Skip to main content

On Proton Mobilities in Individual Hydrogen Bonds

  • Chapter
Quantum Science
  • 200 Accesses

Abstract

The hydrogen bond has been under intense scrutiny in physical and chemical systems since its definition by Latimer and Rodebush in 1920 /1,2/. Investigations in biological systems, however, are of much more recent vintage. Indeed, the pioneering investigations of Löwdin /3/ were among the first attempts to characterize the role of protonic motion in hydrogen bonds in the properties of biological macromolecules. In particular, Löwdin /3/ stressed the importance of proton tunneling, and showed that this provides a mechanism for transfer and for loss of information stored in the form of proton position in a double well. Recent experimental advances, particularly in the area of picosecond spectroscopy /4/, have made it possible to experimentally observe the motion of molecular subunits, and the promise of being able to delineate the tunneling process has reemphasized the need for an understanding of the dynamics of protons in hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Latimer and W.H. Rodebush, J. Am. Chem. Soc. 42, 1419 (1920).

    Article  Google Scholar 

  2. M.L. Huggins, unpublished (cited by G.N. Lewis in “Valence and the Structure of Atoms and Molecules”, Chem. Catalog Co., New York, 1923, p. 109 ).

    Google Scholar 

  3. P.O. Löwdin, Adv. Quantum Chem. 2, 213 (1965)

    Article  Google Scholar 

  4. P.O. Löwdin, Mutation Res. 2, 218 (1965)

    Article  Google Scholar 

  5. P.O. Löwdin, Pont. Acad. Scient. 31, 1 (1967)

    Google Scholar 

  6. P.O. Löwdin, Ann. N.Y. Acad. Scient. 31, 1 (1967)

    Google Scholar 

  7. P.O. Löwdin, Ann. N.Y. Acad. Sci. 158, 86 (1969).

    Article  ADS  Google Scholar 

  8. cf. eg. P.M. Rentzepis, R.P. Jones and J. Jortner, J. Chem. Phys. 59, 766 (1973)

    Article  ADS  Google Scholar 

  9. W.S. Struve, P.M. Renzepis and J. Jortner, ibid, 59, 5014 (1973).

    ADS  Google Scholar 

  10. J.C. Slater, J. Chem. Phys. 2, 16 (1941).

    Article  ADS  Google Scholar 

  11. P.G. deGennes, Solid St. Comm. 1, 132 (1963)

    Google Scholar 

  12. Y. Takagi, J. Phys. Soc. (Japan) 3, 271 (1948)

    Article  ADS  Google Scholar 

  13. R. Blinc and M. Ribaric, Phys. Rev. 130, 1816 (1963).

    Article  ADS  Google Scholar 

  14. K.K. Kobayashi, J. Phys. Soc. (Japan) 24, 497 (1968)

    Article  ADS  Google Scholar 

  15. R. Blinc and B. Zeks, Adv. Phys. 21, 693 (1972)

    Article  ADS  Google Scholar 

  16. K. Godzik and A. Blumen, Phys. Stat. Sol. B 66, 569 (1974).

    Article  ADS  Google Scholar 

  17. B.I. Stepanov, Zh. Fiz. Khim. 12, 507 (1945)

    Google Scholar 

  18. Y. Marechal and A. Witkowski, J. Chem. Phys. 48, 3697 (1968)

    Article  ADS  Google Scholar 

  19. S.F. Fischer, G.L. Hofacker and M.A. Ratner, J. Chem. Phys. l2, 1932 (1969)

    Google Scholar 

  20. M.A. Ratner and J.R. Sabin, in “Wave Mechanics, the First Fifty Years”, eds. W.C. Price et. al., Butterworth, London, 1973

    Google Scholar 

  21. Y. Marechal, G.L. Hofacker, and M.A. Ratner in “Hydrogen Bonding”, eds. P. Schuster et. al., North Holland, Amsterdam, in p ress.

    Google Scholar 

  22. L. Onsager and M. Dupuis, in “Electrolytes”, ed. B. Pesce, Pergamon Press, New York, 1962

    Google Scholar 

  23. P. Gosar, Nuovo Cim. 30, 931 (1963)

    Article  MATH  Google Scholar 

  24. S.F. Fischer and G.L. Hofacker in “Physics of Ice”, eds. N. Riehl et.al., Plenum, New York, 1969

    Google Scholar 

  25. P. Gosar, ibid; S.F. Fischer, G.L. Hofacker, and J.R. Sbin, Phys. kondens. Mat. 8, 268 (1969).

    Google Scholar 

  26. Polarons and Excitons“, C.G. Kuper and G. Whitfield, Oliver and Boyd, Edinburgh, 1963.

    Google Scholar 

  27. cf. eg. R. Rein and F.E. Harris, J. Chem. Phys. 41, 3393 (1964); 42, 2177 (1965).

    Article  ADS  Google Scholar 

  28. J. Brickmann and H. Zimmerman, J. Chem. Phys. 50 1608 (1969).

    Article  Google Scholar 

  29. M.D. Harmony, Chem. Soc. Revs. 2, 211 (1973). It must be remembered that the considerations of Harmony and of Brick-mann /12/ apply only to rigourously one-dimensional potentials. For real hydrogenbonded systems, the coupling results in a finite width for the localized double well states, and the tremendous reduction of tunneling rate for small asymmetrics predicted by (5) does not occur. Indeed, the “downhill” tunneling in these systems should be faster than the symmetric tunnelings essentially because the argument of the negative exponential in the JWKB expression is reduced by the asymmetry (A. Aviram, P.E. Seiden and M.A. Ratner, to be published).

    Google Scholar 

  30. N. Sheppard, in “Hydrogen Bonding”, ed. D. Hadzi, Pergemon, Oxford, 1959.

    Google Scholar 

  31. N. Rösch, Thesis, T.U., München, 1971; Chem. Phys. 1, 220 (1973)

    Article  Google Scholar 

  32. N. Rösch and M. Ratner, J. Chem. Phys. 61, 3344 (1974).

    Article  ADS  Google Scholar 

  33. M.D. Newton and S. Ehrenson, J. Amer. Chem. Soc. 93, 4971 (1971)

    Article  Google Scholar 

  34. R. Janoschek et.al. ibid 24, 2387 (1972).

    Google Scholar 

  35. A. Nitzan and R.J. Silbey, J. Chem. Phys. 60, 4070 (1971+).

    Google Scholar 

  36. G. Sewell, in “Polarons and Excitations”, eds. C.G. Kuper and G. Whitfield,Oliver and Boyd, Edinburgh, 1963.

    Google Scholar 

  37. T. Holstein, Ann. Phys. 8, 325–389 (1959).

    Article  ADS  MATH  Google Scholar 

  38. S. Glasstone,K.J. Laidler and H. Eyring, “Theory of Rate Processes”, McGraw-Hill, New York, 1941.

    Google Scholar 

  39. R.G. Carbonell and M.D. Kostin, J. Chem. Phys. 60, 2047 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ratner, M.A., Sabin, J.R. (1976). On Proton Mobilities in Individual Hydrogen Bonds. In: Calais, JL., Goscinski, O., Linderberg, J., Öhrn, Y. (eds) Quantum Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1659-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1659-7_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1661-0

  • Online ISBN: 978-1-4757-1659-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics