = x; = O. The only solut ion is (0, . .. , 0) , but this is impossible since
we never allow all homogeneous coordinates to vanish simultaneously. It follows that
V(l) = 0, yet 1 ~ CC[xo, , x,,].
Fortunately, 1 = (xo, , xn) is one of the few ideals for which V(l) = 0. The

following projective version of the Weak Nullstellensatz describes all homogeneous
ideals with no projective solutions.

Theorem 8 (The Projective Weak Nullstellensatz). Let k be algebraically closed
and let I be a homogeneous ideal in k[xo , . . . , xn]. Then the following are equivalent:
(i) V(l ) C lP"(k) is empty.
(ii) Let G be a reducedGroebner basisfor 1 (with respect to some monomial ordering).

Then for each 0 :::: i :::: n , there is g E G such that LT(g ) is a nonnegative power
ofx..

(iii) For each 0 :::: i :::: n, there is an integer m, ::: 0 such that x;' E I.
(iv) There is some r .::: I such that (xo, . .. , x,,}r C I .

Proof. The ideal 1 gives us the projective variety V = V(l) C lP"(k). In this proof,
we will also work with the affine variety Cv = V,,(l) C k,,+l. Note that Cv uses the
same ideal I , but now we look for solutions in the affine space k" + I. We call Cv the
affine cone of V. Ifwe interpret points in lP"(k) as lines through the origin in k" + I, then
Cv is the union of the lines determined by the points of V (see Exercise 16 of §2 for
the details of how this works). In particular, Cv contains all homogeneous coordinates
of the points in V.
To prove (ii) =? (i), first suppose that we have a Groebner basis where, for each i,

there is g E G with LT(g) = X;"i for some m, ::: O.Then Theorem 6 of Chapter 5, §3
impl ies that Cv is a finite set. But suppose there is a point p E V. Then all homogeneous
coordinates of p lie in C v , If we write these in the form A(ao, . . . , a,,) ,we see that there
are infinitely many since k is algebraically closed and , hence, infinite .This contradiction
shows that V = V(l) = 0.
Turning to (iii) =? (ii), let G be a reduced Groebner basis for I. Then X;'i E 1 implies

that the leading term of some g E G divides x;n,, so that LT(g) must be a power of X i .
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The proof of (iv) => (iii) is obvious since (xo, . . . , xl/)r C I implies xr E I for all i ,
It remains to prove (i) => (iv). We first observe that V = 0 implies

Cv C {(O, . . . , O)} in k,,+I .

This follows because a nonzero point (ao, ... , a,,) in the affine cone Cv would give
homogeneous coordinates of a point in V C lPl/ (k), which would contradict V = 0.
Then , applying I" , we obtain

I,,({ (O, , O)}) C 1,,(C v ).

We know I, ({(O, . . . , O)}) = (xo, , x,,) (see Exercise 7 of Chapter 4, §5) and the
affine version of the Strong Nullstellensatz implies I" (Cv ) = III (V" (I )) = .Ji since
k is algebraically closed. Combining these facts, we conclude that

(xo, ... , x,,) c .Ji.
However, in Exercise 12 of Chapter 4, §3 we showed that if some ideal is contained in
.Ji, then a power of the ideal lies in I. This completes the proof of the theorem. 0

From part (ii) of the theorem , we get an algorithm for determining if a homogeneous
ideal has projective solutions over an algebraically closed field. In Exercise 10, we will
discuss other condit ions which are equivalent to V(I) = 0 in lPl/ (k).
Once we exclude the ideals described in Theorem 8, we get the following form of

the Nullstellensatz for projective varieties .

Theorem 9 (The Projective Strong Nullstellensatz). Let k be an algebra ically closed
field and let I be a homogeneous ideal in k[xo, .. . , x,,]. If V = V(I) is a nonempty
projective variety in lPl/ (k ), then we have

I(V(I )) = -Ji,

Proof. As in the proof of Theorem 8, we will work with the projective variety V =
V(I ) C lPl/ (k) and its affine cone Cv = VlI(I ) C kl/+ I . We first claim that

(2)

when V =I- 0. To see this, suppo se that f E I"(Cv ) . Given p E V , any homogeneous
coord inates of p lie in Cv, so that f vanishes at all homogeneous coordinates of p .By
definition, this implies f E I (V ). Conversely, take f E I(V). Since any nonzero point
of Cv gives homogeneous coord inates for a point in V, it follows that f vanishes on
Cv - {OJ. It remains to show that f vanishes at the origin . Since I (V) is a homogeneous
ideal, we know that the homogeneous components fi of f also vanish on V. In particular,
the constant term of f ,which is the homogen eous component f oof total degree 0, must
vanish on V. Since V =I- 0, this forces f o = 0, which means thatf vanishes at the
origin. Hence, f E I" (Cv). and (2) is proved.
By the affine form of the Strong Nullstell ensatz , we know that .Ji = III (Va (I )) .

Then, using (2), we obtain

-J] = 1,,(VlI(I » = 1,,(C v ) = I (V) = I (V(I » .
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which completes the proof of the theorem. o
Now that we have the Nullstellensatz, we can complete the projective ideal-variety

correspondence begun in.Theorem 5. A radical homogeneous ideal in k[xo• . . . •XII] is
a homogeneous ideal satisfying ..[i = I . As in the affine case, we have a one-to-one
correspondence between projective varieties and radical homogeneous ideals. provided
we exclude the cases..[i = (xo, ... , X II ) and..[i = (I) .

Theorem 10. Let k be an algebraically closedfield.lfwe restrict the correspondences
ofTheorem 5 to nonemptyprojective varieties and radical homogeneous ideals properly
contained in (xc• . . . • x,,). then

{
radical homogeneous ideals } v

~ {nonempty projective varieties}
properly contained in (xc, .. . , XII)

are inclusion-reversing bijections which are inverses ofeach other.

Proof. First, it is an easy consequence of Theorem 8 that the only radical homogeneous
ideals I with V(l) = 0 are (xo, . . . ,XII) and k[xo • . . . • XII]' See Exercise 10 for
the details. A second observation is that if I is a homogeneous ideal different from
k[xo, . .. , XlI], then I C (xc, . . . ,XII)' This will also be covered in Exercise 9.
These observations show that the radical homogeneous ideals with V(l) # 0 are

precisely those which satisfy I ~ (xc• . . . • xlI ) . Then the rest of the theorem follows
as in the affine case. using Theorem 9. 0

We also have a correspondence between irreducible projective varieties and
homogeneous prime ideals, which will be studied in the exercises.

EXERCISES FOR §3

I . In this exercise. you will study the question of determining when a principal ideal ! = (f)
is homogeneous by elementary methods .
a. Show that! = (x2y - Xl) is a homogeneous ideal in k[x. y] without appealing to

Theorem 2.Hint: Each element of ! has the form g = A . (x 2Y - Xl). Write A as the sum
of its homogeneous components and use this to determine the homogeneous components
of g.

b. Show that (f) c k[xo, ... •XII] is a homogeneous ideal if and only if I is a homogeneous
polynomial without using Theorem 2.

2. This exercise gives some useful properties of the homogeneous components of polynomials .
a. Show that if I = L i Ii and g = L i gi are the expansions of two polynomials as the

sums of their homogeneous components, then I = g if and only if /; = gi for all i .
b. Show that if f = Li /; and g = L j gj are the expansions of two polynomials as the

sums of their homogeneous components, then the homogeneous components h. of the
product h = I . g are given by h. = L i+j=' /; . gj'

c. Use parts a and b to carry out the proof ( sketched in the text) of the implication (ii) =>
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(i) from Theorem 2.
3. This exercise will study how the algorithms of Chapter 2 interact with homogeneous

polynomials.
a. Suppose we use the division algorithm to divide a homogeneous polynomial f by ho-

mogeneous polynomials fl • . . . • f .. This gives an expression of the form f = adt +
... + a, j , + r . Prove that the quotients al •. . .• a, and remainder r are homogeneous
polynomials (possibly zero). What is the total degree of r?

b. If f . g are homogeneous polynomials. prove that the S-polynomial S(f. g) is homoge-
neous.

c. By analyzing the Buchberger algorithm, show that a homogeneous ideal has a
homogeneous Groebner basis.

d. Prove the implication (ii) ¢> (iii) of Theorem 2.
4. Suppose that an ideal I C k[xo•. . .• x,,] has a basis G consisting of homogeneous

polynomials .
a. Prove that G is a Groebner basis for I with respect to lex order if and only if it is a

Groebner basis for I with respect to grlex (assuming that the variables are ordered the
same way).

b. Conclude that. for a homogeneous ideal. the reduced Groebner basis for lex and grlex are
the same.

5. Prove Proposition 3.
6. In this exercise we study the algebraic operations on ideals introduced in Chapter 4 for

homogeneous ideals. Let II • . . . • It be homogeneous ideals in k[xo • . ..• x,,].
a. Show that the ideal sum II + . . . + It is also homogeneous. Hint: Use Theorem 2.
b. Show that the intersection lin· . . n It is also a homogeneous ideal.
c. Show that the ideal product II . . . h is a homogeneous ideal.

7. The interaction between the algebraic operations on ideals in Exercise 6 and the correspond-
ing operations on projective varieties is the same as in the affine case . Let II • . . . • It be
homogeneous ideals in k[xo• . . . • x,,] and let Vi = V(I;) be the corresponding projective
variety in IP"(k) .
a. Show that V(li + + It) = n:=1 Vi. k

b. Show that V(l i n n Id = V(li . . . It) = U ;=I Vi.
8. Let fl • . . . • f , be homogeneous polynomials of total degrees d, < d2 ~ . . . ~ d, and let

I = (fl .. . . . f ,) c k[xo• . . . •x"l.
a. Show that if g is another homogeneous polynomial of degree d, in I. then g must be a

constant multiple of f l. Hint: Use parts a and b of Exercise 2.
b. More generally. show.that if the total degree of g is d. then g must be an element of the

ideal 1,/ = (f; : deg(f;) s d) C I.
9. This exercise will study some properties of the ideal 10 = (xo• . . . • x,,) C k[xo• . . . • x,,].

a. Show that every proper homogeneous ideal in k[xo, ...• x,,] is contained in 10 ,
b. Show that the rth power I~ is the ideal generated by the collection of monomials in

k[xo• . . . • x,,] of total degree exactly r and deduce that every homogeneous polynomial
of degree ~ r is in I~.

c. Let V = V(lo) C IP"(k)andCv = V.(Io) c k,,+I.ShowthatI,,(Cv) f= I(V) ,and
explain why this does not contradict equation (2) in the text.

10. Given a homogeneous ideal I C k[xo• . . . •x"l, where k is algebraically closed . prove that
V(I) = 0 in IP"(k ) is equivalent to either of the following two conditions:
(i) There are some r ~ I such that every homogeneous polynomial of total degree ~ r is

contained in I.
(ii) The radical of I is either (xo• . . . • x,,) or k[xo• . . . • x,,].
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Hint: For (i), use Exercise 9. and for (ii), use the proof of Theorem 8 to show that
(xo• . . . • x,,) c -J7.

11. A homogeneous ideal is said to be prime if it is prime as an ideal in k[xo• . . . • x,,].
a. Show that a homogeneous ideal 1 C k[xo• • . . • x,,] is prime if and only if whenever the

product of two homogeneous polynomials F. G satisfies F .Gel. then F e 1 or
Gel.

b. Let 1 be a homogeneous ideal. Show that the projective variety V(I) is irreducible if I is
prime. Also. when I is radical , prove that the converse holds. i.e.. that 1 is prime if V(I)
is irreducible . Hint: Consider the proof of the corresponding statement in the affine case
(Propos ition 3 of Chapter 4, §5),

c. Let k be algebraically closed. Show that the mappings V and I induce one-to-one cor-
respondence between homogeneous prime ideals in k[xo• . . . • x,,] properly conta ined in
(xo• . . . , x,,) and nonempty irreducible projective varieties in lP"(k) .

12. Prove that a homogeneous prime ideal is a radical ideal in k[xo• . . . • x,,]

§4 The Projective Closure of an Affine Variety

In §2, we showed that any affine variety could be regarded as the affine portion of a
projective variety. Since this can be done in more than one way (see Example 9 of §2),
we would like to find the smallest projective variety containing a given affine variety.
As we will see, there is an algorithmic way to do this.
Given homogeneous coordinates xo, . . . , x; on ]p"(k), we have the subset Vo C

]p" (k) defined by Xo :f O. If we identify Vo with k" using Proposition 2 of §2, then we
get coordinates Xl, •.• , X" on k" . As in §3, we will use I, and V" for the affine versions
of! and V.
We first discuss how to homogenize an ideal of k[x i • . . . , x,,] . Given I C

k[XI, . . . , x,,], the standard way to produce a homogeneous ideal I" C k[xo, . .. , x,,]
is as follows.

Definition 1. Let I be an ideal in k[XI, .. . , x,,]. We define the homogenization of I
to be the ideal

Ih = ir :f E I) C k[xo , . . . , x"l.
where fh is the homogenization of f as in Proposition 7 of§2.

Naturally enough. we have the following result.

Proposition 2. For any ideal I C k[xl •. ..• x,,]. the homogenization I" is a
homogeneous ideal in k[xo, ... , XII] '

Proof. See Exercise 1. o
Definition I is not entirely satisfying as it stands because it does not give us afinite

generating set for the ideal I" . There is a subtle point here. Given a particular finite
generating set II . . . . . I , for I C k[XI, . .. , x,,], it is always true that (flh , . . . • f /')
is a homogeneous ideal contained in t», However, as the following example shows, I h
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can be strictly larger than (fi' • . . . • f sh).

Example 3. Consider I = (fl . fz) = (xz - x f, X3 - x~), the ideal of the affine twisted
cubic in IR3• Ifwe homogenize fl. fz. then we get the ideal J = (X2XO - Xf . X3X~ - x~)

in lR[xo. Xl. Xz , X3] .We claim that J =F t» , To prove this, consider the polynomial

!J = [: - XI fl = X3 - x~ - XI (X2 - x~) = X3 - X,Xz E I .

Then f;' = XOX3 - X,Xz is a homogeneous polynomial of degree 2 in r , Since
the generators of J are also homogeneous, of degrees 2 and 3. respectively, if we
had an equation n = Adlh + Azf~', then using the expansions of A I and Az into
homogeneous components, we would see that f 3h was a constant multiple of fi'. (See
Exercise 8 of §3 for a general statement along these lines.) Since this is clearly false,
we have fj' fj. J. and , thus , J =F I h •

Hence, we may ask whether there is some reasonable method for computing a finite
generating set for the ideal I". The answer is given in the following theorem. A graded
monomial order in k[x, • . . . • XII] is one that orders first by total degree :

xa > xP

whenever lal > 1.81. Note that grlex and grevlex are graded orders, whereas lex is not.

Theorem 4. Let I be an idealin k[x" . . . , XII] and letG = {gl • . . . , gsIbe aGroebner
basis for I with respect to a graded monomial order in k[x, • . . . , XII] ' Then G" =
{g:' • . . . , g71 is a basis for Ih C k[xo, . . . • xn ]·

Proof. We will prove the theorem by showing the stronger statement that G" is actually
a Groebner basis for I" with respect to an appropriate monomial order in k[xo, .. .• XII] '
Every monomial in k[xo• . . . , XII] can be written

where xa contains no Xo factors. Then we can extend the graded order> on monomials
in k[x" . .. , XII] to a monomial order>h in k[xo, . . . • XII] as follows:

xaxg > " xPxg ¢::=} xa > xP or x" = xP andd > e.

In Exercise 2, you will show that this defines a monomial order in k[xo, . .. •XII]' Note
that under this ordering, we have Xi > h Xo for all i ~ 1.
For us, the most important property of the order>" is given in the following lemma.

Lemma 5. Iff E k[x" .. .• XII] and> is a graded order on k[x, • . . . • XII] ' then

LM>I,(f") = LM>(f) .

Proof of Lemma. Since> is a graded order, for any f E k[x" .. . , XII], LM>(f) is
one of the monomials xa appearing in the homogeneous component of f of maximal
total degree . When we homogenize, this term is unchanged. If xf:l xg is anyone of the
other monomials appearing in r .then a > .8 . By the definition of >'1> it follows that
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o

(I )

We will now show that G" fonus a Groebner basis for the ideal I" with respect to
the monomial order >". Each gt E I" by definition. Thus, it suffices to show that the
ideal of leading tenus (LT>" (l h ) ) is generated by LT>h(Gh ). To prove this. consider
F E I" . Since I h is a homogeneous ideal. each homogeneous component of F is in
I " and. hence. we may assume that F is homogeneous. Because F E t»,by definition
we have

F = LAd/.
j

where A j E k[xo • . . .• XII] and Ij E I. We will let I = F(I. XI • . . . •XII) denote the
dehomogenization of F . Then setting Xo = I in (I) yields

1= F(I . X l .·· ·. XII) = L Aj(l. Xl. ·· ·. x,')I/(i. Xl.·· ·. XII)
j

= LAj(l.xl •... • xlI)IJ
j

since 1/ (I. XI , ... , XII) = Ii (XI • . . . •XII) by part (iii) of Proposit ion 7 from §2. This
shows that I E I C k[xl • . . . • x,J . If we homogenize I , then part (iv) of Proposition 7
in §2 implies that

for some e ~ O. Thus.

(2) LM >" ( F ) = Xo. LM >h(/') = xO ' LM >(f).
where the last equality is by Lemma 5. Since G is a Groebner basis for I. we know
that LM > (f) is divisible by some LM > (gi) = LM >" (gt) (using Lemma 5 again). Then
(2) shows that LM >" (F) is divisible by LM >" (gt) , as desired. This completes the proof
of the theorem. 0

In Exercise 5. you will see that there is a more elegant formulation of Theorem 4 for
the special case of grevlex order.
To illustrate the theorem. consider the ideal I = (X2 - x? X3 - x?) of the affine

twisted cubic W C 1R3 once again. Computing a Groebner basis for I with respect to
grevlex order, we find

G = {x? - X2. XIX2 - X3, XIX3 - x;l.
By Theorem 4, the homogenizations of these polynomials generate t» ,Thus.

(3) Ih = (x? - XOX2. XIX2 - XOX3, XIX3 - x;).

Note that this ideal gives us the projective variety V' = V(l") C IP3(IR) which we
discovered in Example 9 of §2.
For the remainder of this section. we will discuss the geometric meaning of the

homogenization of an ideal. We will begin by studying what happens when we homog-
enize the ideal Iii(W) of all polynomials vanishing on an affine variety W . This leads
to the following definition.
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Definition 6. Given an affine variety W C k", the projective closure of W is the
projective variety W = V(II/(W)") C ]P"(k), where I I/(W)" C k[xo, . . . , x,,] is the
homogenization of the ideal II/(W) C k[XI, .. . , x,,] as in Definition 1.

The project ive closure has the following important properties.

Proposition 7. Let W C k" be an affine variety and let W C ]P"(k) be its projective
closure . Then :
(i) W n u« = W n k" = W.
(ii) W is the smallest projective variety in ]P"(k) containing W .
(iii) 1f W is irreducible, then so is W .
(iv) No irreducible component ofW lies in the hyperplane at infinity V(xo) C ]P"(k) .

Proof. (i) Let G be a Groebner basis of II/ (W) with respect to a graded order on
k[XI, . . . , x,,]. Then Theorem 4 implies that I ,,(W)" = is" : g E G). We know that
k" ~ Uo is the subset of]P" (k) , where Xo = 1. Thus, we have

W n Uo = V(g" : g E G) n Uo = V,,(g"(I, XI, •. . , x ,,) : g E G) .

Since e" (1, XI, • • • , x,,) = g by part (iii) of Proposition 7 from §2, we get W nUo =W.
(ii) We need to prove that if V is a projective variety containing W, then W C V.

Suppose that V = V(FI , ... , F.,).Then F; vanishes on V, so that its dehomogenization
Ii = F; (1 , XI , • . . , x,,) vanishes on W. Thus, Ii E I,,(W) and, hence, ft E I,,(W)".
This shows that ft vanishes on W = V(I,,(W)"). But part (iv) of Proposition 7 from
§2 implies that F; = X~i ft for some integer e..Thus , F, vanishes on W, and since this
is true for all i , it follows that W C V .
The proof of (iii) will be left as an exercise . To prove (iv), let W = VI U . . . U v,,,

be the decomposition of W into irreducible components. Suppose that one of them, VI,
was contained in hyperplane at infinity V(xo). Then

W = W n Uo = (VI U · · · U Vm) U u«
= (VI n Uo) U «V2 U . . . U Vm ) n Uo)
= (V2 U . . . U Vm ) n Uo.

This shows that V2 U . . . U Vm is a projective variety containing W . By the minimality
of W, it follows that W = V2 U · . . U Vm and, hence, VI C V2 U . . . U Vm •We will-leave
it as an exercise to show that this is impossible since VJ is an irreducible component of
W. This contradiction completes the proof. 0

For an example of how the projective closure works, consider the affine twisted cubic
WeIR3. In §4 of Chapter 1, we proved that

II/(W) = (X2 - xf, X3 - x?).

Using Theorem 4, we proved in (3) that

L,(W)" = (xf - XOX2, X I X2 - XOX3, XI X3 - xI).

It follows that the variety V' = V(xf - XOX2, XIX2 - XOX3, XIX3 - xI) discussed in
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Example 9 of §2 is the projective closure of the affine twisted cubic .
The main drawback of the definition of projective closure is that it requires that we

know Ia(W). It would be much more convenient if we could compute the projective
closure directly from any defining ideal of W. When the field k is algebra ically closed,
this can always be done.

Theorem 8. Let k be an algebraically closed field. and let 1 C k[XI , . . • , XII] be an
ideal. Then V(lh) C IP"(k) is the projective closure ofVa(l) C k" .

Proof. Let W = Va(l) C k" and Z = V(lh) C IP"(k). The proof of part (i) of
Proposition 7 shows that Z is a projective variety containing W.
To prove that Z is the smallest such variety, we proceed as in part (ii) of Proposi -

tion 7. Thus, let V = V(FI , • •• , F,) be any projective variety containing W. As in the
earlier argument , the dehomogenization Ii = Fi(l , XI, . . . , x,,) is in Ia(W). Since k
is algebraically closed, the Nullstellensatz implies that I, (W) = .Ji, so that fi" E 1
for some integer m ,This tells us that

(Jilll)h E ["

and, consequently, (Jilll)" vanishes on Z. In the exercises, you will show that

(fi")" = (Ji")m,

and it follows that Jill vanishes on Z. Then F, = x~' Ji" shows that F, is also zero on
Z. As in Proposition 7. we conclude that Z C V.
This shows that Z is the smallest projective variety containing W .Since the projective

closure W has the same property by Proposition 7, we see that Z = W. 0

If we combine Theorems 4 and 8, we get an algorithm for computing the projective
closure of an affine variety over an algebraically closed field k: given W C k" defined
by fl = . . . = I, = 0, compute a Groebner basis G of (/1 , . .. , I,) with respect to a
graded order, and then the projective closure in IP"(k) is defined by e" = °for g E G.
Unfortunately, Theorem 8 can fail over fields that are not algebraically closed . Here

is an example that shows what can go wrong.

Example 9. Consider 1 = (x~ + xi) C IR[XI , X2]. Then W = Va(l) consists of
the single point (0,0) in IR2, and, hence, the projective closure is the single point
W = {(I, 0, O)} c IP2 (IR) (since this is obviously the smallest projective variety
containing W). On the other hand, I" = (x~x~ + xi), and it is easy to check that

Y(l") = {(I, 0, 0) , (0, 1, O)} C IP2 (IR).

This shows that Y(l") is strictly larger than the projective closure of W =Va(I) .

EXERCISES FOR §4

I. Prove Proposition 2.
2. Show that the order ;:. " defined in the proof of Theorem 4 is a monomial order on

k[xo, .. . • xnl. Hint: This can be done directly or by using the mixed orders defined in
Exercise 10 of Chapter 2, §4.
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3. Show byexample that the conclusion of Theorem 4 is not true if we use an arbitrary monomial
order in k[x\ • . . . • x,,] and homogenize a Groebner basis with respect to that order. Hint:
One example can be obtained using the ideal of the affine twisted cubic and computing a
Groebner basis with respect to a nongraded order.

4. Let> be a graded monomial order on k[xi • . . . • x,,] and let >" be the order defined in the
proof of Theorem 4. In the proof of the theorem. we showed that if G is a Groebner basis for
I C k[x\ • . . . , x,,] with respect to k[x\ • . . . • x,,] . then G" was a Groebner basis for I" with
respect to > h . In this exercise. we will explore other monomial orders on k[xo • . . . • x,,] that
have this property .
a. Define a graded version of > h by setting

x"xg > gh xPx~ ¢:=> lal +d > 1.81 + e or [o] + d = 1.81 + e

and x" xg > h xl!x~ .

Show that Gh is a Groebner basis with respect to > g'"

b. More generally. let » ' be any monomial order on k[xo • . . . • x" I which extends > and
which has the property that among monomials of the same total degree , any monomial
containing Xo is greater than all monomials containing only XI • . . .• x" . Show that Gh is
a Groebner basis for »' ,

5. Let > denote grevlex order in the ring S = k[x l • . . . • x,,, x,,+d . Consider R =
k[xt • . . . • x,,] C S. For fER, let I" denote the homogenization of f with respect to
the variable x,,+I .

a. Show that if fER C S (that is. f depends only on XI • . . .• x,,). then LT>(f) =
LT>(fh) .

b. Use part a to show that if G is a Groebner basis for an ideal I C R with respect to grevlex,
then G" is a Groebner basis for the ideal J" in S with respect to grevlex.

6. Prove that the homogenization has the follow ing properties for polynomials f .g E

k[xl •. . .• x,,]:

(fg)h = F's".
(f"')h = .r r for any integer m ::: O.

Hint: Use the formula for homogenization given by part (ii) of Propos ition 7 from §2.
7. Show that! C k[x i • . . . • x,,] is a prime ideal ifandonly iff " is a prime ideal ink[xo• . . .• x,,].

Hint: For the ee- implication. use part a of Exercise 10 of §3; for the converse. use Exercise 6.
8. Adapt the proof of part (ii) of Proposition 7 to show that I(W) = I ,,(W)h for any affine

variety W C k".
9. Prove that an affine variety W is irreducible if and only if its projective closure W is

irreducible.
10. Let W = VI U .. . U V", be the decomposition of a projective variety into its irreducible

components such that Vi rt. Vj for i i- j . Prove that VI rt. V2 U .. . U v,,, .
In Exercises 11-14, we will explore some interest ing varieties in projective space . For ease
of notation. we will write IP" rather than IP"(k) . We will also assume that k is algebrai cally
closed so that we can apply Theorem 8.

II . The twisted cubic that we have used repeatedly for examples is one member of an infinite
family of curves known as the rational normal curves. The rational normal curve in k" is the
image of the polynomial parametrization if> : k -+ k" given by

if>(t) = (r. t 2• t J • ..• • r") .

By our general results on implicitization from Chapter 3. we know the rational normal curves
are affine varieties . Their projective closures in IP" are also known as rational normal curves .



384 8. Project ive Algebraic Geometry

a. Find affine equations for the rational normal curves in k4 and kS•
b. Homogenize your equations from part a and consider the projective varieties defined by

these homogeneous polynomials. Do your equat ions define the projective closure of the
affine curve? Are there any "extra" components at infinity?

c. Using Theorems 4 and 8, find a set of homogeneous equa tions defining the projective
closures of these rational normal curves in IP4 and IPs, respectively. Do you see a pattern?

d. Show that the rational normal curve in IP" is the variety defined by the set of homogeneous
quadrics obtained by taking all possible 2 x 2 subdetenninants of the 2 x n matrix:

. . . X"_I ) .

. . . XII

12. The affine Veronese surface S C kS was introduced in Exercise 6 of Chapter 5, §I. It is the
image of the polynomial parametr ization tP : kZ~ kSgiven by

tP (XI, Xz) = (XI.Xz. X~ . XIXZ, xi) .
The projective closure of S is a projective variety known as the projective Veronese surface .
a. Find a set of homogeneous equations for the projective Veronese surface in IPs.
b. Show that the parametrization of the affine Veronese surface above can be extended to a

mapping from 1$ : IPz ~ IPs whose image coincides with the entire project ive Veronese
surface. Hint: Youmust show that 1$ is well-defined (i.e., that it yields the same point in
IPs for any choice of homogeneous coordinates for a point in IPz).

13. The Cartes ian product of two affine spaces is simply another affine space : k" x k'" =
km+" . If we use the standard inclusions k" C IP", k'" c IP"', and k',+m C IP"+'" given by
Proposition 2 of §2, how is IP" +'" different from IP" x IPm(as a set)?

14. In this exercise. we will see that!P" x !pmcan be ident ified with a certain projective variety
in IP"+m+",,, known as a Segre variety. The idea is as follows. Let p = (xo• .. .• x,,) be
homogeneous coordinates of p E IP" and letq = (Yo, . . . , y",) be homogeneou s coordinates
of q E !pm. The Segre mapping a ; !P" x !pm -+ IP"+m+",,, is defined by taking the pair
( p , q ) E IP" x !pm to the point in IP"+"'+"''' with homogeneous coordinates

(xoYo . XOYI •.• . • Xoy", , X IYO, · •• , X IY"' • • • · , X"Yo, .. . • x"y",) .

The components are all the possible products XiYj where 0 ~ i ~ nand 0 ~ j ~ m, The
image is a project ive variety called a Segre variety.
a. Show that a is a well-defined mapping. (That is, show that we obtain the same point in

IP"+m+",,, no matter what homogeneous coordinates for p. q we use.)
b. Show that a is a one-to-one mapping and that the "affine part" k" x k'" maps to an affine

variety in k":""?" = Uo C IP"+m+",,, that is isomorphic to k"?" . (See Chapter 5, §4.)
c. Taking n = m = I above, write out e : IPI x IPI ~ IP3 explicitly and find homogeneous

equat ion(s) for the image. Hint: You should obtain a single quadratic equation. This Segre
variety is a quadr ic surface in IP3•

d. Now cons ider the case n = 2, m = I and find homogeneous equations for the Segre
variety in IPs.

e. What is the intersect ion of the Segre variety in IPs and the Veronese surface in IPs? (See
Exercise 12.)

§5 Projective Elimination Theory

In Chapte r 3, we encountered numerous instances of "missing points" when studying
the geometric interpretation of elimination theory. Since our original motivation for
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projective space was to account for "missing points," it makes sense to look back at
elimination theory using what we know about jpll(k). You may want to review the first
two sect ions of Chapter 3 before reading further.
We begin with the following example.

Example 1. Consider the variety V C <c2 defined by the equation

xl = x - I.

To eliminate x, we use the elim ination ideal II = (xi - x + I) n <C[y] , and it
is easy to show that II = {O} C <C[y]. In Chapter 3, we observed that eliminating
x corresponds geometrically to the projection rr(V) C <C, where tt : <c2 - <C is
defined by rr(x, y) = y. We know that rr(V) C V(JI) = <C, but as the following
picture shows, rr(V) does not fill up all of V(JI) :

It(V)

J.

ilt

y

Wecan control the missing points using the Geometric Extension Theorem (Theorem 2
of Chapter 3, §2). Recall how this works: if we write the defining equation of V as
(i - I)x - I = 0, then the Extension Theorem guarantees that we can solve for
x whenever the lead ing coefficient of x does not vanish. Thus, y = ± I are the only
missing points .
To reinterpret the Geometric Extension Theorem in terms of projective space , first

observe that the standard projective plane jp2(<c) is not quite what we want. We are
really only interested in directions along the projection (i.e., parallel to the x-axis) since
all of our missing points lie in this direc tion . So we do not need all of jp2(<c) . A more
serious problem is that in jp2(<c), all lines parallel to the x-axis correspond to a single
point at infinity, yet we are missing two points .
To avoid this difficulty, we will use something besides jp2(<c). If we write rr as

tt : <C x <C _ <C, the idea is to make the first factor projective rather than the whole
thing . Th is gives us jpl (<C) x <C, and we will again use n to denote the projection
tt : jpl (<C) x <C - <C onto the second factor.
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We will use coordinates (t . X, y) on !pI (CL) x CL. where (t. x) are homogeneous
coordinates on !p I (CL) and y is the usual coordinate on CL. Thus . (in analogy with
Propo sition 2 of §2) a point (I . X, y ) E JPI (CL) X CL corresponds to (x, y) E CL x CL.
We will regard CL x CL as a subset of !pI (CL) x CL and you should check that the
complement consists of the "points at infinity" (0, I , y ).
We can extend V C CL x <C to V' C JPI (<C) x CL by making the equation of V

homogeneou s with respect to t and x . Thus .V' is defined by

x y Z:::::: X-t.

In Exercise I . you will check that this equation is well -defined on JP I(CL) x CL. To find
the solutions of this equation . we first set t :::::: I to get the affine port ion and then we
set t :::::: 0 to find the points at infinity. Th is leads to

V' :::::: V U (0, I, ±I)}

(remember that t and x cannot simultaneously vanish since they are homogeneous
coordinates). Under the projection tt : JP I(CL) x CL ~ CL, it follows that rr (V') :::::: .
CL :::::: V(I , ) because the two points at infinity map to the "missing points" y :::::: ± 1. As
we will soon see. the equality rr(V') = V(lt> is a speci al case of the project ive vers ion
of the Geometric Extension Theorem.
We will use the following general framework for generalizing the issues raised by

Example I. Suppose we have equations

f , (x" . ..• XII . yl. · .. • y",) :::::: 0,

f , (xl, .. . • x" . y, • . . . • y",) :::::: O.

where f l• . . . • f , E k [x l• .. . • XII . y ,• . . . , y",]. Algebraically. we can eliminate
X I • • • • ,XII by computing the ideal I II :::::: (fl , . . . . f s) n k[ YI • . . . • y",I (the Elimi-
nation Theorem from Chapter 3, §I tells us how to do this). If we think geometrically.
. the above equations define a variety V C k" X k'"; and elim inating XI • . .. • XII corre-
sponds to cons idering rr( V). where tt : k" X k" ~ k" is projection onto the last m
coord inates . Our goal is to describe the relat ion between rr (V ) and V(I,,).
The basic idea is to make the first factor projective. To simpl ify notat ion, we will write

JP" (k ) as JPIl when there is no confusion about what field we are deal ing with. A point
in JP" x kin will have coordinates (xo, , XII ' Y" . .. , y",). where (xo• . . . , XII) are
homogeneous coordinates in JP" and (YI , , YIII) are usual coord inates in k"'. Thus.
( I, I, I , I) and (2, 2, I , I) are coordinates for the same point in JP I x kZ, whereas
(2, 2. 2, 2) gives a different point. As in Proposition 2 of §2. we will use the map

(X l, ··· , XII. YI , · · · , Yll.) t-+ (I , X ]. • • • • XII . YI , · · ·. y",)

to identify k" x k'" with the subset of JPIl X k" where Xo "1= O.
We can define varieties in P " X k'" using "partially" homogeneous polynomials as

follows.
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Definition 2. Let k be a field.
(i) A polynomial F E k[xo • . . .• XII. Yt • . . . • YIII ] is (xo, . . .• xlI }-homogeneous

provided there is an integer k ~ 0 such that

F = L ha(Yt • . . . • YIII}xa,
lal=k

where xa is a monomial in xo, . . . , XII of multidegree ex and ha E k[ YI • . . . •YIII]'
(ii) The variety V (FI • • • • • F., ) C IP" X kill defined by (xo, . . . • xlI} -homogeneous

polynomials F, F, E k[xo, . . . • XII. YI • . . . • YIII ] is the set

{(ao• . . .• a.i.b« , , blll ) E IP" X kill: Fi (ao, . . . • all .bl • ...• blll )

= Ofor I ~ i ~ s) .

In the exercises. you will show that if a (Xo, . . . , XII}-homogeneous polynomial van-
ishes at one set of coord inates for a point in IP" X kill. then it vanishes for all coordinates
of the point. This shows that the variety V(FI , •••• F.,) is a well -defined subset of
IP" X kill when F l • . . . , F, are (xo, . . . , xlI}-homogeneous.
We can now discuss what eliminat ion theory mean s in this conte xt. Suppose we have

(xo• . . . • xlI )-homogeneous equations

FI(xo, . . . • XII' YI • ... , YIII ) = O,

(I )

F., (Xo • . . .• XII' YI.· . . , YIII) = O.

The se define the variety V = V( F, • . . . , F, ) C IP" X kill .We also have the projection
map

7'( : IP" X kill~ kill

onto the last m coord inates. Then we can interpret 7'( (V) C kill as the set of all m-tuples
(YI • . . . • YIII )forwhich the equations (I) have anontrivial solution inXo• . . . • XII (which
means that at least one Xi is nonzero ).
To understand what this means algebraically. let us work out an example.

Example 3. In this example . we will use (u , u, Y) as coordinates on IPI x k. Then
cons ider the equations

FI = U + vy = 0,
F2 = U + uy = O.

Since (u . v) are homogeneous coordinates on IPI , it is straightfo rward to show that

V = V (FI • F2} = {CO. 1,0). (I . 1. -1 »).

Under the projection 7'( : IPI x k ~ k, we have 7'(V} = 10, - 1). so that for a given
y , the equations (2) have a nontr ivial solut ion if and only if Y = 0 or -1. Thus, (2)
implies that y(I + Y) = O.
Ideally, there should be a purely algebraic method of "eliminating" u and v from (2)

to obtain y (l + y) = O. Unfortunately, the kind of elimination we did in Chapter 3
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does not work. To see why, let J = (F1, F2 ) C k[u. u, y] be the ideal generated by F1
and F2• Since every term of F1 and F2 contains u or v, it follows that

J n k[y] = {OJ .

From the affine point of view, this is the correct answer since the affine variety

V,,(F1, F2) C k2 x k

contains the trivial solutions (0, 0, y) for all y E k, Thus, the affine methods of Chap-
ter 3 will be useful only if we can find an algebraic way of excluding the solutions
where u = u = 0.
We can shed some light on the matter by computing Groebner bases for J = (F" F2)

using various lex orders :

using u > v > y : J = (u + vy, v + vy),

using v > u > y: J = (vu - u2 , vy + u , uy + ul).
The last entries in each basis show that our desired answer v(l + y) is almost in J, in
the sense that

(3) u . y(l + y). v . y(l + y) E J.

In the language of ideal quotients from §4 of Chapter 4. this implies that

y(l + y) E J : (u . v) .

Recall from Chapter 4 that for affine varieties. the ideal quotient corresponds (roughly)
to the difference of varieties (see Theorem 7 of Chapter 4, §4 for a precise statement) .
Thus, the ideal J : (u , v) is closely related to the difference

V,,(F1, F2) - V,,(u, v) C k2 X k.

This set consists exactly of the nontrivial solutions of (2). Hence, the ideal quotient
enters in a natural way.
Thus, our goal of eliminating u and v projectively from (2) leads to the polynomial

y(l + y) E i = (l : (u, v) n k[y].
Using the techniques of Chapter 4, it can be shown that i = (y(l + y» in this case.

With this example, we are very close to the definition of projective elimination. The
only difference is that in general, higher powers of the variables may be needed in (3)
(see Exercise 7 for an example). Hence, we get the following definition of the projective
elimination ideal.

Definition 4. Givenan idealJ C k[xo.. . . ,XII' YJ •... , YIII] generated by (xo, . . . , x lI ) -
homogeneous polynomials, the projective elimination ideal of J is the set

J = {f E k[Yl, . . . • YIII] : for each 0 ::: i ::: n, there is e, ~ 0 with x;' f E l}.

It is an easy exercise to show that J is, in fact, an ideal of k[y, • . . . , Ym] ' To begin to
see the role played by J, we have the following result.
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Proposition 5. Let V = Vi F, . . . . . Fs ) C ]pll X k'" be a variety defined by
(xo, . .. , xlI)-homogeneous polynomials and let tt : ]p ll x kill --+ kill be the projection
map. Then in k'", we have

7f( V ) C V(!),

where J is the projective elimination ideal of I = (FI , . . . • F., ).

Proof. Suppose that (ao, ...• all ' b i; .. . • bm) E V and f E J. Then
x7i f (YI, . . . , Ym) E I implies that this polynomial vanishes on V. and, hence,

a:' f (b l , • • • • bm) = 0

for all t. Since (ae • . . . , all ) are homogeneous coordinates. at least one a; # 0 and.
thus, f (b l , • •• , bm ) = O. This proves that f vanishes on tt (V ) and the proposit ion
follows. 0

When the field is algebra ically closed, we also have the following projective version
of the Extension Theorem.

Theorem 6 (The Projective Extension Theorem). Assume that k is algebraically
closed and that V = V (F I • • •• , Fs ) C ]pll X k'" is defined by (xo, . . . , xlI )-
homogeneous polynomials in k[xo, . . . •Xn, YI• . . . , Ym l. Let I = (F I , • • • , Fs ) and
let J C k[YI• . . . • Ym l be the projective elimination ideal of I . If

is projection onto the last m coordinates, then

7f( V ) = V(l).

Proof. The inclusion 7f(V ) C V(I) follows from Proposition 5. For the op-
posite inclusion. let c = (cJ, .. . , cm) E V(I) and set F;(xo, . . . , XII. c) =
F;(xo• . . . , XII. CI, . • • , cm). This is a homogeneous polynomial in xo• . . . ,XII' say
of total degree by d, [equal to the total degree of F;(xo• . . . , XII ' Y;, . . . •Ym) in
Xo, ··· , xlI l .
If c ¢ 7f(V ), then it follows that the equations

F1(xo, . . . , XII ' c) = ... = F.,(xo , . . . • XII . c) = 0

define the empty variety in ]P" . Since the field k is algebraically closed, the Projective
Weak Nullstellensatz (Theorem 8 of §3) implies that for some r ~ I. we have

(xo, . .. , XII )' C (F I (xo• . . . •XII. c), . . . • F,(xo, ... , XII. cj).

This means that the monomials XCI, lal = r , can be written as a polynomial linear
combination of the F; (xo, . .. , XII' c), say

"'
XCI = L H;(xo, .. . , xlI)F;(xo, . . . , XII' c) .

;=1
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By taking homogeneous components, we can assume that each H, is homogeneous of
total degree r - d, [since d, is the total degree of F;(xo, . . . , x", c)]. Then , writing
each Hi as a linear comb ination of monomials x fJi with 1.8; 1= r - d. , we see that the
polynom ials

x fJi Fi(xo• . . . • x", c). i = O• . . . , s , 1.8i1 = r - d,

span the vector space of all homogeneous polynomials of total degree r in xo, . .. • x.:
If the dimens ion of this space is denoted N" then by standard results in linear algebra,
we can find N, of these polynomials which form a basis for this space. We will denote
this basis as

Gj(xo, . . . • x", c), j = 1, . . . , N),

To see why this leads to a contradiction, we will use linear algebra and the properties of
determin ants to create an interesting element of the elimination ideal 7.The polynomial
Gj (xo , x". c) comes from a polynomial Gj = Gj (xo, .. . , x" , YI, . . . • YIII) E
k [xo, , x" ' y], . . . •YIII ]' Each Gj is of the form x fJi F;. for some I and .8i . and is
homogeneous in Xo•. .. , x.; of total degree r. Thus. we can write

(4) o, = L aj ,,(YI • .. . , YIII )X" .
l" l=r

Since the x" with 10'1 = r form a basis of all homogeneous polynomials of total
degree r , there are N; such monomials. Hence we get a square matrix of polynomials
aj" (Yl ' . . . . y",) . Then let

D (YI , . . .• YIII) = det (aj ,,(YI.··· . YIII ) : 1::: t s Nr, lal = r )

be the corresponding determ inant. If we substitute c into (4), we obtain

Gj (xo• . . . , x" , c) = L aj ,,(c)x" .
l" l=r

and since the G j (xo, .. .• x". c) 's and x" 's are bases of the same vector space. we see
that

D (c ) =j: O.

In particular. this shows that D (YJ • . ..• YIII) =j: 0 in k[YI , . . . • y",].
Working over the function field k (YI , , Ym ) (see Chapter 5. §5). we can regard (4)

as a system of linear equations over k(Y I, , YIII) with the x" as variables. Apply ing
Cramer's Rule (Proposition 3 of Appendix A. §3). we conclude that

o det(Ma )x = ,
D(y] • . . . , YIII )

where M" is the matrix obtained from (aj,,) by replacing thea column by G J • • • • , G,v, .
If we multiply each side by D (y] • . . . , YIII) and expand det(M,,) along this column . we
get an equation of the form

N,

x" D (YI • . . . , YIII) = L Hj ,,(YI , .. .• YIII) G j(xo, ... , x", YI, · ··, YIII)'
j = 1
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However, every G j is of the form x PiF;. and if we make this substitution and write the
sum in terms of the Fi, we obtain

xClD(Y, • . ··.YIII) E (F, •...• f,) = I.

This shows that D (YI, ...• YIII) is in the projective elimination of i, and since C E V(j).
we conclude that D(c) = O. This contradicts what we found above. which proves that
c E rr(V) . as desired. 0

Theorem 6 tells us that when we project a variety V C jp " X kill into kill. the result is
again a variety. This has the following nice interpretation: if we think of the variables
YI• . . . , YIII as parameters in the system of equations

F,(xo,. · ·. XII . Y" .. . • YIII) = . .. = Fs(xo• . . .• XII . YI, · · . • YIII) = O.
then the equations defining rr(V) = V(l) in kill tell us what conditions the parameters
must satisfy in order for the above equations to have a nontrivial solution (i.e.•a solution
different from Xo = ... = XII = 0).
For the elimination theory given Theorem 6 to be useful. we need to be able to

compute the elimination ideal i,We will explore this question in the following two
propositions. We first show how to represent j as an ideal quotient.

Proposition 7. II I c k[xo • . . . • XII. YI • . . . , YIII] is an ideal. then.for all sufficiently
large integers e, we have

J = (l: (xo•...• X,~}) n k[YI. i • •• YIII] '

Proof. The definition of ideal quotient shows that

I E I : (xg• . . . • x~) ~ xi I E I for all 0 s I s n .

It follows immediately that (l : (xo• . . . , x~)) n k[YI • . . . , YIII] c j for all e ::: o.
We need to show that the opposite inclusion occurs for large e. First observe that we

have an ascending chain of ideals

I : (xo, . ..• XII) c I : (x~ • . . . , x,;) c . . ..
Then the ascending chain condition (Theorem 7 of Chapter 2. §5) implies that

I: (xo• . .. • x~) = I: (xo+', ' " ,X,~+I) = . . .

for some integer e. If we fix such an e, it follows that

(5)
for all integers d ::: O.
Now suppose I E J.For each 0 ~ i ~ n. this means X:'I E I for some e, ::: O. Let

d = max(eo. . . . , ell)' Then xf I E I for all i, which implies I E I : (xg . . . . • X,~),
By (5). it follows that I E (/ : (xo' . .. • x~}) n k[YI, .. .• YIII], and the proposition is
proved. 0

We next relate J to the kind of elimination we did in Chapter 3. The basic idea is
to reduce to the affine case by dehomogenization. If we fix 0 ~ i ~ n, then setting
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Xi = I in F E k[ xo, , X" , Yh . .. , Ym] gives the polynomial

F (i)(xo• ... • 1 , X"' YI,"" Ym) E k[ xo•. ..• Xj• .. . , X". YI•. · · • Ym ],

where Xi means that Xi is omitted from the list of variables. Then, given an ideal
I C k[xo, . . . • X" ' YI • . . • •Ynr], we get the dehomogen ization

I (i ) = (F(i) : F E I} C k[ xo, . . . , .ii , .. • , X". Yl , .. . • Ynr ]'
It is easy to show that l (i) is an ideal in k[xo , .. . , xi • . . . , x", Yl, . . .• Ym)' We also
leave it as an exercise to show that if I = (Fl • . . . , F,), then

(6)

Let V C IP" x kill be the variety defined by I. One can think of I Ii ) as defining
the affine portion V n (Ui X kill), where U, ~ k" is the subset of IP" where Xi = I.
Since we are now in a purely affine situation, we can eliminate using the methods of
Chapter 3. In particular, we get the nth elimination ideal

It:i) = l (i) n k[YI , .. .• Ym],

where the subscript n indicates that the n variables Xo.. . . , Xj, . . . , x; have been
eliminated. We now compute J in terms of its dehomogenizations l (i) as follows.

Proposition 8. Let I C k[xo• ... , x" , YI • .. . , Ynr1 be an ideal generated by
(xo, . .. . x,,)-homogeneous polynomials. Then

J= I~O ) n It~l ) n . .. n 1,:'1) .

Proof. It suffices to show that

J = 1 (0) n · · · n 1(" ) n k[Y I •... , Ym ]'

First, suppose that l Ei .Then x;· I (YI , . ..• Ynr) E I. so that when we set Xi = I ,
we get I(YI • . . . , Ynr) E l (i). This proves I E 1 (0) n . . . n 1111 ) n k[Yl • . . . , Ym ]'
For the other inclusion, we first study the relat ion between I and I (i). An element

I E l (i l is obtained from some F E I by setting Xi = I. We claim that F can be
assumed to be (xo• . . .. x,,)-homogeneous. To prove this, note that F can be written
as a sum F = L~=o Fj • where Fj is (xo, , x,,)-homogeneous of total degree j in
Xo , .. .. x.; Since I is generated by (xo x")-homogeneous polynomials, the proof
of Theorem 2 of §3 can be adapted to show that Fj E I for alI j (see Exercise 4). This
implies that

dr>;,-jFj
j =O

is a (xo, .. . . x,,)-homogeneous polynomial in I which dehomogenizes to I when
Xi = I. Thus. we can assume that F E I is (xo, . . . • x,,)-homogeneous.
As in §2, we can define a homogen izat ion operator which takes a polynomial

I E k[xo•... • Xi • . • • , X" . YI, . .. , Ynr ) and uses the extra variable Xi to pro-
duce a (xo. . . . , x,,)-homogeneous polynomial I h E k [xo, ... • X" , YI, . . . , YIII ]' We
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leave it as an exercise to show that if a (xo, . . . , x,,)-homogeneous polynomial F
dehomogenizes to f using Xi = I, then

(7)

for some integer e :::: O.
Now suppose f E IIi) n k[YI, . .. , y",] . As we proved earlier, f comes from F E I

which is (xo, . . . , xlI)-homogeneous. Since f does not involve xo, . . , ,x",·we have
f = fir, and then (7) implies xf f E I . It follows immediately that 1(0) n .. n 1(") n
k[YI, ... , YIII] c J,and the proposition is proved. 0

Proposition 8 has a nice interpretation. Namely, I,~i) can be thought of as eliminating
xo, . . . , Xi, ... , X" on the affine piece of IP" x k" where Xi = 1. Then intersecting
these affine elimination ideals (which roughly corresponds to the eliminating on the
union of the affine pieces) gives the projective elimination ideal.
Wecan also use Proposition 8 to give an algorithm for finding J. If I = (F1, • , • , f,),

we know a basis of I(i) by (6), so that we can compute I,~i) using the Elimination Theorem
of Chapter 3, §1. Then the algorithm for ideal intersections from Chapter 4, §3 tells us
how to compute J = I,~O) n . . . n I,~"). A second algor ithm for computing J, based on
Proposition 7, will be discussed in the exercises.
To see how this works in practice, consider the equations

F1 = U + vy = 0,
F2 = U + uy = 0

from Example 3. Ifwe set I = (u + vy, u + uy) C k[u, v, y], then we have

when u = 1: It) = , (l + vy, 1+ y) n k[y] = (1 + y),

when v = 1: I: V ) = (u + y, u + uy) n k[y] = (y(l + y)} ,

and it follows that J = I:") n I:") = (y(l + y)}. Cali you explain why I:") and I: V )
are different?
We next return to a question posed earlier concerning the' missing points that can

occur in the affine case . An ideal I C k[XI, . . . , XII' YI , .. , , Y",l gives a variety V =
V,,(l) C k" X kill, and under the projection n : k" X k'" --+ k'"; we know that
rr(V) C V(lll), where III is the nth elimination ideal of l. We want to show that points
in V(l,,) - rr(V) come from points at infinity in IP" X k"' .
To decide what variety in IP" x k'" to use, we will homogenize with respect to Xo .

Recall from the proof of Proposition 8 that f E k[XI, , XII ' YI, , YIII] gives us a
(xo, . . . , X" )-homogeneous polynomial fir E ·k[xo, , XII ' YI , , y",]. Exercise 12
will study homogenization in more detail. Then the (xo, . . . ,x,,)-homogenization of I
is defined to be the ideal

IIr = (fir : f E l) C k[xo, . . . , X" , YI, • . . , y",].

Using the Hilbert Basis Theorem, it follows easily that IIr is generated by finitely many
(xo, . . . , xlI)-homogeneous polynomials.
The following proposition gives the main properties of i« .



394 8. Projective Algebraic Geometry

Proposition 9. Given an ideal I C k[x], . . . , x», YI, . . . , Ym). let IIr be its
(xo, .. . , xlI)-homogenization. Then:
(i) The projective elimination ideal of IIr equals the nth elimination ideal of I . Thus,

fir = III C k[YI, . . . , YIIl]'
(ii) If k is algebraically closed, then the variety V = V(lIr) is the smallest variety

in ]p" x kill containing the affine variety V = Va (I) C k" X kill. We callV the
projective closure of V ln P" x kill .

Proof. (i) It is straightforward to show that dehomogenizing t'with respect to Xo gives
(l1r)(o) = I. Then the proof of Proposition 8 implies that IIr C III' Going the other
way, take f E III ' Since f E k[Yi , . . . , YIIl]' it is already (xo, . . . , xlI)-homogeneo~s.
Hence, f = fir E IIr and it follows that x? f E I" for all i. This shows that f E IIr,
and (i) is proved.
Part (ii) is similar to Theorem 8 of §4 and is left as an exercise . 0

Using Theorem 6 and Proposition 9 together, we get the following nice result.

Corollary 10. Assume that k is algebraically closed and let V = Vt/(I) C k" x kill ,
where I C k[Xi, . . . , XIII ' Yi, . . . , YIIl] is an ideal. Then

V(lII) = 1T(V).

whereV C ]pll X kill is the projective closure of V and 1T : ]pll x kill ~ kill is the
projection.

Proof. Since Proposition 9 tells us that V = vo», and j/, = III' the corollary follows
immediately from Theorem 6. 0

In Chapter 3, points of V(lII) were called "partial solutions ." The partial solutions
which do not extend to solutions in V give points of V(lII) - 1T(V) , and the corollary
shows that these points come from points at infinity in the projective closure V of V .
To use Corollary 10,we need to be able to compute t».As in §4, the difficulty is that

I = (fl, " " f ,) need not imply IIr = v: ...,1,1r). But if we use an appropriate
Groebner basis, we get the desired equality.

Proposition 11. Let> be a monomial order on k[Xi, . . . , XII' Yi, . . . , YIIl] such that
for all monomials x" yY, xPY~ in XI , ... , XII' Yi, . . . , YIIl' we have

10'1 > 1.81 ===* x"yY > xPl .

IfG = {gi, ... ,g,jisaGroebnerbasisforl C k[XI, .. . ,XII,Yi" " 'YIIl] with
respect to > . then G ir = {g:', .. . , g;'j is a basis for IIr C k[xo, . . . , XII' YI , . .. , YIIl] '

Proof. This is similar to Theorem 4 of §4 and is left as an exercise . o
In Example I , we considered I = (xy 2 - X+ 1) C <C[x, y]. This is a principal ideal

and, hence, xy2 - x + I is a Groebner basis for any monomial ordering (see Exercise 10
of Chapter 2, §5). If we homogenize with respect to the new variable t . Proposition II
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tells us that I h is generated by the (t, x) -homogeneous polynomial xy2 - x + t , Now
let Y = V(lh) C !pI X <C. Then Corollary 10 shows rr(Y) = V(lI) = ceowhich
agrees with what we found in Example 1.
Using Corollary 10and Proposition 11. we can point out a weakness in the Geometric

Extension Theorem given in Chapter 3. This theorem stated that if 1 = (fl •.. . , Is},
then

(8)

where V = Va(I) and gi E k[X2, . . . , XII] is the leading coefficient of f; with respect to
XI . From the projective point of view, {(O, I) I x V(gl , .. . , g,) are the points at infinity
in Z = V(ft , ... , f:') (this follows from the proof of Theorem 6). Since II, ... , ! ,
was an arbitrary basis of I, Z may not be the projective closure of V and, hence,
V(gl , . . . , g,) may be too large. To get the smallest possible V(gl , . . . , g,) n V(lI)
in (8) , we should use a Groebner basis for I with respect to a monomial ordering of the
type described in Proposition 1J.
We will end the section with a study of maps between projective spaces . Suppose

that 10, . . . , 1m E k[xo, . . . , XII] are homogeneous polynomials of total degree d such
that V(fo, ... ,1m) = fiJ in !P". Then we can define a map F : !P" -+ !pili by the
formula

F(xo, ... , XII) = (/o(xo, ... , XII)' . . . , I m(xo , , XII»'

Since/o, ... .I; never vanish simultaneously on !P", F(xo, , XII) always gives a
point in !Pili . Furthermore. since the f; are all homogeneous of total degree d. it follows
that

F(Axo, .. . , AXil) = A"F(xo , . .. , XII)

for all A E k - to) .Thus, F is a well-defined function from !pllto !P"'.
Wehave already seen examples of such maps between projective spaces. For instance,

Exercise 21 of §2 studied the map F : !pI -+ !p2 defined by

F(a, b) = (a 2 + b2, 2ab, a2 _ b2) .

This is a projective parametrization of V(x 2 - l - Z2) . Also, Exercise 12 of §4
discussed the Veronese map cP : !p2 -+ !p5 defined by

cP(xo , Xj, X2) = (x~, XOX I, XOX2 , x~, XIX2, x~).

The image of this map is called the Veronese surface in !p5•
Over an algebraically closed field, we can describe the image of F !P" -+ !p'"

using el imination theory as follows.

Theorem 12. Let k be algebraically closed and let F : !p" -+ !p'" be defined by
homogeneous polynomials 10, .. . , 1,11 E k[xo, . .. , XII] which have the same total
degree and no common zeros in !P". In k[xo , , XII' Yo, ... , YIII], let I be the ideal
(Yo - 10, .. . , Ym - f,,,} and let 111+ 1 = I nk[yo, , YIII]' Then 111+1 isa homogeneous
ideal in k[yo, .. . , Ym] and

F(!PII) = V(lII+I).
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Proof. We will first show that 111+1 is a homogeneous ideal. Suppose that the f; have
total degree d. Since the generators Yi - f; of I are not homogeneous (unless d = 1),
we will introduce weights on the variables xo, • .. , XII ' Yo , ...• Ym ' We say that each Xi
has weight I and each Yj has weight d. Then a monomial XU y fJ has weight lor! + dl.BI,
and a polynomial 1 E k[xo, . . . , XlI • yo ... , Ym] is weighted homogeneous provided
every monomial in 1 has the same weight.
The generators Yi - f; of 1 all have weight d , so that 1 is a weighted homogeneous

ideal. If we compute a Groebner basis G for 1 with respect to any monomial order, an
argument similar to the proof of Theorem 2 of §3 shows that G consists of weighted
homogeneous polynomials. For an appropriate lex order, the Elimination Theorem
from Chapter 3 shows that G n k[yo , . . . , Ym] is a basis of /1/+1 = 1 n k[yo , .. .• Ym] .
Thus, 11/+1 has a weighted homogeneous basis. Since the Yi 's all have the same weight, a
polynomial in k[Yl • . . . , Ym] is weighted homogeneous if and only if it is homogeneous
in the usual sense. This proves that /11+1 is a homogeneous ideal.
To study the image of F, we need to consider varieties in the product P" x ]pm . A

polynomial h E k[xo, • .. , XII' Yo, ... , Ym] is bihomogeneous if it can be written as

h = L aafJXUyfJ .
lul=k .lill=/

If hi , . .. , h, are bihomogeneous, we get a well-defined set

V(h l • . .. , h,) C ]pll x ]pm

which is the variety defined by h I, . .. ,h., .Similarly, if J C k[ xo, . .. , XII' Yo, .. . , Ym]
is generated by bihomogeneous polynomials, then we get a variety V(J) C ]pll X ]pm .
(See Exercise 16 for the details .)
Elim ination theory applies nicely to this situation. The projective elimination ideal

J c k[yo, . .. , Ym] is a homogeneous ideal (see Exercise 16). Then, using the
projection tt : ]pl/ x ]pm --+ ]pm, it is an easy corollary of Theorem 6 that

(9) rr(V(J» = V(l)

in ]pm (see Exercise 16). As in Theorem 6, this requires that k be algebraically closed .
We cannot apply this theory to 1 because it is not generated by bihomogeneous

polynomials. So we will work with the bihomogeneous ideal 1 = (yi!j - Yjf;) .
Let us first show that Vel) c ]pll x ]pili is the graph of F : ]pl/ --+ ]pm. Given
p E ]pll , we have (p, F(p» E V(J) since Yi = f;(p) for all i. Conversely, suppose
that (p, q) E V(J) . Then qi!j(p) = qjf;(p) for all i, j, where Pi is the ith homo-
geneous coordinate of p, and similarly for q. We can find j with qj =1= 0, and by our
assumption on 10, ... ,1,11 , there is i with f;(p) =1= O. Then qih(p) = qjf;(p) =1= 0
shows that q, =1= O. Now let A = qi/f;(p), which is a nonzero element of k. From the
defining equations ofV(J) , it follows easily that q = AF(p), which shows that (p, q)
is in the graph of F in P" x ]Pili .
As we saw in §3 of Chapter 3, the projection of the graph is the image of the function.

Thus, under it : ]pll x ]pili --+ ]pm, we have rr(V(l» = F(]P//) . If we combine this
with (9), we get F(]PIl) = V(l) since k is algebraically closed . This proves that the
image of F is a variety in ]pm.
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Since we know an algorithm for computing J,we could stop here. The problem is
that J is somewhat complicated to compute . It is much simpler to work with 1,,+1 =
1n k[yo , .. . , Ym), which requires nothing more than the methods of Chapter 3. So the
final step in the proof is to show that V(l) = V (111+ I ) in ]p ill .
It suffices to work in affine space k lll+ 1 and prove that Va(l) = Va (111+1) . Observe

that the variety Va(l) c k"+1 X k lll+1 is the graph of the map k"+1 -+ k lll+ J defined
by (/0, . . . ,1m)' Under the projection tt : k"+1 X k lll+ 1 -+ k lll+ 1• we claim that
rr(Va(l» = Va(l). We know that V(l) is the image of F in ]Pill . Once we exclude
the origin, this means that q E V,,(l) if and only if there is a some p E k,,+J such
that q equals F(p) in ]Pill. Hence, q = )"F(p) in klll +1 for some A =1= O. If we set
).. ' = ::II. then q = F()..'p) , which is equivalent to q E rr(Va(l» . The claim now
follows easily.
By the Closure Theorem (Theorem 3 of Chapter 3, §2), Va(lIl+I) is the smallest

variety containing rr(V" (I» .Since this projection equals the variety V,,(l), it follows
immediately that V,,(lII+l) = Va(l) . This completes the proof of the theorem. 0

EXERCISES FOR §5

1. In Example I, explain why xy2 - x + t = 0 determines a well-defined subset ofIP' x <C.
where (r , x) are homogeneous coordinates on IPI and y is a coordinate on <C. Hint: See
Exercise 2.

2. Suppose F E k[xo , . .. • x" ' y " . .. , Ym] is (xo, . .. ,xn)-homogeneous. Show that if F
vanishes at one set of coordinates for a point in IPn x k'"; then F vanishes at all coordinates
for the point .

3. In Example 3, show that Vf Fi , F2) = [(0,1,0), (1,1. - I»).
4. This exercise will study ideals generated by (xo, . . . , xn)-homogeneous polynomials.

a. Prove that every F E k[xo • . . . , x"' y " .. . , y",] can be written uniquely as a sum of
(xo, . .. , x" )-homogeneous polynomials. We call these the (xo, . • . • x,,)-homogeneous
components of F.

b. Prove that an ideal I C k[xo •. . . , x" ' y" .. . , y", ] is generated by (xo • . . . , x,, )-
homogeneous polynomials if and only if I contains the (xo, .. . , x; )-homogeneous
components of each of its elements.

5. Let I C k[xo, . . . , x" ' y" .. .• y",] be an ideal generated by (xo • . . . , x,,)-homogeneous
polynomials. We will discuss a method for computing the ideal (l : Xi) n k[y, • . . . , y", ]. For
conven ience , we will concentrate on the case i = O. Let> be lex order with x, > .. . >
x; > Xo > YI > . .. > y", and let G be a reduced Groebner basis for I .
a. Suppose that g E G has LT(g) = xoya . Prove that g = xoh,(y" . . . , y",) +

ho(YI •. . .• Ym)'
b. If g E G has LT(g) = xoy" , prove that g = xoh,(yl • . . . , y",) . Hint: Use part b of

Exercise 4 and the fact that G n k[Y l' .. . , y",] is a Groebner basi s of I n k[y" . . . , y",] .
Remember that G is reduced.

c. Let G' = (g E k{y" . . . , y",] : either g or xog E G). Show that G/ C (l : xo) n
k[y" . . . • y",] and that the lead ing term of every element of (l : xo) n k[y" .. . , y",] is
divis ible by the leading term of some element of G'. Th is shows that G' is a Groebner
basis.

d. Explain how to compute (I : xo)n k[Y I, ... , y",] .
6. InExample3,weclaimedthat(l :(u .v})nk[y] = (y(l +y)} when I = (u+vy , u + uy) C
k[u, v, y]. Prove this using the method of Exercise 5. Hint: I : (u, v) = (l : u) n (l : v) .
Also , the needed Groebner bases have already been computed in Example 3.
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7. As in Example 3. we will use (u . u, y ) as coordinates on)pl x k. Let FI = U - vy and
Fz = UZ - vZy in k[u . u, yl.
a. Compute V(F.. Fz) and explain geometrically why eliminating u and v should lead to

the equation y ( 1 - y) = 0.
b. By computing appropriate Groebner bases. show that uZy(1 - y) and vZyz(I - y) lie in

I = (Fl. F2) . whereas uy(1 - y) and vy(l - y) do not.
c. Show that (/ : (u. u) n k[ yl = 10} and that (/ : (uz• vz) n k[ yl = (y(1 - y». Hint:

Use Exercise 5.
8. Prove that the set i defined in Definition 4 is an ideal of k[YI • . . . • y",I.Note: Although this

follows from Proposition 7. you should give a direct argument using the definition.
9. Let I C k[xo • . . . • xn • YI• ... • y",1 be an ideal. Adapt the argument of Proposition 7 to show

that

i = (/ : (xo• . . . • xn )') n k[y .. . . . • y.,,1

for all sufficiently large integers e. Hint: By Exercise 8 of §3. (xo• . . . • xn ) ' is generated by
all monomials x" of total degree e.

10. In this exercise. we will use Proposition 7 to describe an algorithm for computing the
projective elimination ideal i .
a. Show that if I : (xC; • . . . • x~) = I: (XO+

I
• • . • • X~+I) for e ::: 0. then I : (xC; • . . . •x~) =

I : (xg . . . . • x:) for all d ::: e.
b. Use part a to describe an algorithm for finding an integer e such that i is given by
(/ : (xC; • . . . • x~» n k[y.. . . . • y", l.

c. Once we know e. use algorithms from Chapters 3 and 4 to explain how we can compute
i using Proposition 7.

II . In this exercise. we will use dehomogenization operator F ....... Fld defined in the discussion
preceding Proposition 8.
a. Prove that I (i) = {FlO : F E I} is an ideal in k[xo • . . . • Xi• . . . •xn • YI •. . .• YmI.
b. If I = (Fl • . . . • F,) . then show that I (i) = (F:o.. .. . F~j »).

12. In the proof of Proposition 8. we needed the homogenization operator. which makes a
polynomial f E k[x .. . . . • xn • Y.. . . . • y",1 into a (xo• . . . , xn)-homogeneous polynomialr using the extra variable Xo.
a. Give a careful definition of f h•
b. If we dehomogenize r by setting Xo = I. show that we get .r ) 10) = f.
c. Let f = F lO) be the dehomogenization of a (xo• . . . • xn)-homogeneous polynomial F.

Then prove that F = XOfh for some integer e ::: 0 .
13. Prove part (ii) of Proposition 9.
14. Prove Proposition II. Also give an example of a monom ial order which satisfies the hypoth-

esis of the proposition. Hint: You can use an appropriate weight order from Exercise 12 of
Chapter 2. §4.

15. The proof of Theorem 12 used weighted homogeneous polynomials. The general setup is as
follows. Given variables xo• . . . • Xn • we assume that each variable has a weight qi. which
we assume to be a positive integer. Then the weight of a monomial x" is L;'=o q.a., where
a = (ao• . . . • a,,). A polynomial is weighted homogeneous if all of its monomials have the
same weight.
a. Show that every f E k[xo • . . . •x,,1can be written uniquely as a sum of weighted ho-

mogeneous polynomials. These are called the weighted homogeneous components of
f ·

b. Define what it means for an ideal I C k[xo • . . . • .t"1to be a weighted homogeneous ideal.
Then formulate and prove a version ofTheorem 2 of§3 for weighted homogeneous ideals .
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16. This exercise will study the eliminat ion theory of lPn x lPm. We will use the polynomial
ring k[xo , , xn, yo, . . . , Ym ), where (xo, . . . , xm) are homogeneous coordinates on lPIt

and (Yo, , Ym) are homogeneous coordinates on lPm•

a. As in the text, h E k[xo , . . . , x"' Yo, . . . , YmI is bihomogeneous if it can be written in
the form

h = L a"flx" y fi •
l" I=k.lfll=1

We say that h has bidegree (k, I) . If hi , .. . , h, are bihomogeneous , show that we get a
well-defined variety

V(h J, .. . , h,) c lP" x lPm.

Also, if J c k[xo , . . . , X,,,YI, . • • , Ym I is an ideal generated by bihomogeneous
polynomials , explain how to define V(J) C lPIt X lPm and prove that V(J) is a variety.

b. If J is generated by bihomogeneous polynomials, we have V = V(J) c lp" x lPm•

Since J is also (xo, . . . , x,,)-homogeneous, we can form its projective elimination ideal
] C k[yo , . .. , Yml. Prove that] is a homogeneous ideal.

c. Now assume that k is algebra ically closed . Under the projection n : lp" x lPm ~ lPm ,

prove that

rr(V) = VO)

in lPm•This is the main result in the elimination theory of varieties in lP" x lPm.Hint: J
also defines a variety in lPIt X km+I , so that you can apply Theorem 6 to the projection
lPIt X km+' ~ km+ l •

17. For the two examples of maps between projective spaces given in the discussion preceding
Theorem 12, compute defining equations for the images of the maps.

18. In Exercise II of §I, we considered the projective plane lP2, with coordinates (x , y , z), and
the dual projective plane lP2v , where (A , B, C) E lP2v corresponds to the projective line L
defined by Ax + By + Cz = 0 in lP2• Show that the subset

(p , L) E lP2 X lP2v : pEL} C lP2 X lP2v

is the variety defined by a bihomogeneous polynomial in k[x , y, z. A , B, CI of bidegree
0 , I) . Hint: See part f of Exercise II of § I.

§6 The Geometry of Quadric Hypersurfaces

In this section, we will study quadric hypersurfaces in!P" (k). These varieties generalize
conic sections in the plane and their geometry is quite interesting. To simplify notation,
we will write !P" rather than !P"(k), and we will use xo, .. . , x; as homogeneous
coordinates. Throughout this section, we will assume that k is a field not of characteristic
2. This means that 2 = 1+ 1 =1= 0 in k , so that, in particular, we can divide by 2.
Before introducing quadric hypersurfaces, we need to understand the notion of pro-

jective equivalence. LetGl.tn + I, k) be the set of invertible (n + 1) x (n+ 1) matrices
with entries in k .We can use elements A E GL(n + I, k) to create transformations of
!pit as follows. Under matrix multiplication, A induces a linear map A : k,,+l -+ klt+ 1

which is an isomorphism since A is invertible . This map takes subspaces of k"+1 to
subspaces of the same dimension, and restricting to l-dirnensional subspaces, it follows
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that A takes a line through the origin to a line through the origin. Thus , A induces a map
A : ]pll ~ ]pll [see (1) from §2). Wecall such a map a projective linear transformation.
In terms of homogeneous coordinates, we can describe A : ]pll ~ ]p ll as follows.

Suppose that A = (a ij), where 0 ::: i , j ::: n. If (bo, .. . , bll ) are homogeneous
coordinates of a point p E ]pll. it follows by matrix multiplication that

(I) A(p) = (aoobo + .. .+ aollbll , ... , allobo + ...+ allllb ,,)

are homogeneous coordinates for A(p). This formula makes it easy to work with pro-
jective linear transformations. Note that A : ]pll ~ ]pll is a bijection, and its inverse is
given by the matrix A -I E GL(n + I , k) . In Exercise I. you will study the set of all
projective linear transformations in more detail.
Given a variety V C ]pll and an element A E GL(n + I, k), we can apply A to all

points of V to get the subset A(V) = (A(p) : p E V} C ]P".

Proposition 1. If A E GL(n + I , k) and V C ]pll is a variety, then A(V) C ]pll is
also a variety. We say that V and A(V) are projectively equivalent.

Proof. Suppose that V = VUI, .. . , f s), where each fi is a homogeneous polynomial.
Since A is invertible, it has an inverse matrix B = A - I . Then for each i , let gi = fi 0 B.
If B = (bij), this means

gi(XO, . . . , XII) = fi(booxo + ... + bollxlI • • • • , blloxo + .. . + bllllxlI ) .

It is easy to see that gi is homogeneous of the same total degree as fi, and we leave it
as an exercise to show that

(2) A(V(ft, . . . , is» = V(gl, . .. , g,).

This equality proves the proposition. o
We can regard A = (a ij) as transforming Xo• . . . ,XII into new coordinates

Xo, .. . , XII defined by

(3)
II

Xi = LaijXj.
i=O

These give homogeneous coordinates on P" because A E GL(n + I, k). It follows from
(1) that we can think of A(V) as the original V viewed using the new homogeneous
coordinates Xo, .. . , X II' An example of how this works will be given in Proposition 2.
In studying IP", an important goal is to classify varieties up to projective equivalence .

In the exercises, you will show that projective equivalence is an equivalence relation .
As an example of how this works , let us classify hyperplanes H C IP" up to projective
equivalence . Recall from §2 that a hyperplane is defined by a linear equation of the
form

llQXo+ .. . + anXII = 0

where ao• . . . , all are not all zero.

Proposition 2. All hyperplanes H C IP" are projectively equivalent.



§6. The Geometry of Quadric Hypersurfaces 401

Proof. We will show that H is projectively equivalent to V(xo) . Since projective
equivalence is an equivalence relation, this will prove the proposition.
Suppose that H is defined by f = aoxo+ ... + al/xl/, and assume in addition that

ao =j:; 0. Now consider the new homogeneous coordinates

Xo = aoxo+ a,x, + ...+ al/Xl/,

X, =x"
(4)

XI/ =XI/ '

Then it is easy to see that VU) = V(Xo).
Thus, in the Xo, . . . , XII coordinate system, VU) is defined by the vanishing of the

first coordinate. As explained in (3), this is the same as saying that VU) and V(xo) are
projectively equivalent via the coefficient matrix

from (4). This is invertible since ao =j:; O. You should check that A(VU» = V(xo), so
that we have the desired projective equivalence.
More generally, if a ; =j:; °in f , a similar argument shows that VU) is projec -

tively equivalent to V(x;) .We leave it as an exercise to show that V(x;) is projectively
equivalent to V(xo) for all i, and the proposition is proved . 0

In §2, we observed that V(xo) can be regarded as a copy of the projective space IP/-' .
It follo~s from Proposition 2 that all hyperplanes in IP" look like IP/- 1;
Now that we understand hyperplanes, we will study the next simplest case ,

hypersurfaces defined by a homogeneous polynomial of total degree 2.

Definition 3. A variety V = VU) C IP/ . where f is a nonzero homogeneous
polynomial of total degree 2, is called a quadric hypersurface, or more simply, a
quadric.

The simplest examples of quadrics come from analytic geometry. Recall that a conic
section in IR2 is defined by an equation of the form

ax 2 + bxy + cl + dx + ey + f = O.

To get the projective closure in jp2(IR) , we homogenize with respect to z to get

ax 2 + bxy + cl + dx : + ey : + f Z2 = 0,

which is homogeneous of total degree 2. For this reason, quadric s in jp2 are called
conics.
We can classify quadrics up to projective equivalence as follows .
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Theorem 4 (Normal Form for Quadrics). Let f = L;'.j=o a.jx.x, E k[xo, .. . , XII]
be a nonzero homogeneous polynomial of total degree 2, and assume that k is afield
not ofcharacteristic 2. Then V(f) is projectively equivalent to a quadric defined by an
equation ofthe form

2 2 2 0coxo + CIX, + .. . + CIIXII = ,

where co, ... , CII are elements ofk, not all zero.

Proof. Our strategy will be to find a change of coordinates Xi = L~=o bijxj such that
f has the form

coX5 + c,X; + .. .+ CIIX~,

As in Proposition 2, this will give the desired projective equivalence. Our proof will be
an elementary application of completing the square .
We will use induction on the number of variables. For one variable, the theorem is

trivial since aoox~ is the only homogeneous polynomial of total degree 2. Now assume
that the theorem is true when there are n variables.
Given f = L;'.j=o aijXiXj, we first claim that by a change of coordinates, we can

assume aoo ;;6 O. To see this, first suppose that aoo = 0 and aj j ;;6 0 for some
I ~ j ~ n. In this case, we set

(5) Xo=Xj,X j=xo, and Xi=Xi for i;;60,j.

Then the coefficient of X~ in the expansion of f in terms of Xo, .. . , XII is nonzero.
On the other hand, if all au = 0, then since f ;;6 0, we must have aij ;;6 0 for some
i ;;6 j .Making a change of variables as in (5), we may assume that aOI ;;6 O. Now set

(6) Xo = Xo,XI = XI - Xo, and Xi = Xi for i ::: 2.
We leave it as an easy exercise to show that in terms of Xo, . .. , XII' the polynomial f
has the form L 7.j=o Cij XiX j where Coo = aOI ;;6 O. This establishes the claim.
Now suppose that f = L;'.j=o a.jx.x , where aoo ;;6 O. Note that

( ")2 II II'" aiO 2 '" '" aiOajOaooXo + L...- -Xi = aooxo + L...-aiOXOXi + L...- --XiXj .
aoo i=1 2 i=1 i .j=1 4aoo

Since the characteristic of k is not 2, we know that 2 = I + I ;;6 0 and, thus, division
by 2 is possible in k. Now we introduce new coordinates Xo, . .. , XII' where

I II aiO
Xo = Xo + - L - Xi and Xi = Xi for i::: 1.

aoo i=1 2

Writing f in terms of Xo, . . . , XII' all of the terms XOXi cancel for I ~ i ~ nand,
hence, we get a sum of the form

II
aooX5 + L dijXiXj .

i.j=1

The sum L;'.j=1 dijXiX j involves the n variables XI, ... , XII' so that by our in-
ductive assumption, we can find a change of coordinates (only involving XI, ... , XII)
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which transforms 'L,;'.j=I dij XiXj into elXr + .. .+ ellX~. We can regard this as a co-
ordinate change for Xo, X I , . . . , X" which leaves Xo fixed. Then we have a coordinate
change that transforms aooX~ + 'L,;'.j=1 dijXiXj into the desired form . This completes
the proof of the theorem . 0

In the normal form cox6 + .. .+ c"x; given by Theorem 4, some of the coefficients
c, may be zero. By relabeling coordinates, we may assume that c, i= 0 if 0 .::: i .::: p
and c, = 0 for i > p. Then the quadric is projectively equivalent to one given by the
equation

(8) 2 2 0coxo + ... + cpxp = , CO, •• • , c p nonzero .

There is a special name for the number of nonzero coefficients .

Definition S. Let V C IP" be a quadric hypersurface.
(i) [/V is defined by an equation ofthe form (8), then V has rank p + 1.
(ii) More generally, if V' is an arbitrary quadric. then V has rank p + 1 if V is

projectively equivalent to a quadric defined by an equation ofthe form (8).

For example, suppose we use homogeneous coordinates (x, y, z) in IP2(IR). Then
the three conics defined by

x 2 + y2 _ Z2 = 0, x 2 - Z2 = 0, x 2 = 0

have ranks 3,2 and 1, respectively . The first conic is the projective version of the circle,
whereas the second is the union of two projective lines V(x - z) U V(x + z), and the
third is the projective line Vex), which we regard as a degenerate conic of multiplicity
two. (In genera l, we can regard any rank 1 quadric as a hyperplane of multiplicity two.)
In the second part of Definition 5, we need to show that the rank is well-defined.

Given a quadric V, this means showing that for all projectively equivalent quadrics
defined by an equation of the form (8), the number of nonzero coefficients is always the
same. We will prove this by computing the rank directly from the defining polynomial
/ = .'L,;'.j=OaijXiXj ofV.
A first observation is that we can assume aij = aji for all i, j . This follows by

setting bij = (aij + aji) /2 (remember that k has characteristic different from 2).
An easy computation shows that / = 'L,;'.j=o bijx.x], and our claim follows since
bij = bji.
A second observat ion is that we can use matrix multiplication to represent f . The

coefficients of / form a (n + 1) x (n+ I) matrix Q = (aij) ,which we will assume to be
symmetric by our first observation. Let x be the column vector with entries Xo , .. . ,X".
We leave it as an exercise to show

lex) = x' Qx,

where x' is the transpose of x.
We can compute the rank ofV(f) in terms of Q as follows.

Proposition 6. Let / = Xl Qx. where Q is a (n + 1) x (n + I) symmetric matrix.
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(i) Given an element A E GL(n + 1, k) , let B = A -I . Then

A(V(f)) = V(g),

where g(x) = x' B' QBx.
(ii) The rank ofthe quadric hypersurface V(f) equals the rank ofthe matrix Q.

Proof. To prove (i), we note from (2) that A(V(f)) = V(g), where g = foB. We
compute g as follows:

g(x) = f(Bx) = (Bx)' Q(Bx) = x' B' Q Bx,

where we have used the fact that (UV)' = V' U' for all matrices U, V such that UV
is defined. This completes the proof of (i) .
To prove (ii), first note that Q and B' QB have the same rank. This follows since

multiplying a matrix on the right or left by an invertible matrix does not change the
rank [see Theorem 4.12 from FINKBEINER (1978)].
Now suppose we have used Theorem 4 to find a matrix A E GL(n + I, k) such that

g = cox~ + .. .+ cpx; with co, .. . , cp nonzero. The matrix of g is a diagonal matrix
with co, .. . , cp on the main diagonal. If we combine this with part (a) , we see that

Co

B'QB = o

o
where B = A -I. The rank of a matrix is the maximum number of linearly independent
columns and it follows that B' QB has rank p + 1.The above observation then implies
that Q also has rank p + I , as desired. 0

When k is an algebraically closed field (such as k = <C), Theorem 4 and Proposition 6
show that quadrics are completely classified by the ir rank.

Proposition 7. Ifk is algebraically closed (and not ofcharacteristic 2), then a quadric
hypersurface of rank p + 1 is projectively equivalent to the quadric defined by the
equation

p

I>; = o.
;=0

In particular, two quadrics are projectively equivalent if and only if they have the same
rank.

Proof. By Theorem 4, we can assume that we have a quadric defined by a polynomial
of the form cox~ + ... + cpX; = 0, where p + 1 is the rank. Since k is algebraically
closed, the equation x 2 - c, = 0 has a root in k. Pick a root and call it .jC;. Note that
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..;c; i= 0 since c, is nonzero. Then set

Xi = .,jCiXi, 0 ~ i ~ p,

Xi = Xi, P < i ~ n.
This gives the desired form and it follows that quadrics of the same rank are projec-
tively equivalent. To prove the converse . suppose that V(n and V(g) are projectively
equivalent. By Proposition 6. we can assume that f and g have matrices Q and B' QB,
respectively. where B is invertible. As noted in the proof of Proposition 5. QandB'QB
have the same rank . which implies the same for the quadrics V(f) and V(g) . 0

Over the real numbers. the rank is not the only invariant of a quadric hypersurface.
For example. in ]p2(lR) , the conics VI = V(x2 + y2 + Z2) and V2 = V(x 2 + y 2 - Z2)
have rank 3 but cannot be projectively equivalent since VI is empty, yet V2 is not. In
the exercises, you will show given any quadric V(f) with coefficients in JR. there are
integers r ~ -I and s ~ 0 with 0 ~ r + s < n such that V(f) is projectively
equivalent over JR to a quadric of the form

2 2 2 2 0Xo + ... + xr - xr+1 - . •• - xr+s = .

(The case r = -I corresponds to when all of the signs are negative .)
We are most interested in quadrics of maximal rank in IP" .

Definition 8. A quadric hypersurface in ]p" is nonsingular if it has rank n + 1.

A nonsingular quadric is defined by an equation f = Xl Qx = 0 where Q has rank
n + 1.Since Q is an (n + I) x (n + I) matrix . this is equivalent to Q being invertible .
An immediate consequence of Proposition 7' is the following .

Corollary 9. Let k be an algebraically closed field. Then all nonsingular quadrics in
]p" are projectively equivalent.

In the exercises. you will show that a quadric in lP" of rank p + I can be represented
by a Cartesian product V x lP,,-p. where V is a nonsingular quadric in ]pp+l. Thus.
we can understand all quadrics once we know the nonsingular ones .
For the remainder of the section. we will discuss some interesting properties of

nonsingular quadrics in ]p2 , ]p3. and ]ps . For the case of lP2• consider the mapping
F : ]pI --* ]p2 defined by

F(u , v) = (u2 • uv. v2 ) ,

where (u. v) are homogeneous coordinates on ]pl. Using elimination theory, it is easy
to see that the image of F is contained in the nonsingular conic V(XOX2 - xr) . In fact,
the map F : ]pI --* V(XOX2 - xr) is a bijection (see Exercise II), so that this conic
looks like a copy of ]pl . When k is algebraically closed. it follows that all nonsingular
conics in ]p2 look like ]pl .

When we move to quadrics in ]p3 . the situation is more interesting. Consider the
mapping
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which takes a point (xo, XI , Yo, YI) E ]pI x ]pI to the point (xoYo, XOYI . XIYO. XIYI) E
]p3. This map is called a Segre map and its properties were studied in Exercise 14 of
§4. For us. the important fact is that the image of F is a nonsingular quadric.

Proposition 10. The Segremap a : ]pI x ]pI ~ ]p3 is one-to -one and its image is
the nonsingular quadric V(ZOZ3 - ZIZZ).

Proof. We will use (zo. ZI. Zz. Z3) as homogeneous coordinates on]p3 . Ifwe eliminate
Xo,XI. Yo , YI from the equations

XoYo = Zoo

XOYI = ZI .

XIYO = Zz.

XIYI = Z3 ,

then it follows easily that

(9)

To prove equality, suppose that (wo. WI, wz. W3) E V(ZOZ3 - ZIZZ)' If Wo =1= O. then
(wo, Wz. WOo WI) E ]pI x ]pI and

F(wo, Wz, Wo, WI) = (w5. WOWI. WOWz. WI wz) ·

However. since WOW3 - WIWz = O. we can write this as

Ftui« , Wz. WOo WI) = (w5. WOWI. WOWz. WOW3) = (wo, WI. Wz , W3)·

When a different coordinate is nonzero. the proof is similar and it follows that (9) is an
equality. The above argument can be adapted to show that F is one-to-one (we leave
the details as an exercise) and it is also easy to see that V(ZOZ3 - ZIZZ) is nonsingular.
This proves the proposition. 0

Proposition 10 has some nice consequences concerning lines on the quadric surface
V (ZOZ3 - ZIzz) C ]p3. But before we can discuss this . we need to learn how to describe
projective lines in ]pl.
Two points p =1= q in ]p3 give linearly independent vectors p = (ao. al. az. a3) and

q = (bo• b l , bz• b3) in k4 • Now consider the map F : ]pI ~ ]p3 given by

(10) F(u . v) = (aou - bov. alu - bi», azu - b-», a3u - b3v).

Since p and q are linearly independent. aou - bov• . . . • asu - b3V cannot van ish
simultaneously. so that F is defined on all of ]pI . In Exercise 13, you will show that the
image of F is a variety L C ]p3 defined by linear equations. We call L the projective
line (or more simply. the line) determined by p and q. Note that L contains both p and
q . In the exercises. you will show that all lines in ]p3 are projectively equivalent and
that they can be regarded as copies of ]pI sitting inside ]p3.
Using the Segre map a. we can identify the quadric V = V(ZOZ3 - ZIZZ) C ]p3 with

]pI x ]pl. If we fix b = (bo• bI> E ]pl. the image in V of ]pI x {b} under a consists of
the points (ubo, Ubi , ub«, vbI> as (u, v) ranges over P". By (10) . this is the projective
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line through the points (bo, b-, 0. 0.) and (0,0. boo bi), Hence, b E lP' determines a
line Lb lying on the quadric V. Ifb =I b' , one can easily show that Lb does not intersect
Lb' and that every point on V lies on a unique such line. Thus . V is swept out by the
family {L b : b E lP'} of nonintersecting lines . Such a surface is called a ruLed surface.
In the exercises, you will show that {a ({a) x lP') : a E lP'} is a second family of lines
that sweeps out V . If we look at V in the affine space where 20 = I, then V is defined
by 23 = 2, 22, and we get the following graph :

The two families of lines on V are clearly visible in the above picture . Over an al-
gebraically closed field, Corollary 9 implies that all nonsingular quadrics in IP3 look
like this (up to project ive equivalence). Over the real numbers. however, there are more
possibilit ies.
For our final example, we will show that the problem of describing lines in IP3 leads

to an interesting quadric in lPs. To motivate what follows , let us first recall the situation
of lines in lP2 • Here, a line L C IP2 is defined by a single equation Aoxo+ A ,x, +
A2X2 = 0. In Exercise II of §I, we showed that (Ao, A I . A2) can be regarded as the
"homogeneous coordinates" of L and that the set of all lines forms the dual projective
space lP2v •
It makes sense to ask the same questions for IP3 . In particular, can we find "ho-

mogeneous coordinates" for lines in IP3? We saw earlier that a line L C lP3 can be
projectively parametrized using two points p , q E L. This is a good start, but there
are infinitely many such pairs on L. How do we get something unique out of this? The
idea is the following . Suppose that p = (ao. a" a2. a3) and q = (bo, b, b2• b3) in k4.
Then consider the 2 x 4 matrix whose rows are p and q :

We will create coordinates for L using the determinants of 2 x 2 submatrices of n.
If we number the columns of n using 0, 1. 2, 3, then the determinant formed using
columns i and j will be denoted Wi j ' We can assume °::: i < j ::: 3. and we get
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the six determinants

(11)

WOl = aob, - albo,

woz = aobz - azbo,

w03 = aob3 - a3bo,

wlZ = a ,bz - azb"

WI3 = a.b, - a-b «,
WZ3 = azb3 - a3bz.

We will encode these in 6-tuple.

w(p , q) = (WOI , Woz , W03 , W12, WI3, WZ3) E k6.

The Wij are called the Plucker coordinates of the line L . A first observation is that
any line has at least one nonzero Plucker coordinate. To see why, note that n has row
rank 2 since p and q are linearly independent. Hence , the column rank is also 2, so
that there must be two linearly independent columns. These columns give a nonzero
Plucker coordinate.
To see how the Plucker coordinates depend on the chosen points p, q E L, suppose

that we pick a different pair p', q' E L. By (10), we see that in terms of homogeneous
coordinates, L can be described as the set

L = {up - vq : (u, u) E IPI } .

In particular, we can write

p' = up - uq ,

q ' = sq - tq

for distinct points (u , u), (s, t) E IPI. We leave it as an exercise to show that

w(p' , q') = w(up - uq , sp - tq) = (us - ut)w(p, q)

in k6• Further, it is easy to see that us - ut ::1= 0 since (u , u) ::1= (s , t)in IPI . This
shows that w(p, q) gives us a point in IPs which depends only on L . Hence, a line L
determines a weII-defined point w(L) E IPs.
As we vary Lover all lines in IP3, the Plucker coordinates w(L) will describe a

certain subset of IPs. By eliminating the aj's and bi's from (11), it is easy to see that
WOlW23 - W02W13 + W03WIZ = 0 for all sets of Plucker coordinates. If we let Zjj ,
o ~ i < j ~ 3, be homogeneous coordinates on IPs, it foIlows that the points w(L)
all lie in the nonsingular quadric V (ZOIZZ3 - ZOzZ 13+ Z03ZIZ) C IPs. Let us prove that
this quadric is exactly the set of lines in IP3.

Theorem 11. The map

{lines in IP3}~ V(ZOIZZ3 - ZOZZI3 + Z03ZIZ)

which sendsa line L C 1P3 to itsPliickercoordinatesw(L) E V(ZOJ ZZ3 - ZOZZI3 + Z03ZJZ)
is a bijection.
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Proof. The strategy of the proof is to show that a line L C ]p3 can be reconstructed from
its Plucker coordinates. Given two points p = (ao, ai, a2, a3) and q = (bo, b l , b2, b3)
on L, it is easy to check that we get the following four vectors in k4 :

bop - acq = (a, -WOI , -W02, -WOJ),

b, p - alq = (WOI, 0, -W12, -WI3) ,

b2P - a2q = (W02, WI2 , 0, -W23),
b3P - avq = (W03, WI3 , w23 , 0).

It may happen that some of these vectors are 0, but whenever they are nonzero, it follows
from (10) that they give points of L.
To prove that w is one-to-one, suppose that we have lines Land L' such thatw(L) =

Aw(L') for some nonzero A. In terms ofPliicker coordinates, this means that Wij = AW;j
for all a ~ i < j ~ 3. We know that some Plucker coordinate of L is nonzero, and by
permuting the coordinates in ]p3, we can assume WOI =1= O. Then (12) implies that ]p3,
the points

P = (a, -W~I' -W~2' -W~3) = (a, -AWOl, -Awo2, - Aw o3)

= (a, -WOI, -W02, -wOJ) ,

Q = (W~I' 0, -W;2' -W;3) = (AWOl, 0, -Aw12, -AwI3)
= (wO!' 0, -W12 , -WI3)

lie on both L and L'. Since there is a unique line through two points in ]p3 (see
Exercise 14), it follows that L = L' .This proves that our map is one-to-one.
To see that w is onto, pick a point

(WOI , W02, W03, WI2, W13, W23) E V(ZOIZ23 - Z02Z13 + Z03Z12) ·

By changing coordinates in ]p3, we can assume WOI =I O. Then the first two vectors in
(12) are nonzero and, hence, determine a line L C ]p3. Using the definition of w(L)
and the relation WOI W23 - W02WI3 + W03WI2 = 0, it is straightforward to·show that
the wij are the Plucker coordinates of L (see Exercise 16 for the details) . This shows
that w is onto and completes the proof of the theorem. 0

A nice consequence of Theorem 11 is that the set of lines in ]p3 can be given the
structure of a projective variety. As we observed at the end of Chapter 7, an important
idea in algebraic geometry is that any set of geometrically interesting objects should
form a variety in some natural way.
Theorem 11 can be generalized in many ways. One can study lines in ]P", and it

is even possible to define Pliicker coordinates for linear varieties in ]p" of arbitrary
dimension. This leads to the study of what are called Grassmannians. Using Plucker
coordinates, a Grassmannian can be given the structure of a projective variety, although
there is usually more than one defining equation. See Exercise 17 for the case of lines
in ]p4.
We can also think of Theorem 11 from an affine point of view. We already know that

there is a natural bijection

(lines through the origin in k4 } ~ (points in ]p3},
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and in the exercises, you will describe a bijection

{planes through the orig in in k4} ;;:= {lines in IP3}.

Thus , Theorem II shows that planes through the origin in k4 have the structure of a
quadric hypersurface in IPs. In the exercises, you will see that this has a surprising
connection with reduced row echelon matrices. More generally, the Grassmannians
mentioned in the previous paragraph can be described in terms of subspaces of a certain
dimension in affine space k"+1•
This completes our discuss ion of quadric hypersurfaces, but by no means exhausts the

subject. The classic books by ROTH and SEMPLE (1949) and HODGE and PEOOE (1968)
contain a wealth of material on quadric hypersurfaces (and many other interesting
projective varieties as well) .

EXERCISES FOR §6

I . The set GL(n + I , k) is closed under inverses and matrix multipl ication and is a group in the
terminology of Appendix A. In the text, we observed that A E GL(n + I , k) induces a pro-
jective linear transformation A : 1P" -+ 1P" . To describe the set of all such transformations,
we define a relation on GL(n + I, k) by

A' - A <==> A' = AA for some A # O.

a. Prove that - is an equiva lence relat ion. The set of equivalence classes for ~ is denoted
PGL(n + I, k) .

b. Show that if A - A'andB - B' ,thenAB - A'B'.Hence,thematrixproductoperation
is well-defined on the equivalence classes for - and , thus. PGL(n + I, k) has the structure
of a group. We call PGL(n + I . k) the projective linear group.

c. Show that two matrices A, A' E GL(n + I, k) define the same mapping 1P" -4 1P" if
and only if A' - A. It follows that we can regard PGL(n + I, k) as a set of invertible
transformations on 1P" .

2. Prove equa tion (2) in the proof of Proposition I.
3. Prove that project ive equivalence is an equivalence rela tion on the set of projective varieties

in 1P".
4. Prove that the hyperplanes V(X i) and V(xo) are projectively equivalent. Hint: See (5).
5. This exercise is concerned with the proof of Theorem 4.

a. If ! = :L::j=o aijx;xj has aO\ # 0 and a., = 0 for all i , prove that the change of
coordinates (6) transforms! into :L~j=o cijX;Xj where Coo = aO\ .

b. If! = :L:"1=0 aijxj,xj has aoo # 0, verify that the change of coordinates (7) transforms
! mtoaooXo+ :Li,j= \ dijX;X j .

6. If! = :L:: j=o aijX jXj , let Q be the (n + I) x (n + I) matrix (aij)'
a. Show that !(x) = x' Q(x) .
b. Suppose that k has characteristic 2 (e.g., k = IF2) , and let! = XOX \. Show that there is
no symmetric 2 x 2 matrix Q with entries in k such that !(x) = x' Qx .

7. Use the proofs of Theorem 4 and Propos ition 7 to write each of the following as a sum of
squares. Assume that k = a::.
a. XoX \ + XOX2 + xi-
b. xJ + 4XIXl + 2X2Xl + xi .
c. XoX\ + X2X3 - X.Xs.
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8. Given a nonzero polynomial f = L;'.j=o aijx;xj with coefficients in JR, show that there are
integers r ?: -I and s ?: 0 with 0 ::: r + s ::: n such that f can be brought to the form

by a su itable coordinate change with real coefficients. One can prove that the integers r and
s are uniquely determined by f .

9. Let f = L ;'.j =1aijx jx j E k[xo • . . . , x,, ) be nonzero. In the text. we observed that V(f) is
a nons ingular quadric if and only if det (a ij ) i- O. We say that V(f) is singular if it is not
nonsingular. In this exercise, we will explore a nice way to characterize to singular quadrics.
a. Show that f is singular if and only if there exists a point a E !P" with homogeneous

coordinates (ao, . .. , a,,) such that

af (a) = ... = ~ (a) = o.
axo ax"

b. If a E !P" has the property described in part a, prove that a E V(f) . In general. a point
a of a hypersurface V(f) (quadric or of higher degree) is called a singular point if V(f)
provided that all of the partial derivatives of f vanish at a. Hint: Use Exercise 17of §2.

10. Let V(f) C !P" be a quadric of rank p + I and assume that p < n. Prove that there is a
bijection V(f) :;::: V(g) X !p" +P, where V(g) C !pI' is a nonsingular quadric . Hint: You can
assume that f = cox~ + ...+ cpx ;. where Co, . . . , cp are nonzero.

II . We will study the map F : !pI --+ !p z defined by F(u, v) = (u2 , uv, vZ) .
a. Use elimination theory to prove that the image of F lies in V (xoxz - xf) .
b. Prove that F : !p I --+ V(XOX2 - x f) is a bijection. Hin t: Adapt the methods used in the

proof of Proposition 10.
12. This exercise will study the Segre map a : !pI x !p I -+ !p J defined in the text.

a. Use elimination theory to prove that the image of a lies in the quadric V(ZOZ2 - z\ zz).
b. Use the hint given in the text to prove that a is one-to-one.

13. In th is exercise and the next, we will work out some bas ic facts about lines in !P". We start
with two dist inct points p , q E !p ". which we will think of as linearly independent vectors
in k"+I.
a . We can define a map F : !pI --+ !P" by Flu , v) = up - vq . Show that this map is

defined on all of !pI and is one -to-one.
b. Let e= aoxo + . . . + a"x" be a linear homogeneous polynomial. Show that evan ishes

on the image of F if and only if p , q E V(i) .
c . Our goal is to show that the image of F is a variety defined by linear equations. Let n be

the 2 x (n + I) matr ix whose rows are p and q . Note that n has rank 2. If we multiply
column vectors in k"+1 by n,we get a linear map n : k"+1 --+ k2 •Use results from linear
algebra to show that the kernel (or nullspace) of this linear map has dimension n - I. Pick
a basis VI , •• . , V,,_I of the kernel, and let i ; be the linear polynomial whose coefficients
are the entries of Vj. Then prove that the image of F is V(i J, . . . , e,,_I)' Hint: Study the
subspace of k"+' defined by the equations il = ... = i"_1 = O.

14. The exercise will discuss some elementary properties of lines in !P".
a. Given points p i- q in !P", prove that there is a unique line through p and q.
b. If L is a line in !P" and V i :;::: k" is the affine space where Xi = I , then show that L n Vi

is a line in k" in the usual sense.
c . Show that all line s in !P" are projectively equ ivalent. Hint: In part c of Exercise 13, you

showed that a line L can be written L = V(il , . . . , i,,-d.Show that you can find i" and
i,,+1so that Xo = i i, . .. • X" = i "+1 is a change of coordinates. What does L look like
in the new coordinate system?

15. Let a : !p I x !p I --+ !p J be the Segre map.
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a. Show that L: = u ({a } x lPl) is a line in lP3 •
b. Show that every point of V (ZOZ3 - ZIZZ) lies on a unique line L~. Th is proves that the

famil y of lines {L:, : a E lP l } sweeps out the quadric .
16. Th is exercise will dea l with the proof of The orem II .

a. Prove that w(up - vq, sp - tq ) = (vs - ut )w(p , q ), Hin t: if (~) is the 2 x 4 ma trix
with rows p and q , show that

( up - vq ) = ( u -v)(p) .
sp - tq s - t q

b. Apply el imination theory to (11) to show that Plucker coo rdinates satisfy the relat ion
WOI WZ3 - WOZW I3 + W03WI2 = O.

c. Complete the proof of Theorem 10 by showing that the map w is onto.
17. In this exercise, we will study Plucker coordinates for line s in lP4 •

a . Let L C lP4 be a line . Us ing the homogeneous coord inates of two points p, q E L ,
define Plucker coordinates and show that we get a point w(L) E lP9 that depends only
on L.

b. Find the relations between the Plucker coordinates and use these to find a variety V C lP4
such that weLl E V for all lines L.

c. Show that the map sending a line L C lP4 to weL l E V is a bijection.
18. Show that there is a one-to-one correspondence between lines in lP3 and planes through the

or igin in r ,Thi s explains why a line in lPJ is different from a line in k J or e.
19. There is a nice connect ion between line s in lP3 and 2 x 4 reduced row echel on matrices of

rank 2. Let V = V (ZOI ZZ3 - Z02ZI3 + Z03ZI2) be the quadric of Theorem II.
a . Show that there is a one-to-one correspondence between reduced row echel on matrices

of the form

(
l O a b)
Ole d

and points in the affine portion V n Val, where VOl is the affine space in lP5 defined by
ZOI = I. Hin t: The rows of the above matrix determ ine a line in lP5•What are its Plucker
coordinates?

b. The matrices given in part a do not exh aust all poss ible 2 x 4 reduced row echelon matrices
of rank 2. For example, we also have the matrices

( I a 0 b)
001 c .

Show that there is a one-to-one correspondence between these matrices and po ints of
V n V(zo)) n Voz,

c. Show that there are four remaining types of 2 x 4 reduced row echelon matrices of rank
2 and prove that each of these is in a one -to-one correspondence with a certain portion
of V. Hin t: The columns containing the leading I's will correspond to a certain Plucker
coordinate be ing I .

d. Expl ain directl y (without using V or Plucker coordinate s) why 2 x 4 reduced row echelon
matrices of rank 2 should correspond uniquely to lines in lP3. Hint: See Exerc ise 18.

§7 Bezout's Theorem

This section will explore what happens when two curves intersect in the plane. We are
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particularly interested in the number of points of intersection. The following examples
illustrate why the answer is especial1y nice when we work with curves in IP2(<c), the
projective plane over the complex numbers. We will also see that we need to define the
multiplicity of a point of intersection. Fortunately, the resultants we learned about in
Chapter 3 will make this relatively easy to do.

Example 1. First consider the intersection of a parabola and an ellipse. To allow for
explicit calculations, suppose the parabola is y = x 2 and the ellipse is x2+4(y - A)2 =
4, where Ais a parameter we can vary. For example, when A = 2 or 0, we get the pictures :

A.=2

x

A.=o

x

Over IR,we get different numbers of intersections, and it is clear that there are values of A
for which there are no points of intersection (see Exercise 1). What is more interesting
is that over <C, we have four points of intersection in both of the above cases. For
example, when A = 0, we can eliminate x from y = x 2 and x 2 + 4y2 = 4 to obtain
y + 4y2 = 4, which has roots

y=

and the corresponding values of x are

-I ±.J65
8

x = ±j -1 ~ .J65 .
This gives four points of intersection, two real and two complex (since -1 -.J65 < 0).
You can also check that when A = 2, working over <C gives no new solutions beyond
the four we see in the above picture (see Exercise 1).
Hence, the number of intersections seems to be more predictable when we work over

the complex numbers. As confirmation, you can check that in the cases where there are
no points of intersection over IR, we still get four points over <C (see Exercise 1).
However, even over <C, some unexpected things can happen . For example, suppose

we intersect the parabola with the ellipse where A = I:
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x

1..=1

Here, we see only three points of intersection, and this remains true over <C. But the
origin is clearly a "special" type of intersection since the two curves are tangent at
this point. As we will see later, this intersection has multiplicity two, while the other
two intersections have multiplicity one. If we add up the multiplicities of the points of
intersection, we still get four.

Example 2. Now consider the intersection of our parabola y = x 2 with a line L. It is
easy to see that in most cases, this leads to two points of intersection over <C, provided
multiplicities are counted properly (see Exercise 2). However, if we intersect with a
verlicalline, then we get the following picture:

There is just one point of intersection, and since multiplicities seem to involve tangency,
it should be an intersection of multiplicity one. Yet we want the answer to be two, since
this is what we get in the other cases . Where is the other point of intersection?
If we change our point of view and work in the projective plane ]p2(<c), the above

question is easy to answer: the missing point is "at infinity."To see why, let z be the third
variable. Then we homogenize y = x 2 to get the projective equation yz = x 2 , and a
vertical line x = c gives the projective line x = cz: Eliminating x, we get yz = C2Z2,

which is easily solved to obtain (x, y, z) = (c , c2 , 1) or (0, I, 0) (rememberthatthese
are homogeneous coordinates). The first lies in the affine part (where z = I) and is
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the point we see in the above picture , while the second is on the line at infinity (where
z = 0).

Example 3. In IP2(lC), cons ider the two curves C = V(x 2 - (2) and D =
V(x2y - xz2 - xyz + (3). It is easy to check that 0, b , I) E enD for any b E lC,
so that the intersection enD is infinite ! To see how this could have happened, consider
the factorizations

x 2 - Z2 = (x - z)(x + z), x 2y - xz2 - x yz + Z3 = (x - z )(x y - (2) .

Thus , C is a union of two projective lines and D is the union of a line and a conic . In
fact, these are the irreducible components of C and D in the sense §3 (see Proposition 4
below). We now see where the problem occurred: C and D have a common irreducible
component Vex - z), so of course their intersection is infinite.

These examples explain why we want to work in IP2(lC) . Hence, for the rest of
the sect ion, we will use lC and write IP2 instead of IP2(lC) . In this context, a curve is a
projective variety V(f) defined by a nonzero homogeneous polynomial f E lC[x, y , z].
Our examples also indicate that we should pay attention to multiplicities of intersections
and irreducible components of curves. We begin by studying irreducible components.

Proposition 4. Let f E lC[x, y, z] be a nonzero homogeneous polynomial. Then the
irreducible fa ctors of f are also homogeneous. and if we factor f into irreducibles:

f = f t' . . . f ,a"
where fi is not a constant multiple ofh for i # j , then

V(f) r: V(fd U . . . U V(f,)

is the minimal decomposition of V(f) into irreducible components in 1P2. Furthermore,

I(V(f» = ..j(j) = (f, . . · f , )·

Proof. First, suppose that f factors as f = gh for some polynomials g , h E
lC[x, y , zl. We claim that g and h must be homogeneous since f is. To prove this,
write g = gill + ... + go, where gi is homogeneous of total degree i and gill # O.
Similarly let h = h ll + ... + ho. Then

f = gh = (g ill + ... + go)(h ll + ...+ ho)
= glllhll + terms of lower total degree.

Since f is homogeneous, we must have f = glllhll , and with a little more argument, one
can conclude that g = gill and h = h ll (see Exercise 3). Thus g and h are homogeneous.
From here, it follows easily that the irreducible factors f are also homogeneous.
Now suppose f factors as above. Then V(f) = V(fl) U .. . U V(f,) follows

immediately, and this is the minimal decomposition into irreducible components by
the projective version of Exerci se 9 from Chapter 4, §6. Since C is nonempty (see
Exercise 6), the assertion about I(V(f» follows from the Projective Nullstellensatz
and Proposition 9 of Chapter 4, §2. 0
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A consequence of Proposition 4 is that every curve C C IP2 has a "best" defining
equation. If C - V(n for some homogeneous polynomial f, then the proposition
implies that I(C) = (fl ... f s), where fl' . . . , f s are distinct irreducible factors of f.
Thus, any other polynomial defining C is a multiple of ft . .. [«, so that fl .. . f s = °
is the defining equation of smallest total degree. In the language of Chapter 4, §2,
fl . . . f s is a reduced (or square -free) polynomial. Hence, we call fl ... j , =°the
reduced equation of C. This equation is unique up to multiplication by a nonzero
constant.
When we consider the intersection of two curves C and D in IP2, we will assume

that C and D have no common irreducible components. This means that their defining
polynomials have no common factors . Our goal is to relate the number of points in
enD to the degrees of their reduced equations. The following property of resultants
will play an important role in our study of this problem.

Lemma S. Let f, g E <C[x , y , z] be homogeneous oftotal degreem, n respectively. If
f(O , 0, I) and g(O,0, 1) are nonzero, then the resultant Res(f, g, z) is homogeneous
in x and y oftotal degree mn.

Proof. First write f and g as polynomials in z:

f = aozm + + am.
g = boz" + + b",

and observe that, since f is homogeneous of total degree m, each a; E <C[x, y] must
be homogeneous of degree i . Furthermore, f (0, 0, I) ::J:. °implies that ao is a nonzero
constant. Similarly, b, is homogeneous of degree i and bo ::J:. 0.
By Chapter 3, §5, the resultant is given by the (m + n) x (m + n)-detenninant

bo

Res(f, g. z) = det . alii ao b; bo

bll

n columns m columns

where the empty spaces are filled by zeros. To show that Res(f, g, z) is homogeneous
of degree mn , let Ci j denote the ijth entry of the matrix . From the pattern of the above
matrix, you can check that the nonzero entries are

if j s n
if j > n.

Thus , a nonzero Cij is homogeneous of total degree i - j (if j .::: n) or n + i - j (if
j > n).
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By Proposition 2 of Appendix A, §3, the determinant giving Res(j, g, z) is a sum
of products

nr+n

± fl C;<1(i),
;=1

where a is a permutation of {l, .. . , m + n}. We can assume that each C;<1(i) in the
product is nonzero. If we write the product as

± n Ci<1(i) n Ci<1(i) ,
<1 (i)SII <1(i»11

then, by the above paragraph, this product is a homogeneous polynomial of degree

L U - aU» + L (n + i-aU».
<1 (i)S1' <1(;»11

Since a is a permutation of {l, . .. , m + n}, the first sum has n terms and the second
has m, and all i's between 1 and m + n appear exactly once. Thus, we can rearrange
the sum to obtain

m+1l m+n
mn + Li - LaU) = mn,

;=1 ;=1

which proves that Res(j, g; z) is a sum of homogeneous polynomials of degree mn.o

This lemma shows that the resultant Res(j, g, z) is homogeneous in x and y . In
general, homogeneous polynomials in two variables have an especially simple structure.

Lemma 6. Let h E .<C [x , y] be a nonzero homogeneous polynomial. Then h can be
written in the form

h = C(SIX - rly)nI, ... (SIX - r,y)nI, ,

where C i= 0 in <C and (rl' Sl), ... , (rl, SI) are distinct points ofIP I • Furthermore,

V(h) = {(rl,sd, .. . ,(rl,sl)} C IPI .

Proof. This follows by observing that the polynomial h (x, 1) E <C[x] is a product of
linear factors since <C is algebraically closed. We leave the details as an exercise . 0

As a first application of these lemmas, we show how to bound the number of points
in the intersection of two curves using the degrees of their reduced equations.

Theorem 7. Let C and D be projective curves in IP2 with no common irreducible com-
ponents.Ifthe degrees ofthe reduced equationsfor C and Dare m and n respectively,
then enD is finite and has at most mn points.

Proof. Suppose that enD has more than mn points. Choose mn + 1 of them, which
we label PI, . .. , PnllI+ I, and for 1 ::: i < j ::: mn + l , let Lij be the line through p,
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and Pi -Then pick a point q E IP2 such that

(I ) q It CUD UULij
;< j

(in Exerci se 6 you will prove carefully that such points exist).
As in §6, a matrix A E OL(3, <C) gives a map A : IP2 _ IP2. It is easy to find an A

such that A(q) = (0,0, 1) (see Exercise 6). If we regard A as giving new coordinates
for IP2 (see (3) in §6), then the point q has coordinates (0, 0, 1) in the new system. We
can thus assume that q = (0,0, 1) in (I).
Now suppose that C = V(f) and D = V (g ), where f and g are reduced of

degrees m and n respectively. Then (I ) implies f (O , 0, 1) =I- 0 since (0,0, 1) It C,
and g (O, 0, I) =I- 0 follows similarly. Thus , by Lemma 5, the resultant Res(f, g , z) is
a homogeneous polynomial of degree mn in x, y. Since f and g have posit ive degree
in z and have no common factors in <C[x , y, zl, Proposit ion 1 of Chapter 3, §6, shows
that Res(f, g , z) is a nonzero.
Ifwe let P i = (U i' Vi, Wi) , then since the result ant is in the ideal generated by f and

g (Proposition 1 of Chapter 3, §6), we have

(2) Res(f, g , Z)(Ui ' Vi) = O.

Note that the line connecting q = (0, 0, 1) to P i = (Ui, Vi, Wi) intersects z = 0 in the
point (Ui, Vi , 0) (see Exercise 6). The picture is as follows:

(0,0,1)

_<l ----_-------......----_- z=°
The map taking a point (u, V , w) E IP2 - {CO, 0, I)} to (u, V, 0) is an example of a
projection from a point to a line. Hence, (2) tells us that Res(f, g , z) vanishes at the
points obtained by projecting the P i E e nD from (0, 0, I) to the line z = O.
By (I), (0, 0, 1) lies on none of the lines connecting P i and Pt- which implies that the

points (Ui, Vi, 0) are distinct for i = 1, . . . , mn + 1. If we regard z = 0 as a copy of IPI
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with homogeneous coordinates x, y, then we get distinct points (Ui' Vi) E IPI , and the
homogeneous polynomial Res(f, g, z) vanishes at allmn+1of them . By Lemma 6, this
is impossible since Res(f, g, z) is nonzero of degree mn, and the theorem follows . 0

Now that we have a criterion for C n D to be finite, the next step is to define an
intersection multiciplity for each point p E C n D. There are a variety of ways this
can be done, but the simplest involves the resultant.
Thus, we define the intersection multiplicity as follows. Let C and D be curves in

1P2 with no common components and reduced equations f = °and g = 0. For each
pair of points p =I: q in C n D, let L pq be the projective line connecting p and q. Pick
a matrix A E OL(3, 0:;) such that in the new coordinate system given by A, we have

(3) (0,0, 1) ¢ CUD U U L pq •
p'!'q ill coo

(Example 9 below shows how such coordinate changes are done.) As in the proof of
Theorem 7, if p = (u, v, w) E C n D, then the resultant Res(f, g, z) vanishes at
(u , u) , so that by Lemma 6, vx - uy is a factor of Res(f, g, z).

Definition 8. Let C and D be curves in 1P2 with no common components and reduced
defining equations f = °and g = 0. Choose coordinatesfor 1P2 so that (3) is satisfied.
Then, given p = (u, u, w) E Cn D, the intersection multiplicity fp(C, D) is defined
to be the exponent ofvx - uy in the factorization ofRes(f, g , z) .

In order for I p(C, D) to be well-defined, we need to make sure that we get that same
answer no matter what coordinate system satisfying (3) we use in Definition 8. For
the moment, we will assume this is true and compute some examples of intersection
multiplicities.

Example 9. Consider the following polynomials in <C[x, y, z]:

f = x 3+ l - 2.xyz,
g = 2.x3 - 4x 2y + 3xi + y3 - 2iz.

These polynomials [adapted from WALKER (1950)] define cubic curves C = V(f) and
D =V(g) in 1P2•To study their intersection, we first compute the resultant with respect
to z:

Res(f, g, z) = -2y(x - y)3(2x + y) .

Since the resultant is in the elimination ideal , points in C n D satisfy either y = 0,
x - y = °or 2x + y = 0, and from here , it is easy to show that C n D consists of the
three points

p = (0,0,1), q = (1 , 1, 1), r = (4/7, -8/7,1)

(see Exercise 7). In particular, this shows that C and D have no common components.
However , the above resultant does not give the correct intersection multiplicities since
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(0, 0, 1) E C (in fact, it's a point of intersection). Hence , we must change coordinates.
Start with a point such as

(0, 1,0) rt CUD U L pq U t.; U Lqr.

and find a coordinate change with A(O, 1,0) = (0,0, 1), say A(x, y, z) = (z, x , y).
Then

(0,0, I) rt A(C) U A(D) U LA(p)A(q) U LA(p)A(r) U LA(q)A(r) .

To find the defining equation of A(C), note that

(u, v, w) E A(C) <==> A -I (u , v, w) E C <==> f(A -I (u, v, w)) = O.

Thus, A(C) is defined by the equation f 0 A-l(x, y , z) = fey, z, x) = 0, and
similarly, A(D) is given by g(y, z. x) = O. Then, by Definition 8, the resultant
Res(f(y, z. x), g(y, z, x), z) gives the multiplicities for A(p) = (1,0,0), A(q)
(1, I, 1) and A(r) = (1,4/7, -8/7). The resultant is

Res(f(y, z, x), g(y, z. x), z) = 8l(x - y)3(4x - 7y) ,

so that in terms of p, q and r , the intersection multiplicities are

i,«: D) = 5, t.«: D) = 3, t,«: D) = 1.

Example 1 (continued). If we let A = 1 in Example 1, we get the curves

x

In this picture, the point (0, 0, I) is the origin, so we again must change coordinates
before (3) can hold. In the exercises, you will use an appropriate coord inate change to
show that the intersection multiplicity at the origin is in fact equal to 2.

Still assuming that the intersection multiplicities in Definition 8 are well-defined, we
can now prove Bezout's Theorem.

Theorem 10 (Bezout's Theorem). Let C and D be curves in IP2 with no common
components, and let m and n be the degrees oftheir reduced defining equations. Then

L i.«: D) = mn,
pecnD
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where [p (C , D) is the intersection multiplicity at p, as defined in Definition 8.

Proof. Let f = °and g = °be the reduced equations of C and D, and assume that
coordinates have been chosen so that (3) holds. Write p E C n D as p = (up, vp, wp)'
Then we claim that

Res(j, s. z) = c TI (vpx - upy)'plC.Dl,
peenD

where c is a nonzero constant. For each p, it is clear that (vpx - upy)'p(c.D> is the exact
power of vpx - uPy dividing the resultant-this follows by the definition of [p(C , D) .
We still need to check that this accounts foral! roots of the resultant. But if (u , v) E !pI
satisfies Res(j, g , z)(u , v) = 0, then Propos ition 3 of Chapter 3, §6, implies that there
is some W E <C such that f and g vanish at (u, v, w). This is because if we write
f and g as in the proof of Lemma 5, ao and bo are nonzero constants by (3). Thus
(u, v, w) E C n D , and our claim is proved.
By Lemma 5, Res(j, g, z) is a nonzero homogeneous polynomial of degree mn .

Then Bezout's Theorem follows by comparing the degree of each side in the above
equation. 0

Example 9 (continued). In Example 9, we had two cubic curves which intersected in
the points (0,0, I) , (I, 1, I) and (4/7, -8/7) of multiplicity 5,3 and 1 respectively.
These add up to 9 = 3 . 3, as desired. If you look back at Example 9, you 'll see
why we needed to change coordinates in order to compute intersection multiplicities.
In the original coordinates, Res(j, g, z) = -2y(x - y)3(2x + y) , which would give
multiplicities I, 3 and 1. Even without computing the correct multiplicities, we know
these can't be right since they don't add up to 9!

Finally, we show that the intersection multiplicities in Definition 8 are well-defined.

Lemma 11. In Definition 8, all coordinate change matrices satisfying (3) give the
same intersection multiplicities t,«: D) for p E C n D.

Proof. Although this result holds over any algebraically closed field, our proof will
use continuity arguments and hence is special to <C. We begin by describing carefully
the coordinate changes we will use. As in Example 9, pick a point

r f/. CUD U U Lpq
p-j.q ill enD

and a matrix A E GL(3,<C)suchthatA(r) = (0,0, 1).Thismeans A- ' (O,O , I) =r,
so that the condition on A is

A-1(0,O,l)f/.CUDU U Lpq.
p-j.q ill enD

Let Ipq = °be the equation of the line L pq» and set

h = f . g . TI Ipq.
p-j.q ill enD
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The condition on A is thus A-I (0, 0, I) f/ V(h) , i.e., h(A -I (0,0, 1) =j: O.
We can formulate this problem without using matrix inverses as follows. Consider

matrices B E M3x3(<C) , where M3x3(<c) is the set of all 3 x 3 matrices with entries in
<C, and define the function H : M3x3(<C) ~ <C by

H(B) = det(B) . h(B(O, 0, I» .

If B = (bij), note that H(B) is a polynomial in the bij ' Since a matrix is invertible if
and only if its determinant is nonzero, we have

H(B) =j: 0 ¢==> B is invertible and h(B(O,O, I» =j: O.

Hence, the coordinate changes we want are given by A = B- 1 for BE M3x3(<C) - V(H) .
Let C n D = {Pi , • .. , Ps}, and for each B E M3x3(<C) - V(H),let B-I(Pi) =

(Ui .B , Vi.B' Wi .B) . Then , by the argument given in Theorem 10, we can write

(4) Res(f 0 B, goB, z) = CB(VI.BX - U I.BYY'I.· • • • (Vs .BX - Us.BY)'''' ··,

where CB =j: O. This means [Pi(C, D) = m.» in the coordinate change given by
A = B-1• Thus, to prove the lemma, we need to show that mi.s takes the same value
for all B E M3x3(<C) - V(H).
To study the exponents mi.e. we consider what happens in general when we have a

factorization

G(X, y) = (ux - uy)m H(x, y)

where G and H are homogeneous and (u, v) =j: (0,0). Here, one calculates that

ai+jG {O ifO=::i+j<m
(5) ax iyj(u ,v)= m!ui(-u) jH(u ,v) ifi+j=m,

(see Exercise 9). In particular, if H(u, v) =j: 0, then (u , v) =j: (0,0) implies that some
mth partial of G doesn 't vanish at (u, v) .
We also need a method for measuring the distance between matrices B, C E

M3x3(<C). If B = (bij ) and C = (cij), then the distance between them is defined
to be

4(B, C) = JL:} j=dbij - cijl2,

where for a complex number z = a + ib , Izi = a2 + b2• A crucial fact is that
any polynomial funct ion F : M3x3(<C) ~ <C is continuous. This means that given
Bo E M3x3(<C) , we can get F(B) arbitrarily close to F(Bo) by taking B sufficiently
close to Bo (as measured by the above distance function). In particular, if F(Bo) =j: 0,
it follows that F(B) =j: 0 for B sufficiently close to Bo.
Now cons ider the exponent m = mi.e; for fixed Bo and i .We claim that mt.s =:: m if

B is sufficiently close to Bo.To see this, first note that (4) and (5) imply that some mth
partial ofRes(f 0 Bo, go Bo, z) is nonzero at (Ui .B,,, Vi.Bn) . Ifwe write out (U i.B, Vi.B) and
this partial derivative of Res(f 0 B, goB, z) explicitly. we get formulas which depend
on the entries of Bin a polynomial manner. Thus, thismth partialofRes(f 0 B, go B, z),
when evaluated at (Ui .B, Vi.B), is a polynomial function in the entries of B. Since it is
nonzero at Bo, the continuity argument from the previous paragraph shows that this mth
partial of Res(f 0 B , goB, z) is nonzero at (Ui.B , Vi.B), once B is sufficiently close to
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Bo . But then, applying (4) and (5) to Res(f 0 B, goB, z), we conclude that mt.s ::: m
[since mi.e > m would imply that all mth partials would vanish at (Ui.B, Vi.B)] .
However , if we sum the inequalities mt .s ::: m = mi.s; for i = I, . . . , s, we obtain

s s

mn = "" m · B < "" m B = mn.L...J l. -'-' 1. 0
i = 1 i=1

This implies that we must have term-by-term equalities, so that mi .e = mi.e; when B
is sufficiently close to Bo.
This proves that the function sending B to mi .e is locally constant, i.e., its value at

a given point is the same as the values at nearby points. In order for us to conclude
that the function is actually constant on all of M3x3(<C) - V(H), we need to prove that
M3x3(<C) - V(H) is path connected.This will be done in Exercise 10, which also gives
a precise definition of path connectedness. Since the Intermediate Value Theorem from
calculus implies that a locally constant function on a path connected set is constant (see
Exercise 10), we conclude thatmi.B takes the same value for all B E M3x3(<C) - V(H).
Thus the intersection multiplicities of Definition 8 are well-defined. 0

The intersection multiplicities [p (C, D) have many propert ies which make them
easier to compute. For example, one can show that [p(C , D) = I if and-only if P is a
nonsingularpointofC and D and the curves have distinct tangent lines at p .A discussion
of the properties of multiplicities can be found in Chapter 3 of KIRWAN (1992) . We
should also point out that using resultants to define multiplicities is unsatisfactory in
the following sense. Namely, an intersection multiplicity [p(C, D) is clearly a local
object-it depends only on the part of the curves C and D near p-while the resultant
is a global object, since it uses the equations for all of C and D. Local methods for
computing multiplicities are available, though they require slightly more sophisticated
mathematics. The local point of view is discussed in Chapter 3 of FULTON(1969) and
Chapter IV of WALKER (1950).
As an application of what we've done so far in this section, we will prove the following

result of Pascal. Suppose we have six distinct points PI, . . . , P6 on an irreducible conic
in jpz. By Bezout 's Theorem, a line meets the conic in at most 2 points (see Exercise 11).
Hence, we get six distinct lines by connecting PI to Pz, pz to P3, .. ., and P6 to PI . If
we label these lines L I , .. . , L6' then we get the following picture :

PI
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We say that lines L\, L4 are opposite, and similarly the pairs L2, Ls and L3, L6 are
opposite. The portions of the lines lying inside the conic form a hexagon, and opposite
lines correspond to opposite sides of the hexagon.
In the above picture, the intersections of the opposite pairs of lines appear to lie on

the same line. The following theorem reveals that this is no accident.

Theorem 12 (Pascal's Mystic Hexagon). Given six points on an irreducible conic,
connected by six lines as above , the points ofintersection ofthe three pairs ofopposite
lines are collinear.

Proof. Let the conic be C. As above, we have six points PI, ... , P6 and three pairs
of opposite lines {L I , L4 }, {L2, Lsl. and {L3, L6}' Now consider the curves C1 =
LI U L2U L) and C2 = L 4 U Ls U L6. These curves are defined by cubic equations, so
that by Bezout's Theorem, the number of points in C1nC2 is 9 (counting multiplicities).
However, note that C1 n C2 contains the six original points PI, . .. , P6 and the three
points of intersection of opposite pairs of lines (you should check this carefully). Thus,
these are all of the points of intersection, and all of the multiplicities are one.
Suppose that C = V(f), CI = V(gl) and C2 = V(g2), where f has total degree 2

and gl and g2 have total degree 3. Now pick a point p E C distinct from PI, . . . , P6.
Thus, gl (p) and g2(P) are nonzero (do you see why?), so that g = g2(P)gl - gl (P)g2
is a cubic polynomial which vanishes at p, PI , . . . , P6. Furthermore, g is nonzero since
otherwise gt would be a multiple of g2 (or vice versa) . Hence, the cubic V(g) meets
the conic C in at least seven points , so that the hypotheses for Bezout's Theorem are
not satisfied. Thus, either g is not reduced or V(g) and C have a common irreducible
component. The first of these can 't occur, since if g weren't reduced, the curve V(g)
would be defined by an equation of at most 2 and V(g) n C would have at most 4
points by Bezout's Theorem. Hence, V(g) and C must have a common irreducible
component. But C is irreducible, which implies that C = V(f) is acomponent of
V (g ). By Proposition 4, it follows that f must divide g.
Hence, we get a factorization g = f . I, where I has total degree I . Since g vanishes

where the opposite lines meet and f doesn 't, it follows that 1vanishes at these points.
Since V(l) is a projective line, the theorem is proved. 0

Bezout's Theorem serves as a nice introduction to the study of curves in ]p2. This
part of algebraic geometry is traditionally called algebraic curves and includes many
interesting topics we have omitted (inflection points, dual curves, elliptic curves , etc.).
Fortunately, there are several excellent texts on this subject. In addition to FULTON
(1969), KIRWAN (1992) and WALKER (1950) already mentioned, we also warmly rec-
ommend CLEMENS (1980) and BRIESKORN and KNORRER (1986) . For students with a
background in complex analysis and topology, we also suggest GRIffiTHS (1989).

EXERCISES FOR §7

1. This exercise is concernedwith the parabolay =: x2 and the ellipsex2 + 4(y - A)2 =: 4
from Example I.
a. Showthat thesecurveshaveempty intersectionoverIRwhenA < - I. Illustrate thecases

A < -I and A =: -I witha picture.
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b. Find the smallest positive real number Ao such that the intersection over JR is empty when
A > Ao. Illustrate the cases A > Ao and A = Ao with a picture.

c. When -I < A < Ao, descr ibe the possible types of intersections that can occur over JR
and illustrate each case with a picture.

d. In the pictures for parts a, b. and c, use the intuitive idea of multiplicity from Example I
to determine which ones represent intersections with multiplicity> I.

e. Without using Bezout's Theorem , explain why over <C, the number of intersections
(counted with multiplicity) adds up to 4 when A is real. Hint: Use the formulas for x
and y given in Example 1.

2. In Example 2, we intersected the parabola y = x 2 with a line L in affine space. Assume that
L is not vertical.
a. Over JR, show that the number of points of intersection can be 0, I, or 2. Further, show

that you get one point of intersection exactly when L is tangent to y = x 2 in the sense of
Chapter 3, §4.

b. Over <C, show (without using Bezout's Theorem) that the number ofintersections (counted
wtih multiplicity) is exactly 2.

3. InprovingProposition4,weshowedthatiff = ghishomogeneousandg = g", + + go,
where g, is homogeneous of total degree i and g", =fi 0, and similarly h = h; + + ho,
then f = g",h". Complete the proof by showing that g = g", and h = h.: Hint: Let mo be
the smallest index mo such that g"," =fi 0, and define hoo =fi 0 similarly.

4. In this exercise, we sketch an alternate proof of Lemma 5. Given f and g as in the statement
of the lemma, let Rix . y) = Res(f, g, z) . It suffices to prove that Ritx , ty) = t"''' Rtx , y) .
a. Use ai(tx , ty) = t 'o.t» , y) and b.ttx . ty) = t'b.tx , y) to show that Rttx , t y) is given

by a determinant whose entries are either 0 or t' ai(x, y) or t'b.t», y).
b. In the determinant from part a, multiply column 2 by t , column 3 by t 2, • • • , column n by

t o-I, column n + 2 by t , column n + 3 by t 2 , • • • , and column n + m by t",-I . Use this
to prove that t q Rttx , ty), where q = n(n - 1)/2 + m(m - 1)/2, equals a determ inant
where in each row, t appears to the same power.

c. By pulling out the powers of t from the rows of the determinant from part b, prove that
t q Ritx ; ty) = t' Rtx ; y) , where r = (m + n)(m + n - 1)/2.

d. Use part c to prove that R(tx, ry) = t",nR(x, y ), as desired .
5. Complete the.proof of Lemma 6 using the hints given in the text. Hint: Use Proposition 7

and Exercise II from §2.
6. This exercise is concerned with the proof of Theorem 7.

a. Let f E <C[Xt, .. . , x,,) be a nonzero polynomial. Prove that V(f) and <cn - V(f) are
nonempty . Hint: Use the Nullstellensatz and Proposition 5 of Chapter I , § I.

b. Use part a to prove that you can find q rt CUD U Ui<jLij as claimed in the proof of
Theorem 7.

c. Given q E 1P2(<c), find A E GL(3, <C) such that A(q) = (0,0, 1). Hint: Regard q and
(0,0, 1) as nonzero column vectors in <c3 and use linear algebra to find an invertible
matrix A such that A(q) = (0,0, I) .

d. Prove that the projective line connecting (0, 0, 1) to (u , v, w) intersects the line z = 0
in the point (u, u, 0). Hint: Use equation (10) of §6.

7. In Example 9, we considered the curves C = V(f) and D = V(g) , where f and g are
given in the text.
a. Verify carefully that p = (0,0, I), q = (I, I, 1) and r = (4/7, -8/7, I) are the only

points of intersection of the curves C and D. Hint: Once you have Res(f, g, z), you can
do the rest by hand.

b. Show that f and g are reduced. Hint: Use a computer.
c. Show that (0, I, 0) rt CUD U L pq U L p, U Lq, .
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8. For each of the following pairs of curves, find the points of intersection and compute the
intersection multiplicities.
a. C = V(yz - x 2) and D = V(x2 + 4(y - d - 4z2) . This is the projective version of

Example I when A = 1. Hint: Show that the coordinate change given by A(x, y , z) =
(x, y + z. z) has the desired properties.

b. C = V(X 2y3 - 2xy2Z2 + YZ4 + zs) and D = V(X 2y2 - xz 3 - Z4) . Hint: There are four
solutions, two real and two complex. When finding the complex solutions, computing the
GCD of two complex polynomials may help .

9. Prove (5) . Hint: Use induction on m, and apply the inductive hypothesis to iJGjiJx and
iJGjiJy.

10. (Requires advanced calculus.) An open set U C <I::" is path connected ifforevery two points
a . b E U, there is a continuous function y : [0, I] - U such that y (0) = a and y (l) = b.
a. Suppose that F : U _ 7L. is locally constant (as in the text, this means that the value of F

at a point of U equals its value at all nearby points). Use the Intermediate Value Theorem
from calculus to show that F is constant when U is path connected. Hint: If we regard F
as a function F - IR, explain why F is continuous. Then note that F 0 y : [0, I] _ IR
is also continuous.

b. Let f E <I::[x] be a nonzero polynomial. Prove that <I:: - V(f) is path connected.
c. If f E <I:: [x) , .. . ,x,,] is path connected, prove that <I::n - V(f) is path connected. Hint:

Given a. b E <I::" - V(f), consider the complex line fta + (I - t)b : t E <I::} determined
by a and b . Explain why f(ta + (l - t)b) is a nonzero polynomial in t and use part b.

d. Give an example of f E IR[x, y] such that IR2 - V(f) is not path connected. Further,
find a locally constant function F : IR2 - V(f) - 7L. which is not constant. Thus, it is
essential that we work over <I::.

II. Let C be an irreducible conic in IP2 (<I::). Use Bezout's Theorem to explain why a line L
meets in at most two points. What happens when C is reducible? What about when C is a
curve defined by an irreducible polynomial of total degree n?

12. In the picture drawn in the text for Pascal's Mystic Hexagon, the six points went clockwise
around the conic. If we change the order of the points, we can still form a "hexagon," though
opposite lines might intersect inside the conic . For example, the picture could be as follows:

Explain why the theorem remains true in this case .
13. In Pascal's Mystic Hexagon, suppose that the conic is a circle and the six lines come from a

regular hexagon inscribed inside the circle. Where do the opposite lines meet and on what
line do their intersections lie?
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14. Pappus's Theorem from Exercise 8 of Chapter 6. §4. states that if PJ. PI. ps and P6. P4 , pz
are two collinear triple s of points and we set

P = P3P4 n P6PI

q = PZPJ n PSP6

r = P4PSn PIPZ,

then p , q, r are also collinear. The picture is as follows :

The union of the lines P3PI and P6P4 is a reducible conic C .Explain why Pappus's Theorem
can be regarded as a "degenerate" case of Pascal's Mysti c Hexagon. Hint : See Exercise 12.
Note that unlike the irreducible case, we can't choose any six points on C : we must avoid
the singular point of C, and each component of C must contain three of the point s.

15. The argument used to prove Theorem 12 applies in much more general situations. Suppose
that we have curves C and D defined by reduced equations of total degree n such that C n D
consists of exactly n2 points . Furthermore, suppose there is an irreducible curve E with a
reduced equation of total degree m <: n which contains exactly mn of these nZ point s. Then -
adapt the argument of Theorem 12 to show that there is a curve F with a reduced equation
of total degree n - m which contains the remaining n(n - m) points of C n D .

16. Let C and D be curves in IPz(<c) .
a. Prove that C n D must be nonempty.
b. Suppose that C is nonsingular in the sense of part a of Exerci se 9 of §6 [if C = V(f) ,

this means the partial derivat ives of/ox . of/oy and oIfoz don 't vanish simultaneously
on IPz(<c»). Prove that C is irreducible. Hint: Suppose that C = C, U Cz•which implies
I = I,h -How do the partials of I behave at a point of C, n C2?

17. This exercise will explore an informal proof of Bezout 's Theorem. The argument is not
rigorous but does give an intuitive explanation of why the number of intersection points is
mn .
a. In IPz(<c) , show that a line L meets a curve C of degree n inn points, counting multiplicity.

Hint: Choose coordinates so that all of the intersections take place in <cz• and write L
parametrically as x = a + ct , Y =.- b + dt .

b. If a curve C of degree n meets a union of m lines , use part a to predict how many points
of intersection there are.

c. When two curve s C and D meet , give an intu itive argument (based on pictures) that
the number of intersections (counting multiplicity) doe sn 't change if one of the curves
moves a bit. Your pictures should include instances of tangency and the example of the
intersection of the x-axis with the cub ic y = x J •
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d. Use the constancy principle from part c to argue that if the m lines in part b all coincide
(giving what is called a line of multiplicity m), the number of intersections (counted with
multiplicity) is still as predicted.

e. Using the constancy principle from part c. argue that Bezout's Theorem holds for general
curves C and D by moving D to a line of multiplicity m (as in part d). Hint: If D is
defined by f = 0, you can "move" D letting all but one coefficient of f go to zero.

In technical terms, this is a degeneration proof of Bezout 's Theorem. A rigorous version of
this argument can be found in BRIESKORN and KNORRER (1986). Degeneration arguments
play an important role in algebraic geometry.
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The Dimension of a Variety

The most important invariant of a linear subspace of affine space is its dimension.
For affine varieties , we have seen numerous examples which have a clearly defined
dimension, at least from a naive point of view. In this chapter, we will carefully define
the dimension of any affine or projective variety and show how to compute it. We
will also show that this notion accords well with what we would expect intuitively. In
keeping with our general philosophy, we consider the computational side of dimension
theory right from the outset.

§1 The Variety of a Monomial Ideal

We begin our study of dimension by considering monomial ideals . In particular, we
want to compute the dimension of the variety defined by such an ideal. Suppose , for
example, we have the ideall = (x 2y, x 3 ) in k[x, y]. Letting H, denote the line in k2
defined by x = 0 (so H, = V(x» and H; the line y = 0, we have

V(l) = V(x2y ) n V(x 3)

= (H., U H,,) n n,
= (H.f n H.,) U (Hy n H.f)

=H.f'

Thus, VU) is the y-axis H.f' Since H, has dimension 1 as a vector subspace of k2, it is
reasonable to say that it also has dimension 1 as a variety.
As a second example, consider the ideal

I = (l z3, X5Z4, X2YZ2) C k[x, y, zl.

Let H; be the plane defined by x = 0 and define H; and H: similarly. Also, let Hxy be
the line x = y = O. Then we have

VU) =V(lz3) n V(X5Z4) n V(X2YZ2)
= (n, U H:) n (H.. U HJ n (H.. U n, U HJ

=H: U H.fY '

429
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To verify this. note that the plane H: belongs to each of the three terms in the second
line and, hence, to their intersection. Thus, V(l) will consist of the plane H: together,
perhaps, with some other subset not contained in H: . Collecting terms not contained
in H:. we have H; n H, n iH, U Hy), which equals /f, y. Thus, V(l) is the union of
the (x , y)-plane H: and the z-axis Hx y . We will say that the dimension of a union of
finitely many vector subspaces of k" is the biggest of the dimensions of the subspaces,
and so the dimension of V(l) is 2 in this example.
The variety of any monomial ideal may be assigned a dimension in much the same

fashion. But first, we need to describe what a variety of a general monomial ideal looks
like. In k" , a vector subspace defined by setting some subset of the variables XI • • • • • XII
equal to zero is called a coordinate subspace .

Proposition 1. The variety ofa monomial ideal in k[x] . . . . •XII) is a finite union of
coordinate subspaces ofk" .

Proof. First note that if<' .. .x~' is a monomial in k[x], . .. . XII) with a j > 1 for
I s j ::: r , then

V(x," , .. . x,'!') = HI , U . . . U H, •
I ,, - / " f "

where Hx, = V(xd . Thus, the variety defined by a monomial is a union of coordinate
hyperplanes. Note also that there are only n such hyperplanes.
Since a monomial ideal is generated by a finite collection of monomials, the variety

corre sponding to a monomial ideal is a finite intersection of unions of coordinate hyper-
planes. By the distributive property of intersections over unions , any finite intersection
of unions of coordinate hyperpl anes can be rewritten as a finite union of intersections
or coordinate hyperplanes [see (1) for an example of this). But the intersection of any
collection of coordinate hyperplanes is a coord inate subspace. 0

When we write the variety of a monom ial ideall as a union of finitely many coordinate
subspaces, we can omit a subspace if it is contained in another in the union . Thus. we
can write V(l) as a union of coordinate subspaces.

V(l) = VI U . . . U Vp •

where Vi et. Vj for i =I j . In fact. such a decomposition is unique , as you will show in
Exercise 8.
Let us make the following provisional definition.

Definition 2. Let V be a variety which is the union ofafinite numberoflinear subspaces
ofk" . Then the dimension ofV, denoted dim V , is the largest of the dimensions of the
subspaces.

Thus , the dimension of the union of two planes and a line is 2, and the dimension
of a union of three lines is I. To compute the dimension of the variety corresponding
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to a monomial ideal, we merely find the maximum of the dimensions of the coordinate
subspaces contained in V(l) .
Although this is easy to do for any given example, it is worth systematizing the

computation. Let I = (m I , . . . , m() be a proper ideal generated by the monomials mj '

In trying to compute dim V(l), we need to pick out the component of

t

V(l) = nV(mj)
j=1

of largest dimension . If we can find a collection of variables Xi" • . . , X i, such that at
least one of these variables appears in each m i : then the coordinate subspace defined
by the equations Xi, = .. . = Xi, = 0 is contained in V(l) . This means we should look
for variables which occur in as many of the different mj as possible . More precisely,
for I ::: j s t , let

Mj = {k E [L, . .. , n} : Xk divides the monomial m j}

be the set of subscripts of variables occurring with positive exponent in m l : (Note that
Mj is nonempty by our assumption that I #- k[XI , . . . , XII]') Then let

M = {1 C {I, . . . , n} : 1 n Mj #- 0 for all I ::: j ::: t}

consist of all subsets of {I, . . . , n} which have nonempty intersection with every set
M]. (Note that M is not empty because {I , . . . , n} EM.) If we let 111 denote the
number of elements in a set 1, then we have the following .

Proposition 3. With the notation above .

dim V(l) = n - min(IJI : J EM).

Proof. Let 1 = {i I , .. . , ill} be an element of M such that IJ 1= r is minimal in
M. Since each monomial m j contains some power of some Xi" I ::: k ::: r , the
coordinate subspace W = V(Xi, , . .. • Xi ,) is contained in V(l). The dimension of W
is n - r = n - IJI. and, hence, by Definition 2, the dimension of V(l) is at least
n -Ill .
If V(l) had dimension larger then n - r , then for some s < r there would be a

coord inate subspace W' = V(Xk , • • •• • xd contained in V(l) . Each monomial m j

would vanish on W' and, in particular. it would vanish at the point p E W' whose kith
coordinate is 0 for I ::: i ::: s and whose other coordinates are I . Hence, at least one
of the x i, must divide mi - and it would follow that J' = {kl , •• • , k,} E M . Since
11'1 = s < r , this would contradict the minimality of r. Thus, the dimension of V(l)
must be as claimed. 0

Let us check this on the second example given above . To match the notation of the
proposition. we relabel the variables x , y, z as XI , X2, X3, respectively. Then

I = (x~xj, xfxj, xfx2xj) = (mi . m2, m3),
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where
23 S4 22

ml = X2X3' m2 = X IX3• m3 = x\x2x3'

Using the notation of the discussion preceding Proposition"3.

M1 = {2. 3}. M2 = {I , 3}. M3 = {I , 2, 3}.

so that

M = {{I. 2 , 3}. P. 2}. P. 3}. {2. 3}. {3}} .
Then min(lll : 1 EM) = I, which implies that

dim V(1) = 3 - min III = 3 - I = 2.
JeM

Generalizing this example, note that if some variable, say Xi. appears in every monomial
in a set of generators for a proper monomial ideal!, then it will be true that dim V(1) =
n - I since 1 = Ii} E M. For a converse, see Exercise 4.
It is also interesting to compare a monomial ideal! to its radical.Ji. In the exercises.

you will show that .Ji is a monomial ideal when! is. We also know from Chapter 4 that
V(1) = V(.Ji) for any ideal! . It follows from Definition 2 that V(1) and V(.Ji) have
the same dimension (since we defined dimension in terms of the underlying variety). In
Exercise 10you will check that this is consistent with the formula given in Proposition
3.

EXERCISES FOR §1

\. For each of the following monomial ideals I .write V(l> as a union of coordinate subspaces.
a. 1 = (x s• x 4yz . x 3z) C k[x . y . zl,
b. 1 = (wx 2y . xYZ3. w zs) C k[w. x , y. z].
c. 1 = (X,X2, X3 0 0 • x") C k[Xh . 0 • • x"].

2. Find dim V(l> for each of the following monomial ideals.
a. 1 = (xy , yz. xz) c k[x . y. zl.
b. 1 = (wx2z , w3y. wxyz . X Sz6) C k[w. x , y. d o
c. I = (u2vwyz . WX3y3. uxy7Z, y3Z• uwx3y3Z2 ) C k[u . v , w. x , y . d.

3. Show that W C k" is a coordinate subspace if and only if W can be spanned by a subset of
the basis vectors (e, : I ~ i ~ n I.where e, is the vector consisting of all zeros except for a
I in the ith place.

4. Suppose that I C k[xi . 0 • • • x,J is a monomial ideal such that dim V(l> = n - \.
a. Show that the monomials in any generating set for I have a nonconstant common factor .
b. Write V(l> = VI U . 0 • U Vp , where VI is a coordinate subspace and V; rt. Vj for i ::j: j.

Suppose. in addition. that exactly one of the Vi has dimension n - I. What is the maximum
that p (the number of components> can be? Give an example in which this maximum is
achieved.

5. Let I be a monomial ideal in k[xi' . 0 •• x"l such that dim V(l> = o.
a. What is V(l> in this case?
b. Show that dim V(l> = 0 if and only if for each I ~ i ~ n. X ;!i E I for some l i > \.

Hint: In Proposition 3. when will it be true that M contains only J = {I. 0 0 • • n}?
6. Let (mi. 0 0 " mr ) C k[Xh • 0 0 • x ,,] be a monomial ideal generated by r ~ n monomials.

Show that dim V(mJ, 0" • mr >~ n - r .



§2. The Complement of a Monomial Ideal 433

7. Show that a coordinate subspace is an irreducible variety when the field k is infinite.
8 . In this exercise , we will relate the decomposition of the variety of a monomial ideal I as a

union of coordinate subspaces given in Proposit ion I with the decomposition of V(/) into
irreducible components. We will assume that the field k is infinite.
a. If V(/) = VI U . . . U Vb where the Vj are coordinate subspaces such that Vi rf- Vj if

i =I' i . then show that this union is the minimal decompos ition of V(/) into irreducible
varieties given in Theorem 4 of Chapter 4, §6.

b. Deduce that the Vi in part a are unique up to the order in which they are written.
9. Let I = (m l, . . . , ms ) be a monomial ideal in k[X I, • . . , x,,] . For each I ~ j ~ s, let

M j = {k : Xk divides m j I as in the text, and consider the monomial

Note thatmj contains exactly the same variables asmi - but all to the first power.
a. Show thatmj E ./J for each I ~ j ~ s.
b. Show that./J = (m; , . . . , m~) . Hint: Use Lemmas 2 and 3 of Chapter 2, §4.

10. Let I be a monomial ideal. Using Exercise 9, show the equality dim V(/) = dim V(./J)
follows from the dimension formula given in Proposit ion 3.

§2 The Complement of a Monomial Ideal

One of Hilbert 's key insights in his famous paper Uber die Theorie der algebraischen
Formen [see HILBERT (1890)] was that the dimension of the variety associated to a
monomial ideal could be characterized by the growth of the number of monomials not
in the ideal as the total degree increases .We have alluded to this phenomenon in several
places in Chapter 5 (notably in Exercise 12 of §3).
In this sect ion, we will make a careful study of the monomials not contained in a

monomial ideall C k[XI , • . . , XII]' Since there may be infinitely many such monomi-
als, our goal will be to find a formula for the number of monomials xa f/ 1 which have
total degree less than some bound. The results proved here will playa crucial role in
§3 when we define the dimension of an arbitrary variety.

Example 1. Consider a proper monomial ideall in k[x , y]. Since 1 is proper (that is,
1 =j: k[x, yD, V(l) is either
a. The origin {(O, O)},
b. the x-axis,
c. the y-ax is, or
d. the union of the x-axis and the y-axis.
In case (a), by Exercise 5 of §I, we must have x" Eland lEI for some integers

a, b > O. Here, the number of monomials not in I will be infinite, equal to some
constant Co ::: a . b. If we assume that a and b are as small as possible, we get the
following picture when we look at exponents:
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/I

• • • • • • • • • • • • • •
b • • • • • • • • • • • • • •

0 0 0 0 • • • • • • • • • •
0 0 0 0 • • • • • • • • • •
0 0 0 0 • • • • • • • • • •
0 0 0 0 0 0 • • • • • • • •
0 0 0 0 0 0 0 0 0 0 0 • • •

a 1/1

(m,n)_.o("y"

The monomia ls in I are indicated by solid dots, while those not in I are open circles.
In case (b), since V(l) is the x -axis , no power x k of x can belong to I. On the other

hand, since the y-axis does not belong to V(l), we must have v" E I for some minimal
integer b > O. The picture would be as follows:

/I

• • • • • • • • • • • • • •
b • • • • • • • • • • • • • •

0 0 0 0 • • • • • • • • • •
0 0 0 0 • • • • • • • • • •
0 0 0 0 • • • • • • • • • •

· ·· · 0· · · · 0···· 0 · · · 0 ·· · · 0 .. · · 0 .. ·· • • • • • • • •
o 0 0 0 0 0 0 0 0 0 0 0 0 0

(/

(111 ,11)_ .\111/ '

1/1

As the picture indicates, we let I denote the minimum exponent of y that occurs among
all monomials in I. Note that I ::: b, and we also have I > 0 since no positive power
of x lies in I .Then the monomials in the complement of I are precisely the monomi als

{x iv' : i E Z::o , 0 ::: j .::: I - I},

correspond ing to the exponents on I copies of the horizontal axis in Z ;'o' together with
a finite number of other monomials. These additional monom ials can be characterized
as those monomials m ~ I with the property that x rmEl for some r > O. In the
above picture, they correspond to the open circles on or above the dotted line.
Thus, the monomials in. the complement of I cons ist of I " lines" of monomials

together with a finite set of monomials. This description allows us to "count" the
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number of monom ials not in I . More precisely, in Exercise I , you.will show that if
s > I , the I " lines" contain precisely Is - (I + 2 + ... + I - I) monomials of total
degree g s. In part icular, if s is large enough (more precisely, we must have s > a + b ,
where a is indicated in the above picture), the number of monomials not in I of total
degree g s equals Is + Co, where Co is some constant depending only on I .
In case (c), the situation is similar to (b), except that the "lines" of monomials are

parallel to the vertical axis in the plane Z ;'o of exponents . In particular, we get a similar
formula for the number of monomia ls notin I of total degree g s once s is sufficiently
large.
In case (d), let k be the minimum exponent of x that occurs among all monomials

of I , and similarly let I be the minimum exponent of y . Note that k and I are positive
since xy must divide every monomial in I . Then we have the follow ing picture when
we look at exponents:

II
0 0 • • • • • • • • • • • •

b 0 0 ~ • • • • • • • • • • •
0 0 0 0 • • • • • • • • • •
0 0 0 0 • • • • • • • • • •
0 0 o 0 • • • • • • • • • •
0 0 0 · · · ·0· · · ·0· · · ·0· · · ·. • • • • • • •
0 0 0 0 0 0 0 0 0 0 0 0 0 0

k II III

(1Il.1I)~:cmyfl

The monomials in the complemen t of I consist of the k " lines" of monomials

{Xi yj ; 0 ::: i ::: k - I, j E Z~o}

parallel to the vertical axis, the I "lines" of monomials

{X iv' : i E Z~o, I ::: j ::: I - I}

parallel to the horizontal axis, together with a finite number of other monomials (indi-
cated by open circles inside or on the boundary of the region indicated by the dotted
lines).
Thus , the monomials not in I consist of I + k "l ines" of monom ials together with a

finite set of monomials. For s large enough (in fact, for s > a + b, where a and b are
as in the above picture) the number of monomials not in I of total degree j; s will be
(l + k )s + Co, where Co is a constant. See Exercise I for the details of this claim.
The pattern that appears in Example I, namely, that the monomi als in the complement

of a monomial ideal I C k[x, y ] consist of a number of infinite families parallel to
the "coordinate subspaces" in Z~o' together with a finite collec tion of monomials,
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generalizes to arbitrary monomial ideals. In §3, this will be the key to understanding
how to define and compute the dimension of an arbitrary variety.
To discuss the general situation, we will introduce some new notation. For each

monomial ideal I, we let

C(l) = (a E Z~o : XU ¢ /}

be the set of exponents of monomials not in I .This will be our principal object of study.
We also set

el =(1,0, ,0),

ei = (0, I, ,0) ,

ell = (0, 0, . . . , 1).

Further, we define the coordinate subspace ofZ~o determined by ei, . . . , ei, where
i 1 < . .. < i., to be the set -

[ei" , e;,] = {alei, + ... + a-ei, : aj E Z~o for I ~ j ~ r} .

We say that [ei, , , ei,] is an r-dimensional coordinate subspace . Finally, a subset of
Z~o is a translate of a coordinate subspace [ei" .. . , ei,] if it is of the form

a + [ei, , ... , e;,] = (a + f3 : f3 E [ei" .. . , e;']L

where a = L iltli, .....i, ) a,e, for a, ~ O. This restriction on a means that we are
translating by a vector perpendicular to [ei" . . . , e;,]. Thus, for example, the set
{(l, 1) : I E :z~o} = el + [e2] is a translate of the subspace [e2] in the plane :Z~o of
exponents.
With these definitions in hand, our discussion of monomial ideals in k[x , y] from

Example I can be summarized as follows.
a. If V (l) is the origin, then C(l) consists of a finite number of points.
b. IfV(l) is the x-axis , then C(l) consists of a finite number of translates of[eIl and,

possibly, a finite number of points not on these translates.
c. If V(l) is the y-axis, then C(l) consists of a finite number of translates of [e2] and,

possibly, a finite number of points not on these translates.
d. If V(l) is the union of the x-axis and the y-axis, then C(l) consists of a finite

number of translates of [el], a finite number of translates of [ez], and, possibly, a
finite number of points not on either set of translates .

In the exercises , you will carry out a similar analysis for monomial ideals in the
polynomial ring in three variables.
Now let us tum to the general case. We first observe that there is a direct correspon-

dence between the coordinate subspaces in V (l) and the coordinate subspaces of Z/~o
contained in C(l) .

Proposition 2. Let I C k[XI, ... , XII] be a proper monomial ideal.
(i) The coordinate subspace V (Xi : i ¢ Ii I, . . . , ir }) is contained in V (l) ifand only

if[ei" . .. , e;,] C C(l).
(ii) The dimension ofV(l) is the dimension ofthe largest coordinate subspace in C(l).
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Proof. (i) ==}: First note that W = V(Xi : i rt (il, .. .. ir }) contains the point p
whose i j th coordinate is I for I ~ j ~ r and whose other coordinates are O. For any
ex E [e i , , . . . , ei,] , the monomial XU can be written in the form XU = x~ ' . .. x~' . Then
XU = I at p , so that XU rt I since pEW C V(I) by hypothesis. This shows that
ex E C(I) .

<=:: Suppose that [e i " • •• • e;,l C C(I). Then, since I is proper, every monomial in
I contains at least one variable other than Xi" . •. , Xi, ' This means that every monomial
in I vanishes on any point (ai, .. . , all ) E k" for which a, = 0 when i rt {iI, , ir } .
So every monomial in I vanishes on the coordinate subspace V (Xi : i ~ (iI , , i r }) ,
and, hence, the latter is contained in V(I).
(ii) Note that the coordinate subspace V (Xi : i rt (i I • . .. , ir }) has dimension r , It

follows from part (i) that the dimensions of the coordinate subspaces of k" contained in
V(I) and the coordinate subspaces ofZ~o contained inC(I) are the same.By Definition
2 of § I, dim V(I) is the max.imumof the dimensions of the coordinate subspaces of k"
contained in V(I) , so the statement follows. 0

We can now characterize the complement of a monomial ideal.

Theorem 3. If I C k[Xl , . . . •XII] is a proper monomial ideal. then the set C(I) C
:Z~o of exponents of monomials not lying in I can be written as a finite (but not
necessarily disjoint) union of translates ofcoordinate subspaces ofZ~o'

Before proving the theorem, consider, for example , the ideal I = (x 4y3 , x Zi).

II
0

0 •(2.S)

0 0 0

0 0 0
(4:J)

0 0 0 0 0 0

0 0 0 0 0 0

m

(m.lI) ~,ton)",

Here, it is easy to see that C(I) is the finite union

C(l) = [ell U (ez + [ell) U (2ez + [ell) U [ezl U (el + [ez])

U {(3. 4») U {(3 , 3)) U {(2 , 4») U {(2 , 3») .

We regard the last four sets in this union as being translates of the Ovdimensional
coordinate subspace, which is the origin in :Z~o '
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ProofofTheorem 3. If l is the zero ideal, the theorem is trivially true , so we can assume
that f =1= O. The proof is by induction on the number of variables n . If n = I, then
f = (x k ) for some integer k > O. The only monomials not in I are I, x, . . . , Xk- I , and
hence C (I ) = {O, I , . .. , k - I} C ~::o. Thus, the complement cons ists of k points ,
all of which are translates of the origin.
So assume that the result holds for n - I variables and that we have a monomial ideal

I C k[ XI , . . . , x,,]. For each integer1 ~ 0, let I j be the ideal in k[X I , . . . , X,,-I] gener-
ated by monomialsmwith the property thatm .x/, E f .Then C (fj ) consists ofexponents
a E ~:OI such that x"x/, rf. J. Geometrically, this says that C(lj ) c ~:O l corre-
sponds iO the intersection of C(I ) and the hyperplane (0, . .. , 0, j) + [el, ~. . , e,,-I1
in ~~o.

Because I is an ideal, we have I j C Ij' when 1 < }'. By the ascending chain
condition for ideals, there is an integer lo such that I j = f jo for all 1 ~ lo. For any
integer l- we let C(lj) x {j} denote the set {(a , l) E ~~o : a E C(li) C ~:Ol}.

Then we claim the monomials C(l) not lying in I can be written as -

(I)
j ,,- I

C(I) = (C(lj,,) x ~::o) U U(C(l j) x (j}).
j=O

To prove this claim, first note that C(lj) x {j} C C(I) by the definition of C(lj) .
To show that C(li,,) x ~::o C C(I), observe that Ii = f i" whenj ~ lo , so that
C(ljo) x {j} C C(I) for these j's. When 1 < l o, we have x ax /, rf. f whenever
x ax /," rf. I since f is an ideal , which shows that C(lj,,) x (j) C C(I ) for j < l o.We
conclude that C(I ) contains the right-hand side of (I).
To prove the oppos ite inclusion, take a = (a i , . . . ,a,,) E C(I ).Then a E C(la.,) x

{a ,,} is true by definit ion. If a" < lc. then a obviously lies in the right -hand side of
(1). On the other hand, if a" ~ l o, then la" = I jo shows that a E C (Ij.) x ~::o, and
our claim is proved .
If we apply our inductive assumption, we can writeC(lo), .. . , C(lj,,) as finite unions

of translates of coordinate subspaces of ~:o I. Substituting these finite unions into the
right-hand side of (I ), we immediately see-that C (I) is also a finite union of translates
of coordinate subspaces of~~o ' 0

Our next goal is to find a formula for the number of monomials of total degree ~ s
in the complement of a monomial idealf C k[XI, .. . , x,,]. Here is one of the key fact s
we will need.

Lemma 4. The number of monomials of total degree ~ s in k[XI, .. . , xm ] is the
binomial coefficient C' ~').

Proof. See Exercise II of Chapter 5, §3. o

In what follows, we will refer to laI = al + ...+a" as the total degree of a E ~~o.

This is also the total degree of the monomial xa •Using this term inology, Lemma 4 easily
implies that the number of points of total degree ~ s in an m-dimensional coordinate
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subspace of:Z~o is (m;5) (see Exercise 5). Observe that when m is fixed. the expression

( m + s ) (m+s) Is = m = m! (s + m)(s + m - I) .. . (s + I)

is a polynomial of degree m in s, Note that the coefficient of sm is 1/m!.
What about the number of monomials of total degree :s s in a translate of an

m-dimensional coordinate subspace in 7L~o? Consider. for instance. the translate
am+lem+1 + . . . + ase; + [el • . . . • em] of the coordinate subspace [el • . ..• em].
Then. since am+l • . . . • a" are fixed. the number of points in the translate with to-
tal degree :s s is just equal to the number of points in [el • . . . • em] of total degree
:s s - (am+1 + . . . + all) provided. of course. that s > am+1 + .. . + all' More
generally, we have the following.

Lemma S. Let a + [ei,•. ..• ei,.,] be a translate of the coordinate subspace
rei,• . . . , ei..,l C 7L~o. where as usual a = Li!t(i l .....i,.,) aiei .
(i) The number ofpoints in a + [ei" .. .• ei.,] of total degree :s s is equal to

(
m + s - Ia l )
s - [c] •

provided that s > [o].
(ii) For s > [o ], this number ofpoints is a polynomial function ofs ofdegree m, and

the coefficient ofs'" is 1/m !.

Proof. (i) If s > lal , then each point f3 in a + [ei" . . .• ei,..] of total degree :s s has
the form f3 = a + y , where y E [ei, • . . . • ei,.,] and Iy I :s s - la I.The formula given
in (i) follows using Lemma 4 to count the number of possible y.
(ii) See Exercise 6. 0

We are now ready to prove a connection between the dimension ofV(l) for a mono-
mial ideal and the degree of the polynomial function which counts the number of points
of total degree :s s in C(l) .

Theorem 6. If I C k[x l • . . . •XII] is a monomial ideal with dim V(l) = d . thenfor
all s sufficiently large . the number of monomials not in I of total degree :s s is a
polynomial ofdegree d in s . Further. the coefficient ofsd in this polynomial is positive.

Proof. We need to determine the number of points in C(l) of total degree :s s . By
Theorem 3. we know that C(l) can be written as a finite union

C(/) = TI U T2 U ' " U T,.

where each T; is a translate of a coordinate subspace in :Z~o ' We can assume that
T; # T, for i # j.
The dimension of T, is the dimension of the associated coordinate subspace. Since

I is an ideal, it follows easily that a coordinate subspace [ei,•. . .• ei.] lies in C(l)
if and only if some translate does. By hypothesis. V(l) has dimension d, so that by
Proposition 2, each T; has dimension :s d. with equality occurring for at least one T;.
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We will sketch the remaining steps in the proof, leaving the verification of several
details to the reader as exercises. To count the number of points of total degree ~ s in
C(I) , we must be careful, since C(I) is a union of coordinate subspaces of Z~o that
may not be disjoint [for instance , see part (d) of Example I] . If we use the superscript
s to denote the subset consisting of elements of total degree ~ s , then it follows that

C(I )S = t; U T{ U .. . U T(' .

The number of elements in C(lr will be denoted IC(I )' I.
In Exercise 7, you will develop a general counting principle (called the Inclusion-

Exclusion Principle) that allows us to count the elements in a finite union of finite
sets. If the sets in the union have common elements, we cannot simply add to find the
total number of elements because that would count some elements in the union more
than once. The Inclusion-Exclusion Principle gives "correction terms" that eliminate
this multiple counting. Those correction terms are the numbers of elements in double
intersections, triple intersections, etc ., of the sets in question.
Ifwe apply the Inclusion-Exclusion Princip le to the above union for C(I)S,we easily

obtain

(2) IC(I)'I = L IT;sl - L IT;sn TJI+ LIT;' n TJ nT/I - .. . .
i< j i <j <k

By Lemma 5, we know that for s sufficiently large, the number of points in T;s is a
polynomial of degree m, = dim (T;) ~ din s, and the coefficient of s'" is 1/mi! . From
this it follows that IC(I )SI is a polynomial of degree at most din s when s is sufficiently
large.
We also see that the first sum in (2) is a polynomial of degree d is s when s is

sufficiently large. The degree is exactly d because some of the T; have dimension d
and the coefficients of the leading terms are positive and hence can't cancel. If we can
show that the remaining sums in (2) correspond to polynomials of smaller degree, it
will follow that ICU)'I is given by polynomial of degree din s , This will also show
that the coefficient of Sd is positive .
You will prove in Exercise 8 that the intersection of two distinct translates of co-

ordinate subspaces of dimensions m and r in Z~o is either empty or a translate of
a coordinate subspace of dimension < max(m, r-). Let us see how this applies to a
nonzero term IT; ' n TJI in the second sum of (2). Since T; =/; Tj , Exercise 8 implies
that T = T; n Tj is the translate of a coordinate subspace ofZ~o of dimension < d, so
that by Lemma 5, the number of points in T' = T;' n TJ is a polynomial in s of degree
< d. Adding these up for all i < i. we see that the second sum in (2) is a polynomial
of degree < d in s for s sufficiently large. The other sums in0) are handled similarly,
and it follows that IC(I)" I is a polynomial of the desired form when s is sufficiently
large. []

Let us see how this theorem works in the example I = (x 4y 3 , x 2y5>discussed
following Theorem 3. Here, we have already seen that C(I) = Co U C" where

C, = red U (e2 + [ell) U (2e2+ [ell) U [e2] U (el + [e2]),

Co = {(3, 4) , (3, 3) , (2,4) , (2 , 3)}.
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To count the number of points of total degree j; s in C" we count the number in each
translate and subtract the number which are counted more than once . (In this case, there
are no triple intersections to worry about. Do you see why?) The number of points of
total degree j; s in [e2l is C;S) = C ~J) = S + I and the number in e\ + [e2l is
C ;~~I) = s . Similarly, the numbers in [ed , ei + [ed , and 2e2 + [ed are s + I, s , and
s - I, respectively. Of the poss ible intersections of pairs of these, only six are nonempty
and each consists of a single point. You can check that (1, 2), (I, I) , (1,0) , (0, 2), (0, I),
(0,0) are the six points belonging to more than one translate. Thus, if s is large enough,
the number of points of total degree less::: s in C1 is

ICfI = (s + I) + S + (s + I) + s + (s - I) - 6= 5s - 5.
Since there are four points in Co, the number of points of total degree x S in C (l) is

IC{I + IC~I = (5s - 5) + 4 = 5s - I,

provided that s is sufficiently large . (In Exercise 9 you will show that in this case , s is
"sufficiently large" as soon as s ::: 9.)
Theorem 6 shows that the dimension of the affine variety defined by a monomial ideal

is equal to the degree of the polynomial in s which counts the number of points in C (l)
of total degree y s for s large. Th is gives a purely algebraic definition of dimension.
In §3, we will extend these ideas to general ideals .
The polynomials that occur in Theorem 6 have the property that they take integer

values when the variable s is a sufficiently large integer. For later purposes, it will be
useful to characterize this class of polynomials. The first thing to note is that polynomials
with this property need not have integer coefficients. For example, the polynomial
~ s(s - I) takes integer values whenever s is an integer, but does not have integer
coefficients. The reason is that either s or s - I must be even, hence , divisible by 2.
Similarly, the polynomial ) 12 s (s - I)(s - 2) takes integer values for any integer s: no
matter what s is, one of the three consecutive integers s - 2, s - I , s must be divisible
by 3 and at least one of them divisible by 2. It is easy to generalize this argument and
show that

s(s - I ) ··· (s - (d - I»
d!

I
- -----s(s - I) ·· · (s - (d - I»
d . (d - I) ... 2 . I

takes integer values for any integer s (see Exercise 10). Further, in Exercises 11 and
12, you will show that any polynomial of degree d which takes integer values for
sufficiently large integers s can be written uniquely as an integer linear combination of
the polynomials

(
s ) = s(s- I ) "'(s-(d- I».
d d !

Using this fact, we obtain the following sharpening of Theorem 6.
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Proposition 7. If I C k[XI , . . . ,x,,]isamonomialidealwithdimV(l) = dithen for
all s sufficiently large, the number ofpoints in e(/) oftotal degree ~ s is a polynomial
ofdegree d in s which can be written in the form

where a; E 7Lfor 0 ~ i ~ d and ao > O.

In the final part of this section, we will study the projective variety associated with
a monomial ideal. This makes sense because every monomial ideal is homogeneous
(see Exercise 13). Thus, a monomial ideal I C k[x} , .. . , x,,] determines a projective
variety Vp(l) C lP,,-1 (k), where we use the subscr ipt p to remind us that we are in
projective space. In Exercise 14, you will show that Vp(l) is a finite union of projective
linear subspaces which have dimension one less than the dimension of their affine
counterparts. As in the affine case, we define the dimension of a finite union of projective
linear subspaces to be the maximum of the dimensions of the subspaces. Then Theorem
6 shows that the dimension of the projective variety Vp(l) of a monomial ideal I is
one less than the degree of the polynomial in s counting the number of monomials not
in I of total degree ~ s.
In this case it turns out to be more convenient to consider the polynomial in s counting

the number of monomials whose total degree is equal to s. The reason resides in the
following proposition .

Proposition 8. Let I C k[XI, . . . , x,,] be a monomial ideal and let Vp(l ) be the
projective variety in IP"- 1(k) defined by l. If dim Vp(l) = d - 1, then for all s
sufficiently large, the number of monomials not in I of total degree s is given by a
polynomial of the form

d-I ( )Lb; d - ~ - i
.=0

ofdegreed - i ins. where b, E 7LforO ~ i ~ d - I and bs > O.

Proof. As an affine variety, V(l) .c k" has dimension d, so that by Theorem 6, the
number of monomials not in I of total degree ~ s is a polynomial p (s) of degree d for
s sufficiently large. We also know that the coefficient of sd is positive. It follows that
the number of monomials of total degree equal to s is given by

pes) - pes - 1)

for s large enough. In Exercise 15, you will show that this polynomial has degree d - 1
and that the coefficient of Sd-I is positive. Since it also takes integer values when s
is a sufficiently large integer, it follows from the remarks preceding Proposition 7 that
pes ) - pes - 1) has the desired form. 0

In particular, this proposition says that for the projective variety defined by a mono-
mial ideal, the dimension and the degree of the polynomial in the statement are
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equal. In §3, we will extend these results to the case of arbitrary homogeneous ideals
I C k[XI, . . . , XII]'

EXERCISES FOR §2

1. In this exercise, we will verify some of the claims made in Example 1. Remember that
1 C klx , yl is a proper monomial ideal.
a. In case (b) of Example 1, show that if s > l , then the i "lines" of monomials conta in
is - (I + 2 + ... + i-I) monomials of total degree g s.

b. In case (b), conclude that the number of monomials not in 1 of total degree g s is given
by is + Cofor s sufficiently large. Explain how to compute Coand show that s > a + b
guarantees that s is sufficiently large. Illustrate your answer with a picture that shows
what can go wrong if s is too small.

c. In case (d) of Example I, show that the constant Coin the polynomial function giving the
number of points in C(/) of total degree x s is equal to the finite number of monomials
not contained in the "lines " of monomials, minus l . k for the monomials belonging to
both families of lines, minus I + 2 + ...+ (l - I) , minus I + ... + (k - 1).

2. Let 1 C k[XI , . .. , x,,] be a monomial ideal. Suppose that in Z:o' the translate a +
lei, • . . . , e;,] is contained in C(/). If a = Li,{;, .::;,~;e; , show that C(/) contains all
translates {3 + lei" . . . , ej,] for all {3 of the form {3 - L;~Ii, .....t, I b.e, where 0 :::: b, :::: a;
for all i . In particular, [ei" . . . , e;,] C C(/). Hint: 1 is an ideal.

3. In this exercise, you will find monomial ideals 1 C k[x, y, zl with a given C(/) C Z;o.
a. Suppose that C(/) cons ists of one translate of [el> ez] and two translates of [ez, ell:Use

Exercise 2 to show that C(/) = [el' ez] U lez, e3]U (el + [ez, e3)).
b. Find a monomial ideal 1 so that C(/) is as described in part a. Hint: Study all monomials

of small degree to see whether or not they lie in I.
c. Suppose now that C(/) cons ists of one translate of [el ' ez], two translates of [ez, e3], and

one additional translate (not contained in the others) of the line fez]. Use Exercise 2 to
give a precise description of C(/) .

d. Find a monomial ideal 1 so that C(/) is as in part c.
4. Let 1 be a monomial ideal in k[x , y. z(In this exercise, we will study C(/) C Z;o.

a. Show that V(/) must be one of the following possibilities: the origin; one, two~ or three
coordinate lines; one, two, or three coordinate planes; or the union of a coordinate plane
and a perpendicular coordinate axis.

b. Show that if V(/) contains only the origin .rhen C(/) has a finite number of points.
c. Show that if V(/) is a union of one, two, or three coord inate lines, then C(/) consists of

a finite number of translates of [ed, [ez] , and/or [e31, together with a finite number of
points not on these translates.

d. Show that if V(/) is a union of one, two or three coordinate planes, then C(/) consists
of a finite number of translates of [el, ezl, [el , el], and/or lez, e31 plus, possibly, a finite
number of translates of [elJ, [ezl, and/or [e31 (where a translate of leiI cannot occur unless
[ei ' ej I E C(/) for some j # i ) plus, possibly, a finite number of points not on these
translates .

e. Finally, show that if V(/) is the union of a coordinate plane and the perpendicular co-
ordinate axis, then C(/) consists of a finite number of translates of a single coord inate
plane [ei , ej I, plus a finite nonzero number of translates of [e,), k # i , j , plus , possibly,
a finite number of translates of [e;] and/or [ej I, plus a finite number of points not on any
of these translates.

5. Show that the number of points in any m-dimensional coordinate subspace of Z:o of total
degree g s is given by ("':'). -
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6. Prove part (ii) of Lemma 5.
7. In this exercise, you will develop a counting principle , called the Inclusion-Exclus ion Prin-

ciple . The idea is to give a general method for counting the number of elements in a union
of finite sets . We will use the notation IAI for the number of elements in the finite set A.
a. Show that for any two finite sets A and 8 .

IA U 81 = IAI + 18 1- jA n 81.

b. Show that for any three finite sets A, 8 . C ,

IA U 8 U C I = IAI+ 181 + ICI - IA n 8 1- IA n C I - 18 n CI + IA n 8 n C I.

c. Using induction on the number of sets, show that the number of elements in a union
of n finite sets A, U . . . U An is equal to the sum of the IAiI, minus the sum of all
double intersections IA; n Ajl . i < i . plus the sum of all the threefold intersections
IA; n A j n Ad . i < j < k , minus the sum of the fourfold intersections, etc. This can
be written as the following formula:

8. In this exercise, you will show that the intersection of two translates of different coord inate
subspaces ofZ~o is a translate of a lower dimens ional coordinate subspace .
a. LetA = a +-[e;, • ...• e;",J, where a = """(' . I a.e., and let 8 = .B+[ej·, •.. .• ej',J,L..Jt 'F-IJ . · .· . lm

where.B = L ;'1lii.....j,) b,e.. If A # 8 and A n 8 # 0, then show that

[ei, • . . . , ei",l # [e j, • . . . , ej,l

and that A n 8 is a translate of

[ei, • . . . , e.: I n [ei! • . . . , ej , J.
b. Deduce that dim An 8 < max(m, r) .

9. Show that if s ::: 9, then the number ofelements inC(l) of total degree ~ s forthe monomial
ideal I in the example following Theorem 6 is given by the polynomial 5s - I .

10. Show that the polynomial

(
s ) s (s - I ) . . . (s - (d - I ))

' p (s) = =
d d !

takes integer values for all integer s, Note that p is a polynomial of degree d in s.
11. In this exercise, we will show that every polynomial pes) of degree ~ d which takes inte-

ger values for every s E Z~o can be written as a unique linear combination with integer
coefficients of the polynomials (~), C), (;) .. .. , t)·
a. Show that the polynomials

are linearly independent in the sense that

for all s implies that ao = a1 = ... = ad = O.



(2)

§3. The Hilbert Function and the Dimension of a Variety 445

b. Show that any two polynomials p(s) and q(s) of degree ~ d which take the same values
at the d + 1 points s = O. I.. . . • d must be identical. Hint: How many roots does the
polynomial p(s) - q(s) have?

c. Suppose we want 10 construct a polynomial p(s) that satisfies

p(O) = Co.

p(l) = CI .

p(d) = c" ,
where the c, are given values in Z. Show that if we set

Doo = Co .

Dol = CI - Co.

Doz = Cz - 2cI + Co.

then the polynomial

(3)

satisfies the equations in (2) . Hint: Argue by induction on d. [The polynomial in (3) is
called a Newton-Gregory interpolating polynomiaL]

d. Explain why the polynomial in (3) takes integer values for all integer s . Hin t: Recall that
the c, in (2) are integers . See also Exercise 10.

e. Deduce from parts a-d 'that every polynomial of degree d which takes integer values for
all integer s ~ 0 can be written as a unique integer linear combination of (~) . . . . • e).

12. Suppose that p(s) is a polynomial of degree d which takes integer values when s is a suffi-
ciently large integer. say s ~ a. We want to prove that p(s) is an integer linear combination
of the polynomials (~) . . . .. e) studied in Exercises 10 and II. We can assume that a is a
posit ive integer.
a. Show that the polynomial p(s+a) can be expressed in terms of (~) . . . . . e) and conclude

that p(s) is an integer linear combination of ('~«). . . . . ('~«) .

b. Use Exercise 10 to show that p(s) takes integer values for all s E Z and conclude that
p(s) is an integer linear combination of (~) . . . . , e).

13. Show that every monomial ideal is a homogeneous ideal.
14. Let I C k[xl, . . . , x,,] be a monomial ideal.

a. In k"; let V(XiI • . . • • Xi,) be a coordinate subspace of dimension n - r contained in
V(I). Prove that V,,(Xi,•. ..• Xi,) C Vp(l) in 1P,,-1(k) . Also show that V"(x,, •.. .• xd
looks like a copy of 1P,,-r-1 silting inside 1P,, - I. Thus. we say that Vp(Xi, • . . . • Xi,) is a
projective linear subspace of dimension n - r - I.

b. Prove the cla im made in the text that V,,(I) is a finite union of projective linear subspaces
of dimension one less than their affine counterparts.

15. Verify the statement in the proof of Proposition 8 that if p(s) is a polynomial of degree d in
s with a positive coeffi cient of s", then p(s) - p(s - I) is a polynomial of degree d - I
with a positive coefficient ofS"-I .
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§3 The Hilbert Function and the Dimension of a Variety

In this section , we will define the Hilbert function of an ideal I and use it to define
the dimension of a variety V.We will give the basic definitions in both the affine and
projective cases . The basic idea will be to use the experience gained in the last section
and define dimension in terms of the number of monomials not contained in the ideal
I. In the affine case, we will use the number of monomials not in I of total degree ~ s ,
whereas in the projective case, we consider those of total degree equal to s.
However, we need to note from the outset that the results from §2 do not apply

directly because when I is not a monomial ideal, different monomials not in I can be
dependent on one another. For instance, if I = (x 2 - y2), neither'the monomial x 2 nor
y2 belongs to I , but their difference does . So we should not regard x 2 and y2 as two
monomials not in I. Rather, to generalize §2, we will need to consider the number of
monomials of total degree ~ s which are "linearly independent modulo" I .
In Chapter 5, we defined the quotient of a ring modulo an ideal. There is an analogous

operation on vector spaces which we will use to make the above ideas precise. Given
a vector space V and a subspace W C V, it is not difficult to show that the relation on
V defined byu ~ v' if v - v' E W is an equivalence relation (see Exercise I). The set
of equivalence classes of ~ is denoted V / W, so that

V/W={[v]:vEVI ·

In the exercises. you will check thatthe operat ions [v]+[v/] = [v+v'] anda[v] = [av],
where a E k and v E V are well-defined and make V / W into a k-vector space, called
the quotient space of V modulo W .
When V is finite-dimensional, we can compute the dimension of V / W as follows .

Proposition L Let W be a subspace ofa finite-dimensional vector space V. Then W
and V / Ware also finite-dimensional vector spaces. and

dim V = dim W + dim V/W.

Proof. If V is finite-dimensional, it is a standard fact from linear algebra that W is
also finite-dimensional. Let VI, ..• , Vm be a basis of W , so that dim W = m. In
V , the vectors VI•. . . • Vm are linearly independent and, hence, can be extended to
a basis VI • • . • , Vn" Vm+l, .• •• Vm+n of V. Thus , dim .V = m + n. We claim that
[Vnr+l]. .. . , [vm+n ] form a basis of V / W.
To see that they span, take [v] E V / W . If we write v = tz: a, Vi, then v ~

a nr+1 Vm+ ! + ... + a m+n Vm+n since their difference is al VI + ... + alii VIII E W . It
follows that in V / W , we have

The proof that [VIIl +I] , .. • • [vlIl +n ] are linearly independent is left to the reader (see
Exercise 2). This proves the claim, and the proposition follows immediately. 0
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The Dimension of an Affine Variety
Considered as a vector space over k, the polynomial ring k[XI, .. . , x,,] has infinite
dimension, and the same is true for any nonzero ideal (see Exercise 3).To get something
finite-dimensional, we will restrict ourselves to polynomials of total degree j; s. Hence,
we let

denote the set of polynomials of total degree x s in k[XI, . . . , x,,]. By Lemma 4 of
§2, it follows that k[XI, .. . , x"]::J is a vector space of dimension ("~S) . Then, given an
ideal [ C k[XI, . .. , x,,], we let

[::J = [ n k[XI, . .. , x"l::J
denote the set of polynomials in [ of total degree g s. Note that [::s is a vector subspace
of k[XI, . . . , x"l=:< . We are now ready to define the affine Hilbert function of l.

Definition 2. Let [ be an ideal in k[XI, . . . , x,,]. The affine Hilbert function of [ is
the function on the nonnegative integers s defined by

"HF, (s) = dim k[XI, , x,tl=:</!sv

= dim k[XI, , x"l ::J - dim [::J
(where the second equality is by Proposition l ).

With this terminology, the results of §2 for monomial ideals can be restated as follows .

Proposition 3. Let [ be a proper monomial ideal in k[XI, . . . , x,,].
(i) For all s ~ 0, "HF, (s) is the number ofmonomials not in [ oftotal degree-c s.
(ii) For all s sufficiently large, the affine Hilbertfunction of [ is given by a polynomial

function

"HF,(s) = i: b; ( s .),
;=0 d-I

where b, E 7Land bo is positive.
(iii) The degree of the polynomial in part (ii) is the maximum ofthe dimensions of the

coordinate subspaces contained in V(l) .

Proof. To prove (i), first note that lxa : lad ::: s} is a basis ofk[x) , . . . , x,,]=:< as a vector
space over k. Further, Lemma 3 of Chapter 2, §4 shows that [x" : lal ::: s, xa E l}
is a basis of [::J' Consequently, the monomials in lx a : lal ::: s, x a ~ l} are exactly
what we add to a basis of [::J to get a basis of k[XI , . .. , x"]::J' It follows from the
proof of Proposition I that {[xa ] : lal ::: s, x" ~ l} is a basis of the quotient space
k[x] , . .. , x,,]=:< / [::J, which completes the proof of (i).
Parts (ii) and (iii) follow easily from (i) and Proposition 7 of §2. 0

We are now ready to link the ideals of §2 to arbitrary ideals in k[XI, . .. , x,,]. The
key ingredient is the following observation due to Macaulay. As in Chapter 8, §4, we
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say that a monomial order> on k[XI, . . . , XII] is a graded order if XU > x fJ whenever
lui> 1,81.

Proposition 4. Let 1 C k[x\, . .. , XII] be an ideal and let> be a graded order on
k[XI, . .. , x,.], Then the monomial ideal (LT(l») has the same affine Hilbert function
as I .

Proof. Fix s and consider the leading monomials LM(f) of all elements of I E I::,s'
There are only finitely many such monomials, so that

(1) (LM(f) : I E 19 } = (LM(fJ), . .. , LM(/'II)}

for some polynomials II, . . . , 1m E I::,s' By rearranging and deleting duplicates , we
can assume that LM(fI) > LM(!2) > . .. > LM(fm) ' We claim that II, .. . , /'11 are a
basis of I::,s as a vector space over k.
To prove this, consider a nontrivial linear combination aI II +...+am 1m and choose

the smallest i such that a ; ::j:: O. Given how we ordered the leading monomials , there
is nothing to cancel a,LT(f;), so the linear combination is nonzero. Hence, II, . .. , /'11
are linearly independent. Next, let W = [II, . . . , 1m] c I::,s be the subspace spanned
by II, . . . , 1m . If W ::j:: 1::,s , pick IE/::,s - W with LM(f) minimal. By (I), LM(f) =
LM(f;) for some i , and, hence, LT(f) = ALT(f;) for some A E k. Then I - Af; E I::,s
has a smaller leading monomial , so that I - Af; E W by the minimality of LM(f). This
implies lEW, which is a contradiction. It follows that W = [II, ... , 1m] = 19 ,
and we conclude that I I, . .. , 1m are a basis.
The monomial ideal (LT(l») is generated by the leading terms (or leading mono-

mials) of elements of I. Thus, LM(f;) E (LT(l»)::,s since t. E 19 , We claim that
LM(fd , . .. , LM(fm) are a vector space basis of (LT(l»)::,s. Arguing as above, it is easy
to see that they are linearly independent. It remains to show that they span, i.e., that
[LM(fI) , .. . , LM(fm)] = (LT(l)}::,s ' By Lemma 3 of Chapter 2, §4, it suffices to show
that

(2) (LM(fd, . . . , LM(/'II)} = (LM(f) : I E I , LM(f) has total degree ~ s}.

To relate this to (I), note that> is a graded order, which implies that for any nonzero
polynomial I E k[XI, .. . , XII] ' LM(f) has the same total degree as I. In particular, if
LM(f) has total degree ~ s , then so does I ,which means that (2) follows immediately
from (I) .
Thus, l ::,s and (LT(l)}9 have the same dimension (since they both have bases

consisting of m elements) , and then the dimension formula of Proposition I implies
that

"HF,(s) = dim k[XI, , xlI]::,s/l::,s

= dim k[XI, , xlI]::,s/(LT(l)}::,s = aHF(LT(/)(s).

This proves the proposition . o

If we combine Propositions 3 and 4, it follows immediately that if 1 is any ideal in
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k[Xt , . . . , XII] and s is sufficiently large, the affine Hilbert function of I can bewritten

lIHF,(s) = tbi(d ~ i).
where the b, are integers and bo is positive . This leads to the following definition.

Definition 5. The polynomial which equals lIHF, (s) for sufficiently large s is called
the affine Hilbert polynomial of I and is denoted lIHP, (s).

As an example, consider the ideal I = (x3y2+ 3x2y2 + l + I) C k[x, y]. If we
use grlex order, then (LT(I) ) = (x 3l ), and using the methods of §2, one can show
that the number of monomials not in (LT(I)) of total degree x s equals 5s - 5 when
s ::: 5. From Propositions 3 and 4, we obtain

lIHF,(s) = lIHF(LT(I»(S) = 5s - 5

when S ::: 5. It follows that the affine Hilbert polynomial of I is

lIHP,(s) = 5s - 5.

By definition, the affine Hilbert function of an ideal I coincide s with the affine
Hilbert polynomial of I when s is sufficiently large. The smalle st integer So such that
lIHP , (s) = "HF, (s) for all s ::: So is called the index ofregularity of I. Determining
the index of regularity is of considerable interest and importance in many computations
with ideals, but we will not pursue this topic in detail here.
We next compare the degrees of the affine Hilbert polynomials for I and .Ji,

Proposition 6. If I C k[XI, . . . , XII] is an ideal, then the affine Hilbert polynomials
of I and .Ji have the same degree.

Proof. For a monomial ideal I , we know that the degree of the affine Hilbert polynomial
is the dimension of the largest coordinate subspace of k" contained in V(I). Since
V(I) = V(.Ji), it follows immediately that lIHP, and lIHP .[1 have the same degree.
Now let I be an arbitrary ideal in k[xt , . . . , XII] and pick any graded order> in

k[x) , .. . , XII] ' We claim that

(3) (LT(I)) C (LT(v'l)) C J(LT(I)).

The first containment is immediate from I C .Ji.To establish the second, let xa be
a monomial in (LT(.J7)) . This means that there is a polynomial f E .Ji such that
LT(f) = x". We know rEI for some r ::: 0, and it follows that x'" = LT(fr) E
(LT(I)) . Thus, xa E J{LT(I)).
In Exercise 8, we will prove that if I, c 12 are any ideals of k[XI, . . . , XII], then

deg "HP '2::: deg lIHP". If we apply this fact to (3), we obtain the inequalities

deg "HP J(LT(/ )} ::: deg lIHP(LT( .[1)} ::: deg lIH P(LT(/ » '

By the result for monomial ideals , the two outer terms here are equal and we conclude
that "HP (LTU» and t1HP (LT(.[1 » have the same degree . By Propos ition 4, the same is
true for °HP, and °HP .[1 , and the proposition is proved . 0
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This proposition is evidence for something that is not at all obvious, namely, that the
degree of the affine Hilbert polynomial has geometric meaning in addition to its alge-
braic significance in indicating how far !<s is from being all of k[XI, .. . , xlI ]« .Recall
that V(I) = Ve../i) for all ideals. Thus,the degree of the affine Hilbert polynomial is
the same for a large collection of ideals defining the same variety. Moreover, we know
from §2 that the degree of the affine Hilbert polynomial is the same as our intuitive
notion of the dimension of the variety of a monomial ideal. So it should be no surprise
that in the general case , we define dimension in terms of thedegree of the affine Hilbert
function.

Definition 7. The dimension ofan affine variety V C k" , denoted dim V. is the degree
ofthe affine Hilbert polynomial ofthe corresponding ideal! = I(V) C k[XI, .. . , XII]'

As an example, consider the twisted cubic V = V(y - x 2 , Z - x 3) C 1R3• In
Chapter 1, we showed that! = leV) = (y - x2, Z - x3) C lR[x, y , z]. Using
grlex order, a Groebner basis for ! is {y3 - Z2, x2 - y , xy - z, xz - y2), so that
(LT(I») = (y3, x 2, xy, xz) , Then

dim V = deg °HP/

= deg °HP(LT(/»
= maximum dimension of a coordinate subspace in V«LT(I»))

by Propositions 3 and 4. Since

Ve(LT(I»)) = vel, x 2, xy, XZ) = vex, y) c 1R3,

we conclude that dim V = 1. This agrees with our intuition that the twisted cubic
should be I-dimensional since it is a curve in 1R3•
For another example, let us compute the dimension of the variety of a monomial

ideal. In Exercise 10, you will show that I(V(I)) = ../i when I is a monomial ideal
and k is infinite. Then Proposition 6 implies that

dim V(I) = deg °HP1(V(!) = deg °HP -J] = deg °HP t ,

and it follows from part (iii) or Proposition 3 that dim V(I) is the maximum dimension
of a coordinate subspace contained in V(I) . This agrees with the provisional definition
of dimension given in §2. In Exercise 10, you will see that this can fail when k is a finite
field.
An interesting exceptional case is the empty variety. Note that 1 E I(V) if and only

if k[Xl, ... ,xlI]::;s = leV)::;s for all s. Hence,

V = 0 {=::> °HP1(V) = O.

Since the zero polynomial does not have a degree, we do not assign a dimension to the
empty variety.
One drawback of Definition 7 is that to find the dimension of a variety V, we need to

know leV), which, in general , is difficult to compute. It would be much nicer if dim V
were the degree of "H P t . where! is an arbitrary ideal defining V. Unfortunately, this
is not true in general. For example, if ! = (x2 + y2) C lR[x, y], it is easy to check
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that aHP , (s ) has degree 1. Yet V = V(I) = (O,O)} C IR2 is easily seen to have
dimension O. Thus, dim V(I) -::f. deg "HP, in this case (see Exercise II for the details) .
When the field k is algebraically closed, these difficulties go away. More precisely.

we have the following theorem that tells us how to compute the dimension in terms of
any defining ideal.

Theorem 8 (The Dimension Theorem). Let V = V(I) be an affine variety. where
I C k[XI, . . . , XII} is an ideal. If k is algebraically closed. then

dim V = deg aHP, .

Furthermore . if> is a graded order on k[XI, . . . , XII}, then

dim V = deg aHP(LT(/»
= maximum dimension of a coordinate subspace in V«LT(I)}).

Finally. the last two equalities hold over any field k when I = I(V).

Proof. Since k is algebraically closed, the Nullstellensatz implies that I(V) =
I(V(I» = fl.Then

dim V = deg aHP1(V) = deg "HP.Ji = deg "HP,.

where the last equality is by Proposition 6. The second part of the theorem now follows
immediately using Propositions 3 and 4. 0

In other words, over an algebraically closed field, to compute the dimension of a
variety V = V(I), one can proceed as follows :
• Compute a Groebner basis for I using a graded order such as grlex or grevlex .
• Compute the maximal dimension of d of a coordinate subspace contained in
V«LT(I)}) . Note that Proposition 3 of §I gives an algorithm for doing this.

Then dim V = d follows from Theorem 10.

The Dimension of a Projective Variety
Our discussion of the dimension of a projective variety V C !P"(k) will parallel what we
did in the affine case and, in particular, many of the arguments are the same.We start by
defining the Hilbert function and the Hilbert polynomial for an arbitrary homogeneous
ideal I c k[xo, . . . , XII} '
As we saw in §2, the projective case uses total degree equal to s rather than ~ s .

Since polynomials of total degree s do not form a vector space (see Exercise 13) , we
will work with homogeneous polynomials of total degree s . Let

k[xo, ... , xlll,
denote the set of homogeneous polynomials of total degree s in k[xo• . . . , XII} ' together
with the zero polynomial. In Exercise 13, you will show that k[xo, . .. , XII1, is a vector
space of dimension ("; '). If I C k[xo, . . . , XII} is a homogeneous ideal, we let

I , = I nk[xo, ... ,xII1,
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denote the set of homogeneous polynomials in I of total degree s (and the zero poly-
nomial). Note that Is is a vector subspace of k[xQ, . . . , XII ]s . Then the Hilbert function
of I is defined by

H F, (s) = dim k[xQ, . .. , xlI]s/Is.

Strictly speaking, we should call this the project ive Hilbert function, but the above
terminolog y is customary in algebraic geometry.
When I is a monomial ideal, the argument of Propos ition 3 adapts easily to show

that HF, (s) is the number of monomials not in I of total degree s. It follows from
Proposit ion 8 of §2 that, for s sufficiently large, we can express the Hilbert function of
a monomial ideal in the form

(4)

where b, E Z and bQ is positive. We also know that d is the largest dimension of a
projective coordinate subspace contained in V(l) C IP"(k) .
As in the affine case , we can use a monom ial order to link the Hilbert function of a

homogeneous ideal to the Hilbert function of a monomial ideal.

Proposition 9. Let I C k[xQ, . . . , XII] be a homogeneous ideal and let> be a mono-
mial order on k[xo, ... , xill. Then the monomial ideal (LT(l») has the same Hilbert
function as I .

Proof. The argument is similar to the proof of Proposition 4. However, since we do
not require that> be a graded order, some changes are needed.
For a fixed s, we can find /1 , . .. , f,,, E I, such that

(5) {LM(f) : / E Is} = {LM(fd , ... , LM(fm))

and we can assume that LM(fI) > LM(f2) > .. . > LM(f,,,). As in the proof of
Proposition 4, / 1, .. . , /m form a basis of Is as a vector space over k.
Now consider {LT(l )}, . We know LM(f;) E (LT(l»), since f; E Is and we need to

show that LM(fI), . . . , LM(f,,,) form a vector space basis of (LT(l)}s . The leading terms
are distinct , so, as above, they are linearly independent. It remains to prove that they
span. By Lemma 3 of Chapter 2, §4, it suffices to show that

(6) {LM(fI), . .. , LM(f,,, ) } = {LM(f) : / E I,LM(f) has total degrees).

To relate this to (5), suppose that LM(f) has total degree s for some / E I. If we write
/ as a sum of homogeneous polynomials / = Li hi, where hi has total degree i, it
follows that LM(f) = LM(hs ) ' Since I is a homogeneous ideal, we have h, E I .Thus,
LM(f) = LM(h,) where n, E I" and, consequently, (6) follows from (5). From here ,
the argument is identical to what we did in Proposition 4, and we are done . 0

Ifwe combine Proposition 9 with the description of the Hilbert function for a mono-
mial ideal given by (4), we see that for any homogeneous ideal I C k[xQ, . .. ,x,, ], the
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Hilbert function can be written

HFI(s) = t b;( s .)
;=0 d-I

for s sufficiently large. The polynomial on the right of this equation is called theHilbert
polynomial of I and is denoted HPI(s) .
Wethen define the dimension of a projective variety in terms of the Hilbert polynomial

as follows.

Definition 10. The dimension of a projective variety V C 1P" (k) , denoted dim V.
is the degree of the Hilbert polynomial of the corresponding homogeneous ideal I =
I(V) C k[xo, .. • , XII]'

Over an algebraically closed field, we can compute the dimension as follows .

Theorem 11 (The Dimension Theorem). Let V = V(l) C 1P"(k) be a projective
variety, where I C k[xo • . . . , XII] is a homogeneous ideal . If V is nonempty and k is
algebraically closed, then

dim V = deg HP I .

Furthermore,for any monomial order on k[xo , •.. ,XII] ' we have

dim V = deg H P (LT(lJ)

= maximum dimension of a projective coordinate subspace in V«LT(l») .

Finally, the last two equalities hold over any field k when I = I(V).

Proof. The first step is to show that I and ../i have Hilbert polynomials of the same
degree. The proof is similar to what we did in Proposition 6 and is left as an exercise.
By the projective Nullstellensatz. we know that I(V) = I(V(l)) = ../i. and. from

here. the proof is identical to what we did in the affine case (see Theorem 8). 0

For our final result, we compare the dimension of affine and projective varieties.

Theorem 12.
(i) Let I C k[xo, . . . , XII] be a homogeneous ideal. Then.for s ::: I. we have

HFI(s) = "HFI(s) - "HFI(s - 1).

There is a similar relation between Hilbert polynomials. Consequently, if V C
1P" (k) is a projective variety and Cv C k"+1 is its affine cone (see Chapter 8, §3).
then

dim Cv = dim V + I.

(ii) Let I C k[XI , . . . • XII] be an ideal and let I " C k[xo• . . . • XII] be its
homogenization with respect to Xo (see §4). Then for s ::: 0, we have

"HFI(s ) = HFI"(s).
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There is a similar relation between Hilbert polynomials. Consequently, if V C k"
is an affine variety and V C IP"(k) is its projective closure (see Chapter 8. §4),
then

dim V = dim\!.

Proof. We will use the subscripts a and p to indicate the affine and projective cases
respectively. The first part of (i) follows easily by reducing to the case of a monomial
ideal and using the results of §2. We leave the details as an exercise . For the second
part of (i), note that the affine cone Cv is simply the affine variety in k,,+1 defined
by I,,(V). Further, it is easy to see that 1,,(Cv) = I,,(V) (see Exercise 19). Thus , the
dimensions of V and Cv are the degrees of HPlp(v) and "HP1p(v), respectively. Then
dim Cv = dim V + 1 follows from Exercise 15 of §2 and the relation just proved
between the Hilbert polynomials.
To prove the first part of (ii), consider the maps

rjJ : k[XI , , xlI ]9 ---+ k[xo, , xlll"

1/1 : k[ xo, , xll l , ---+ k[XI , , x,,]::s

defined by the formulas

rjJ(f) = x~f (~ , . .. , XII) for f E k[XI, . . . , x,,]::s'
Xo Xo

1{f(F) = F(l, XI. ·· ·. XII) for F E k[xo , .. .• x"ls·

We leave it as an exercise to check that these are linear maps that are inverses of each
other, and, hence , k[XI , . . . , xlll::s and k[xo, . .. , xlll, are isomorphic vector spaces .
You should also check that if f E k[x} , . . . , x lI ]9 has total degree d ::: s, then

rjJ(f) = x~-d fir,

where fir is the homogenization of f as defined in Proposition 7 of Chapter 8, §2.
Under these linear maps, you will check in the exercises that

rjJ (l::s) C 1,1r,

1/1(/;') c I =:< ,

and it follows easily that the above inclusions are equalities. Thus , I::s and I;' are also
isomorphic vector spaces.
This shows that k[XI, .. . , xllk, and k[xo , . . .• xlll, have the same dimension, and

the same holds for f ::s and I;.Bythe dimension formula of Proposition I, we conclude
that

"HP,(s) = dim k[XI, , x,,]=:</ f =:<

=dimk[xo, ,x,,]s/ I;' = HP,,,(s),

which is what we wanted to prove.
For the second part of Oi), suppose V C k" . Let I = I" (V) C k[XI, . .. , XII] and let

fir C k[xo, . . . ,XII] be the homogenization of I with respect to xo. Then \! is defined
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to be Vp(lh) C ]p ll (k) . Furthermore, we know from Exercise 8 of Chapter 8, §4 that
I h = Ip(V).Then

dim V = deg aHP, = deg HP", = dim V
follows immediately from the first part of (ii), and the theorem is proved. 0

Some computer algebra systems can compute Hilbert polynomials. REDUCE has
a command to find the affine Hilbert polynomial of an ideal, whereas Macaulay and
CoCoA'will compute the projective Hilbert polynomial of a homogeneous ideal.

EXERCISES FOR§3

I. In this exercise, you will verify that if V is a vector space and W is a subspace of V, then
V/ W is a vector space.
a. Show that the relation on V defined by v ~ u' if v - v' E W is an equivalence relation.
b. Show that the addition and scalar multiplication operations on the equivalence classes

defined in the text are well-defined. That is, if v, v', w , W' E V are such that [v] = [v']
and [w] = [w '], then show that [v + w] = [v' + w'] and [av] = [av'] for all a E k ,

c. Verify that V / W is a vector space under the operations given in part b.
2. Let V be a finite-dimensional vector space and let W be a vector subspace of V . If

{VI , . •. , vm, Vm+l • . . . , v ",+n I is a basis of V such that IVI , . • . , v ",} is a basis for W , then
show that {[vm+ I], . . . , [vm+n II are linearly independent in V/ W.

3. Show that a nonzero ideal / c k[XI, . .. , xn ] is infinite-dimensional as a vector space over
k. Hint: Pick f i- 0 in / and consider x" f .

4. The proofs of Propositions 4 and 9 involve finding vector space bases of k[x" . . . , x,,]:; ,
and k[XI' . .. , x"1, where the elements in the bases have distinct leading terms . We showed
that such bases exist, but our proof was nonconstructive. In this exercise, we will illustrate
a method for actually finding such a basis . We will only discuss the homogeneous case, but
the method applies equally well to the affine case .
The basic idea is to start with any basis of / , and order the elements according to their

leading terms. If two of the basis elements have the same leading monomial , we can replace
one of them with a k-linear combination that has a smaller leading monomial. Continuing
in this way, we will get the desired basis.
To see how this works in practice, let / be a homogeneous ideal in k[x , vl. and suppose

that Ix 3 - xy2, x3 + x2y - Z3, x 2y - y3} is a bas is for /3' We will use grlex order with
x c- y.
a. Show that if we subtract the first polynomial from the second, leav ing the third polynomial

unchanged, then we get a new basis for /3'
b. The second and third polynomials in this new basis now have the same lead ing monomial.

Show that if we change the third polynomial by subtracting the second polynomial from
it and mult iplying the result by -I , we end up with a basis [x 3 - xy2. x2Y+ xy2 - Z3,
xy2+ i - Z3} for /3 in which all three leading monomials are distinct.

5. Let / = (x 3 - xyz. l - xYZ2, xy - Z2). Using grlex order with x > y > z find a bases
of /3 and /4 where the elements in the bases have distinct leading monomials. Hint: Use the
method of Exercise 4.

6. Use the methods of §2 to compute the affine Hilbert polynomials for each of the following
ideals .
a. / = (x 3y , xy2) C k[x, y] .
b. / = (X3y2 + 3x2y2 + y3 + I) C k[x. y) .
c. / = (X3YZ5 ,xy3Z2 ) C k[x ,y. z].
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d. 1= (X3 - YZ2. y4 - x2yZ) C k(x, y, zl.
7. Find the index of regularity [that is. the smallest So such that "HFI (s) = "H PI (s) for all
s ~ sol for each of the ideals in Exercise 6.

8. In this exercise. we will show that if II c h are ideals in k[X I, . . . • x, I. then

deg "HP12 :5 deg "HP/, .

a. Show that II C h impl ies C«LT(l2») c C«LT(lI))) in Z~o'

b. Show that for s ~ 0, the affine Hilbertjimctions satisfy the inequality

c. From part b, deduce the desired statement about the degrees of the affine Hilbert poly -
nomials. Hint: Argue by contradiction and consider the values of the polynomials as
s ~ 00.

d . If II c I: are homogeneous polynomials in k(xo • . . . • x, I. prove an analogous inequality
for the degrees of the Hilbert polynomials of II and 12.

9. Use Definition 7 to show that a point p = (ai, .. . , a,,) E k" gives a variety of dimension
zero. Hint: Use Exercise 7 of Chapter 4, §5 to describe I({p}).

10. Let I C k[xlo . . . • xnl be a monomial ideal, and assume that k is an infinite field. In this
exercise, we will study I(V(l».
a. Show that I(V(x", . .. , Xi,» = (X i" • • • , X i,). Hint : Use Proposition 5 of Chapter I , §1.
b. Show that an intersection of monomial ideals is a monomial ideal. Hint: Use Lemma 3

of Chapter 2, §4.
c. Show that I(V(l» is a monomial ideal. Hint: Use parts a and b together with Theorem

15of Chapter 4. §3.
d. The final step is to show that I (V(l » = -17. We know that -17 c I(V(l», and since

I (V(l » is a monomial ideal. you need only prove that r" E I(V(l» implies that x'" E I
for some r > O. Hint : If I = (m I • . .. , m,) and x'" rf. I for r > O. show that for every j,
there is x., such that Xi) divides m j but notr" . Use Xi , • • • • , Xii to obtain a contradiction.

e . Let IF2 be a field with of two elements and let I = (x) c IF2 (x , yl. Show that I (V(/ » =
(x , y 2 - y). This is bigger than -17 and is not a monomial ideal.

II. Let 1= (x 2 + y2) C 1R2.
a. Show carefully that deg "HP I has degree I.
b. Use Exercise 9 to show that dim V(l) =O.

12. Compute the dimension of the affine varieties defined by the following ideals. You may
assume that k is algebraically closed.
a. I = (x z, xy - I ) c k[x. y . zl.
b. 1= (zw - i ,xy - Z3) C k[x, y . z, wI.

13. Consider the polynomial ring k[xo • . . . , x,,) .
a. Given an example to show that the set of polynomials of total degree s is not closed under

addition and. hence. does not form a vector space.
b. Show that the set of homogeneous polynomials of total degree s (together with the zero

polynomial) is a vector space over k.
c. Use Lemma 5 of §2 to show that this vector space has dimension (";l Hint: Consider

the number of polynomials of total degree :5 sand :5 s - I.
d. Give a second proof of [he dimension formula of part c using the isomorphism of Exercise

20 below.
14. If I is a homogeneous ideal, show that the Hilbert polynomials HPI and HP-Ii have the

same degree. Hint : The quickest way is to use Theorem 12.
IS. We will study when the Hilbert polynomial is zero.
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a. If 1 C k[xo•. . . • x.,) is a homogeneous ideal, prove that (xo• . . . x..)' c 1 for some
r :::: 0 if and only if the Hilbert polynomial of 1 is the zero polynomial.

b. Conclude that if V C IP" (k) is a variety . then V = 0 if and only if its Hilbert polynomial
is the zero polynomial. Thus. the empty variety in IP" (k) does not have a dimension.

16. Compute the dimension of the following projective varieties. Assume that k is algebraically
closed.
a. 1 = (x2 - y2, x 3 - x2y + i) c k[x . y. zl.
b. 1 = (y2 - xz, x2y - Z2W, x3 - yzw) C k[x . y. z, wI.

17. In this exercise. we will see that in general, there is no relation between the number of variables
n , the number r of polynomials in a basis of I, and the dimension of V . Let V C 1P3(k)

be the curve given by the projective parametrization x = 13u2 , Y = 14U, Z = IS . W = us .
Since this is a curve in 3-dimens ional space , our naive intuition would lead us to believe that
V should be defined by two equations. Assume that k is algebraically closed.
a. Use Theorem 12 of Chapter 8, §5 to find an ideal 1 C k[x, y. z. w) such that V =V(l)

in IPJ (k) . If you use grev lex for a certain ordering of the variables. you will get a basis of
1 containing three elements .

b. Show that /2 is I-dimensional and /3 is 6-dimensional.
c. Show that / cannot be generated by two elements. Hint: Suppose that 1 = (A . B), where

A and B are homogeneous. By considering /2, show that A or B must 'be a multiple of
y2 _ xz, and then derive a contradiction by looking at I J•

A much more difficult question would be to prove that there are no two homogeneous
polynomi als A, B such that V = VeA, B) .

18. Th is exercise is concerned with the proof of part (i) of Theorem 12.
a. Use the methods of §2 to show that "HF I (s) = "HF I (s) - "HF I (s - I) whenever 1 is

a monomial ideal.
b. Prove that HF1(s) = "HFI (s) - "HFd s - I) for an arbitrary homogeneous ideal l.

19. If V c 1P"(k) is a projective variety and Cv C ku+1 is its affine cone , then prove that
I I'(V) = I ,,(Cv ) ink[xo • . . . • x ..).

20. This exercise is concerned with the proof of part (ii) of Theorem 12.
a. Show that the maps <p and 1/J defined in (7) are linear maps and verify that they are inverses

of each other.
b. Prove (8) and conclude that <P : /:0> -+ I;' is an isomorphism whose inverse is 1/J.

§4 Elementary Properties of Dimension

Using the definition of the dimension of a variety from §3, we can now state several
basic properties of dimension. We first observe the following.

Proposition 1. Let VI and V2 be projective or affine varieties over an arbitrary field
k.lfVt C V2. then dim VI s dim V2·

Proof. We leave the proof to the reader as Exercise 1. o

We next will study the relation between the dimension of a variety and the number
of defining equations. We begin with the case where V is defined by a single equation.
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Proposition 2. Let k be an algebraically closed field and let I E k[xo• . . . • XII ] be a
nonconstant homogeneous polynomial. Then the dimension 01the projective variety in
IP" (k) defined by I is

dim V(f) = n - I.

Proof. Fix a monom ial order > on k[xo• . . . . x,,]. Since k is algebraically closed , The -
orem I I of §3 says the dimension of V(f) is the maximum dimension of a projective
coordinate subspace contained in V((LT(l ))), where I = (f) . One can check that
(LT(l) ) = (LT(f)), and since LT(f) is a nonconstant monomial. the projective vari-
ety V(LT(f)) is a union of subspaces of IP" (k) of dimension n - I. It follows that
dim V(l ) = n - I. 0

Thu s, when k is algebrai cally closed. a hypersurface V(f) in IP" always has dimen-
sion n - I. We leave it as an exercise for the reader to prove the analogous statement
for affine hypersurfaces.
It is important to note that these results are not valid if k is not algebraically closed.

For instance. Jet J = (x2 +y2) in IR[x ,y]. In §3, we saw that V(f) = ((0. D)} C 1R2
has dimension 0, yet Proposition 2 would predict that the dimension was I. In fact, over
a nonalgebr aicall y closed field , the variety in k" or jp" defined by a single polynomial
can have any dimen sion between 0 and n - I.
The following proposition establishes the analogue ofProposition 2 when the ambient

space IP" (k) is replaced by an arbitrary variety V . Note that if I is an ideal and I is a
polynom ial, then V(l + (f)) = V(l) n V(f).

Theorem 3. Let k be an algebraica lly closed field and let I be a homogeneous ideal
in k[xo , .. . • XII ] ' II I is any nonconstant homogeneous polynomial . then

dim V(l ) ::: dim V(l + (f)) ::: dim V(l ) - 1.

Proof. To compute the dimen sion of V(I + (f)). we will need to compare the Hilbert
polynomials H PI and H PI+(f )' We first note that since I C I + (f), Exercise 8 of §3
implies that

deg HPI ::: deg HPI+ (f ),

from which we conclude dim V(l ) ::: dim V(l + (f) ) by Theorem 13 of §3.
To obtain the other inequality, suppose that I has total degree r > O. Fix a total

degree s ::: r and consider the map

tt : k[xo. . . . • xlll,/ I, ----+ k[xo, . . . • x"l,/(l + (f» s

which sends [g] E k[xo• . . . , x,,],/ I, to rr ([gJ) = [g] E k[xo•... , xlll./ (l + (f))s -
In Exercise 4. you will check that rr is a well-defined linear map . It is easy to see that
tt is onto , and to investigate its kernel, we will use the map

CY. j : k [xo xlI],-r/ ls-r ----+ k[xo, .. . • x"1,/1,
definedby send ing[h] E k[xo , ,xlll ,_r/ ls_r to CY. j( [h j) = [fh] E k[XI , . .. , x ,,], /I, .
In Exercise 5, you will show that CY. f is also a well-defined linear map.
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We claim that the kernel of tt is exactly the image of a f . i.e.. that

(1) cx f (k[xo• . . · , X,,] s-r/ls- r) = ([g] : rr([g]) = [01 in k[xo•... , x" J, l l s}'

To prove this, note that if h E k[xo, . " ,x"ls- r. then fh E (l + (f) , and. hence,
rr([fh]) = [0] in k[xo• . . . • x"l sl(l + (f ))s' Conversely. if g E k[xo• . . . • x"l s and
rr([g]) = [OJ, then g E (l + (f)s . Th is means g = g' + f h for some g' E 1. If
we write g' = L i g; and h = L i hi as sums of homogeneous polynomials, where
g; and hi have total degree i, it follows that g = g; + f h J - r since g and f are
homogeneous. Since I is a homogeneous ideal. we have g; E I " and it follows that
[g1= [fh ,-r1= cx f ([h ,-r]) in k[xo• . . . , x,,]sI I,. This shows that [g1is in the image
of a f and completes the proof of ( I) .
Since tt is onto and we know its kernel by (I ). the dimension theorem for linear

mappings shows that

dim k[xo. . . . , xnls/ls = dim Clf(k[xo, . . . • xnls- r/ls-r) + dim k[xo•. .. • xnls/(I + (f})s.

Now certa inly.

(2) dim a f (k [xo• . . . • x,,]s- rl I,-r) :so dim k[xo, .. . • x" ls- r/ I,-ro

with equality if and only if a f is one-to-one. Hence ,

dim k[xo• . . . • xll],I(l+(f) , ::: dim k[xo• . . . • xll]sl I, -dim k[xo, .. . • x,,],_rl I,_r .

In terms of Hilbert functions , this tells us that

H F'+(f )(s ) ::: H F, (s ) - H F, (s - r)

whenever s ::: r. Thus , if s is sufficiently large we obtain the inequality

(3)

for the Hilbert polynomials.
Suppo se that H P, has degree d .Then it is easy to see that the polynomial on the right-

hand side of (3) had degree d - I (the argument is the same as used in Exercise 16of
§2).Thus , (3) shows that H F'+(f )(s) is ::: a polynomial of degree d - I for s sufficiently
large , which implies deg H F'+(f '(s ) ::: d -I '[see, for example , part (c) of Exerc ise 8 of
§31. Since k is algebraically closed, we conclude that dim V(l + (f) ::: dim V (l ) - I
by Theorem 8 of §3. 0

By carefully analyzing the proof of Theorem 3. we can give a condit ion that ensures
that dim V(l + (f) = dim V(l) - 1.

Corollary 4. Let k be an algebraically closed field and let I C k[xo• . . . , x,,] be a
homogeneous ideal. Let f be a non constant homogeneous polynomial whose class in
the quoti ent ring k[xo, . . .• x;11I is not a zero divisor. Then

dim V(l + (f) = dim V(l ) - 1.

Proof. As we observed in the proof of Theorem 3, the inequality (2) is an equal ity
if the multipl ication map a f is one-to-one . We claim that the latter is true if [f] E
k[xo• . . . . x"11I is not a zero divisor. Namely, suppose that [h1E k[xo. . . . , x,,], I I, is



460 9. The Dimension of a Variety

nonzero . This implies that h ¢ Is and, hence, h ¢ I since Is = I n k[xo• . . . •x"l,.
Thus. [h) E k[xo• .. . , x"J/I is nonzero, so that [f][h) = [fh) is nonzero in
k[xo. " . • x"lf I by our assumption on I. Thus , f h ¢ I and, hence. a J ([h )) = [fh]
is nonzero in k[xo, . .. , x"I,f I, . This shows that CiJ is one-to-one.
Since (2) is an equality, the proof of Theorem 3 shows that we also get the equality

dim k[xo• . . . • x,,]./(/ + (f)), = dim k[xo• . . . • x,,],/ I , - dim k[xo • . . . ,x,.J,_r/ l,_r

when s 2: r. In terms of Hilbert polynomials, this says H p/+(J)(s ) = H p/ (s) -
H P, (s - r), and it follows immediately that dim V(l + (f)) = dim V(l) - I. 0

We remark that Theorem 3 can fail for affine varieties, even when k is algebraically
closed . For example . considerthe ideal I = (X2. yz) C <C[x . y, z],One easily sees that
in<c3,wehaveV(l) = V(z)UV(x. y).sothatV(l) is the union of the (x, y) -planeand
the z-axis. In particular.V(l) has dimension 2 (do you see why?). Now, let I = 2 - I E
<C[x. y, el.Then V(f) is the plane z = I and it follows that V(l + (f)) = V(l)nV(f)
consists of the single point (0, O. I) (you will check this carefully in Exercise 7). By
Exerc ise 9 of §3. we know that a point has dimension 0..Yet Theorem 3 would predict
that V(l + (f) had dimension at least I.
What goes "wrong" here is that the planes 2 = 0 and 2 = I are parallel and. hence.

do not meet in affine space. We are missing a component of dimension I at infinity. This
is an example of the way dimension theory works more satisfactorily for homogeneous
ideals and projective varieties. It is possible to formulate a version of Theorem 3 that
is valid for affine varieties. but we will not pursue that question here.
Our next result extends Theorem 3 to the case of several polynomial s II , ... , Ir.

Proposition 5. Let k be an algebraically closed field and let I be a homogeneous
ideal ill k[xo, .. .• x,,). Let I I, . .. , Ir be nonconstant homog eneous polynomials in
k[xo• . . . , x"l. Then

dim V(l + (fI, . . . , Ir)) 2: dim V(l ) - r .

Proof. The result follows immediately from Theorem 3 by induction on r . 0

In the exerci ses. we will ask you to derive a condition on the polynomials II. . . . . Ir
which guarantees that the dimensi on of V(l + (fl ... . , Ir) is exactly equal to n - r.
Our next result concerns varieties of dimension O.

Proposition 6. Let V be a nonempty affine or projective variety. Then V consists 01
finitely many points ifand only ifdim V = O.

Proof. We will give the proof only in the affine case. Let > be a graded order on
k[XI , . . . • x,,). If V is finite, then let ar. for j = I, . . . , m., be the dist inct elements of
k appearing as ith coordinates of points of V. Then

I1l j

1= n (Xi -aj ) E I (V )
j = 1
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and we conclude that LT(f) = X;I; E (LT(I(V))) . This implies that V«LT(I(V)))) =
(OJ and then Theorem 8 of §3 implies that dim V = O.
Now suppose that dim V = O. Then the affine Hilbert polynomial of I(V) is a

constant C, so that

dim k[XI , . . . ,x,J:,:s/I(V)::s = C

for s sufficiently large. Ifwe also haves:::: C, then the classes [I], [Xi], [xi
2]. . . • , [Xi'] E

k[XI , . . . ,x,,]::s/I(V):,:s are s + I vectors in a vector space of dimension C ~ sand,
hence, they must be linearly dependent. But a nontrivial linear relat ion

means that L~=o ajx( is a nonzero polynomial in I(V):,:s . This polynomial vanishes
on V, which implies that there are only finitely many distinct ith coordinates among
the points of V. Since this is true for all I ~ i ~ n, it follows that V must be finite. 0

If, in addition,k is algebraically closed, then we see that the six conditions of Theorem
6 of Chapter 5, §3 are equivalent to dim V = O. In particular, given any defining ideal
I of V, we get a simple criterion for detecting when a variety has dimension O.
Now that we understand varieties of dimension 0, let us record some interesting

properties of posit ive dimensional varieties.

Proposition 7. Let k be algebraically closed.
(i) Let V C IP"(k) be a projective variety ofdimension > O. Then V n V(f) =1= 0for

every nonconstant homogeneous polynomiaL f E k[xo, . . . , x"l. Thus, a positive
dimensional projective variety meets every hypersurface in IP"(k) .

(ii) Let W C k" be an affine variety ofdimension> O. If W is the projective closure
ofW in 1P"(k) , then W =1= W. Thus, a positive dimensional affine variety always
has points at infinity.

Proof. (i) Let V = V(l) . Since dim V > 0, Corollary 4 shows that dim V n V(f) ::::
dim V-I:::: O. Let us check carefully that this guarantees V n V(f) =j:. 0.
If V n V(f) = 0, then the projective Nullstellensatz implies that (xo, . . . , x,,)' C

I + (f) for some r :::: O. By Exercise 15 of §3, it follows that HPI+(f} is the zero
polynomial. Yet if you examine the proofof Theorem 3, the inequality given for HPI +<! }
shows that this polynomial cannot be zero when dim V > O. We leave the details as
an exercise.
(ii) The points at infinity of Ware W n V(xo), where V(xo) is the hyperplane at

infinity. By Theorem 12 of §3, we have dim W = dim W > 0, and then (i) implies
that W n V(xo) =1= 0. 0

We next study the dimension of the union of two varieties.

Proposition 8. If V and Ware varieties either both in k" or both in IP"(k) , then

dim(V U W) = max(dim V , dim W) .
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Proof. The proofs for the affine and projective cases are nearly identical, so we will
give only the affine proof. If k is a finite field, V, W, and V U Ware finite and, hence
have dimension 0 by Proposition 6. So we can assume that k is infinite.
Let I = I (V ) and J = I (W ), so that dim V = deg "H PI and dim W = degaHP J .

By Theorem 15 of Chapter 4, §3, I (V U W) = I(V) n I (W ) = I n J . It is more
convenient to work with the product ideal I J and we note that

IJc/nJCm

(see Exercise 15). By Exercise 8 of §3. we conclude that

degaHP .m :::: deg "HPlnJ s degaHP/J .

Proposition 6 of §3 says that the outer terms are equal. We conclude that dim (V UW =
deg "HP 1J ·
Now fix a graded order > on k[xl • . . . • x ,,]. By Propositions 3 and 40f §3, it follows

that dim V, dim W, and dim(V U W) are given by the maximal dimension of a coor-
dinate subspace contained in V( (LT(l))), V( (LT(J))) and V( (LT(l J))) respectively. In
Exercise 16, you will prove that

(LT(l J)) = (LT(l)) . (LT(J)) .

This implies

V((LT(l J )) ) = V((LT(l))) U V((LT(J)) ).

Since k is infinite, every coordin ate subspace is irreducible (see Exercise 7 of §I), and
as a result. a coord inate subspace is contained in V( (LT(l J )) ) if and only if it lies in
either V ( (LT(l )) ) or V((LT(J» ). From here , it follows immediately that dim (V U W)
is the maximum of dim V and dim W . 0

This propo sition has the following useful corollary.

Corollary 9. The dimension of a variety is the largest of the dimensions of its
irreducible components.

Proof. If V = VI U . .. U Vr is the decomposition of V into irreducible components.
then Proposition 8 and an induction on r shows

dim V = max{dim VI," " dim Vrl,

as claimed. o
This corollary allows us to reduce to the case ofan irreduc ible variety when computing

dimensions. The following result shows that for irreducible varieties. the notion of
dimension is especially well-behaved.

Proposition 10. Let k be an algebraically closed field and let V C IP" (k ) be an
irreducible variety.
(i ) If f E k[xo• . . . , x.,I is a homogeneous polynomial which does not vanish on V .

then dim (V n V(f)) = dim V - I.
(ii) IfW C V is a variety such that W =1= V. then dim W < dim V.
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Proof. (i) By Proposition 4 of Chapter 5, §I, we know that I( V ) is a prime ideal and
k[Vl ~ k[xo• . . . • xlll/I(V) is an integral domain. Since f ¢ I(V). the class of f is
nonzero in k[xo , ... , xlll/I(V) and, hence, is not a zero divisor. The desired conclusion
then follows from Corollary 4.
(ii) If W is a proper subvariety of V , then we can find f E I (W) - I(V). Thus,

W C V n V(f), and it follows from (i) and Proposition I that

dim W ~ dim(V n V(fn = dim V-I < dim V.

This completes the proof of the proposition. o

Part (i) of Proposition 10 asserts that when V is irreducible and f does not vanish
on V, then some component of V n V(n has dimension dim V-I. With some more
work, it can be shown that every component of V nV(f) has dimension dim V-I .See,
for example, Theorem 3.8 in Chapter IV of KENDIG (1977) or Theorem 5 of Chapter I,
§6 of SHAFAREVICH (1974) .
In the next section, we will see that there is a way to understand the meaning of the

dimension of an irreducible variety V in terms of the coordinate ring k[Vl and the field
of rational functions key) of V that we introduced in Chapter 5.

EXERCISES FOR §4

I. Prove Proposition I. Hint: Use Exercise 8 of the previous section .
2. Let k be an algebraically closed field. If f E k[XI , . . . • x; I is a nonconstant polynomial,

show that the affine hypersurface V(f) C k" has dimens ion n - I.
3. In IR4

, give examples of four different affine variet ies, each defined by a single equation. that
have dimensions 0, 1,2.3. respect ively.

4. In this exercise . we study the mapp ing

zr : k[xo•. . . • x"I,/I. -->- k[xo • . . . . x,,),f(l + (f»,.
defined by 7f ([ g)) == [g I for all g E k [xo• . . . , x"1,.
a. Show that tt is well -defined . Thai is. show that the image of the class [g I does not depend

on which representative-g in the class thai we choose . We call tt the natural projection
from k[xo, . . . • x"l./I. to k[xo• . .. • x"I,f(l + (f»,.

b. Show that tt is a linear mapping of vector spaces.
c. Show that the natural projection tt is onto ,

5. Show thai if f is a homogeneous polynomial of degree r and I is a homogeneous ideal. then
the map

(X f : k[x, • . . . . x"l. -,f/, - , -->- k[xo • . . . • x"l. / I ,

defined by (X f([h]) = [f . hI is a well-defined linear mapping . Thai is, show thai (X f([h))
does not depend on the representative h for the class and thar (X preserves the vector space
operations.

6. Lei f E k[xo• . . . , xu] be a homogeneous polynomial of IotaI degree r > O.
a. Find a formula for the Hilberl polynomial of (f). Your formula should depend only on
nand r (and. of course, s). In part icular. all such polynomial s f have the same Hilbert
polynomial. Hint: Examine the proofs of Theorem 3 and Coroll ary 4 in the case when
I = {OJ .
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b. More generally, suppose that V = V(/) and that the class of f is not a zero divisor in
k[xo , .. . , x; JI I . Then show that the Hilbert polynomial of 1 + (f) depends only on V
and r.

If we vary f ,we can regard the varieties V(f) c IP"(k) as an algebraic family of hyper-
surfaces. Similarly, varying f gives the family of varieties V n V(f) . By parts a and b, the
Hilbert polynomials are constant as we vary f . In general, once a technical condit ion called
"flatness " is satisfied , Hilbert polynomials are constant on any algebraic families of varieties.

7. Let 1 = (xz. yz) . Show that V(/ + (z - I}) = {(O, 0, I)}.
8. Let R = k[ xo, . . . , x,,]. A sequence fl ' . . . , [, of homogeneous polynomials is called an
R-sequence if the class [fj+d is not a zero divisor in RI (fl ' . . . , h) for each I ::: j < r .
a. Show for example that for r ::: n , xo, . .. ,x, is an R-sequence .
b. Show that if k is algebraically closed and fl ' . . . , f, is an R-sequence, then

dim V(fl, . . . , f,) = n - r.

Hint: Use Corollary 4 and induction on r ,Work with the ideals I j = (fl' . . . , fj) for
I ::: j s r .

9. Let R = k[ xo, .. . , x,.l be the polynomial ring. A homogeneous ideal 1 is said to be a
complete intersection if it can be generated by an R-sequence. A projective variety V is
called a complete intersection if I( V) is a complete intersection .
a. Show that every irreducible linear subspace of IP" (k) is a complete intersection.
b. Show that all projective and affine hypersurfaces are complete intersections .
c. Show that projective closure of the union of the (x , y)- and (z, w)-planes in k4 is not a

complete intersection.
d. Let V be the affine twisted cubic V (y - x 2 , Z - x 3) in k3• Is the projective closure of V

a complete intersection?
Hint for parts c and d: Use the technique of Exercise 17 of §3.

10. Suppose that 1 C k[XI , . . . , x,,] is an ideal. In this exercise, we will prove that the affine
Hilbert polynomial is constant if and only if the quot ient ring k[XI, . .. , x,,]11 is finite-
dimensional as a vector space over k . Furthermore, when this happens , we wil\ show that
the constant is the dimension of k[XI , . . . , x,,]/I as a vector space over k.
a. Let a , : k[XI , . . . , x"J<,11<s -> k[xlo .. . , x,,]1I be the map defined by as([fJ) = [fJ .

Show that a, is well-defined and one-to-one .
b. If k[XI , .. . , x,,]1I is finite-dimensional, show that a , is an isomorphism for s sufficiently

large and conclude that the affineHilbert polynomial is constant (and equals the dimens ion
of k[XI, . .. ,x"JI l). Hint: Pick a basis [fd, . . . , [j;"J of k{XI, . . . , x"JI I and let s be
bigger that the total degrees of [v, . . . , j; " .

C. Now suppose the affine Hilbert polynomial is constant. Show that if s ::: t , the image
of at conta ins the image of a., . If sand t are large enough, conclude that the images are
equal. Use this to show that a, is an isomorphism for s sufficiently large and conclude
that k[ XI, . . . , x; JI1 is finite-dimensional.

II. Let V C k" be finite. In this exercise, we will prove that k[XI , . .. , x,,]/I(V) is finite-
dimensional and that its dimension is IVI, the number of points in V. If we combine this
with the previous exercise, we see that the affine Hilbert polynomial of I(V) is the constant
IVI. Suppose that V = {PI, , Pm}, wherem = IVI.
a. Define a map rP : k[XI , , x,,]/I(V) -> k'" by rP([fJ) = (f(PI), . .. , f(Pm»' Show

that I/> is a well-defined linear map and show that it is one-to-one .
b. Fix i and let Wi = (Pj : j 1= il . Show that I(Wi) + I({Pi}) = 1. Hint: Show that

I({p)i}) is a maximal ideal.
C. By part b, we can find j; E I(W;) and gi E I({P i}) such that fi + gi = 1. Show that
I/>(fi) is the vector in k" which has a I in the ith coordinate and O's elsewhere .

d. Conclude that I/> is an isomorphism and that dim k[x" . . . , x" )/I(V) = IVI.
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12. Let 1 C k[xo, . . . , x,,] be a homogeneous ideal. In this exercise we will study the geometric
significance of the coefficient bo of the Hilbert polynomial

We will call bo the degree of I. The degree of a project ive variety is then defined to be the
degree of I( V) and, as we will see, the degree is in a sense a generalization of the total degree
of the defining equation for a hypersurface . Note also that we can regard Exercises 10 and
II as studying the degrees of ideals and varieties with constant affine Hilbert polynomial.
a. Show that the degree of the ideal (f) is the same as the total degree of f. Also, if k is

algebra ically closed. show that the degree of the hypersurface V(f) is the same as the
total degree of fred. the reduction of f defined in Chapter 4, §2. Hint: Use Exercise 6.

b. Show that if 1 is a complete intersection (Exercise 9) generat ed by the elements of an
R-sequence f l' .. . , !r . then the degree of 1 is the product

deg fl . deg h . . .deg f ro
of the total degrees of the f i . Hint: Look carefully at the proof of Theorem 3. The hint
for Exercise 8 may be useful.

c. Determine the degree of the projective closure of the standard twisted cubic .
13. Verify carefully the claim made in the proof of Proposition 7 that H P'+ (f ) cannot be the zero

polynomial when dim V > O. Hint: Look at the inequality (3) from the proof of Theorem 3.
14. This exercise will explore what happens if we weaken the hypotheses of Proposition 7.

a. Let V = V(x) C k2 • Show that V n V(x - I) = III and explain why this does not
contradict part a of the proposition .

b. Let W = V(x 2 + y2 - I) C 1R2• Show that W = W in IP2(1R) and explain why this
does not contradict part b of the proposition.

IS. If I , J C k[xJ, . . . , x,,] are ideals. prove that IJ C In J c v'TJ.
16. Show that if 1 and J are any ideals and> is any monomial orderin~ . then

(LT(I») . (LT(J») = (LT(I . J» ).

17. Using Proposition 10, we can get an alternative definition of the dimension of an irreducible
variety. We will assume that the field k is algebraically closed and that V C IP"(k) is
irreducible.
a. If dim V > O. prove that there is an irreducible variety W C V such that dim W =

dim V - I . Hint: Use Proposition 10and look at the irreducible components of V nV(f).
b. If dim V = m. prove that one can find a chain of m + I irreducible varieties

Vo C VI C . . . C \/,,, = V

such that Vi i Vi+I for 0 ~ 1 ~ m - l.
c. Show that it is impossible to find a similar chain of length greater thanm + I and conclude

that the dimens ion of an irreducible variety is one less than the length of the longest strictly
increasing chain of irreducible varieties contained in V .

18. Prove an affine version of part (ii) of Proposition 10.

§5 Dimension and Algebraic Independence

In §3, we defined the dimension of an affine variety as the degree of the affine Hilbert
polynomial. This was useful for proving the properties of dimension in §4, but Hilbert
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polynomials do not give the full story. In algebraic geometry, there are many ways to
formulate the concept of dimension and we will explore two of the more interesting
approaches in this section and the next.
If V C k" is an affine variety, recall from Chapter 5 that the coordinate ring k[V]

consists of all polynomial functions on V .This is related to the ideal I(V) by the natural
ring isomorphism k[V] ~ k[XI , . . . , xlI]/I(V) (which is the identity on k) discussed
in Theorem 7 of Chapter 5, §l. To see what k[V] has to do with dimension, note that
for any s ~ 0, there is a well-defined linear map

(I) k[XI • . . . , xlI]5, / I (V )5s -----+ k[XI , .. . , xlI]/I(V) ~ k[V]

which is one-to-one (see Exercise 10 of §4). Thus, we can regard k[Xl, .. .• XII ]5' /
I(V)5s as a finite dimensional "piece" of k[V] that approximates k[V] more and more
closely as s gets larger. Since the degree of "HPI(V ) measures how fast these finite
dimensional approximations are growing, we see that dim V tells us something about
the "size" of k[V] .
This discussion suggests that we should be able to formulate the dimension of V

directly in terms of the ring k[V]. To do this, we will use the notion of algebraically
independent elements.

Definition 1. We say that elementscP t, . . . , cPr E k[V] are algebraically independent
over k if there is no nonzeropolynomial p ofr variables with coefficients in k such that
P(cPl • . . . , cPr) = °in k[V].
Note that if cPl ' . . . , cPr E k[V] are algebraically independent over k; then the cPi 'S

are dist inct and nonzero . It is also easy to see that any subset of {cPl, . . . , cPr J is also
algebraically independent over k (see Exercise 1 for the details).
The simplest example of algebraically independent elements occurs when V = k".

If k is an infinite field, we have I(V) = (OJ and, hence, k[V] = k[XI, , XII]' Here,
the elements XI, ••. ,XII are algebraically independent over k since P(Xl ' , XII) = °
means that p is the zero polynomial.
For another example, let V be the twisted cubic in IR3, so that I(V) = .(y _x2, Z_;3).

Let us show that [X] E IR[V] is algebraically independent over IR. Suppose p is a
polynomial with coefficients in k such that p([x]) = [0] in IR[V]. By the way we
defined the ring operations in IR[V], this means [p(x)] = [OJ, so that p(x) E I(V).
But it is easy to show that IR[x]n (y_x 2 , z -x3} = (OJ, which proves that p is the zero
polynomial. On the other hand, we leave it to the reader to verify that [x], [y] E IR[V]
are not algebraically independent over IR since [y] - [xf = [0] in IR[V].
Wecan relate the dimension of V to the numbe r of algebraically independent elements

in the coordinate ring k[V] as follows.

Theorem 2. Let V C k" be an affine variety. Then the dimension of V equals the
maximal number ofelements ofk[V] which are algebraically independentover k.

Proof. We will first show that if d = dim V , then we can find d elements of k[V]
which are algebraically independent over k, To do this, let I = I( V) and consider the
ideal of leading terms (LT(l») for some graded order on k[X l, . . . ,XII]' By Theorem 8
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of §3, we know that d is the maximum dimension of a coordinate subspace contained in
V«LT(l)}) . A coordinate subspace W C V«LT(l)}) of dimension d is defined by the
vanishing of n - d coordinates, so that we can write W = V (x j : j ¢ (i I , .. . , id})
for some 1 ::: i l < .. . < id ::: n. We will show that [Xi,], . . . , [Xi,,] E k[V] are
algebraically independent over k.
If we let p E k" be the point whose i j th coordinate is 1 for 1 ::: j ::: d and whose

other coordinates are 0, then pEW C V«LT(l)}). Then every monomial in (LT(l»
vanishes at p and, hence, no monomial in (LT(l» can involve only Xi" . .. , Xi" (this is
closely related to the proof of Proposition 2 of §2). Since (LT(l)} is a monomial ideal,
this implies that (LT(l)} n k[Xi" . . . , Xi.,] = {OJ. Then

(2) I n k[Xi" ... , Xi,,] = (OJ

since a nonzero element I E I n k[Xi" .. . , Xi,,] would give the nonzero element
LT(!) E (LT(l)} n k[Xi ,, . . . , Xi,,] .
We can now prove that [Xi,], . . . , [Xi,,] E k[V] are algebraically independent over

k. Let p be a polynomial with coefficients in k such that P([Xi,], ... , [Xi,,]) =. [0].
Then [P(Xi" ... , Xi,,)] = [0] in k[V], which shows that P(Xi" . . . ,Xi.,) E I. By (2),
it follows that P(Xi" . . . , Xi,) = 0, and since Xi" . . . ,Xi" are variables, we see that
p is the zero polynomial. Since d = dim V, we have found the desired number of
algebraically independent elements.
The final step in the proof is to show that if r elements of k[V] are algebraically

independent over k, then r ::: dim V . So assume that [II] , .. . , [fr] E k[V] are
algebraically independent. Let N be the largest of the total degrees of I I, ... , Ir and
let Yt , . . . , Yr be new variables. If p E k[Y I, ... , »l is a polynom ial of total degree
::: s , then it is easy to check that the polynomial P(fl' .. . , Ir) E k[XI, .. . , XII] has
total degree g Ns (see Exercise 2). Then consider the map

(3) a : k[YI, . . . , Yr]:;: ., ~ k[XI, . .. , xlI]:;:Ns/I:;:Ns

which sends P(YI, . ,., Yr) E k[YI, . . . , Yr ]:;:., to the coset [P(fl, " " Ir)] E
k[XI, .. . , XII]:;:Ns / I :;:N, ' We leave it as an exercise to show that a is a well-defined
linear map.
We claim that a is one-to-one . To see why, suppose that p E k[Yt , . . . , Yr]:;:s and

[p(ft , . . . , Ir)] = [0] in k[XI, , XII ]:;:Ns/ I :;:N.,' Using the map (I), it follows that

[P(fl, . .. , Ir)] = p([ftl , , [fr]) = [0] in k[XI, . .. , xlI]/ I ~ k[V] .

Since [fd, . .. , [Ir] are algebraically independent and p has coefficients in k, it
follows that p must be the zero polynomial. Hence, a is one-to-one .
Comparing dimensions in (3), we see that

(4) °HFI (Ns) = dim k[Xh . .. , XII]:;:Ns/(l:;:Ns) ::: dim k[Yr , . . . , YrJ=::,.

Since YI, •• • , Yr are variables, Lemma 4 of §2 shows that the dimension of
k[YI ' .. . , Yr ]:;:s is (r~s) , which is a polynomial of degree r in s. In terms of the affine
Hilbert polynomial, this implies

°H P I (Ns) ::: C: s) = a polynomial of degree r in s
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for s sufficiently large . It follows that "HP[(Ns) and, hence, "HP [(s) must have degree
at least r . Thus. r ~ dim V . which completes the proof of the theorem. 0

As an application, we can show that isomorphic varieties have the same dimension.

CorolIary 3. Let V and V ' be affine varieties which are isomorphic (as defined in
Chapter 5, §4). Then dim V = dim V'.

Proof. By Theorem 9 of Chapter 5. §4 we know V and V' are isomorphic if and
only if there is a ring isomorphism a : k[V] -+- k[V'] which is the identity on k.
Then elements ¢ I, .... ¢r E k[V] are algebraicalIy independent over k if and only if
a(¢l)•... , a (¢ r ) E k[V'] are. We leave the easy proofof this assertion as an exercise.
From here , the corolIary follows immediately from Theorem 2. 0

In the proof of Theorem 2. note that the d = dim V algebraically independent
elements we found in k[V] came from the coordinates. We can use this to give another
formulation of dimension.

CorolIary 4. Let V C k" be an affine variety. Then the dimension of V is equal to
the largest integer r for which there exist r variables Xi" ... • Xi, such that I(V) n
k[Xi, , . . . , Xi, ] = (OJ [that is . such that I(V) does not contain any polynomial in these
variables which is not identically zero] .

Proof. First, from (2). it follows that we can find d = dim V such variables. Suppose
that we could find d + I variables, Xj" ... , Xh +, such that! n k[xi, •. .. , Xil+ '] = (OJ .
Then the argument following (2) would imply that [Xj,], • .• • [XjJ+'] E k[V] were alge-
braically independent over k. Since d = dim V. this is impossible by Theorem 2. 0

In the exercises, you will show that if k is algebraically closed, then Corollary 4
remains true if we replace I(V) with any defining ideal I of V. Since we know how
to compute I n k[Xi, , . .. • Xi,] by elimination theory. Corollary 4 then gives us an
alternative method (though not an efficient one) for computing the dimension of a
variety.
We can also interpret Corollary 4 in terms of projections. If we choose r variables

X j" •••• Xi, ' then we gel.the projection map tt : k" -+- k" defined by tt (al • . . . , all) =
(ai" ... , ai,) .Also. let! = I(V) n k[Xi, • . . . • Xi,] be the appropriate elimination ideal.
If k is algebraically closed, then the Closure Theorem from §2 of Chapter 3 shows that
V(i) C kr is the smallest variety containing the projection rr(V). It follows that

7 = {OJ ¢=> V(!) = k r

¢=> the smallest variety containing rr(V) is k" ,

In general, a subset of k/ is said to be Zariski dense if the smallest variety containing
it is k", Thus , Corollary 4 shows that the dimension of V is the largest dimension of a
coordinate subspace for which the projection of V is Zariski dense in the subspace.
We can regard the above map rr as a linear map from k" to itself which leaves the
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i j th coordinate unchanged for 1 ~ j ~ r and sends the other coordinates to O. It is
then easy to show that tt 0 tt = tt and that the image of 1f is k' C k" (see Exercise 8) .
More generally, a linear map n : k" -+ k" is called a projection if it 0 1f = tt . If n
has rank r , then the image of tt is an r-dimensional subspace H of k" , and we say that
tt is a projection onto H.
Now let tt be a projection onto a subspace H C k" . Under tt , any variety V C k"

gives a subset 1f(V) C H. Then we can interpret the dimension of V in terms of its
projections 1f(V) as follows.

Proposition 5. Let k be an algebraically closed field and let V C k" be an affine
variety. Then the dimension of V is the largest dimension ofa subspace H C k" for
which a projection ofV onto H is Zariski dense .

Proof. If V has dimension d, then by the above remarks, we can find a projection of
V onto a d-dimensional coordinate subspace which has Zariski dense image.
Now let tt : k" -+ k" be an arbitrary projection onto an r-dimensional subspace

H of k" . We need to show that r ~ dim V whenever 1f(V) is Zariski dense in H.
From linear algebra, we can find a basis of k" so that in the new coordinate system,
1f (a I, ... , a,,) = (aI, .. . , ar ) [see, for example , section 3.4 of FINKBEINER (1978)].
Since changing coordinates does not affect the dimension (this follows from the affine
version of Proposition II of §4), we are reduced to the case of a projection onto a
coordinate subspace, and then the proposition follows from the above remarks . 0

Let 1f be a projection of k" onto a subspace H of dimension r. By the Closure
Theorem from Chapter 3, §2 we know that if tt (V) is Zariski dense in H, then we can
find a proper variety W C H such that H - W C 1f(V). Thus, 1f(V) "fills up" most
of the r-dimensional subspace H, and, hence, it makes sense that this should force V
to have dimension at least r . So Proposition 5 gives a very geometric way of thinking
about the dimension of a variety.
For the final part of the section, we will assume that V is an irreducible variety. By

Proposition 4 of Chapter 5, §I, we know that I(V) is a prime ideal and that k[V] is an
integral domain. As in §5 of Chapter 5, we can then form the field of fractions of k[V] ,
which is the field ofrational functions on V and is denoted k(V). For elements of k(V),
the definition of algebraic independence over k is the same as that given for elements
of k[V] in Definition 1. We can relate the dimension of V to k(V) as follows.

Theorem 6. Let V C k" be an irreducible affine variety. Then the dimension of V
equals the maximal number ofelements ofk( V) which are algebraically independent
over k.

Proof. Let d = dim V. Since k[V] C k(V), any d elements of k[V] which are
algebraically independent over k will have the same property when regarded as elements
of k( V). So it remains to show that if¢I, ... ,¢r E k(V) are algebraically independent,
then r ~ dim V. Each ¢i is a quotient of elements of k[V], and if we pick a common
denominator f , then we can write ¢i = [f;]/ [fl for 1 ~ i ~ r. Note also that
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[f] =f: [0] in k[V]. We need to modify the proof of Theorem 2 to take the denominator
f into account.
Let N be the largest of the total degrees of f, [v , . . . , fn and let YI, . . . , Yr be new

variables. If p E k[YI, . . . , Yr] is a polynomial of total degree g s, then we leave it as
an exercise to show that

r p(fllf,···, frlf)
is a polynomial in k[XI, ... , XII] of total degree j; N s (see Exercise 10). Then consider
the map

(5) f3 : k[YI, .. . ,Yr]~s -- k[xl " ",x"]~NsIl~Ns

sending a polynomial P(Yl, . .. , Yr) E k[Yl , .. . , Yr]St to [I' P(fl If, . .. , fr If)1E
k[Xl , . ' " x"]~NsIl~Ns ' We leave it as an exercise to show that f3 is a well-defined
linear map.
To show that f3 is one-to-one, suppose that p E k[YI, . . . , Yr]~s and that

[I' p(fllf, . . . , frl f)] = [0] in k[xl, .. . , x,,]~Nsl l~Ns ' Using the map (1), it follows
that

[r p(fIlf, · · ·, frlf)] = [0] in k[Xl, "" x,,]ll ~ k[V] .

However, if we work in k(V), then we can write this as

[fl' p([ftl/[f] , .. . , [fr ]/[f]) = [flSP(4)l, . .. , cPr) = [0] in key) .

Since key) is a field and [f] =f: [0], it follows that P(cPl, . . . , cPr) = [0]. Then p
must be the zero polynomial since cPl, . . . , cPr are algebraically independent and p has
coefficients in k. Thus, f3 is one-to-one.
Once we know that f3 is one-to-one in (5), we get the the inequality (4) , and from

here, the proof of Theorem 2 shows that dim V ~ r . This proves the theorem. 0

As a corollary of this theorem, we can prove that birationally equivalent varieties
have the same dimension.

Corollary 7. Let V and V' be irreducible affine varieties which are birationally
equivalent (as defined in Chapter 5, §5). Then dim V = dim V' .

Proof. In Theorem 10 of Chapter 5, §5, we showed that two irreducible affine varieties
V and V ' are birationally equivalent ifand only if there is an isomorphismk(V) ~ key')
of the ir function fields which is the identity on k. The remainder of the proof is identical
to what we did in Corollary 3. 0

In field theory, there is a concept of transcendence degree which is closely related
to what we have been studying. In general, when we have a field K containing k, we
have the following definition.

Definition 8. Let K be a field containing k. Then we say that K has transcendence
degreed over k provided that d is the largest number of elements of K which are
algebraically independent over k.
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Ifwe combine this definition with Theorem 6, then for any irreducible affine variety
V, we have

dim V = the transcendence degree of k(V) over k.

Many books on algebraic geometry use this as the definition of the dimension of an
irreducible variety. The dimension of an arbitrary variety is then defined to be the
maximum of the dimensions of its irreducible components .
For an example of transcendence degree, suppose that k is infinite, so that k(V) =

k(Xl, , XII) when V = k" . Since k" has dimension n, we conclude that the field
k(XI , ,XII) has transcendence degree n over k. It is clear that the transcendence
degree is at least n , but it is less obvious that no n + 1 elements of k(Xt , . .. , XII) can
be algebraically independent over k. So our study of dimension yields some insights
into the structure of fields.
To fully understand transcendence degree , one needs to study more about algebraic

and transcendental field extensions. A good reference is Chapters VII and X of LANG
(1965).

EXERCISES FOR §S

1. Let tPl' . . . , tP, E k[ V] be algebraically independent over k.
a. Prove that the tP, are distinct and nonzero .
b. Prove that any nonempty subset of (tPl, .. . • tP, I consists of algebraically independent

elements over k.
c. Let YI, .. . , y, be variables and consider the map ex : k[YI • . . . , »l -.. k[V] defined by

ex(p) = P(tPl; . . . • tP, ). Show that ex is a one-to-one ring homomorphism.
2. This exercise is concerned with the proof of Theorem 2.

a. If I I, . . . ,I, E k[XI, . .. •x,,] have total degree ~ Nand p E k[XI, ... •x,,] has total
degree ~ s. show that p(fl • . . . • I ,) has total degree ~ Ns.

b. Show that the map ex defined in the proof of Theorem 2 is a well-defined linear map.
3. Complete the proof of Corollary 3.
4. Let k be an algebraically closed field and let I C k[XI, . . . • x,,] be an ideal. Show that

the dimension of V(/) is equal to the largest integer r for which there exist r variables
Xi" ... •Xi, such that I n k[Xi, , . .. •Xi,] = (0]. Hint: Use I rather than I(V) in the proof
of Theorem 2. Be sure to explain why dim V = deg "HPt -

5. Let I = (xy - I) C k[x . y] .What is the projection of V(/) to the x -axis and to the y-axis?
Note that V(/) projects densely to both axes, but in neither case is the projection the whole
axis.

6. Let k be algebraically closed and let I = (xy , xz) c k[x , y, z].
a. Show that In k[x] = 0, but that In k[x , y] and In k[x, zl are not equal to O.
b. Show that In k[y , z] = 0, but that In k[x , y , zl =/= o.
c. What do you conclude about the dimension of V(I)?

7. Here is a more complicated example of the phenomenon exhibited in Exercise 6. Again,
assume that k is algebraically closed and let I = (zx - x 2, zy - xy) c k[x . y. z].
a. Show that I n k[ z] = O.Is either In k[x , z] or In k[y , zlequal to O?
b. Show that In k[x . y) = 0, but that In k[x, y , zl =/= O.
c. What does part b say about dim V(l)?

8. Given I ~ it < .. . < i, ~ n, define a linear map rr : k" -.. k" by letting rr(ulo . . . , u,,)
be the vector whose i j th coordinate is a,j for I ~ j ~ r and whose other coordinates are O.
Show that n 0 n = rr and determine the image of rr.
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9. In this exercise .we will show that there can be more than one projection onto a given subspace
He k" .
a. Show that the matrices

both define projections from IR2 onto the x-axis. Draw a picture that illustrates what
happens to a typical point of IR2 under each projection.

b. Show that there is a one-to-one correspondence between projections ofIR 2 onto the x-axis
and nonhorizontallines in IR2 through the origin.

c. More generally. fix an r-dimensional subspace H c k", Show that there is a one-to-one
correspondence between projections of k" onto Hand (n - r)-dimensional subspaces
H' c k" which satisfy H n H' = (O}. Hint: Consider the kernel of the projection.

10. This exercise is concerned with the proof of Theorem 6.
a. If f. fl • . . . • f, E k[x i • . . . • x,,) have total degree g N and p E k[xi • . . . • xn) has total

degree g s , show that r pUllf • . . . • f,lf) is a polynomial in k(xi • . . . • xn).
b. Show that the polynomial of part a has total degree j; Ns.
c. Show that the map f3 defined in the proof of Theorem 6 is a well-defined linear map.

I I. Complete the proof of Corollary 7.
12. Suppose that t/J : V ~ W is a polynomial map between affine varieties (see Chapter 5. §I) .

We proved in §4 of Chapter 5 that t/J induces a ring homomorphism t/J. : kIWI ~ k[V)
which is the identity onk. From e,we get the subsett/J(V) c W.Wesay thatt/J is dominating
if the smallest variety of W containing t/J (V) is W itself. Thus. t/J is dominating if its image
is Zariski dense in W.
a. Show that t/J is dominating if and only if the homomorphism t/J. : kIWI ~ k[V] is one-

to-one . Hint: Show that W' C W is a proper subvariety if and only if there is nonzero
element [f] E k(W] such that W' C W n V(f).

b. If t/J is dominating. show that dim V ~ dim W. Hint: Use Theorem 2 and part a.
13. This exercise will study the relation between parametrizations and dimension. Assume that

k is an infinite field.
a. Suppose that F : k" ~ V is a polynomial parametrization of a variety V (as defined

in Chapter 3. §3). Thus. m is the number of parameters and V is the smallest variety
containing Ftk'"), Prove that m ~ dim V.

b. Give an example of a polynomial parametrization F : k'" ~ V where m > dim V .
c. Now suppose that F : k'" - W ~ V is a rational parametrization of V (as defined in

Chapter 3. §3). We know that V is irreducible by Proposition 6 of Chapter 4. §5. Show that
we can define a field homomorphism F* : k(V) ~ k(tl • . . . • 1m) which is one-to-one.
Hint: See the proof of Theorem 10 of Chapter 5. §5.

d. If F : k'" - W ~ V is a rational parametrization. show that m ~ dim V.
14. In this exercise. we will show how to define the field of rational functions on an irreducible

projective variety V C 1P"(k). If we take a homogeneous polynomial f E k[xo• . . . • x,,),
then f does not give a well-defined function on V .To see why. let p E V have homogeneous
coordinates (ao• . . . •a,,). Then Aao• . . . • Aa,,)are also homogeneous coordinates for p, and

f(Aao • . . . • Aa,,) = J...d f(ao • . . . • a,,).

where d is the total degree of f.
a. Explain why the above equation makes it impossible for us to define f(p) as a single-

valued function on V.
b. If g E k[xo• . . . • xn] also has total degree d and g fj. I(V). then show that t/J = tte is a

well-defined function on the nonernpty set V - V n V(g) c V.



§6. Dimension and Nonsingularity 473

c. We say that t/J = f /g and t/J' = f' /s' are equ ivalent on V. written t/J ~ t/J'. provided
that there is a proper variety W C V such that t/J = t/J' on V - W . Prove that ~ is an
equivalence relation. An equivalence class for ~ is called a rational function on V. and
the set of all equivalence classes is denoted k( V) . Hint: Your proof will use the fact that
V is irreducible.

d. Show that addition and multiplication of equivalence classes is well-defined and makes
k( V) into a field. We call k( V) the field ofrational functions of the project ive variety V .

e. If Vi is the affine part of IP" (k) where X i = I. then we get an irreducible affine variety
V n Vi C Vi 2:: k": If V n Vi =/: 0. show that k( V) is isomorphic to the field k( V n Vi)
of rational functions on the affine variety V n V i. Hint: Youcan assume i = O.What do
you get when you set Xo = I in the quotient f /g cons idered in part b?

15. Suppose that V C IP"(k) is irreducible and let k(V) be its rational function field as defined
in Exercise 14.
a. Prove that dim V is the transcendence degree of k(V) over k . Hint: Reduce to the affine

case .
b. We say that two irreducible projective varieties V and V' (lying possibly in different

projective spaces) are birationally equivalent if any of their affine portions V n Vi and
V' n U, are birationally equivalent in the sense of Chapter 5. §5. Prove that V and V' are
birationally equivalent if and only if there is a field isomorphism k( V) = k( V') which is
the identity on k. Hint: Use the previous exercise and Theorem 10 of Chapter 5. §5.

c. Prove that birationally equivalent projective varieties have the same dimension,

§6 Dimension and Nonsingularity

This section will explore how dimension is related to the geometric properties of a va-
riety V . The discuss ion will be rather different from §5. where the algebra ic properties
of k[V] and k(V) played a dominant role. We will introduce some rather sophisti-
cated concepts . and some of the theorems will be proved only in special cases. For
convenience . we will assume that V is always an affine variety.
When we look at a surface V C IR3• one intuitive reason for saying that it is 2-

dimensional is that at a point p on V. a small portion of the surface looks like a small
portion of the plane. This is reflected by the way the tangent plane approximates V at
p:

~ the tangent plane to Vat p

~ the surface V

Of course . we have to be careful because the surface may have points where there does
not seem to be a tangent plane. For example . consider the cone V (x 2 + y2 - Z2) . There
seems to be a nice tangent plane everywhere except at the origin:
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In this section, we will introduce the concept of a nonsingular point p of a variety
V, and we will give a careful definition of the tangent space Tp(V) of V at p. Our
discussion will generalize what we did for curves in §4 of Chapter 3. The tangent space
gives useful information about how the variety V behaves near the point p. This is the
so-called "local viewpoint." Although we have not discussed this topic previously, it
plays an important role in algebraic geometry. In general, properties which reflect the
behavior of a variety near a given point are called local properties.
We begin with a discussion of the tangent space. For a curve V defined by an equation

f (x, y) = 0 in lR2, we saw in Chapter 3 that the line tangent to the curve at a point
(a, b) E V is defined by the equation

af af
ax (a, b) . (x - a) + ay (a, b) . (y - b) = 0,

provided that the two partial derivatives do not vanish (see Exercise 4 ofChapter 3, §4).
We can generalize this to an arbitrary variety as follows .

Definition 1. Let V C k" be an affine variety and let p = (PI, . . . , PII) E V be a
point.
(i) Iff E k[XI, . .. , XII ] is a polynomial, the linear part of fat p , denoted dp(f), is

defined to be the polynomial

af af
dp(f) = -a (P)(XI - PI) + ... + -a (p)(x lI - PII)'

XI XII

Note that dp(f) has total degree ~ 1.
(ii) The tangent space ofV at p, denoted Tp(V), is the variety

Tp(V) =V(dp(f) : f E I(V».

If we are working over lR, then the partial derivative ;( has the usual meaning.
For other fields, we use the formal partial deri vative. which is defined by

a ( ~ a, ai a..) _ ~ a , ai-) a..
aXi L...- Ca, ...a.XI " . Xi • . , XII - L...- Ca, ...a..a i X) • .. Xi . .. XII .

QI . ....a " a l . ·..·a "
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In Exercise I, you will show that the usual rules of differentiation apply to a:
i
•

We first prove some simple properties of Tp{V).

Proposition 2. Let P EVe k",
(i) Ifl{V) = (fl, . .. , f s), then Tp(V) = V{dp(fl),"" dp(f,» .
(ii) Tp(V) is the translate ofa linear subspace ofk".

Proof. (i) By the product rule, it is easy to show that

dp (hf) = h(p) . dp(f) + dp(h) . f(p)

(see Exercise 2). This implies dp{hf) = h(p) . dp(f) when f(p ) = 0, and it follows
that if g = E:=Ihi/; E I (V) = (fl ," " f s) , then

S J

dp(g) = Ldp(h;/;) = Lh;{p) . d p(/;) E (dp(fd, .. . , dp(f,)}.
i=1 ;=1

This shows that Tp{V) is defined by the vanishing of the dp{/;).
(ii) Introduce new coordinates on k" by setting Xi = X; - Pi for I ::: i ::: n.

This coordinate system is obtained by translating p to the origin. By part (i), we know
that Tp(V) is given by dp(fl ) = . . . = dp(f,) = O. Since each dp{/; ) is linear in
X I, . . . , XII' it follows that TI'{V ) is a linear subspace with respect to the X; . In terms
of the orig inal coordinates, this means that TI'(V) is the translate of a subspace ofk".o

We can get an intuitive idea of what the tangent space means by thinking about
Taylor's formula for a polynom ial ofseveral variables. For a polynomial of one variable,
one has the standard formula

f(x) = f(a) + !,(a)(x - a) + terms involving higher powers of x-a.

For f E k[XI , ... , XII] ' you will show in Exercise 3 that if p = (PI, . . . , PII) ' then

f = f(p) + aaf (P )(XI - PI) + ... + aaf (p)(x lI - PII)
XI XII

+ terms of total degree at ~ 2 in XI - PI, .. . , XII - PII'

This is part of Taylor's formula for f at p. When P E V and f E I(V), we have
f(p ) = 0, so that

f = dp(f) + terms of total degree ~ 2 in XI - PI, ... , XII - PII'

Thus, dp(f) is the best linear approximation of f near p. Now suppose that I(V) =
(fl • . . . , I,).Then V is defined by the vanishing of the /;, so that the best linear approx-
imation to V near P should be defined by the vanishing of the dl'(/;)' By Proposition
2, this is exactly the tangent space Tp(V).
Wecan also think about Tp(V) in terms of lines that meet V with "higher multiplicity"

at p. In Chapter 3, this was how we defined the tangent line for curves in the plane. In
the higher dimens ional case, suppose that we have P E V and let L be a line through
p. We can parametrize L by F{t ) = P + tv, where v E k" is a vector parallel to L.
If f E k[XI, . .. , XII], then f 0 F{t) is a polynomial in the variable t ; and note that



476 9. The Dimension of a Variety

f 0 F(O) = f(p). Thus, 0 is a root of this polynomial whenever f E I(V). We can
use the multiplicity of this root to decide when L is contained in Tpev) .

Proposition 3. If L is a line through P parametrized by F(t) = P + tv. then L C
Tpev ) ifand only if0 is a root ofmultiplicity ~ 2 of f 0 F(t) for all f E I(V).

Proof. If we write the parametrization of L as Xi = Pi + tv, for I ~ i ~ n, where
P = (PI, . . . , PII) and v = (VI , . . . , VII)' then, for any f E I(V), we have

get) = f 0 F(t) = f(PI + Vlt, .. .", PII + tvlI ) ·

As we noted above, g(O) = 0 because P E V, so that t = 0 is a root of get) . In
Exercise 4 of Chapter 3, §4, we showed that t = 0 is a root of multiplicity ~ 2 if and
only if we also have g'(O) = O. Using the chain rule for functions of several variables ,
we obtain

dg of dXI of dXII-=--+ ...+--
dt OXI dt OXII dt

If follows that that g' (0) = 0 if and only if

of of
-VI + ... + -VII'
OXI oXII

II of II of
0= L - (p)v; =L - (P)(Pi + Vi) - Pi) .

i=1 ox, i = 1 OXi

The expression on the right in this equation is dp(j) evaluated at the point p + vEL,
and it follows that P + V E Tp(V) if and only if g'(O) = 0 for all f E I(V) . Since
pEL, we know that L C Tp(V) is equivalent to P + V E Tp(V), and the proposition
is proved. 0

It is time to look at some examples.

Example 4. Let V C (C" be the hypersurface defined by f = 0, where f E
k[XI, .. . , XII] is a nonconstant polynomial. By Proposition 9 of Chapter 4, §2, we
have

lev) = I(V(!) = j(J) = (fred) ,

where fr ed = fl . . . fr is the product of the distinct irreducible factors of f .We will
assume that f = fred. This implies that

is the decomposition of V into irreducible components (see Exercise 9 of Chapter 4,
§6). In particular, every component of V has dimension n - I by the affine version of
Proposition 2 of §4.
Since I(V) = (f) , it follows from Proposition 2 that for any P E V , Tp(V) is the

linear space defined by the single equation

of of
- (P)(XI - PI) + ... + - (p)(xn - PII) =O.
ox, OXII
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al 2 2- = -2y z + 3z .az
al 2- = -2yz ,ay

This implies that

{
n - I at least one ;(, (p) =1= 0

(I) dim Tp(V) = n all *£ (p) = O.

You should check how this generalizes Proposition 2 of Chapter 3, §2.
For a specific example, consider V = V(x2 - y2 z2 + Z3). In Exercise 4, you will

show that I = x 2 - y2 z2 + Z3 E ([;[x, y, zl is irreducible, so that I(V) = (f). The
partial derivatives of I are

al- =2x,ax
We leave it as an exercise to show that on V, the partials vanish simultaneously only
on the y-axis, which lies in V . Thus, the tangent spaces Tp (V) are all 2-dimensional,
except along the y-axis, where they are all of ([;3 . Over JR, we get the following picture
of V (which appeared earlier in §2 of Chapter 1):

When we give the definition of nonsingular point later in this section , we will see that
the points of V on the y-axis are the singular points, whereas other points of V are
nonsingular.

Example S. Now consider the curve C C ([;3 obtained by intersecting the surface V
of Example 4 with the plane x + y + z = O. Thus, C = Vex + y + Z, x 2 - y2z2+ Z3).
Using the techniques of §3, you can verify that dim C = 1.
In the exercises, you will also show that (ft , h) = (x + y + Z, x2 - y2z2 + Z3)

is a prime ideal, so that C is an irreducible curve . Since a prime ideal is radical, the
Nullstellensatz implies that I(C) = (/\, h) .Thus, for p = (a , b, c) E C, it follows
that Tp (C) is defined by the linear equations

d,,{fl) = 1 . (x - a) + 1 . (y - b) + 1 . (z - c) = 0,

dp{f2) = 2a . (x - a) + (-2bc2) . (y - b) + (-2b2c + 3c2) . (z - c) = O.

This is a system of linear equations in x - a, y - b, z - c, and the matrix of coefficients
is

J,,{fl, h) = (2~ -2~C2 -2b2c\ 3c2)'

Let rank (Jp(f" h)) denote the rank of this matrix . Since Tp(C) is a translate of the
kernel of Jp(fl' h) , it follows that
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dim Tp(C) = 3 - rank(Jp(fI, 12».
In the exercises, you will show that Tp (C) is I-dimensional at all points of C except
for the origin , where To(C) is the 2-dimensional plane x + y + z = O.

In these examples , we were careful to always compute I(V). It would be much nicer
if we could use any set of defining equations of V. Unfortunately, this does not always
work: if V = V(fl , .. . , t,), then Tp(V) need not be defined by dp(fl) = '" =
dp(f,) = O. For example , let V be the y-axis in k 2• Then V is defined by x2 = 0, but
you can easily check that Tp(V) =I V(dp(x 2»for all p E V . However, in Theorem
9, we will find a nice condition on fl, ... , t, which , when satisfied, will allow us to
compute Tp(V) using the dp(f;)'s .
Examples 4 and 5 indicate that the nicest points on V are the ones where Tp(V) has

the same dimension as V. But this principle does not apply when V ·has irreducible
components of different dimensions. For example, let V = V(xz, y z) C IR3• This is
the union of the (x, y) -plane and the z-axis, and it is easy to check that

1
2 p is on the (x , y)-plane minus the orig in

dim Tp(V) = 1 p is on the z-axis minus the origin
3 p is the origin .

Excluding the origin, points on the z-axis have a l-dirnensional tangent space, which
seems intuitively correct. Yet at such a point, we have dim Tp(V) < dim V. The
problem, of course, is that we are on a component of the wrong dimension.
To avoid this difficulty, we need to define the dimension of a variety at a point.

Definition 6. Let V be an affine variety. For p E V, the dimension of Vat p , denoted
dim, V , is the maximum dimension ofan irreducible component of V containing p .

By Corollary 9 of §4, we know that dim V is the maximum of dim, V as p varies
over all points of V . If V is a hypersurface in (CII. it is easy to compute dim , V, for in
Example 4, we showed that every irreducible component of V has dimension n - 1. It
follows that dim, V = n - I for all p E V .On the other.hand, if V C k" is an arbitrary
variety, the theory developed in §§3 and 4 enables us to compute dim V , but unless we
know how to decompose V into irreducible components, ~ore subtle tools are needed
to compute dim; V. This will be discussed in §7 when we study the properties of the
tangent cone .
We can now define what it means for a point p E V to be nonsingular.

Definition 7. Let p be a point on an affine variety V . Then p is nonsingular (or
smooth) provided dim Tp(V) = dim , V . Otherwise, p is a singular point afV .

If we look back at our previous examples, it is easy to identify which points are
nonsingular and which are singular. In Example 5, the curve C is irreducible, so that
dim, C = I for all p E C and, hence , the singular points are where dim Tp(C) =I 1
(only one in this case). For the hypersurfaces V = V(n considered in Example 4, we
know that dim p V = n - 1 for all p E V, and it follows from (1) so that p is singular
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if and only if alI of the partial derivatives of f vanish at p . This means that the singular
points of V form the variety

(2) L = V (f. ~f , . .. , ~f ) .
a XI ox;

In general, the singular points of a variety V have the folIowing properties.

Theorem 8. Let V C k" be an affine variety and let

L = (p E V : p is a singular point of V} .

We call L the singular locus of V . Then:
(i) L is an affine variety cont~ined in V .
(ii) If pEL, then dim Tp(V) > dim, V.
(iii) L contains no irreducible component of V.
(iv) If V; and Vj are distinct irreducible components of V , then V; n Vj C L .

Proof. A complete proof of this theorem is beyond the scope of the book. Instead, we
will assume that V is a hypersurface in <C" and show that the theorem holds in this case.
As we discuss each part of the theorem , we will give references for the general case .
Let V = V(f) C <C" be a hypersurface such that I(V) = (f). We noted earlier

that dim, V = n - I and that L consists of those points of V where alI of the partial
derivatives of f vanish simultaneously. Then (2) shows that L is an affine variety, which
proves (i) for hypersurfaces. A proof in the general case is given in the CorolIary to
Theorem 6 in Chapter II. §2 of SHAFAREVICH (1974).
Part (ii) of the theorem says that at a singular point of V, the tangent space is too big.

When V is a hypersurface in <C", we know from (1) that if p is a singular point, then
dim Tp = n > n - I = dim, V. This proves (ii) for hypersurfaces, and the general
case follows from Theorem 3 in Chapter II, §1 of SHAFAREVICH (1974). .
Part (iii) says that on each irreducible component of V, the singular locus consists of

a proper subvariety. Hence , most points of a variety are nonsingular. To prove 'this for
a hypersurface, let V = V(f) = V(fJ) U . .. U V(fr) be the decomposition of V into
irreducible components, as discussed in Example 4. Suppose that L contains one of
the components, say V(fl ). Then every ;~ vanishes on V(fl). If we write f = fig,
where g = h · . . fr, then

af = I. !..! + afl g
ax ; ax ; ax;

by the product rule. Since fl certainly vanishes on V(fJ), it folIows that af , g alsoax,
vanishes on V(fl) . By assumption, fJ is irreducible, so that

afl
- g E I(V(fl» = (f\) .
ax; .

This says that f 1divides ~~: g and, hence , fl divides ~!': or gl .The latter is impossible
since g l is a product of irreducible polynomials distinct from f 1 (meaning that none
of them is a constant multiple of 11). Thus, I I must divide ~:: for alI i, Since ~:: has
smaller total degree than I I. we must have : '.: = 0 for all i , and it follows that II
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is constant (see Exercise 9). This contradiction proves that L contains no component
ofV .
When V is an arbitrary irreducible variety, a proof that L is a proper subvariety can

be found in the corollary to Theorems 4.1 and 4.3 in Chapter IV of KENDIG (1977) .
See also the discussion preceding the definition of singular point in Chapter II, §I of
SHAFAREVICH (1974). If V has two or more irreducible components, the claim follows
from the irreducible case and part (iv) below. See Exercise II for the details .
Finally, part (iv) of the theorem says that a nonsingular point of a variety lies on a

unique irreducible component. In the hypersurface case , suppose that V = V(f) =
V(fd U . . . U V(fr) and that p E V(f;) n V(/j) for i =/: j. Then we can write
f = gh , where f; divides g and fj divides h. Hence , g(p) = h(p) = 0, and then
an easy argument using the product rule shows that :.:. (p) = 0 for all i . This proves
that V(f;) n V(fj) C L, so that (iv) is true for hypersurfaces. When V is an arbitrary
variety, see Theorem 6 in Chapter II, §2 of SHAFAREVICH (1974). 0

In some cases, it is also possible to show that a point of a variety V is nonsingular
without having to compute I(V). To formulate a precise result, we will need some
notation. Given fl' . . . , fr E k[xit .. . , XII], let J (fl , ... , fr) be the r x n matrix of
partial derivatives

(

et,
ax,

J(flt ·· · ,fr) = :
u:ax,

Given p E k", evaluating this matrix at p gives an r x n matrix of numbers denoted
Jp(ft , .. . , fr) ' Then we have the following result.

Theorem 9. Let V = V(ft, , fr) .C ([;11 be an arbitrary variety and suppose that
p E V is a point where Jp (f\, , fr) has rank r. Then p is a nonsingular point ofV
and lies on a unique irreducible component of V ofdimension n - r.

Proof. As with Theorem 8. we will only prove this for a hypersurface V = V(f) C
([;11, which is the case r = 1 of the theorem. Here, note that f is now any defining
equation of V, and, in particular, it could happen that I(V) =/: (f). But we still know
that f vanishes on V, and it follows from the definition of tangent space that

(3)

Since r = I, Jp(f) is the row vector whose entries are :{ (p), and our assumption that
Jp(f) has rank I implies that at least one of the partials is nonzero at p.Thus, dp(f) is
a nonzero linear funct ion of Xi - Pi, and it follows from (3) that dim Tp(V) ::: n - 1.
If we compare this to (1), we see that p is a nonsingular point of V, and by part (iv)
of Theorem 8, it lies on a unique irreducible component of V. Since the component
has the predicted dimension n - r = n - 1, we are done. For the general case, see
Theorem (1.16) of MUMFORD (1976) . 0
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Theorem9 is important for several reasons . First of all, it is very useful for determining
the nonsingular points and dimension of a variety. For instance. it is now possible to
redo Examples 4 and 5 without having to compute I(V) and I(C). Another aspect of
Theorem 9 is that it relates nicely to our intuition that the dimension should drop by one
for each equat ion defining V. This is what happens in the theorem. and. in fact. we can
sharpen our intuition as follows. Namely. the dimension should drop by one for each
defining equation, provided the defining equations are sufficiently independent [which
means that rank(Jp(fl •. . . • If)) = r) . In Exercise 16. we see a more precise way to
state this. Furthermore, note that our intuition applies to the nons ingular part of V .
Theorem 9 is also related to some important ideas from advanced courses in the

calculus of several variables. In particular. the Implicit Function Theorem has the same
hypothesis concerning Jp(ft • . . . • !f) as Theorem 9. When V = V(fh . . .• !f) sat-
isfies this hypothesis, the complex variable version of the Implicit Function Theorem
asserts that near p, the variety V looks like the graph of a nice function. and we get a
vivid picture of why V has dimension n - r at p. To understand the full meaning of
Theorem 9, one needs to study the notion of a manifold. A nice discussion of this topic
and its relation to nonsingularity and dimension can be found in KENDIG (1977) .

EXERCISES FOR §6

1. We will discuss the properties of the formal derivative defined in the text.
a. Show that ',':'; is k-Iinear and satisfies the product rule.

b. Show that ~fa ('Iilt) = '--Jil ( 'Ja f) for all i and j.c .l, C"J I'\ j I X,

c. If fl • . . . • [, E k[xi • . . . •x" J. compute a:, (g' . .. f ra, ) .
d. Formulate and prove a version of the chain rule for computing the partial derivatives of

a polynomial of the form Ft f', • . . . • [-) .Hint: Use part c.
2. Prove that dp(hf) = h(p) . dp(f) + d{,(h) . !(p) .
3. Let P = (Pl •. . .• p,,) E k" and let f E k[x ,,: . . • x,,].

a. Show that f can be written as a polynomial in Xi - Pi . Hint: x;" = «Xi - Pi) + p;)"' .
b. Suppose that when we write! as a polynomial in Xi - Pi. every term has total degree at

least 2. Show that ,~( (p) = 0 for all i .
c. If we write! as a polynomial in Xi - Pi . show that the constant term is f(p) and the

linear term is dp(f) . Hint: Use part b.
4. As in Example 4. let f = x2 - iz2 + zJ E a::[x. y. z] and let V = V(f) C a::J.

a. Show carefully that f is irreducible in a::[x. y, zl.
b. Show that V contains the y-axis .
c. Let P E V . Show that the partial derivatives of ! all vanish at P if and only if P lies on

the y-ax is.
5. Let A be an m x n matrix. where n ~ m. If r ::: m. we say that a matrix B is an r x r
submatrix of A provided that B is the matrix obtained by first selecting r columns of A. and
then select ing r rows from those columns .
a. Pick a 3 x 4 matrix of numbers and write down all of its 3 x 3 and 2 x 2 submatrices.
b. Show that A has rank < r if and only if all txt submatrices of A have determinant

zero for all r ::: t ::: m , Hint: The rank of a matrix is the maximum number of linearly
independent columns. If A has rank s, it follows that you can find an m x s submatrix of
rank s ,Now use the fact that the rank is also the maximum number of linearly independent
rows. What is the criterion for an r x r matrix to have rank < r?
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6. As in Example 5, let C = V(x + Y + Z, x 2 - y2 Z2 + zJ) C <cJ and let I be the ideal
I = (x.+ y + Z, x 2 -lZ2 + z') C <C[x, y, zl.
a. Show that I is a prime ideal. Hint: Introduce new coordinates X = x + Y + z, Y = y,

and Z = z. Show that I = (X , F(Y, Z») for some polynomial in Y, Z. Prove that
<C[X, Y, ZJ/ I ;;: <C[Y, ZJ/(F) and show that F E err, ZJ is irreducible .

b. Conclude that C is an irreducible variety and that I(C) = I .
c. Compute the dimension of C.
d. Determine all points (a, b, c) E C such that the 2 x 3 matrix

I
-2bc2

has rank < 2. Hint: Use Exercise 5.
7. Let f = x 2 E k[x, yJ. In k2 , show that Tp(V(f» =/: V(d,,(f» for all p E V .
8. Let V = V(xy, xz) C kJ and assume that k is an infinite field.

a. Compute I(V).
b. Verify the formula for dim Tp(V) given in the text.

9. Suppose that f E k[XI , .. . , x,,] is a polynomial such that ai: , f = 0 for all i, If k has
characteristic 0 (which means that k contains a field isomorphic to <Q), then show that f
must be the zero polynomial.

10. The result of Exercise 9 may be false if k does not have characteristic O.
a. Let f = x 2 + y 2 E 1F2 [x , y ] , where 1F2 is a field with two elements. What are the partial

derivatives of f?
b. To analyze the case when k does not have characteristic 0, we need to define the char -
acteristic of k. Given any field k, show that there is a ring homomorphism t/> : Z -+ k
which sends n > 0 in 7L. to 1 E k added to itself n times. If 4> is one-to-one, argue that k
contains a copy of <Q and, hence, has characteristic O.

c. If k does not have characteristic 0, if follows that the map t/> of part c cannot be one-to-one.
Show that the kernel must be the ideal (p) C Z for some prime number p. We say that
k has characteristic p in this case. Hint: Use the Isomorphism Theorem from Exercise
16 of Chapter 5, §2 and remember that k is an integral domain .

d. If k has characteristic p , show that (a + b)P = a" = b" for every a , b E k.
e. Suppose that k has characteristic p and let f E k[ XI, . . . , x,,] . Show that all partial

derivatives of f vanish identically if and only if every exponent of every monomial
appearing in f is divisible by p .

f. Suppose that k is algebraically closed and has characteristic p. If f E k[ XI, . .. , x,,] is
irreducible, then show that some partial derivative of f must be nonzero. This shows that
Theorem 8 is true for hypersurfaces over any algebraically closed field. Hint If all partial
derivatives vanish, use parts d and e to write f as a pth power. Why do you need k to be
algebraically closed?

II . Let V = VI U . . . U Vr be a decomposition of a variety into its irreducible components.
a. Suppose that p E V lies in a unique irreducible component Vi. Show that Tp(V) =
Tp(Vi ) . This reflects the local nature of the tangent space. Hint: One inclusion follows
easily from Vi C V. For the other inclusion, pick a function f E I(W) - I(Vi) , where
W is the union of the other irreducible components. Then g E leVi) implies f g E I(V).

b. With the same hypothesis as part a, show that p is nonsingular in V if and only if it is
nonsingular in Vi.

c. Let L be the singular locus of V and let L i be the singular locus of Vi . Prove that

L = UCVi n Vj) UUL i'
i '! j
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Hint: Use part b and part (iv) of Theorem 8.
d. If each L; is a proper subset of Vi. then show that L contains no irreducible components

of V. This shows that part (iii) of Theorem 8 follows from the irreducible ca se.
12. Find all singular points of the following curves in k2 . Assume that k is algebraically closed.

a. y2 = x 3 - 3.
b. i = x 3 - 6x2+ 9x .
c. X2y2 + x 2+ y2 + 2xy(x + Y+ I) = O.
d. x2 = x' + y' .
e. xy = x6+ y6.
f. x2y + xy2 = x' + y' .
g. x J = y2 + x' + y4.

13. Find all singular points of the following surfaces in k3• Assume that k is algebraically closed.
a. xi = Z2.
b. x 2 + y 2 = Z2.

c. x 2y + x J + y J = O.
d. x 3 - zxy + y3 = O.

14. Show that V(y - x2 + Z2. 4x - y2 + w3) C <C4 is a nonempty smooth surface.
15. If V c k" is a hypersurface which is not a hyperplane and p E V is nonsingular, show that

the variety V n TpV has a singular point at p .Hint: Pick coordinates so that T,.(V) is defined
by X I = O. Thus. we can regard Tp(V) as a copy of k,,-I . then V n T,,(V) is a hypersurface
in k": ',

16. Let V C <cn be irreducible and let p E V be a non singular point. Suppose that V has
d imension d.
a. Show that we can find polynomials fl ... . . f ,, -., E I(V) such that Tp(V) =
V (dp(fd• . . . • dp(fn- ,,» .

b. If f l• . . . • fn-d are as in part a. show that 1,,(f1 . . . . . f "-d) has rank n - d and conclude
that V is an irreducible component of V(fl ... . • f r)' This shows that although V itself
may not be defined by n - d equations. it is a component of a variety that is. Hint: Use
Theorem 9.

17. Suppose that V C <C" is irreducible of dimension d and suppose thatl(V) = (fl.· · · . f ,).
a. Show that p E V is nonsingular if and only if 1,,(f1 . . . . . f ,) has rank n - d . Hint: Use

Proposition 2.
b. By Theorem 8. we know that V has nonsingular points. Use this and part a to prove that

d ::: n - s , How does this relate to Proposition 5 of §4?
c . Let '0 be the set of determinants of all (n - d) x (n - d ) subrnatrices of 1(fl •.. . • f ,).

Prove that the singular locus of V is L = V n V (g : g E D). Hin t: Use part a
and Exercise 5. Also. what doe s part (ii) of Theorem 8 tell you about the rank of
1,,(!t. . . . • f s)?

§7 The Tangent Cone

In this final section of the book. we will study the tangent cone of a variety V at a
point p. When p is nonsingular, we know that, near p, V is nicely approximated by its
tangent plane Tp(V). This clearly fails when p is singular. for as we saw in Theorem
8 of §6, the tangent space has the wrong dimension (it is too big) . To approximate V
near a singular point, we need something different.
We begin with an example.
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Example 1. Consider the curve y2 = x 2(x + I), which has the following picture
over IR:

y

x

We see that the origin is a singular point. Near this point, the curve is approximated by
the lines x = ± y. These lines are defined by x2 - y2 = 0, and if we write the defining
equation of the curve as j (x , y ) = x 2 - y2 + x3 = 0, we see that x 2 - y2 is the
nonzero homogeneous component of j of smallest total degree .
Similarly, consider the curve y2 - x 3 = 0:

y

x

The origin is again a singular point, and the nonzero homogeneous component ofy2 - x 3
of smallest total degree is y2. Here , V (y 2) is the x -axis and gives a nice approximation
of the curve near (0, 0).

Inboth of the above curves, we approx imated the curve near the singular point using
the smallest nonzero homogeneous component of the defining equat ion. To generalize
this idea , suppose that P = (PI , . .. , PII) E k" . If a = (ai , . . . , all) E Z~o ' let

(x - pt = (XI - PI )a, . . . (XII _ PII)a"
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and note that (x - p)a has total degree lal = a, +...+all .Now. given any polynomial
f E k[Xl , . .. , XII] of total degree d. we can write f as a polynomial in Xi - Pi. so that
f is a k-linear combination of (x - p)a for [o] ::: d . If we group according to total
degree, we can write

(1) f = fp .o+ fp .1 + ' " + fp .d.

where f p.j is a k-linear combination of (x - p)a for [o] = j . Note that fp .o = f(p)
and fp .l = dp(f) (as defined in Definition I of the previous section). In the exercises.
you will discuss Taylor's formula. which shows how to express fp.j in terms of the
partial derivatives of f at p. In many situations. it is convenient to translate p to the
origin so that we can use homogeneous components.
We can now define the tangent cone .

Definition 2. Let V C k" be an affine variety and let p = (PI • . . . • PII) E V .
(i) If f E k[xl • . . . , XII) is a nonzero polynomial . then fp .mill is defined to be fp .j .

where j is the smallest integer such that fp .j # 0 in (I) .
(ii) The tangent cone ofV at p, denoted Cp(V) . is the variety

Cp(V) = V(fp .mill : f E I(V» .

The tangent cone gets its name from the following proposition.

Proposition 3. Let p EVe kIT . Then Cp(V) is the translate of the affine cone ofa
variety in 1P"-1(k).

Proof. Introduce new coordinates on k" by letting Xi = xi - Pi. Relative to this co-
ordinate system, we can assume that p is the origin O. Then fO.mill is a homogeneous
polynomial in X I •...• XII' and as f varies over I(V) . the fO .mill generate a homoge-
neous ideal J C k[X 1, • • • , XII) ' Then Cp(V) = Va(J) C k" by definition. Since J
is homogeneous. we also get a projective variety W = Vp(J ) C IP"-l (k). and as we
saw in Chapter 8. this means that Cp(V) is an affine cone Cw C k" of W. This proves
the proposition. 0

The tangent cone of a hypersurface V C kIT is especially easy to compute. In
Exercise 2 you will show that if I(V) = (f). then Cp(V) is defined by the sin-
gle equation fp.mi" = O. This is exactly what we did in Example I. However.
when I(V) = (fl, . .. , f s) has more generators, it need not follow that Cp(V) =
V«fl)p.mill, ...• (j,)p .mill)' For example, suppose that V is defined by xy = xz +
Z(y2 - Z2) =O. In Exercise 3. you will show that I(V) = (xy, xz +z(i - Z2»). To see
that Co (V) # V(xy, xz) , note that f = yz(i - Z2) = y(x z+z(i - Z2» - z(xy) E
I(V) . Then fO .mill = yz(i - Z2) vanishes on CO(V)' yet does not vanish on all of
V(xy . xz) .
We can overcome this difficulty by using an approproiate Groebner basis. The result

is stated most efficiently when the point p is the origin.

Proposition 4. Assume that the origin 0 is a point ofV C k". Let XQbe a new variable
and pick a monomial order on k[xQ , XI • •• •• XII) such that among monomials of the
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same total degree. any monomial involving Xo is greater than any monomial involving
only XI, ... • X" (lex and grlex with Xo > . .. > x; satisfy this condition).
(i) Let I (V )" C k[xo, XI • . . . , x,,]be the homogenization 01 I(V) and let G 1, •• • , G,

be a Groebner basis ol l(V)" with respect to the above monomial order. Then

Co(V ) = V « gl)O.mill, " " (gs)O.mill)'

where gi = G, (1 , XI, . . . • x,,) is the dehomogenization ofGi.
(ii) Suppose that k is algebraically closed. and let I be any ideal such that V = V(l) .

IIG I • . . . , G, are a Groebner basis of I" • then

Co(V ) = V« g l)O.mill, . . . , (g,)O,mi,,),

where gi = Gi (1 , XI , .. . , X,,) is the dehomogenization 01 Gi.

Proof. In this proof, we will write Ij and Imill rather than l o. j and 10,mill'
(i) Let! = I(V).1t suffice s to show that Imill E «gl )lIIi" , . . . , (g' )lII ill ) for all I E I.

If this fails to hold , then we can find I E I with f,,,ill ¢ « gl )lIIi", ... , (g, )lIIill) such that
LT(fmill ) is minimal [note that we can regard Imill as a polynomial in k[xo, X I , .• . , x,,],
so that LT(fill in ) is defined] . If we write I as a sum of homogeneous components

1= f, ,,i,, + .. . + I«.
where d is the total degree of I , then

I" = f,,,illxg + .. . + !d E I"

for some a . By the way we cho se the monomial order on k[xo, XI , . . . , x,,] , it follows
that LT(fIr ) = LT(fmill)xg. Since G 1, • • • , G, form a Groebner basis, we know that
some LT(G ;) divides LT(fm;,,)xg.
If gi is the dehomogenization of G; , it is easy to see that g; E I. We leave it as an

exercise to show that

LT(Gi ) = LT«g;)m;lI)xg

for some b. Th is imp lies that LT(lmi,,) = CX"'LT«g;)lII ill ) for some nonzero c E k
and some monomial x'" ·in XI, .. . ,XII' Now consider! = I - CX'"gi E I. Since
IlII i" ¢ « gl )mi", . . . , (gs)lIIi,,), we know that f, ,,ill - CX'" ss, )mill i= 0, and it follows
easily that

i .: = fmin - cxa(gj)mill o

Then LT(!lII i,,) < LT(f,,,;,,) since the leading term s of IlIIi" and cX"'(g;)mill are equal.
This contradicts the minimality of LT(f,,,i,,), and (i) is proved. In the exercises, you will
show that gl, . .. , gIl are a bas is of I , though not necessarily a Groebner basis .
(ii) Let W denote the variety V(f,,,i,, : I E I) . If we apply the argument of part (i)

to the ideal I , we see immediately that

W =V«g!lm;II' . . . , (gs)mill)'

It rema ins to show that W is the tangent cone at the orig in. Since I C I (V). the inclusion
Co(V) C W is obvious by the defin ition of tangent cone. Going the other way, suppose
that g E I (V ). We need to show that gmi" vanishes on W . By the Nullstellensatz, we
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know that gill E I for some m and, hence, (glll) lII ill = 0 on W. In the exercises, you will
check that (glll)mill = (glllill)1II and it follows that glllill vanishes on W. This completes
the proof of the proposition. 0

In practice, this proposition is usually used over an algebraically closed field, for
here, part (ii) says that we can compute the tangent cone using any set of defining
equations of the variety.
For an example of how to use Proposition 4, suppose V = V(xy , xz+ Z(y2 - Z2» .

Ifwesetf = (xy ,xZ+Z(y2 -z2»),thefirststepistodeterminef" C k[w,x,y ,z),
where w is the homogenizing variable. Using grlex order on k[x, y, el.a Groebner basis
for I is (xy , x Z+ Z(y2 - Z2), x 2Z - xz 3). By the theory developed in §4 of Chapter 8,
(xy, xzw + Z(y2 - Z2), x 2zw - xz3) is a basis of t». In fact, it is a Groebner basis for
grlex order, with the variables ordered x > y > z > w (see Exercise 5). However , this
monomial order does not satisfy the hypothesis of Proposition 4, but if we use grlex
with w > x > y > z, then a Groebner basis is

(xy, xzw + z(l- Z2), yz(l- Z2»).

Proposition 4 shows that if we dehomogenize and take minimal homogeneous
components, then the tangent cone at the origin is given by

Coev) = V(xy , xz. yz(l - ::2».

In the exercises, you will show that this is a union of five lines through the origin in k3•
We will next study how the tangent cone approximates the variety V near the point

p. Recall from Proposition 3 that Cp (V) is the translate of an affine cone, which means
that Cp(V ) made up of lines through p. So to understand the tangent cone, we need to
describe which lines through p lie in Cp(V) . We will do this using secant lines. More
precisely , let L be a line in k" through p. Then L is a secant line of V if it meets V in
a point distinct from p. Here is the crucial idea: if we take secant lines determined by
points of V getting closer and closer to p , then the "limit" of the secant lines should lie
on the tangent cone. You can see this in the following picture.

the variety V

y

~ the langen t cone

at the origi n

To make this idea precise, we will work over the complex numbers <C. Here , it is
possible to define what it means for a sequence of points qk E <C" to converge to
q E <C/ . For instance , if we think of <C" as IR211 , this means that the coordinates of
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qk converge to the coordinates of q. We will assume that the reader has had some
experience with sequences of this sort.
We will treat lines through their parametrizations. So suppose we have parametrized

L via p + t v , where v E k" is a nonzero vector parallel to Land t E <C. Then we
define a limit of lines as follows .

Definition S. We say tha t a line L E <C" through a point p E <C" is a limit of lines
(L klk:1 through p ifgive n a parametrization p + t v ofL, there exist parametrizations
p + t Vk of L k such that limk_ :x:> Vk = v in <C".

This notion of convergence corresponds to the following picture :

r

!

L

Now we can state a precise version of how the tangent cone approximates a complex
variety near a point.

Theorem 6. Let V C <C" be an affin e variety. Then a line L through p in <C" lies in the
tangent cone Cp( V ) ifand only ifthere exists a sequence {qdk:1ofpoints in V - {p l
converging to p su ch that if Lk is the secant line containing p and qb then the lin es Lk
converge to the given line L.

Proof. By translating p to the orig in. we may assume that p = O. Let {qd be a
sequence of points on V converging to the origin and suppose the lines L k through 0
and qk converge (in the sense of Definition 5) to some line L through the origin. We
want to show that L C Co(V).
By the definition of L, converging to L. we can find parametrizations tv; of L,

(remember that p = 0) such that the Vk converge to v as k -+ 00. Since qk E L i ;we
can write qk = tkvk for some complex number t i , Note that tk =j:. 0 since qk =j:. p .We
claim that the tk converge to O. This follows because as k -+ 00. we have Vk -+ v =j:. 0
and tkVk = qk -+ O. (A more detailed argument will be given in Exercise 8.)
Now suppose that f is any polynomial that vanishes on V . As in the proof of Propo-

sition 4. we write f mi" and h rather than fO.mi" and fO.j . If f has total degree d . then
we can write f = It + It+ 1 + . ., + !d.where It = f", i" . Since qk = tiv, E V, we
have

(2)
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Each f; is homogeneous of degree i, so that f;Ctk Vk) = tI!(vd. Thus,
(3) 0 = tkf;(vd + ...+ tt h(Vk).
Since tk i= 0, we can divide through by tI to obtain

(4) 0 = ft(vd + tkft+1(vd + . . . + ttl h(vd .
Letting k ~ 00, the right-hand side in (4) tends to ft(v) since Vk ~ v and tk ~ O.
We conclude that ft(v) = 0, and since ft(tv) = tl ft(v) = 0 for all t , it foIlows that
L C CoW) . This shows that CoW) contains all limits of secant lines determined by
sequences of points in V converging to O.
To prove the converse, we wiIl first study the set

(5) v = (v, t) E (C" X (C : tv E V, t i= O} C (CII+I .

If (v , t) E V, note that the L determined by 0 and vt E V is a secant line. Thus, we
want to know what happens to V as t ~ O. For this purpose, we.will study the Zariski
closureV of V, which is the smaIlest variety in (CII+I containing V.We claim that

(6) V = V U (CoW) x (O)) .

From §4ofChapter 4, we know thatV = V(I(V». So we need to calculate the functions
that vanish on V. If f E I(V), write f = ft + .. .+ lei where ft = f mill' and set

- d~f = f; + tft+1 + ... + t fd E (C[t, XI , • • . , XII] '

We will show that

(7) I(V) = (] : f E I(V»).

One direction of the proof is easy, for f E I(V) and (v , t) E V imply fCtv) = 0,
and then equations (2) , (3), and (~) show that J(v, r) = O. Conversely, suppose that
g E (C[t, XI, • •• , XII] vanishes on V. Write g = L i g.t' ;where gi E (C[XI, . .. , XII],
and let gi = Lj gij be the decomposition of gi into the sum of its homogeneous
components. If (v, t) E V, then for every A E (C - (O}, we have (AV, A-I t) E V since
(A-It) . (Av) = tv E V. Thus ,

0= g(AV , A-It) = Lgij(AV)(A-1t)i = LAjgij(V)A-iti = LAj-igij(V)t i
i.l i.j ij

for all A i= O. Letting m = j - i, we can organize this sum according to powers of A:

Since this holds for all A i= 0, it foIlows that Li gi.lII+i(V)ti = 0 for all m and, hence ,
Li gi.lII+i t i E I(V) . Let fm = Li gi.nr+i E (C[XI, . .. , XII ] ' Since (v, I) E V for all
v E V, it foIlows that fm E I(V). If we let io be the smaIlest i such that gi.lII+i i= 0,
then

i: = gi".m+i" + gio+l.lII+i,,+lt + " ' ,
so that L i gi.nr+iti = t'»Jm . From this, it foIlows immediately that g E (J : f E
I(V»), and (7) is proved .
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From (7), we haveV = vci . f E I(V» .Tocompute this variety, let(v, t) E ([;11+1,
and first suppose that t ::P O. Using (2), (3), and (4), it follows easily that lev, t) = a
if and only if f(tv) = O. Thus,

V n {(v, r) : t ::P a} = v.
Now suppose t = O. If f = f lJl ill + ... + hi, it follows from the definition of 1 that
l ev, 0) = a if and only if li(v) = O. Hence,

V n {(v, t) : t = OJ = Co(V ) x {OJ,

and (6) is proved.
To complete the proof of Theorem 6, we will need the following fact about Zariski

closure.

Proposition 7. Let Z eWe ([;11 be affine varieties and assume that W is the
Zariski closure of W - Z . If Z E Z is any point, then there is a sequence ofpoints
(Wk E W - Z}~I which converges to Z.

Proof. The proof of this is beyond the scope of the book . In Theorem (2.33) of
MUMFORD (1976), this result is proved for irreducible varieties in IP"([;). Exercise 9
will show how to deduce Proposition 7 from Mumford's theorem. 0

To apply this propos ition to our situation, let Z = Co(V) x {a} c W = V. By (6),
we see that W - Z = V - Co(V) x (OJ = V and, hence, W = V is the Zariski closure
of W - Z. Then the proposition implies that any point in Z = Co(V) x (OJ is a limit
of points in W - Z = V.
We can now finish the proof of Theorem 6. Suppose a line L parametrized by vt is

contained inCo(V). Then v E Co(V) ,which implies that (v, 0) E Co(V) x {OJ. By the
above paragraph, we can find points (Vk- td E V which converge to (u, 0). Ifwe let Lk
be the line parametrized by t ui ; then Vk -+ v shows that L, -+ L. Furthermore, since
qk = tkVk E V and tk ::P 0, we see that L is' the secant line determined by qk E V.
Finally, as k -+ 00, we have qs = tk . Vk -+ a . v = 0, which shows that L is a
limit of secant lines of points qk E V converging to O. This completes the proof of the
theorem. 0

If we are working over an arbitrary field k, we may not be able to define what it
means for secant lines to converge to a line in the tangent cone . So it is not clear what
the analogue of Theorem 6 should be. But if p = ais in V over any field k, we can still
form the variety V as in (5), and every secant line still gives a point (v , t) E V with
t ::P o.A purely algebraic way to discuss limits of secant lines as t -+ awould be to
take the smallest variety containing V and see what happens when t = O. This means
looking atVn (k" x (OJ), which by (6) is exactly Co(V) x {a}. You should check that
the proof of (6) is valid over any field. so that the decomposition

V = V U (Co(V ) x (OJ)

can be regarded as the exten sion of Theorem 6 to the case when k is an arbitrary field.
In Exercise 10, we will explore some other interesting aspects of the variety V.
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Another way in which the tangent cone approximates the variety is in terms of
dimension. Recall from §6 that dim; V is the maximum dimension of an irreducible
component of V containing p.

Theorem 8. Let p beapointon an affine variety V C k". Then dim, V = dim C,,(V) .

Proof. This is a standard result in advanced courses in commutative algebra [see, for
example , Theorem 13.9 in MATSUMURA (1986)]. As in §6, we will only prove this for
the case of a hypersurface in (C". If V = V(f), we know that Cp(V) = V(fp.lIl i,,) by
Exercise 2.Thus , both V and Cp (V) are hypersurfaces, and, hence , both have dimension
n - 1 at all points . This shows that dim; V = dim Cp(V) . 0

This is a nice result because it enables us to compute dim" V without having to
decompose V into its irreducible components.
The final topic of this section will be the relation between the tangent cone and the

tangent space. In the exercises, you will show that for any point p of a variety V, we
have

In terms of dimensions, this implies that

Then the following corollary of Theorem 8 tells us when these coincide.

Corollary 9. Assume that k is algebraically closed and let p be a point ofa variety
V C k" . Then the following are equivalent:
(i) ~ is a nonsingular point of V.
(ii) dim Cp(V) = dim Tp(V) .
(iii) Cp(V) = Tp(V) .

Proof. Since dim Cp(V) = dim, V by Theorem 8, the equivalence of (i) and (ii) is
immediate from the definition of a nonsingular point. The implication (iii) =} (ii) is
trivial, so that it remains to prove (ii) =} (iii).
Since k is algebraically closed, we know that k is infinite, which implies that the

linear space Tp(V) is an irreducible variety ill (C" . [When Tp(V) is a coordinate sub-
space , this follows from Exercise 7 of §I. See Exercise 12 below for the general case.]
Thus, ifCp(V) has the same dimension Tp(V), the equality Cp(V) = T,,(V) follows
immediately from the affine version of Proposition 10 of §4 (see Exercise 18 of §4).D

If we combine Theorem 6 and Corollary 9, it follows that at a nonsingular point
p of a variety V C (C", the tangent space at p is the union of all limits of secant
lines determined by sequences of points in V converging to p. This is a powerful
generalization of the idea from elementary calculus that the tangent line to a curve is a
limit of secant lines.
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EXERCISES FOR§7

1. Suppose that k is a field of characteristic O. Given p E k" and f E k[XI, . . . , x"l , we know
that f can be written in the form f = L" c,,(x - p)" . where c" E k and (x - p)" is as in
the text. Given a. define

where means differentiation a, times with respect to Xi . Finally, set

a. Show that

a" (x - p)11 _ {a!
a"x (p) - 0

if a = f3
otherwise .

Hint: There are two cases to consider: when f3i < a, for some i and when f3i ~ a, for
all i .

b. If f = L" c, (x - p)", then show that

I aUf
c; = "I -;;;- (p),a . u x

and conclude that

This is Taylor's formula for f at p . Hint: Be sure to explain where you use the characteris-
tic 0 assumption .

c. Write how the formula of part b explicitly when f E k[x, y I has total degree 3.
d. What formula do we get for fp .j in terms of the partial derivatives of f?
e. Give an example to show that over a finite field. it may be impossible to express f in

terms of its partial derivatives. Hint: See Exercise 10 of §6.
2. Let V C k" be a hypersurface.

a. If I(V) = (f), prove that Cp(V) = V(fp ,min)'
b. If k is algebraically closed and V = V(f), prove that the conclusion of part a is still true.

Hint: See the proof of part (ii) of Proposition 4.
3. In this exercise, we will show that the ideall = (xy , xz + Z(y2 - Z2») C k[x, y, zl is a

radical ideal when k has characteristic O.
a. Show that

(x, z(/ - Z2») = (x, z) n (x, y - z) n (x, y + z).

Furthermore, show that the three ideals on the right-hand side of the equation are prime.
Hint: Work in k[x, y, zl/(x) ~ k[y, z] and use the fact that k[y, zl has unique fac-
torization. Also explain why this result fails if k is the field IF2 consisting of two
elements.

b. Show that

and show that the two ideals on the right-hand side of the equation are prime.
c. Prove that l = (x , Z(y2 - Z2») n (y, xz -Z3). Hint: One way is to use the ideal intersection

algorithm from Chapter 4. §3. There is also an elementary argument.
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d. By pans a. band c, we see that I is an intersection of five prime ideals. Show that I is a
radical ideal. Also. use this decomposition of I to describe V = V(l) C k3•

e. If k is algebraically closed. what is I( V)?
4. This exercise is concerned with the proof of Proposition 4. Fix a monomial order > on

k[xo • . . . , x,,) with the properties described in the statement of the proposition.
a. Ifg E k[XI , . . . , x,,) is the dehomogenization ofG E k[xo • . . . • xn),provethatLT(G) =

LT(g"'in)Xg for some b.
b. If G I , . . . • G, is a basis of I", prove that the dehomogenizations gl • . . . • g, form a basis

of I. In Exercise 5. you will show that if the Gis are a Groebner basis for > , the gi'S
may fail to be a Groebner basi s for I with respect to the monomial induced order on
k[xl • . . .• x,,).

c. If f. g E k[x" . . . • x,,). show that (f . g)",;" = f"'i n . g",;" . Conclude that (f"')", ;" =
(f,IIitJ III .

5. We will continue our study of the variety V = V(xy. xz + Z(y2 - Z2» begun in the text.
a. If we use grlex with ui > x> y > z, show that a Groebner basis for I" c k[w.x,y.z)

is [xy, x zw + Z(y2 - Z2). yz(y2 - Z2)}.
b. If we dehomogenize the Groebner basis of pan a. we get a basis of I. Show that this basis

is not a Groebner basis of I for grlex with x > Y > z.
c. Use Proposition 4 to show that the tangent cone Co(V) is a union of five lines through

the origin in k3 and compare your answer to pan e of Exercise 3.
6. Compute the dimensions of the tangent cone and the tangent space at the origin of the

varieties defined by the following ideals :
a. (xz. xy) C k[x. y. zl.
b. (x - y2. X - Z3) C k[x. y. zl-

7. In §3 of Chapter 3. we used eliminat ion theory to show that the tangent surface of the twisted
cub ic V (y - x 2 • Z - x 3) C IR3 is defined by the equation

a. Show that the singular locus of the tangent surface S is exactly the twisted cub ic. Hint :
Two different ideals may define the same variety. For an example of how to deal with
this. see equation (14) in Chapter 3. §4.

b. Compute the tangent space and tangent cone of the surface S at the origin.
8. Suppose that in <C" we have two sequences of vectors Vt and t k Vb where t t . E <C, such

that Vk --+ V =1= 0 and tk Vk --+ O.We claim that tt --+ 0 in <C. To prove this. define the
length of a complex number t = X + i y to be ItI = Jx2+ y2 and define the length of
v = (z: .. . . • z,,) E <C" to be [u] = Jlztl 2 + .. . + IZnI2 • Recall that Vk --+ v means that
for every € > O. there is N such that IVk - vi < € for k ~ N .
a. If we write v = (Zl•.. .. z,,) and Vk = (Zkl • • • •• Zk,,). then show that Vk --+ v implies

Zkj --+ z, for all j . Hint: Observe that IZjl ::: [u].
b. Pick a nonzero component Zj of v. Show that Ztj --+ Zj =1= 0 and tkZk] --+ O. Then divide

by Zj and conclude that It --+ O.
9. Theorem (2.33) of MUMFORD (1976) states that if W C IP"(<C) is an irreducible projective

variety and Z C W is a projective variety not equal to W. then any point in Z is a limit of
points in W - Z . Our goal is to apply this to prove Proposition 7.
a. Let Z eWe <C" be affine varieties such that W is the Zariski closure of W - Z. Show

that Z contains no irreducible component of W.
b. Show that it suffices to prove Proposition 7 in the .case when W is irreducible. Hint : If
p lies in Z, then it lies in some component WI of W. What does pan a tell you about
WI n Z c WI?
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c. Let Z eWe <C". where W is irreducible and Z #- W. and let Z and W be their
projective closures in )p" (<C) . Show that the irreducible case of Proposition 7 follows
from Mumford 's Theorem (2.33) . Hint: Use Z U (W - W) C W.

d. Show that the converse of the proposition is true in the following sense . Let p E <C". If
p rf. V - Wand p is a limit of points in V - W. then show that pEW. Hint: Show
that p E V and recall that polynomials are continuous.

10. Let V C k" be a variety containing the origin and let V C k"+1 be the variety described in
(5). Given A E <C. consider the "slice" (k" x (AI) n V.
a. Show that this slice equals V;. x (AI, where VA= (v E k" : AV E VI. Also show that
V;. is an affine variety.

b. Show that VI = V. and. more generally. for A #- O. show that V;. is isomorphic to V .
Hint: Consider the polynomial map defined by sending (XI, . . . , x ,,) to (Axl' . . . , Ax,,).

c. Suppose that k = IR or <C and that A#-O is close to the origin . Explain why V;. gives
a picture of V where we have expanded the scale by a factor of I/A. Conclude that as
A ---+ 0, V;. shows what V looks like as we "zoom in" at the origin.

d. Use (6) to show that Vo = Co(V) . Explain what this means in terms of the "zooming in"
described in part c.

II. If p EVe k", show that Cp(V) C T,,(V) .
12. If k is an infinite field and V C k" in a subspace (in the sense of linear algebra). then prove

that V is irreducible. Hint: In Exercise 7 of §I. you showed that this was true when V was a
coordinate subspace. Now pick an appropriate basis of k" .

13. Let W C IP"- t (<C) be a projective variety and let Cw C <C" be its affine cone .
a. Prove that the tangent cone of Cw at the origin is Cwo
b. Prove that the orig in is a smooth point of Cw if and only if W is a projective linear

subspace of IP,,-I (<C). Hint: Use Corollary 9.

In Exercises 14-17. we will study the "bl2.w-up" of a variety V at a point p E V. The blowing-up
process gives us a map of varieties tt : V ---+ V such that away from p , the two varieties look
the same. but at p , Vcan be much larger than V . depending on what the tangent cone Cp(V )
looks like.

14. Let k be an arbitrary field. In §5 of Chapter 8, we studied varieties in IP,,-I x k", where
IP,,- I = IP,,-I(k) . Let y" . . . , y" be homogeneous coordinates in IP,,-I and let XI, ... , x,
be coordinates in k" , Then the (YI • . . . , y")-homogeneous polynomials X i Yj - X l Yi (this is
the terminology of Chapter S, §5) define a variety r C IP,,-I. x k", This variety has some
interesting properties.
a. If (p , q) E IP,,-I X k" • then interpreting p as homogeneous coordinates and q as ordinary

coordinates, show that (p, q) E r if and only if q = tp for some t E k (which might be
zero).

b. If q #- 0 is in k", show that (IP,,-I x (q I) n r consists of a single point [which can be
thought of as (q, q), where the first q is the point ofIP,,-1 with homogeneous coordinates
given by q E k" - (Oil. On the other hand. when q = 0, show that (IP,, - I x (q I) n r =
IP,,-I x (01 .

c. If tt : r ---+ k" is the projection map. conclude that n - I (q) consists of a single point,
except when q = O. in which case it - I (0) is a copy of IP,,-I . Hence, we can regard r as
the variety obtained by removing the origin from k" and replacing it by a copy of IP,,-I .

d. To see what the IP,,-I x [01 c r means . consider a line L through the origin parametrized
2Y tv . Show that the points (u, tv) E IP,,-I X k" lie in r and, hence. describe a curve
L C r . Investigate where this curve meets IP,,-I x [01 and conclude that distinct lines
through the orig in ink" give distinct points in rr- I (0). Thus. the difference between rand
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k" is that r separates tangent directions at the origin . We call tt : r ~ k" the blow-up
of k" at the origin .

15. This exercise is a continuation of Exercise 14. Let V C k" be a variety containing the origin
and assume that the orig in is not an irreducible component of V .Our goal here is to define the
blow-up of V at the origin. Let r C lP,,-1 x k" be as in the prev ious exercise. Then VCr
is defined to be the smallest variety in lP,,-1 x k" conta0ing (lP"-1 x (V - (01) n r .
If n : r ~ k" is as in Exercise 14. then prove that n (V) C V . Hint: First show that
V C lP,,-1 X V.

This exerc ise shows we have a map rr : V ~ V. which is called the blow-up of V at the
origin . By Exercise 14, we know that rr- I (q) consists of a single point for q =I 0 in V. In
Exercise 16. you will describe rr- I (0) in terms of the tangent cone of V at the origin .

16. Let V C k" be a variety containing the origin and assume that the origin is not an irreducible
component of V .We know that tangent cone Co(V) is the affine cone C IV over some project ive
variety W C lP,,-I. We call W the projectivized tangent cone of V at p. The goal of this
exercise is to show that if n : V ~ V is the blow-up of V at 0 as defined in Exercise 15.
thenrr-I(O) = W x (O} .
a. Show that our assumption that(O} is not an irreducible component of V implies that k is

infinite and that V is the Zariski closure of V - (0). _
b. Let g E k[YI • . . . •Y". XI. ... . x,,] .Then show thatg E I(V) ifand only if gitq , q) = 0

for all q E V - (O} an~all t E k - (O} . Hint : Use part a of Exercise 14.
c. Then show that g E I(V) if and only if gltq, q) = 0 for all q E V and all t E k. Hint:

Use parts a and.E.
d. Explain why I(V) is generated by (YI • . . .• y,,)-homogeneous polynomials.
e. Assume that g = La ga(YI • ... • y,,)x a E I(V) .By part d, we may assume that the s;

are all homogeneous of the same total degree d. Let

!(x! •. . .• x,,) =L ga(XI • . . . • x,,)x a.
a

Then show that! E I(V) . Hint: First show that gttx, • . . . • IX" .XI • . . .• x ,,)
!(XI . . . . . x,,)tJ • and then use part c.

f. Prove that W x (O} C Vn (lP,,-1 x (O)). Hint: It suffices to show that g(u. 0) = 0 for
g E I(V) and u E Co(V) . In the notation of part e. note that g(u . 0) = go(u). If go =I 0,
show that go = j,"i" , where! is the polynomial defined in part e.

g. Prove that Vn (lP,,-1 x (O)) C W x (O}. Hint: If! = f, + .. . + !J E I(V). where
f, = j,"i" . let g be the remainder of t l ! on div ision by tXI - YI • .. . • IX" - Y". Show
that t does not appear in g and that g E I(V) .Then compute g(u , 0) using the techniques
of parts e and f.

A line in the tangent cone can be regarded as a way of approaching the orig in through
points of V . So we can think of the projectivized tangent cone W as describing all ways of
approaching the origin within V. Then rr- I(0) = W x (O} means that each of these different
ways gives a distinct point in the blow-up. Note how this generalizes Exercise 14.

17. Assume that k is an algebraically closed field and suppose that V = V(fI • . . .• !J c k"
contains the origin.
a. By analyzing wh!t you did in partg of Exercise 16. explain how to find defin ing equations

for the blow-up V .
b. Compute the blow-up at the origin of V(y2 - x2 - x 3) and describe how your answer

relates to the first picture in Example 1.
c. Compute the blow-up at the origin of V(y 2 - x 3) .
Note that in parts band c, the blow-up is a smooth curve. In general. blowing-up is an
important tool in what is called des ingularizing a variety with singular points .



Appendix A

Some Concepts from Algebra

This appendix contains precise statements of various algebraic facts and definitions
used in the text. For students who have had a course in abstract algebra, much of this
material will be familiar. For students seeing these terms for the first time, keep in mind
that the abstract concepts defined here are used in the text in very concretesituations,

§1 Fields and Rings

We first give a precise definition of a field.

Definition 1. Afield consists ofa set k and two binary operations - . U and U +" defined
on k for which the following conditions are satisfied:
(i) (a + b) + c = a + (b + c) and (a . b) . c = a . (b . c) for all a, b, c E k

(associat ive).
(ii ) a + b = b + a and a . b = b . a for all a, b E k (commutative).
(iii) a . (b + c) = a . b + a . c for all a, b , c E k (distributive).
(iv) There are 0, I E k such that a + 0 = a . I = a for all a E k (identities) .
(v) Given a E k, there is b E k such that a + b = 0 (additive inverses).
(vi) Given a E k , a ::J:. 0, there is c E k such that a . c = I (multiplicative inverses) .

The fields most commonly used in the text are <Q, JR,and ce. In the exercises to §I
of Chapter I, we mention the "field 1F2 which consists of the two elements 0 and I.
Some more complicated fields are discussed in the text. For example, in §3 of Chapter
I, we define the field ktt»; ... , tnt)of rational functions in t), . . . , tnt with coefficients
in k. Also, in §5 of Chapter 5, we introduce the field k(V) of rational functions on an
irreducible variety V.
If we do not require multiplicative inverses, then we get a commutative ring.

Definition 2. A commutative ring consists ofa set R and two binary operations "."
and U +" defined on R for which the following conditions are satisfied:
(i) (a + b) + c = a + (b + c) and (a . b) . c = a . (b . c) for all a , b, c, E R

(associative ).
(ii) a + b = b + a and a . b = b . a for all a, b E R (commutative).
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(iii) a · (b + c) = a · b + a· cforall a, b , c E R (distributive).
(iv) There are 0, 1 E R such that a + 0 = a . 1 = a for all a E R (identities).
(v) Given a E R, there is b E R such that a + b = 0 (additive inverses).

Note that any field is obviously a commutative ring. Other examples of commutative
rings are the integers Z and the polynomial ring k[XI, .. : ' x,,]. The latter is the most
commonly used ring in the book . In Chapter 5, we construct two other commutative
rings : the coordinate ring k[V] of polynomial functions on an affine variety V and the
quot ient ring k[XI, . .. , x,,]/ I , where I is an ideal of k[X I, .. . , x,,] .
A special case of commutative rings are the integral domains.

Definition 3. A commutative ring R is an integral domain if whenever a , b E Rand
a . b = 0, then either a = 0 or b = O.

Any field is an integral domain, and the polynomial ring k[x), . . . , x,,] is an integral
domain. In Chapter 5, we prove that the coordinate ring k[ V] of a variety V is an integral
domain if and only if V is irreducible.
Finally, we note that the concept of ideal can be defined for any ring.

Definition 4. Let R be a commutative ring. A subset I C R is an ideal if it satisfies:
(i) 0 E I .
(ii) Ifa,b E l i then a +b E I.
(iii) Ifa E I and b E R, then b . a E I .

Note how this generalizes the definition of ideal given in §4 of Chapter 1.

§2 Groups

A group can be defined as follows .

Definition 1. A group consists ofa set G and a binary operation ..... defined on G
for which the following conditions are satisfied:
(i) (a . b) . c = a . (b . c) for all a, b, c E G (associative).
(ii) There are lEG such that I . a = a . 1 = a for all a E G (identity).
(ii) Given a E G, there is bEG such that a . b = b . a = I (inverses) .

A simple example of a group is given by the integers 7L under addition. Note 7L is not
a group under multiplication. A more interesting example comes from linear algebra.
Let k be a field and define

GL(n, k) = {A : A is an invertible n x n matrix with entries k} .

From linear algebra, we know that the product AB of two invertible matrices A and B
is again invertible. Thus , matrix multiplication defines a binary operation on GL(n , k) ,
and it is easy to verify that all of the group axioms are satisfied.
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For a final example of a group, let n be a positive integer and consider the set

SII = {a : {I, . . . , n} ~ {I, .. . , n} : a is one-to-one and onto}.

Then composition of functions turns SII into a group . Since elements a E SII can be
regarded as permutations of the numbers I through n, we ca'I SII the permutation group.
Note that SII has n! elements.
Finally, we need the notion of a subgroup.

Definition 2. Let G be a group.A subset H eGis called a subgroup if it satisfies:
(i) I E H .
(ii) Ifa,b E Hi then a i b E H .
(iii) Ifa E Hi then a : ' E H .

In Chapter 7, we study finite subgroups of the group GL(n, k).

§3 Determinants

Our first goal is to give a formula for the determinant of an n x n matrix. We begin by
defining the sign of a permutation. Recall that the group S" was defined in §2 of this
appendix.

Definition 1. If a E SIlO let Po be the matr ix obtained by permuting the columns of
the n x n identity according to a. Then the sign ofa, denoted sgn(a), is defined by

sgn(a) = det(Po ) .

Note that we can transform Po back to the identity matrix by successively switching
columns two at a time. Since switching two columns of a determinant changes its sign,
it follows that sgn(a) equals ±l. Then one can prove that the determinant is given by
the following formula .

Proposition 2. IfA = (aij) is an n x n matrix, then

det(A) = L sgn(a)alo(l) . . . allot,,) ·
oeS;

Proof. A proof is given in Chapter 5, §3 of FINKBEINER (1978). o
This formula is used in a crucial way in our treatment of resultants (see Proposition 4

from Chapter 3, §5).
A second fact we need concerns the solution of a linear system of n equat ions in n

unknowns. In matrix form, the system is written

AX = B,

where A = (aij) is the n x n coefficient matrix, B is a column vector, and X is the
column vector whose entries are the unknowns XI, • •• , x.: When A is invertible, the
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system has the unique solution given by X = A-I B. One can show that this leads to
the following explicit formula for the solution.

Proposition 3 (Cramer's Rule). Suppose we have a system ofequations AX = B.
If A is invertible, then the unique solution is given by

det(M;)
x · -

I - det(A)'

where M; is the matrix obtainedfrom A by replacing its i th column with B.

Proof. A proof can be found in Chapter 5, §3 of FINKBEINER (1978) . o
This proposition is used to prove some basic properties of resultants (see Proposition 5

from Chapter 3, §5).
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Pseudocode

Pseudocode is commonly used in mathematics and computer science to present al-
gorithms. In this appendix, we will describe the pseudocode used in the text. If you
have studied the programming language Pascal, you will see a marked similarity be-
tween our pseudocode and Pascal. This is no accident, since programming languages
are also designed to express algorithms. Indeed, one of the forerunners of Pascal was a
programming language named ALGOL, which is short for "ALGOrithmic Language."
The syntax, or "grammatical rules;' of our pseudocode will not be as rigid as that of
a programming language since we do not require that it run on a computer. However,
pseudocode serves much the same purpose as a programming language.
As indicated in the text, an algorithm is a specific set of instructions for performing

a particular calculation with numerical or symbolic information. Algorithms have in-
puts (the information the algorithm will work with) and outputs (the information that
the algorithm produces). At each step of an algorithm, the next operation to be per-
formed must be completely determined by the current state of the algorithm. Finally,
an algorithm must always terminate after a finite number of steps.
Whe reas a simple algorithm may consist ofa sequence of instruct ions to be performed

one after the other, most algorithms also use the follow ing special structures:
• Repetition structures, which allow a sequence of instructions to be repeated. These
structures are also known as loops. The dec ision whether to repeat a group of in-
structions can be made in several ways , and our pseudocode includes different types
of repetition structures adapted to different circumstances.

• Branching structures, which allow the possibility of performing different sequences
of instructions under different circumstances that may arise as the algorithm is
executed.
fhese structures, as well as the rest of the pseudocode, will be described in more

detail in the following sections.

§1 Inputs, Outputs, Variables, and Constants

We always spec ify the inputs and outputs of our algorithms on two lines before the
start of the algorithm proper. The inputs and outputs are given by symbolic names in
usual mathematical notation. Sometimes, we do not identify what type of information
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is represented by the inputs and outputs. In this case. their meaning should be clear from
the context of the discussion preceding the algorithm. Variables (information stored for
use during execution of the algorithm) are also identified by symbolic names. We freely
introduce new variables in the course of an algorithm. Their types are determined by
the context. For example. if a new variable called a appears in an instruction. and we
set a equal to a polynomial, then a should be treated as a polynomial from that point
on. Numerical constants are specified in usual mathematical notation. The two words
true and false are used to represent the two possible truth values of an assertion. They
behave like the Boolean constants true and false in Pascal.

§2 Assignment Statements

Since our algorithms are designed to describe mathematical operations, by far the most
common type of instruction is the assignment instruction. The syntax is

<variable> := <expression>.

The symbol := is the same as the assignment operator in Pascal. The meaning of this
instruction is as follows. First. we evaluate the expression of the right of the assignment
operator, using the currently stored-values for any variables that appear. Then the result
is stored in the variable on the left-hand side. If there was a previously stored value
in the variable on the left-hand side, the assignment erases it and replaces it with the
computed value from the right-hand side. For example, if a variable called i has the
numerical value 3, and we execute the instruction

i := i + I,

the value 3 + I = 4 is computed and stored in i; After the instruction is executed. i will
contain the value 4.

§3 Looping Structures

Three different types of repetition structures are used in the algorithms given in the
text. They are similar to the ones used in Pascal. The most general and most frequently
used repetition structure in our algorithms is the WHILE structure. The syntax is

WHILE <condition> DO <action>.

Here, <action> is a sequence of instructions. In a WHILE structure. the action is the
group of statements to be repeated. We always indent this sequence of instructions. The
end of the action is signalled by a return to the level of indentation used for the WHILE
statement itself.
The <condition> after the WHILE is an assertion about the values of variables. etc .•

that is either true or false at each step of the algorithm. For instance. the condition
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i ::: s AND divisionoccurred = false

appears in a WHILE loop in the division algorithm from Chapter 2, §3.
When we reach a WHILE structure in the execution of an algorithm, we determine

whether the condition is true or false. If it is true, then the action is performed once,
and we go back and test the condition again . If it is still true, we repeat the action
once again . Continuing in the same way, the action will be repeated as long as the
condition remains true. When the condition becomes false (at some point during the
execution of the action), that iteration of the action will be completed, and then the loop
will terminate . To summarize, in a WHILE loop, the condition is tested before each
repetition, and that condition must be true for the repetition to go on.
A second repetition structure that we use on occas ion is the REPEAT structure. A

REPEAT loop has the syntax

REPEAT <action> UNTIL <condition>.

Reading this as an English sentence indicates its meaning. Unlike the condition in a
WHILE, the condition in a REPEAT loop tells us when to stop . In other words, the
action will be repeated as long as the condition is false . In addition, the action of a
REPEAT loop is always performed at least once since we only test the condition after
doing the sequence of instructions representing the action. As with aWHILE structure,
the instructions in the action are indented.
The final repet ition structure that we use is similar to the FOR loop of Pascal. We

use the syntax

FOR each s in S DO <action>

to represent the instruction: "perform the indicated action for each element s E S."
Here S is a finite set of objects and the action to be performed will usually depend on
which s we are considering . The order in which the elements of S are considered is not
important. Unlike the previous repetition structures, the FOR structure will necessarily
cause the action to be performed a fixed number of times (namely, the number of
elements in S). The FOR loop in Pascal can be seen as a special case, where typically
S is a set of consecutive integers, such as S = {I , . . . , n) , and the action is performed
once for each integer s between I and n.

§4 Branching Structures

We use only one type of branching structure, which is general enough for our purposes.
The syntax is

IF <condition> THEN -caction l » ELSE <action2>.

The meaning is as follows. If the cond ition is true at the time the IF is reached, action I
is performed (once only) . Otherwise (that is, if the condition was false), action2 is
performed (again, once only). The instruct ions in action I and action2 are indented , and
the ELSE separate s the two sequences of instructions. The end of action2 is signalled
by a return to the level of indentation used for the IF and ELSE statements.



504 Appendix B. Pseudocode

In this general branching structure, the truth or falsity of the condition selects which
action to perform . In some cases , we omit the ELSE and action2. This form is equivalent
to

IF <condition> THEN <action1> ELSE do nothing.



Appendix C

Computer Algebra Systems

This appendix will discuss several computer algebra systems that can be used in con-
junction with the text. We will descr ibe AXIOM, Maple, Mathematica and REDUCE
in some detail, and then mention some other systems . These are all amazingly powerful
programs, and our brief discussion will not do justice to their true capability.
It is important to note that we will not give a general introduction to any of the

computer algebra systems we will discuss. This is the responsibil ity of your course
instructor. In particular, we will assume that you already know the following :
• How to enter and exit the program, and how to enter commands and polynomials.
Some systems require semicolons at the end of commands (such as Maple and RE-
DUCE), while others do not. Also, some systems (such as Mathematica) are case
sensitive, while others aren 't. Some systems require an asterisk for multiplication
(such as AXIOM), while others don't.

• How to refer to previous commands, and how to save results in a file. The latter can
be important , especially when an answer fills more than one computer screen . You
.should be able to save the answer in a file and print it out for further study.

• How to work with lists. For example, in the Groebner basis command, the input
contains a list of polynomials, and the output is another list which is a Groebner
basis for the ideal generated by the polynomials in the input list. You should be able
to find the length of a list and extract polynomi als from a list.

• How to assign symbolic names to objects. In many computations, the best way to deal
with complicated data is to use symbolic names for polynomials, lists of polynomials,
lists of variables, etc.

If a course being taught from this book has a laboratory component, we would suggest
that the instructor use the first lab meeting to cover the above aspects of the particular
computer algebra system being used.

§1 AXIOM

AXIOM is a commercial version of SCRATCHPAD, which was developed by IBM
over a period of many years . Our discussion applies to version 2.0. For us, the most
important AXIOM commands are normalForm, for doing the division algorithm, and
groebner, for computing a Groebner basis.
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A distinctive feature of AXIOM is that every object has a specific type. In particular,
this affects the way AXIOM works with monomial orders: an order is encoded in a
special kind of type. For example, suppose we want to use lex order on <Q [x, y, z;] with
x > y > z. Th is is done by using the type OMP ( Ix , y , z] , FRAC INT) (remember
that AXIOM encloses a list inside brackets [. ..I). Here, OMP stands for "Distributed
Multivariate Polynomial," and FRAC INT means fractions of integers , i.e., rational
numbers. Similarly, grevlex for <Q[x, y, zl with x > y > z means using the type
HOMP ( [x , y , z) ,FRAC INT) , where HOMP stands for "Homogeneous Distr ibuted Mul-
tivariate Polynomial." At the end of the section, we will explain how to get AXIOM to
work with grlex order.
To see how this works in practice, we will divide x 3 + 3y2 by x 2 + y and x + 2xy

using grevlex order with x > y. We first give the three polynomials names and declare
their types :
-> f HOMP ( [x , y) ,FRAC INT) := £3+3*y"2
-> g : HOMP([x,y) ,FRAC INT) := x"2+y
-> h : HOMP([x,y] ,FRAC INT) .= x+2*x*y
(Here , -> is' the AXIOM prompt , and the colon: indicates a type declaration. You can
save typing by giving HOMP ( [x , y) , FRAC INT) a symbolic name.) Then the remainder
is computed by the command:
-> normalForm(f, [g,h))
The output is the remainder of f on division by g, h. In general, the syntax for this
command is:
-> normalForm(poly,polylist)
where poly is the polynomial to be divided by the polynomials in the list polylist
(assuming that everything has been declared to be of the appropriate type) .
To do the same computation using lex order with x > y, first issue the command:

-> Lex := OMP([x,y] ,FRAC INT)
to give OMP ( [x , y) , FRAC INT) the symbolic name Lex , and then type:
-> normalForm(f::Lex,[g ::Lex,h::Lex])
Here, we are using AXIOM 's type conversion facility : : to convert from one type to
another.
The syntax for the groebner command is:

-> groebner(polylist)
This computes a Groebner basis for the ideal generated by the polynomials inpolylist
(of the appropriate type). The answer is reduced in the sense of Chapter 2, §7. For
example, if g ,h are as above, then the command:
-> gb := groebner([g,h))
computes a list (and gives it the symbolic name gb) which is a Groebner basis for the
ideal (x 2 + y , X + 2xy) C <Q[x, y] with respect to grevlex for x > y. Also, if you
want information about the intermediate stages of the calculation, you can include the
options "redcrit" or" info" in the groebner command. For example, the command:
-> groebner( [g,h] , "redcrit")
will print out the remainders of S-polynomials (only one in this case ) generated during
the course of the computation. Adding the" inf0" option yields even more information.
AXIOM can also work with coefficients in a variety of fields besides <Q. This is easily

done by replacing FRAC INT in the type declaration. For instance , to compute Groebner
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bases over the field of rational functions in polynomials with integer coefficients , one
uses FRAC POLY INT. To see how this works, let us compute a Groebner basis for
the ideal (vx 2+ y, uxy + y2) C <Q(u, v)[x, y ] using lex order with x > y . This is
accomplished by the following AXIOM commands :
-> m : List DMP([x,y],FRAC POLY INT)
-> m := Iv-x • 2+y, u*x*y+y • 2]
-> groebner(m)
Notice that this illustrates another method for declaring the type of the polynomials
used in a Groebner basis computation.
Other fields are just as easy: one uses FRAC COMPLEX INT for the field of Gaussian

rational numbers <Q(i) = {a + bi : a , b E <Ql (note that AXIOM writes i = .J=T
as %i) and PrimeField(p) for a finite field with p elements (where p is a prime). It is
also possible to compute Groebner bases over arbitrary finite fields. AXIOM's method
of working with finite fields is explained in Section 8.11 of JENKS and SUTOR (1992).
The ability to simply "insert" the field you want to compute Groebner bases over is a
good illustration of the power of AXIOM.
Besides working with lists of polynomials, AXIOM also allows the user to declare

a list of polynomials to be an ideal. The syntax of the ideal command is:
-> ideal polylist
where polylist is a list of polynomials of the appropriate type. This is useful because
AXIOM has a number of commands which apply to ideals, including :
• intersect, which computes the intersection of a list of ideals.
• zeroDim?, which determines (using the methods of Chapter 5, §3) if the equations
have finitely many solutions over an algebraically closed field.

• dimension, which computes the dimension of the variety defined by an ideal.
• prime?, which determines whether an ideal is prime.
• radical, which computes the radical of an ideal.
• primaryDecomp, which computes the primary decomposition of an ideal.
Examples of how to use these and other related AXIOM commands can be found in
Section 8.12 of JENKS and SUTOR (1992) . We should also mention that there are the
commands leadingMonomial and leadingCoefficient for extracting the leading
term and coefficient of a polynomial. .
All of the commands described so far require that you declare in advance the type

of polynomial you 'll be using. However, if you only need Groebner bases in lex or
grevlex order with rational coefficients, then a simpler approach is to use the AXIOM
commands lexGroebner and totalGroebner. For example , the command:
-> lexGroebner([2*x"2+y,2*y"2+x], [x,y])
computes aGroebner basis (reduced up toconstants) forthe ideal (2x 2 + y, 2y 2 + x) C
<Q[x, y] using lex order withx > y .Notice that we didn 't have to declare the type of the
polynomials in advance-lexGroebner takes care of this. To do the same computation
using grevlex, simply replace lexGroebner with totalGroebner.
We will end this section by explaining how to get AXIOM to work with grlex order.

All of the raw material needed is present in AXIOM, though it takes a little work to
put it together. For concreteness, suppose we want grlex order on <Q[x, y] with x > y.
Then issue the commands :
-> )set expose add constructor GDMP
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-> )set expose add constructor DOP
-> Grlex := GOMP([x,yJ ,FRAC INT,DOP(2,NNI,totalLex$DRDFUNS

(2,NNI)))
The basic idea here is that GOMP stands for "General Distributed Multivariate Poly-
nomial," which can be used to create an AXIOM type for any monomial order, and
totalLex is the function which orders exponent vectors using grlex. By declaring
polynomials to be of type Grlex, you can now compute Groebner bases using grlex
with x > y . We should caution that type conversion doesn 't work between Grlex and
the monomial orders created by OMP and HOMP. though it is possible to write type con-
version routines ; Using the AXIOM concept of a package, one could write a package
which knows all of the monomial orders mentioned in the exercises to Chapter 2, §4,
along with commands to convert from one type to the other.

§2 Maple

Our discuss ion applies to Release 3 of Maple V. For us, the most important part of
Maple is the Groebner basis package. To have access to the commands in this package,
type:
> yith(grobner);
(here, > is the Maple prompt, and as usual, all Maple commands end with a semicolon).
Once the Groebner basis package is loaded, you can perform the division algorithm,
compute Groebner bases, and carry out a variety of other commands described below.
In Maple, a monomial ordering is called a termorder. Of the monomial orderings

considered in Chapter 2, Maple knows lex and grevlex. Lex order is called plex (for
"pure lexicographic"), and grevlex order is called tdeg (for "total degree"). Be careful
not to confuse tdeg with grlex.
Since a monomial order depends also on how the variables are ordered , Maple needs

to know both the termorder you want (plex or tdeg) and a list of variables. For
example, to tell Maple to use lex order with variables x > y > z. you would need to
input plex and [x, y, z] (remember that Maple encloses a list inside brackets [. . .J).
If you give no termorder in the input, Maple will use tdeg (the default). There is no
default ordering for the variables, so that the variable list must always be included.
The most commonly used commands in Maple's Groebner basis package are nor-

malf , for doing the division algorithm, and gbasis , for computing a Groebner basis.
The name normalf stands for "normal form," and the command has the following
syntax:
> normalf(f,polylist ,varlist ,termorder);
The output is the remainder of f on division by the polynomials in the list polylist
using the monomial ordering specified by termorder and varlist . For example , to
divide x 3 + 3y2 by x 2 + y and x + 2xy using grevlex order with x > y, one would
enter:
> normalf (x"3+3*y"2, [x"2+y ,x+2*x*yJ , [x , yJ ) ;
We omitted the termorder since tdeg is the default. The base field here is the rational
numbers <Q. Note that normalf does not give the quotients in the division algorithm .
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As you might expect, gbasis stands for "Groebner basis," and the syntax is as
follows :
> gbasis(polylist,varlist,termorder);
This computes a Groebner basis for the ideal generated by the polynomials in polylist
with respect to the monomial ordering specified by termorder and varlist. The
answer is a reduced Groebner basis (in the sense of Chapter 2, §7), except for clearing
denominators. As an example of how gbasis works , consider the command:
> gb := gbasis([x"2+y,2*x*y+y"2],[x,y] ,plex) ;
This computes a list (and gives it the symbolic name gb) which is a Groebner basis for
the ideal (x 2 + y , 2xy + y2) C lQ[x , y) using lex order with x > y .
If you use polynomials with integer or rational coefficients in normalf or gbasis,

Maple will assume that you are working over the field lQ. Note that there is no limitation
on the size of the coefficients. Maple can also work with coefficients that lie in rational
function fields. To tell Maple that a certain variable is in the base field (a "parameter"),
you simply omit it from the variable list in the input. Thus , the command:
> gbasis([v*x'2+y,u*x*y+yA2], [x,y] ,plex);
will compute a Groebner basis for (ux2 + y , uxy + y2) C lQ(u , u)[x, y] for lex
order with x > y . The answer is reduced up to clearing denominators (so the leading
coefficients of the Groebner basis are polynomials in u and u),
Groebner basis computations may not work when the polynomials have coefficients

in the field of Gaussian rational numbers lQ(i) = {a + bi : a , b E lQ}, where
i = R. To compute a Groebner basis in such a case, suppose that the variables are
XI , •• . , x".Then, using a new variable j, replace i with j in all generators of the ideal
and add the new generator j2 + I. Now compute a Groebner basis G for a monomial
order where each X i is greater than any power of j. It is a good exercise to show that
replacing j by i in G gives the desired Groebner basis.
Some other useful Maple commands in the Groebner basis package are:

• leadmon, which computes LC(f) and LM(j) for a polynomial f .
• spoly, which computes the S-polynomial S(j, g) of two polynomials.
• solvable, which uses the consistency algorithm from'Chapter 4, §1 to determine if
a system of polynomial equations has a solution over an algebraically closed field.

• finite , which uses the finiteness algorithm from Chapter 5, §3 to determine if a
system of polynomial equations has finitely many solutions over an algebraically
closed field.

There is also a solve command which attempts to find all solutions of a system of
equations. Maple has an excellent on-line help system that should make it easy to
master these (and other) Maple commands. One can also consult the Maple V Library
Reference Manual by CHAR ET AL. (1991) .
We should also mention two packages in the Maple share library which may be of

interest. First, there is the package "GB," which computes remainders and Groebner
bases modulo a prime . To load this package, issue the commands:
> with(share) ;
> readshare(Cmod/GB C);

The main commands are Normalform and GB for computing remainders and Groebner
bases over a finite field with p elements (where p is a prime) . The best way to get
information on these commands is to use the Maple help command. For example:
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> help(GB);
explains how to use the GB command. One interesting feature is that setting the vari-
able infolevel [GB] to different values gives information about the Groebner basis
computation as it proceeds (number remainders computed, etc.) .
The second package of interest is "charsets," which was mentioned in Chapter 6, §5.

This implements the Wu-Ritt algorithm. Assuming that the with(share) command
has already been issued, charsets is loaded by typing:
> readshare(charsets, algebra)
Besides the documentation available through the Maple help command, you can also
check the file charsets.tex in the appropriate share directory. This is a \b.Tf?( version of
W ANG (1994a) .
Finally, we should mention the existence of a Maple package , written by Albert

Lin and Philippe Loustaunau of George Mason University, that extends the Groebner
basis package . The package defines a command that gives the quotients in the division
algorithm, and there is also a new Groebner basis command that computes a Groebner
basis, together with a matrix telling how to express the Groebner basis in terms of the
given polynomials. This package is slow compared to the gbasis command, but can
be used for many of the simpler examples in the book. Copies of the package can be
obtained by writing David A. Cox, Department ofMathematics and Computer Science,
Amherst College, Amherst MA 01002. To get a copy electronically, send email to
dac@cs.amherst.edu.

§3 Mathematica

Our discussion applies to Version 3 of Mathematica, which has significantly better
Groebner basis capabilities than previous versions. There is no special package to load
in order to compute Groebner bases: the basic commands are part of the Mathematica
kernel.
Mathematica knows all of the monomial orderings considered in Chapter 2. In typical

Mathematica fashion, lex order is caned Lexicographic, grlex is DegreeLexico-
graphic and grevlex is DegreeReverseLexicographic:. The monomial order is
determined by using the MonomialOrder option within the Mathematica commands
described below. If you omit the MonomialOrder option, Mathematica will use the
default order, which is lex. Mathematica can also use the weight orders mentioned in
the comments at the end of the exercises to Chapter 2, §4.
Since a monomial order also depends on how the variables are ordered, Mathematica

also needs to know a list of variables in order to specify the monomial order order you
want. For example, to tell Mathematica to use lex order with variables x > y > Z, you
would input [x ,y, z} (remember that Mathematica encloses a list inside braces( . . .})
into the Mathematica command you want to use.
For our purposes , the most important commands in Mathematica are Polynomi-

alReduce and GroebnerBasis . One nice feature of PolynomialReduce is that it
does the division algorithm from Chapter 2 with quotients. The syntax is as follows :
In[l]:= PolynomialReduce [f ,polylist ,varlist ,options]
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(where In [1] := is the Mathematica prompt) . This computes the quotients and re-
mainder of f on division by the polynomials in polylist using the monomial order
specified by varlist and the MonomialOrder option. For example, to divide x 3+ 3y2
by x 2 + y and x + 2xy using grlex order with x > y, one would enter:
In[2]:= PolynomialReduce[x"3 + 3 {2,{x"2 + y,x + 2 x y},

{x,y},MonomialOrder -> DegreeLexicographic]
The output is a list with two entries: the first is a list of the quotients and the second is
the remainder.
Of course, the Mathematica command GroebnerBasis is used for computing

Groebner bases. It has the following syntax:
In [3] := GroebnerBasis[polylist,varlist,options]
This computes a Groebner basis for the ideal generated by the polynomials in polylist
with respect to the monomial order given by the MonomialOrder option with the
variables ordered according to varlist . The answer is a reduced Groebner basis (in
the sense of Chapter 2, §7), except for clearing denominators. As an example of how
GroebnerBasis works, consider:
In[4] := gb = GroebnerBasis[{x"2+y,2*x*y+{2},{x,y)]
The output is a list (with the symbolic name gb) which is a Groebner basis for the
ideal (x 2 + y, 2xy + l) c <Q[x, y] using lex order with x > y . We omitted the
MonomialOrder option since lex is the default.
If you use polynom ials with integer or rational coefficients in GroebnerBasis or

PolynomialReduce, Mathematica will assume that you are working over the field <Q.
There is no limitation on the size of the coefficients . Another possible coefficient field
is the Gaussian rational numbers <Q(i) = {a + bi : a, b E <Q} , where i = R
(note that Mathematica uses I to denote R). To compute a Groebner basis over
a finite field with p elements (where p is a prime number), you need to include the
option Modulus -> p in the GroebnerBa;sis command. (This option also works in
PolynomialReduce.)
Mathematica can also work with coefficients that lie in a rational function field. The

strategy is that the variables in the base field (the "parameters") should be omitted from
the variable list in the input, and then one sets the Coeff icientDomain option to
RationalFunctions. For example, the command :
In [5] := GroebnerBasis [{v*x"2+y, u*x*y+{2} , {x, y},

CoefficientDomain -> RationalFunctions]
will compute a Groebner basis for (vx 2 + y , uxy + l) c <Q(u, v)[x , y] for lex order
with x > y. The answer also clears denominators , so the leading coefficients of the
Groebner basis are polynomials in u and v. (The Coeff icientDomain option is also
available in PolynomialReduce.)
Here are some other useful Mathematica commands:

• MonomialList, which lists the tenns of a polynomial according to the monomial
order.

• Eliminate, which uses the Elimination Theorem of Chapter 3, §1 to eliminate
variables from a system of polynomial equations .

• Solve, which attempts to find all solutions of a system of equations.
For further descriptions and examples, consult The Mathematica Book by WOLFRAM
(1996).
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Finally, we should mention the existence of a Mathematica package, written by Su-
san Goldstine of Amherst College , which includes many commands relevant to the
book. Using this package, students can compute Groebner bases, together with infor-
mation about the number of nonzero remainders that occur. Other algorithms from the
book are included, such as ideal membership; radical membership, and finiteness of
solutions. This package is slow compared to the GroebnerBasis command, but it can
be used for most of the simpler examples in the text. Copies of the package can be
obtained by writing David A. Cox, Department of Mathematics and Computer Sci-
ence , Amherst College, Amherst MA 01002 . To get a copy electronically, send email
to dac@cs.amherst.edu.

§4 REDUCE

Our discussion applies to version 3.5 of REDUCE. To do a Groebner basis calculation
with REDUCE, you need to use either the Groebner package or the Cali package.

Groebner
We will describe the version of the Groebner package dated November 18, 1994. To
have access to the commands in this package, type:
1: load_package groebner;
(here , 1 : is the REDUCE prompt , and as usual, all REDUCE commands end with a
semicolon). Once the Groebner package is loaded, you can perform the division algo-
rithm , compute Groebner bases , and carry out a variety of other commands described
below.
In the Groebner package , a monomial ordering is called a term order. Of the mono-

mial orderings considered in Chapter 2, Groebner knows most of them, including lex,
grlex and grevlex. Lex order is called lex, grlex is called gradlex, and grevlex is called
revgradlex. Groebner also works with product orders (see Exercise 10 of Chapter 2,
§4), weight orders (see Exercise 12 of Chapter 2, §4-note that weight orders in Groeb-
ner always use lex order to break ties), and more general orders specified by a matrix
(see the comments at the end of the Exercises to Chapter 2, §4). These other term orders
are described in detail in Section 4.10 of MELENK, MOLLER and NEUN (1994).
In Groebner, a term order is specified by means of the torder command. Since

a monomial order depends also on how the variables are ordered, Groebner needs to
know both the term order and a list of variables. Thus, torder commands takes two
arguments : a list of variables and the term order. For example, to use grevlex with
x > y > z, you would type:
2: torder({x,y,z},revgradlex);
(remember that REDUCE encloses a list inside braces (. . .J). In response , REDUCE
will print out the previous term order.
The most commonly used commands in the Groebner package are preduce, for

doing the division algorithm, and groebner, for computing a Groebner basis. The
name preduce stands for "polynomial reduce," and the command has the following
syntax:
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3: preduce(f,polylist);
The output is the remainder of f on division by the polynomials in the list polylist
using the monomial ordering specified by torder. For example , to divide x 3 + 3y2 by
x2+ y and x + 2xy using grlex order with x > y, one would enter:
4 : torder({x,y},gradlex);
5: preduce (£3+3*y"2, {£2+y, x+2*x*y} , {x, y}) ;
In this example, the base field is the rational numbers <Q. Note that preduce does not
give the quotients in the division algorithm.
As you might expect, groebner stands for "Groebner basis." and the syntax is:

6: groebner(polylist);
This computes a Groebner basis for the ideal generated by the polynomials in polylist
with respect to the monomial ordering specified by torder. The answer is a reduced
Groebner basis (in the sense of Chapter 2, §7). except for clearing denominators. As
an example of how groebner works, consider the command:
7 : gb := groebner ({£2+y, 2*x*y+y"2}) ;
This computes a list (and gives it the symbolic name gb) which is a Groebner basis for
the ideal (x2+ y, 2xy + y2) C <Q[x, yl. using the term order specified by torder.
Ifyou use polynomials with integer or rational coefficients in preduce or groebner,

Groebner will assume that you are working over the field <Q. There is no limitation on
the size of the coefficients. Another possible coefficient field is the Gaussian rational
numbers Q(i) = {a + bi : a. b E <Ql, where i = .;::1. To work over <Q(i) , you need
to issue the command:
8: on complex;
before computing the Groebner basis (note that REDUCE uses I to denote .;::1).
Similarly, to compute a Groebner basis over a finite field with p elements (where p is
a prime number) , you first need to issue the command:
9: on modular; setmod p ;
To return to working over <Q. you would type off modular.
Groebner can also work with coefficients that lie in a rational function field. To tell

Groebner that a certain variable is in the base field (a "parameter"), you simply omit it
from the variable list in the torder command . Thus , the command:
10: groebrier ({v*£2+y, u*x*y+y"2});
will compute a Groebn~r basis for (vx 2+ y. uxy + y2) C <Q(u. v)[x. y] forthe term
order given by torder. The answer is reduced up to clearing denominators (so the
leading coefficients of the Groebner basis are polynomials in u and v).
The Groebner package has two switches which control how Groebner basis com-

putations are done. (In REDUCE. a switch is a variable that can be set to on or off.
Examples of switches you've already seen are complex and modular.) When com-
puting a Groebner basis, there are a number of choices which can be made during the
course of the algorithm, and different choices can have a dramatic effect on the length
of the computation. We will describe two switches , groebopt and gsugar, which can
affect how the groebner command carries out a computation.
In some cases , it is possible to improve efficiency by changing the order of the

variables, though keeping the same term order (e.g., using lex with y > x rather than
x > y) . An algorithm for doing this is described in BOEGE. GEBAUER and KREDEL
(1986). and to enable this feature in REDUCE. you give the command:
11: on groebopt;
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Once the calculation is done, you can determine how the variables were ordered by
typing:
12: gvarslast;
This will print out the variables in the order used in the computation. There are some
cases (especially when doing elimination) when you don't want an arbitrary reordering
of the variables. In this situation, you can use the depend command. For example, if
you have variables s , t , x, y , z and you want to eliminate s , t, then after giving the on
groebopt command, you would also type:
13: depend s,x,y,z; depend t,x,y,z;
With this preparation , the groebner command would reorder the variables, but always
keeping s , t before x , y , z.
The algorithm used by the groebner command uses the concept of sugar, which

was mentioned briefly in Chapter 2, §9. To experiment with the effect of sugar, you can
tum it on or off by means of the switch gsugar. The default is on gsugar, so that to
tum off sugar for a particular computation, you would issue the command of f gsugar
before giving the groebner command.
We should also mention the switches groebstat, trgroeb and trgroebs for the

groebner command which print out statistics about the Groebner basis calculation.
These switches are described in Section 4.2 of MELENK , M OLLER and NEUN (1994).
Some other useful commands in the Groebner package are:

• gsplit , which computes LT(!) and f - LT(f).
• gsort , which prints out the terms of a polynomial according to the term order.
• gspoly, which computes an S-polynomial S(f, g).
• greduce, which computes the remainder on division by the Groebner basis of the
ideal generated by the input polynomials.

• preducet, which can be used to find the quotients in the division algorithm.
• gzerodim?, which tests a Groebner basis (using the methods of Chapter 5, §3) to
see if the equations have finitely many solutions over an algebraically closed field.

• glexconvert, which, for a Groebner basis for an arbitrary monomial order with
finitely many solutions over <C, converts it to a lex Groebner basis. This implements
the algorithm discussed in Project 5 of Appendix D.

• groesolve, which attempts to find all solutions of a systemof polynomial equations.
• Ldeal.quot Lent , which computes an ideal quotient I: f (using an algorithm more
efficient than the one described in Chapter 4, §4).

• hilbertpolynomial, which computes the affine Hilbert polynomial of an ideal (as
defined in Chapter 9, §3).

These (and many other) commands are described in detail in Groebner: A package
for.calculating groebner bases by MELENK, MtiLLER and NEUN (1994). This document
comes with all copies of REDUCE .

Cali
Wewill discuss Version 2.2.1 of the Cali package .Cali is more mathematically sophisti-
cated than the Groebner package and is a little harder to use for the beginner. On the other
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hand, it can also do some computations (such as radicals and primary decomposition)
which aren't part of the Groebner package. To load Cali, use the command:
1: load_package cali;
Don't load Groebner and Cali in the same REDUCE session since there are conflicts
between them.
In Cali. you first have to declare the variables and monomial order before typing in

any polynomials. This is done by the setring command. which has the syntax :
2: setring(vars,weight,order);
Here. vars is the list of variables you will use. weight is a list of weight vectors
(possibly empty). and order is one of lex or revlex. For example:
3 : setring({x,y,z},{} .Lex) ;
will give lex order on <Q[x, y, zl, while :
4: setring«(x,y,z},(( 1,1,1}},lex);
gives grlex on the same ring. and you can get grevlex simply by changing lex to revlex
in the last command. One can also get weight orders, elimination orders and matrix
orders as described in Exercise 12 of Chapter 2, §2. See Section 2.1 of GRABE (1995)
for the details of how monomial orders work in Cali.
Once the ring is established. you can define ideals using lists of polynomials. One

difference is that you must explicitly name the ideal. For example, suppose we let
j denote the ideal generated by x 2 + y and x + 2xy. In Cali, this is done by the
command:
5: setideal (j ,(£2+y. x+2*x*y}) ;
Once we know the ideal. we can do various things with it. For example, to divide
x 3 + 3y2 by x 2 + y and x + 2xy, we use the command:
6: £3+3*y'2 mod j ;
Also. to compute a Groebner basis of this ideal, the command to use is:
7: gbasis j;
The output is a Groebner basis for (x 2 + y, X + 2xy) C <Q[x, y) for the monomial
order set by the setring command. The answer is reduced (in the sense of Chapter 2,
§7), except for clearing denominators.
If you use polynomials with integer or rational coefficients, Cali will assume that you

are working over the field <Q. To compute Groebner bases over a finite field, you use
the same commands as for the Groebner package described earlier in this section . On
the other hand, Groebner basis calculations may not work when the polynomials have
coefficients in Q(i) . In this situation. the trick described in our discussion ofMaple (see
§2) also works for Cali. Finally. for coefficients that lie in rational function fields, one
proceeds as with the Groebner package and simply omits the variables in the base field
when giving the setring command. For example, if we use the ring set in 4: above,
then the commands:
8 : setideal(m, {v*£2+y. u*x*y+y~2} );
9 : gbasis m;
will compute a Groebner basis for (vx2+ y ; uxy + y2) C <Q(u. v)[x , y) for grlex with
x > y . The answer is reduced up to clearing denominators (so the leading coefficients
of the Groebner basis are polynomials in u and v) .
Some other useful commands in Cali are:
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• dimzerop, which tests a Groebner basis (using the methods of Chapter 5, §3) to see
if the equations have finitely many solutions over an algebraically closed field.

• dim, which for aGroebner basis for an ideal computes the dimension of the associated
variety. .

• idealquotient, which computes an ideal quotient I : f.
• isprime, which tests a Groebner basis to see if it generates a prime ideal.
• radical, which computes the radical of an ideal.
• primarydecomposition, which computes the primary decomposition (as in
Chapter 4, §7) of an ideal.

In addition, Cali has commands for dealing with more sophisticated mathematical
objects such as modules, blowups, free resolutions and tangent cones. Details of these
commands are described in CALI: A REDUCE package for commutative algebra by
GRABE (1995) .
To obtain a copy of Cali, one can use the REDUCE network library, which is

maintained in the USA by the Rand Corporation. The web address is:
gopher://is.rand.org/ll/software/reduce

You can also get information about Cali by sending email to the author of the package,
H.-G. Grabe, at graebe@informatik.uni-leipzig.de.

§5 Other Systems

Another important computer algebra system is MACSYMA, which has many of the
same capabilities as AXIOM, Maple, Mathematica and REDUCE, including Groebner
basis computations. Unfortunately, we did not have access to MACSYMA in writing
this book : so that we are not able to describe its capabilities in more detail.
Besides the general computer algebra systems discussed so far, there are two more

specialized programs, Macaulay and CoCoA, which should be mentioned. These pro-
grams were designed primarily for researchers in algebraic geometry and commutative
algebra, but less sophisticated users can make effective use ofeither program. One of
their most attractive features is that they are free.
It is a little more complicated to get started with Macaulay or CoCoA. For example,

you have to tell the program in advance what the variables are and what field you
are working over. The variables also have weights (which for us are usually all I).
Macaulay will only accept homogeneous polynomials as input, and in some versions,
it is not easy to specify lex order. This makes it more difficult for a novice to use
Macaulay. Nevertheless, with proper guidance, beginning users should be able to work
quite successfully with either Macaulay or CoCoA.
Macaulay always works over a finite field, and CoCoA gives you a choice of working

over IQ or a finite field. Over a finite field, some computations go considerably faster. As
long as the coefficient size doesn't exceed the characteristic of the field (which is usually
the case in simple examples), there is no problem. However, one must exercise some care
in dealing with more complicated problems. This drawback must be weighed against
the fact that such problems are often difficult to carry out on other systems because of
the extremely large amount of memory that may be required.
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For more advanced users, Macaulay and CoCoA offer a wonderful assortment of
sophisticated mathematical objects to work with. Many researchers make frequent use
of these programs to compute syzygies and free resolutions of modules. Macaulay also
includes scripts for computing blowups, cohomology, cotangent sheaves, dual varieties,
normal cones, radicals and many other useful objects in algebraic geometry. Both of
these programs are available electronically: instructions for obtaining Macaulay are
given in Section 15.12 of EISENBUD (1995), and to obtain CoCoA, see Appendix A of
ADAMS and LOUSTAUNAU (1994) .
Finally, we should mention the system MAS, which is another computer algebra

system available electronically. Besides computing Groebner bases as usual, it can
also compute comprehensive Groebner bases and Groebner bases over principal ideal
domains (as described in Project 16 of Appendix D). Instructions for obtaining MAS
can be found on page xiii of BECKER and WEISPFENNING (1993).
In addition to the computer algebra systems described above, there are other systems

under development, including the following :
• A new version of Macaulay, with a very different user interface, has the potential to
be accessible to a much wider group of users without sacrificing the speed and power
of the earlier versions .

• The computer algebra system Magma, under development in Australia, will enable
the user to do computations in group theory, number theory, combinatorics and
commutative algebra . More information about Magma can be found at the web site:
http ://www.maths.usyd.edu.au:8000/comp/magma/Overview.html

• Project PoSSo is a large European effort which will eventually produce a collection
of very powerful routines for commutative algebra. Besides Groebner basis compu -
tations, PoSSo will also be able to investigate singularities and other topics of interest
in algebraic geometry.

• SINGULAR is a computer algebra system which can be used to compute Groebner
bases and investigate singular points of varieties (among many other things). SIN-
GULAR is described in GREUEL (1996) and can be obtained by anonymous ftp from:

helios.mathematik.uni-kl.de
Some of these systems should be available by the time you are reading this book. As
computers get faster and computer algebra software gets more powerful and easier to
use, we can expect an ever-increasing range of applications for Groebner bases and
algebraic geometry in general.
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Independent Projects

Unlike the rest of the book, this appendix is addressed to the instructor. Wewill discuss
several ideas for computer projects or research papers based on topics introduced in the
text.

§1 General Comments

Independent projects can be valuable for a variety of reasons :
• The projects get the students to actively understand and apply the ideas presented in
the text.

• The projects expose students to the next steps in subjects discussed in the text.
• The projects give students more experience and sophist ication as users of computer
algebra systems.

Projects of this type are also excellent opportunities for small groups of two or three
students to work together and learn collaboratively.
Some of the projects given below have a large computer component, whereas others

are more theoretical. The list is in no way definitive or exhaustive, and users of the text
are encouraged to contact the authors with comments or suggestions concerning these
or other projects they have used.
The description we give for each project is rather brief. Although references are

provided. some of the descriptions would need to be expanded a bit before being given
to the student.

§2 Suggested Projects

I. Implementing the Division Algorithm in k[Xl • . . . , XII] ' Many computer alge-
bra systems (including REDUCE and Maple) have some sort of "normal form"
or "reduce" command that performs a form of the division algorithm from Chap-
ter 2. However, those commands usually display only the remainder. Furthermore ,
in some cases, only certain monomial orders are allowed. The assignment here
would be for the students to implement the general division algorithm , with input a
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polynomial I, a list of divisors F, a list of variables X, and a monomial ordering.
The output would be the quotients and the remainder. This project would probably
be done within a computer algebra system such as Maple or Mathematica.

2. Implementing Buchberger's Algorithm. Many computer algebra systems have
commands that compute a reduced Groebner basis of an ideal (fl, .. . , I s}. This
project would involve implementing the algorithm in a way that produces more
information and (possibly) allows more monomial orderings to be used. Namely,
given the input of a list of polynomials F , a list of variables X, and a monom ial
order in k[XI, . •. , XII], the program should produce a reduced Groebner basis G
for the ideal generated by F. together with a matrix of polynomials A express ing
the elements of the Groebner basis in terms of the orig inal generators G = AF. As
with the previous project, this would be done within a computer algebra system. The
program could also give additional information, such as the number of remainders
computed at each stage of the algorithm.

3. The Complexity ofthe Ideal Membership Problem. In §9 of Chapter 2, we briefly
discussed some of the worst-case complexity. results concerning the computation
of Groebner bases and solving the ideal membership problem. The purpose of
this project would be to have the students learn about the Mayr and Meyer exam-
ples. and understand the double exponential growth of degree bounds for the ideal
membership problem. A suggested reference here is BAYER and STILLMAN (1988)
which gives a nice exposition of these results. With some guidance, this paper is
accessible reading for strong undergraduate students.

4. Solving Polynomial Equations. For students with some exposure to numerical
techniques for solving polynomial equations, an excellent project would be to
implement the criterion given in Theorem 6 of Chapter 5, §3 to determine whether
a system of polynomial equations has only finitely many solutions over <C. If so,
the program should determine all the solutions to some specified precision. This
would be done by using numerical techniques to solve for one variable at a time
from a lexicographic Groebner basis. A comparison between this method and more
standard methods such as the multivariable Newton's Method could also be made.
As of this writing , very little theoretical work comparing the complexity of these
approaches has been done.

5. Groebner Basis Conversion for Zero-Dimensional Ideals. As in the previous
project . to solve systems of equations, lexicographic Groebner bases are often
the most useful bases because of their desirable elimination properties. How-
ever. lexicographic Groebner bases are often more difficult to compute than
Groebner bases for other monomial orderings. For zero-dimensional ideals (i.e.,
I C <C[XI , . . .• XII] such that V(l) is a finite set), there are methods known for
converting a Groebner basis with respect to some other order into a lexicographic
Groebner basis. For this project, students would learn about these methods, and
possibly implement them. There is a good introductory dicussion of these ideas in
HOFFMANN (1989). The original reference is FAUGERE, GIANNI, LAZARD, and MORA
(1993).

6. Curve Singularities. A multitude of project topics can be derived from the general
topic of curve singularities, which we mentioned briefly in the text. Implement-
ing an algorithm for finding the singular points of a curve V(f(x. y) C IR2
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or ([;2 could be a first part of such a project. The focus of the project would be
for students to learn some of the theoretical tools needed for a more complete
understanding of curve singularities: the Newton polygon, Puiseux expansions,
resolutions by quadratic transformations, etc. A good general reference for this
would be BRIESKORN and KNORRER (1986). There are numerous other treatments
in texts on algebraic curves as well. Some of this material is also discussed from
the practical point of view of "curve tracing" in HOFFMANN (1989) .

7. Surface Intersections. The focus of this project would be algorithms for ob-
taining equations for plane projections of the intersection curve of two surfaces
V(f,(x, y, z», V(f2(X, y , z» in 1R3• This is a very important topic in geometric
modeling. One method, based on finding a "simple" surface in the pencil defined
by the two given surfaces and which uses the projective closures of the two sur-
faces, is sketched in HOFFMANN (1989). Another method is discussed in GARRITY
and WARREN (1989).

8. Bezler Splines. The Bezier cubics introduced in Chapter I, §3 are typically used
to describe shapes in geometric modeling as follows . To model a curved shape, we
divide it into some number.of smaller segments, then use a Bezier cubic to match
each smaller segment as closely as poss ible. The result is a piecewise Bezier curve ,
or Bezier spline . For this project, the goal would be to implement a system that
would allow a user to input some number of control points describing the shape
of the curve desired and to see the corresponding Bezier spline curve displayed.
Another interesting portion of this assignment would be to implement an algorithm
to determine the intersection points of two Bezier splines. Some references can be
found on p. xvi of FARIN (1990). We note that there has also been some recent
theoretical work by BILLERA and ROSE (1989) that applies Groebner basis methods
to the problem of determining the vector space dimension of multivariate polyno -
mial splines of a given degree on a given polyhedral decomposition of a region
in 1R" .

9. The General Version of Wu's Method. In our discussion of Wu's method in
'geometric theorem proving in Chapter 6, we did not introduce the general algebraic
techniques (characteristic sets , Ritt's decomposition algorithm) that are needed for
a general theorem-prover. This project would involve researching and presenting
these methods . Implementing them in a computer algebra system would also be
a possibility. See CHOU (1988), MISHRA (1993), WANG (l994a) and (1994b), and
Wu (1983) .

10. Molien's Theorem. An interesting project could be built around Molien's The-
orem in invariant theory, which is mentioned in §3 of Chapter 7. The algorithm
given in STURMFELS (1991) could be implemented to find a set of generators for
k[XI, . . . , xlI]G. This could be applied to find the invariants of some larger groups,
such as the rotation group of the cube in 1R3• Molien's theorem is also discussed
in Chapter 7 of BENSON and GROVE (1985) .

11. Groebner Bases over More General Fields. For students who know some field
theory, a good project would be to compute Groebner bases over fields other than
<Q. In the discussion of Maple in §I of Appendix C, we explain how to com-
pute Groebner bases for polynomials with coefficients in <Q(i) that only uses the
equation i 2 + I = O. More generally, if <Q(a) is any finite extension of <Q, the
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same method works provided one knows the minimal polynomial of a over CQ.
The needed field theory may be found in Sections 5.1 . 5.3. and 5.5 of HERSTEIN
(1975) . The more advanced version of this project would discuss Groebner bases
over finite extensions ofCQ(u 1•• ••• um ) . In this way, one could compute Groebner
bases over any finitely generated extension of CQ.

12. Computer Graphics. In § I ofChapter 8. we used certain kinds ofprojections when
we discussed how to draw a picture of a 3-dimensional object. These ideas are very
important in computer graphics. The student could describe various projections
that are commonly used in computer graphics and explain what they have to do
with projective space. If you look at the formulas in Chapter 6 of FOLEY. VAN DAM.
FEINER and HUGHES (1990). you will see certain 4 x 4 matrices . This is because
points in ]p3 have four homogeneous coordinates!

13. Implicitization via Resultants. As mentioned in Chapter 3. §3. implicitization
can be done using resultants rather than Groebner bases . A nice project would be
to report on the papers ANDERSON, GOLDMAN and SEDERBERG (1984a) and (1984b) ,
and MANOCHA (1992). The resultants used in these papers differ from the resultants
discussed in Chapter 3. where we defined the resultant of two polynomials. For
irnplicitization, one needs the resultant of three or more polynomials. often called
multipolynomial resultants. These resultants are discussed in BAJAJ. GARRITY and
WARREN (1988) and Cox. LITTLE and O 'SHEA (1997) .

14. Optimal Variable Orderings. There are situations where reordering the variables
(but keeping the same type of term order) can have a strong effect on the Groebner
basis produced. For example. in part a of Exercise 13 from Chapter 2, §9 , you
computed a rather complicated Groebner basis using lex order with x > y > z.
However. switching the variables to z > y > x (still with lex order) leads to a much
simpler Groebner basis . A heuristic algorithm for picking an optimal ordering of
the variables is described in BOEGE, GEBAUER and KREDEL (1986). A good project
would be to implement a straightforward version of the Buchberger algorithm
which incorporates variable optimization. This algorithm is implemented in the
REDUCE Groebner basis package-see Appendix C. §4.

15. Selection Strategies in the Buchberger's Algorithm. In the discussion following
the improved Buchberger algorithm (Theorem 11 in Chapter 2, §9). we mentioned
the selection strategy of choosing a pair (i, j) E B in Theorem 11 such that
LCM(LT(/;) , LT(/j)) is as small as possible. This is somet imes called the normal
selection strategy. However, there are other selection strategies which are used
in practice, and a nice project would be to describe (or implement) one of these
strategies. Here are two that are of interest:
a. The concept of sugar was introduced in GIOVINI, MORA, NIESI, ROBBIANO and

TRAVERSO (1991). This paper explains why the normal selection strategy can
cause problems with non-graded monomial orders (such as lex) and defines the
concept of sugar to get around this problem. Sugar is implemented in the Groeb-
ner basis commands used by most of the computer algebra systems described
in Appendix C.

b. In the special case of lex order, some other heuristics for selecting pairs are
discussed in CZAPOR (1991) . Here, the basic idea is to pick a pair (i, j) such
that the multidegree of the S-polynomial S(j;, f j) is as small as possible.
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16. Other Types of Groebner Bases. In Chapter 2, we defined Groebner bases for
an ideal in a polynomial ring, assuming we knew the monomial order and the
coefficient field. But there are other notions of what it means to be a Groebner
basis , and a good project would be for a student to explore one of these . Here are
some of the more interesting types of Groebner bases:
a. We have seen that different monomial orderings can lead to different Groebner

bases. As you vary over all monomial orderings, it turns out that there are only
finitely many distinct Groebner bases for a given ideal. These can be put together
to form what is called a universal Groebner basis ; which is a Groebner basis
for all possible monomial orders. A good reference (including references to the
literature) is pages 514-515 of BECKER and WEISPFENNING (1993) .

b. Another phenomenon (mentioned in Chapter 6, §3) is that if the base field
contains parameters, then a Groebner basis over this field may fail to be a
Groebner basis when we specialize the parameters to specific values . However,
it is possible to construct a Groebner basis which remains a Groebner basis under
all possible specializations. This is called a comprehensive Groebner basis. For
a description and references to the literature, see pages 515-518 of BECKER and
WEISPFENNING (1993) .

c. Besides doing Groebner bases over fields, it is sometimes possible to define and
compute Groebner bases for ideals in a polynomial ring R[XI, . • • , XII}, where
R is a ring. The nicest case is where R is a principal ideal domain (PID), as
defined in Chapter I, §5. The basic theory of how to do this is described in
Chapter 4 of ADAMS and LOUSTAUNAU (1994) and Sect ion 10.1 of BECKER and
WEISPFENNING (1993) .

d. Finally, the notion of an ideal! C k[Xl, • . . , XII} can be generalized to amodule
M C k[x(, . . . , x,,]', and there is a natural way to define term orders and
Groebner bases for modules. Basic definitions and interesting applications can
be found in ADAMS and LoUSTAUNAU (1994), BECKER and WElSPFENNING (1993),
Cox, Lrrrts and O'SHEA(1997), and EISENBUD (1995).
Besides the projects listed above, there are other places where instructors can

look for potential projects for students, including the following:
• Cox, LITTLE and 0'SHEA (1997) includes chapters on local rings, algebraic cod-
ing theory and integer programming which could serve as the basis for projects.
Other chapters in the book may also be suitable, depending on the interests of
the students.

• ADAMS and LOUSTANAU (1994) contains sections on minimal polynomials of
field extensions, the 3-color problem and integer programming. These could
form the basis for some interesting projects.

• EISENBUD (1995) has a list of seven projects in Section 15.12. These projects are
more sophisticated and require more background in commutative algebra, but
they also introduce the student to some topics of current interest in algebraic
geometry.

If you find student projects different from the ones listed above, we would be
interested in hearing about them . There are a lot of wonderful things one can do
with Groebner bases and algebraic geometry, and the projects described in this
appendix barely scratch the surface.
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derivative, formal, 46, 226,474
descending chain condition (DCC), 79, 201,

259,373
desingularization, 495
determinant. 151,417,499
Vandermonde,44

Dickson's Lemma, 69
difference of varieties, 14, 191
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dimension, 8ff, 11,233,279,430,431,
436, 439, 442, 450, 453, 457ff, 466,
468-471, 480, 481

at a point, 478, 491
question , II, 426ff

discriminant, 155,319
divison algorithm, see algorithm, division
dodecahedron,328
dominating map. 472
dual
curve, 348
projective plane, 359, 399
projective space, 369, 407
variety, 348

duality
of polyhedra , 328
projective principle of, 351

Dube, T., 108

Echelon matrix, 49, 75, 92, 410, 412
Eisenbud, D., 176,206,517,522
elimination ideal, see ideal, elimination
elimination order, see monomial ordering,

elimination
elimination step, 113
Elimination Theorem , see Theorem ,

Elimination
elimination theory, 17, 112ff
projective, 384ff

envelope, 139ff
equivalence
birational , 250, 470,.473
projective, 399, 404

Euler line, 299
Euler's Formula, 369
extens ion step, 113
Extension Theorem , see Theorem, Extension

Factorization of polynomials, 146ff, 164
family of curves, see curve , family of
Farin, G., 520
Faugere, J., 519
Feiner, S., 521
Fermat 's Last Theorem , see Theorem,

Fermat 's Last
fiber, 259
field, I, 497, 520
algebraically closed, 4, 34, 124, 163,

168, 170, 172, 174, 175, 192, 196,
199,200,204,210,230,231 ,254,
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field (cont.)
374-376, 382, 389, 394, 395, 404,
405,417,451 ,453,458-462,469,
486

finite, 3-5, 36
fractions of a domain, 245
infinite , 3, 4, 32,126, 130, 172, 196,342,

372
of characteristic zero, 180, 482
of finite (positive) characteristic, 180,

402,404,410,482
of fractions of a domain, 254
ofrational functions (k(V)) , 147,246,

463,469,473
final remainder (in Wu's method), 306
finite generation of invariants , 327, 333, 336
finiteness question, 11,230,235,460
Finkbeiner, D. T., 156, 166,404,469,499,

500
Foley, J., 521
folium of Descartes, see curve, folium of

Descartes
follows generically from, 295
follows strictly from, 292
forward kinematic problem, see kinematics

problem of robotics, forward
Fulton, W., 423, 424
function
algebraic, 119
coordinate, 235
polynomial, 3, 213
rational , 15, 119,245,473

function field, see field, of rational functions
(k(V))

Fundamental Theorem of Algebra, see
Theorem, Fundamental, of Algebra

Fundamental, of Symmetric Functions,
see Theorem, Fundamental, of
Symmetric Functions

Garrity, T., 154,520,521
Gauss, C. E , 314
Gaussian elimination, see algorithm,

Gaussian elimination (row reduction)
Gebauer, R., 108,513,521
Gelfand, 1.,154
Geometric Extension Theorem, see

Theorem, Geometric Extension
Gianni, P., 176, 206 , 519
Giblin , P. J., 134, 139, 143

Giovini, A., 108,521
Giusti , M., 109
GL(n, k), see group, general linear
Goldman, R., 131, 521
Goldstine, S., 511
Grabe, H.-G., 516
graded lexicographic order, see monomial

ordering
graded monomial order, see monomial

ordering
graded reverse lexicographic order, see

monomial ordering
gradient, 10, 136, 137
graph ,6, 126
Grassmannian, 409
greatest common divisor (GCD), 4Off, 178,

187
Greuel, G.-M., 517
Griffiths, P., 424
Gritzmann, P., 109
Grabner, W., 75
Groebner basis , 31,44,74ff, 113ff, 127, 128,

130, 160, 170, 176,186,194,226ff,
244, 275ff, 284, 293, 302, 309, 314,
316, 334ff, 34Off, 382, 388, 394,
485ff, 519ff

comprehensive, 278 , 522
conversion, 519
criterion for, 82, 104
minimal, 89, 92
reduced, 90, 92, 170, 176,292,296,

374
specialization of, 276 , 278, 283ff
universal, 522

group , 498
cyclic, 322
finite matrix, 321ff
general linear (GL(n, k)), 321 , 410, 418,

498
generators for, 325
Klein four- , 326
of symmetries of a cube , 322, 327, 347
of symmetries of a tetrahedron, 328
orbit of a point under, 343
permutation, 322, 499
projective general linear (PGL(n, k)) ,

410
subgroup of, 499

Grove, L.C., 323 ,334,335,520



Heintz. J.• lO9
Hermann , G.. 176. 206
Herstein, I. N.• 318. 521
Hilbert Basis Theorem. seeTheorem. Hilbert

Basis
Hilbert function. 452. 452. 459
affine, 447, 467

Hilbert polynomial, see polynomial, Hilbert
Hilbert , D.•74.168.311.335.433
Hironaka, H.•76
Hodge, W. V. D.• 4lO
Hoffmann , C.• 519. 520
homogeneous
coordinates, see coordinates.

homogeneous
ideal, see ideal. homogeneous
polynomial, see polynomial.

homogeneous
homogenization
of a polynomial. 172. 364
of an ideal. 378. 453. 486

Hughes , J.• 521
Huneke, C.• 176,206
hyperboloid. 247
hyperplane, 363. 400
at infinity. 361, 461

hypersurface, 363, 458, 461
cubic. 363
nonsingular quadric, 405
quadric. 363. 40 Iff. 404
quartic. 363
quintic, 363

Icosahedron, 328
ideal. 29, 498
P-primary.207
basis of. 30, 35
colon. 191
complete intersection, 464
deterrninantal, llO
elimination. 113,340,394
generated by a set of polynomials. 29
Groebner basis of. seeGroebner basis
homogeneous. 363. 371. 377
in a ring. 223
intersection of, 184,377.462
irreducible , 207
maximal. 198
maximum principle, 260
monomial . 67ff. 429ff, 447. 448, 452. 467
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ofa variety (I(V». 31. 372
of leading terms «(LT(l»)). 73
of relations . 339
primary. 207
prime. 195.215.254.338.378.463.

469
principal. 44. 177. 179
principal ideal. 40, 78
product. 182.377,462
projective elimination. 388, 389, 396
proper. 198
quotient . 191.388
radical , 35. 36.173,176,177,236.237.

376.378
radical of. 174. 373
saturation. 194. 195
standard basis of. see basis. standard
sum of. 181,377
syzygy. 339
weighted homogeneous. 398

ideal description question, 34, 47. 73
ideal membership question. 34, 44. 47. 65,

70.80.93.519
ideal-variety correspondence
affine. 175.237
projective, 372. 376

Implicit Function Theorem. seeTheorem.
Implicit Function

implicit representation. 16
implicitization, 17,47,51,96, 124ff. 521
Inclusion-Exclusion Principle, 440, 444
index of regularity. 449
inflection point. see point , inflection
integer polynomial . see polynomial, integer
integral domain. see ring, integral domain
invariance under a group. 324
invariant polynomial. see polynomial.

invariant
inverse kinematic problem, see kinematics

problem of robotics . inverse
inverse lexicographic order. seemonomial

ordering
irreducibility question. 205
irreducible
ideal. see ideal. irreducible
polynomial , see polynomial. irreducible
variety. see variety. irreducible

irredundant
intersect ion of ideals. 204
union of varieties. 203
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isomorphic
rings , 222
varietie s, 217,237, 343, 468

Isomorphism Theorem, see Theorem,
Isomorphism

isotropy subgroup, 347

Jacobian matrix, see matrix, Jacobian
Jenks, R., 507
joint space. see space. joint (of a robot)
joints (of robots)

ball, 263 , 266
helical. 263 . 266
prismatic. 262
revolute, 262
spin, 274

Jouanolou, J., 154

kEY), 463. 473
k(tl , .. . , tm ) , 15
k[VJ,214,219, 221.246,463,466, 469
k[fJ, .. . , 1m)' 330
k[X l, . . • , X.), 2
Kapranov, M., 154
Kendig. K., 463, 480, 481
kinematics problem of robotics
forward, 264
inverse, 264

kinematic redundancy, 286
kinematic singularities, 278-280, 286
Kirwan, E, 423, 424
Klein four-group, see group, Klein four-
Klein, E . 323
Knorrer, H., 424 . 428, 520
Kredel, H., 513, 521

Lagrange Multipliers, 99
Lagrange multipliers, 10, 13,94
Lang, S.• 127,471
Lasker-Noether Theorem. see Theorem,

Lasker-Noether
Lazard , D., 109, 110, 118,519
leading coefficient, 57
leading monomial, 57
leading term, 37, 57
leading terms, ideal of, see ideal , of leading

terms ({LT(l»))
least common mult iple (LCM), 81,186
level set , 217
lexicographic order, see monomial ordering

Lin, A., 510
line
affine, 3, 353
at infinity, 353
limit of, 487ff
projective, 350, 352. 363, 406
secant, 487ff
tangent. 134, 136ff

Little. 1.,118.233,521,522
local property, 423, 474
locally constant, 423
Lousmunau,~.206,510.517,522

Macaulay (program). see computer algebra
systems

Macaulay, F. S., 154.447
MacDonald, I. G., 209
MACSYMA, see computer algebra systems
Magma, see computer algebra systems
manifold, 481
Manocha, D., 118, 131, 154,521
Maple, see computer algebra systems
mapping, 406
dom inating, 472
polynomial,213
projection, 120,213,385,387,469
pullback, 239
rational, 248
regular. 213
Segre, 384
stereographic projection, 252

MAS, see computer algebra systems
Mathematica, see computer algebra systems
matrix
echelon, see echelon matrix
group, 321
Jacobian, 278 , 480
permutation, 322
row-reduced echelon. see echelon matrix
Sylvester, 151

Matsumura, H., 491
Mayr, E., 109
Melenk, H., 512, 514
Meyer, A.• 109
Mignotte, M., 118, 149
Mines , R., 149, 176,206
minimal basis, see basis, minimal
Mishra, B., 118,309.520
mixed order. see monomial ordering
module, 522



Molien's Theorem. see Theorem, Molien's
Moller. H. M.• 108. 512 . 514
monomial. I
monomial ordering, 53ff, 70 . 340 , 394, 485
elimination, 72.118.119
graded,379.382.448,462,466
graded lexicographic (grlex) , 55, 486
graded reverse lexicographic (grlex), 56
inverse lexicographic (invlex), 58
lexicographic (lex) , 54. 94ff. 113, 114.

297 ,316.388.486
mixed. 72
product. 72
weight. 72

Mora, T., 108,519,521
multidegree (multideg), 57
multinomial coefficient. 336
multiplicity
intersection. 135.414, 419ff
of root, 45,135,143.155

Mumford, D., 109,480.490.493

Neun, W.• 512, 514
Newton identities. 317. 320
Newton polygon, 520
Newton's Method. 519
Niesi, G.• 108. 521
nilpotent. 223 , 225 , 226
Noether's Theorem, see Theorem, Noether's
Noether, E., 331
nonsingular
point, see point, nonsingular
quadric. see quadric. nonsingular

Normal Form for Quadrics Theorem. see
Theorem. Normal Form for Quadrics

normal form, 80
Nullstellensatz, 4, 34, 36, 45, 122, 170, 191.

199.231,233.297,382.425.451 .
461

Hilbert's, 168, 170, 191
in k[V], 237
Projective Strong, 375 . 453
Projective Weak, 374. 389
Strong, 174, 199,292,374
Weak, 168. 199.230,374

numerical solut ions, 99 , 118

O 'Shea, D., 118,233.521,522
octahedron, 328
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operational space, see space, configuration
(of a robot)

orbit
G.343
of a point, 343
space, 343

order (of a group), 321
ordering, see monomial ordering
orthocenter, 299

Pappus's Theorem, see Theorem, Pappus 's
parametric representation, 125
polynomial, 16, 196,237,342
rational, 15. 129, 197

parametrization, 17
partial solution, 114ff, 120
path connected, 423, 426
Paul, R., 282
Pedoe, D., 410
pencil
of hypersurfaces, 369
of lines, 359
of surfaces. 238
of varieties, 238 , 370

permutation, 499
sign of, 499

perspective, 350 , 354
PGL(n, k) , see group, projective general

linear
plane
affine, 3
Euclidean, 287
projective. 349

Pliickercoordinates, see coordinates, Pliicker
point
critical, 98
nonsingular, 136,244,427,474,478,491
of inflection, 144
singular, 7, 134, 136,244,411,478.484.

519
smooth,478
Steiner, 301
vanishing, 350

polyhedron
duality, 328
regular. 328

polynomial, 2
affine Hilbert, 449. 455 , 467
elementary symmetric, 312
Hilbert, 453 , 455, 458. 459



534 Index

polynomial (cont .)
homogeneous, 317, 362
homogeneous component of, 317
integer, 151
invariant, 324
irreducible, 146ff, 177
linear part, 474
Newton-Gregory interpolating , 445
partially homogeneous, 386
reduced , 45, 178,416,476
S-, 81ff, 86ff, 1GOff
square-free, 45, 178
symmetric, 311
weighted homogeneous, 396, 398

Polynomial Implicit ization Theorem, see
Theorem, Polynom ial Implicitization

polynomial mapping , see mapping,
polynomial

polynomial ring (k[XI, . . . , x; D, see ring,
polynomial

PoSSo, see computer algebra systenms ,
PostScript, 22
power sums, 317
primality question, 205
primary decomposition question, 209
principal ideal domain (PID), 4D, 224, 522
product order , see monomial ordering
projective
closure, see closure, projective
elimination ideal, see ideal, projective

elimination
equivalence, see equivalence , projective
Extension Theorem, see Theorem,

Project ive Extension
line, see line, projective
plane, see plane, projective
space, see space, projective
variety, see variety, projective

pseudocode, 37, 501ff
pseudodivision, 255, 302ff
successive, 306

pseudoquotient, 303
pseudoremainder, 303
Puiseux expansions, 520
pullback mapping , see mapping, pullback
pyramid of rays, 354

Quadric hypersurface, 247, 363, 399ff, 4D5
nonsingular, 4D5
over JR,4D5

rank of, 4D3
quotient
field, see field, of fractions
ring, see ring, quotient
vector space , 446

quotients on division, 59

R-sequence,464
radical
generators of, 176
ideal, see ideal, radical
membership, see algorithm, radical

membership
of an ideal, see ideal, radical of

rank
deficient, 279
maximal,279
of a matrix , 279ff, 481
of a quadric, 4D3

rational
function, see function, rational
mapping, see mapping , rational
variety, see variety, rational

Rational Implicit ization Theorem, see
Theorem, Rational Implicitizat ion

real projective plane, 349
REDUCE, see computer algebra systems
reduction of a polynomial , 45, 178, 476
regular mapping, see mapping, regular
regularity, index of, see index of regularity
remainder on division , 59, 79, 80, 86ff, 93,

227ff
resultant, 131, 15Iff, 157, 158ff, 416
generalized, 161
multipolynomial, 131, 154,521

reverse lexicographi c order, see monomial
ordering

Reynolds operator, 330
Richman, E, 149, 176,206
Riemann sphere , 361, 367
ring, 324
commutative, 2, 215,497
coordinate, of a variety (k[VD, 235ff,

256,341 ,463,466,468,469
homomorphism, 173, 222
integral domain , 215, 235, 252, 256, 463,

498
isomorphism , 222, 339
of invariants, 324
polynomial (k[X Io ... , x,,]), 2



quotient (k[XI , • . . , x; II1),220 ,254,339,
459

Robbiano, L., 73, 108,521
robotics, 10, 13, 14, 261ff
Rose , L., 520
Roth , L. , 410
row-reduced echelon matrix, see echelon

matrix
Ruitenberg, W., 149,176,206
ruled surface, see surface, ruled

S-polynomial, see polynomial, S-
secant line, see line, secant
Sederberg, T., 131,521
Segre
map, see mapping , Segre
variety, see variety, Segre

Seidenberg, A., 176, 206
Semple, J. G., 410
Shafarevich, I. R., 463, 479 , 480
sign, of permutation, see permutation, sign

of
singular
point, see point, singular
quadric, see quadric, singular

Singular (program), see computer algebra
systems

singular locus , 479
Siret, Y., 39, 42, 44,149,188
Smith, L., 335
solv ing equations, 48, 93,116,519
space
affine , 3
configuration (of a robot) , 264
jo int (of a robot) , 264
orb it, 343
projective, 360
quotient vector, 446
tangent, 474, 491

specialization of Groebner bases, see
Groebner basis , specialization of

stabilizer, 347
Stillman, M., 72, 109, 119,519
strophoid, 24, 25
Sturmfels, B., 109,297,334,335,338,520
subgroup, 499
subring, 324
subvariety, 236
sugar, 108, 52 I
surface
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Enneper, 132
hyperboloid of one sheet, 247
intersection, 520
ruled, 98, 407
tangent, to the twisted cubic, 19,97,125,

127,128,131,212,245
Veronese, 218 , 384 , 395
Whitney umbrella, 132

Sutor, R., 507
symmetric polynomial, see polynomial,

symmetric
syzygy, 35, 102ff, 109, 110
homogeneous, 103, I 10
ideal, 339

Tangent
cone, see cone, tangent
line to a curve, see line , tangent
space to a variety, see space, tangent

Taylor's formula, 475, 492
term, 2
tetrahedron, 328
Theorem

Affine Dimension, 451
Bezout's, 412ff, 420ff
Circle, of Apollonius , 290, 297 , 306 , 307
Clas sification, for Quadrics, 404
Closure, 122ff, 190, 191, 254ff
Dimension, 453
Elimination, 113, 186,386,393,396
Extension, 115, 161, 166,389
Fermat 's Last, 13
Fundamental, of Algebra, 4, 314
Fundamental, of Symmetric Polynomials,

312
Geometric Extension, 121,385,386,395
Hilbert Basis, 14,30, 74ff, 78, 167,204,

205,224,336,393
Impl icit Function, 286, 481
Intermediate Value, 423
Isomorphism, 226, 339
Lasker-Noether, 208, 209
Molien 's, 334 , 338, 520
Noether's, 331, 336
Normal Form for Quadrics, 402
Pappus 's, 299 , 357 , 358 , 427
Pascal's Mystic Hexagon, 424, 426, 427
Polynomial Implicitization, 126,342
Projective Extension, 389
Pythagorean, 289
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Theorem (cont.)
Rational Implicitization, 130

Tournier, E., 39, 42, 44, 149,188
Trager, B., 176, 206
transcendence degree, 470, 471
transformation
affine, 273
projective linear, 400

Traverso, c, 108,521
triangular form, 304
twisted cubic
curve, see curve, twisted cubic
tangent surface of, see surface , tangent

Unique factorization of polynomials, 149
uniqueness quest ion in invariant theory, 327,

338, 341

Van Darn, A., 521
van der Waerden, B., 154
vanishing point, see point, vanishing
variety
affine, 5
dual,348
irreducible, 195,201, 203, 205, 215, 235.

254,294,342,373,378,462,469
irreducible component of, 293, 415, 462,

480
linear, 9, 363
minimum principle , 260
of an ideal (V (I », 77, 372
projective, 363

rational , 250, 252
reduc ible, 215
Segre, 384
subvariety of, 236
unirational, 17
zero-d imensional, 233

Vasconcelos , W., 176, 206
Veronese surface, see surface, Veronese

Walker, R., 419, 423, 424
Wang, D., 309, 510, 520
Warren, J., 154, 520, 521
weight order, see monomial ordering
weighted homogeneous polynomial, see

polynomial, weighted homogeneous
weights, 396
Weispfenning , V., 80, 108, 176, 186,206,

233,278,517,522
well-ordering, 53, 54, 70
Whitney umbrella, see surface, Whitney

umbrella
Wiles, A., 13
Winkler, E, 109
Wolfram,S., 511
Wu'5 Method , 302ff, 309, 520
Wu, W.-T.,302,309,520

Zacharias, G., 176, 206
Zariski
closure, see closure, Zariski
dense set, 468

Zelev insky, A., 154
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