Skip to main content

Decarboxylations of β-Keto Acids and Related Compounds

  • Chapter
Transition States of Biochemical Processes

Abstract

The transfer of a proton from one atom to another is one of the most fundamental processes in chemistry and biochemistry. The detailed mechanism of this reaction has been given much attention both for proton transfers to and from carbon and the more electronegative oxygen and nitrogen.(1) An important class of proton transfers involves those reactions in which another bond is made or broken in addition to the proton transfer itself. Two extreme conditions may occur. The two steps of the reaction may be concerted (all bond breaking and making simultaneous) or stepwise (formation or cleavage of one bond leading to a true intermediate, followed by further bond making and/or breaking). We shall use the definition of a “true intermediate” proposed by Bauer,(2) that is, any species with a lifetime of greater than one molecular vibration: in other words a species with restoring forces for all of its vibrational motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. P. Bell, The Proton in Chemistry, 2nd ed., Cornell University Press, Ithaca, N.Y. (1973).

    Google Scholar 

  2. S. H. Bauer, Operational criteria for concerted bond breaking in gas-phase molecular elimination reactions, J. Am. Chem. Soc. 91, 3688–3689 (1969).

    Article  CAS  Google Scholar 

  3. K. J. Pedersen, The ketonic decomposition of beta-keto carboxylic acids, J. Am. Chem. Soc. 51, 2098–2107 (1929).

    Article  CAS  Google Scholar 

  4. W. Pastanagoff, Über die kinetik der katalytischen zersetzung der bromkamphokarbonsaure, Z. Phys. Chem. (Leipzig) 112, 448–460 (1924).

    Google Scholar 

  5. A. L. Bernoulli, H. Jakubowics,Zerfallsgeschwindigkeit mono-und disubstituierter Malonsäuren, Hely. Chim. Acta 4, 1018–1029 (1921).

    Article  CAS  Google Scholar 

  6. M. W. Logue, R. M. Pollack, and V. P. Vitullo, The nature of the transition state for the decarboxylation of beta-keto acids, J. Am. Chem. Soc. 97, 6868–6869 (1975).

    Article  CAS  Google Scholar 

  7. K. J. Pedersen, Dimethylacetoacetic acid. Hydrolysis of the ethyl ester. Ketonic decomposition reaction with iodine and bromine. Dissociation constant, J. Am. Chem. Soc. 58, 240–246 (1936).

    Article  CAS  Google Scholar 

  8. V. Prelog, P. Barman, and M. Zimmerman, Zur Kenntnis des Kohlenstoffringes. Weitere Untersuchungen über die Gültigkeitsgrenzen der Bredt’schen Regel. Eine Variante der Robinson’schen Synthese von cyclischen ungesättigten Ketonen, Hely. Chim. Acta 32, 1284–1296 (1949).

    Article  CAS  Google Scholar 

  9. G. Kobrich, Bredt compounds and the Bredt rule, Angew. Chem. Mt. Ed. Engl. 12, 464–473 (1973).

    Article  Google Scholar 

  10. J. P. Ferris and N. C. Miller, The decarboxylation of ß-keto acids. II. An investigation of the Bredt rule in bicyclo [3. 2. 1] octane systems, J. Am. Chem. Soc. 88, 3522–3527 (1966).

    Article  CAS  Google Scholar 

  11. K. J. Pedersen, The decomposition of a-nitrocarboxylic acids with some remarks on the decomposition of ß-ketocarboxylic acids, J. Phys. Chem. 38, 559 (1934).

    Article  CAS  Google Scholar 

  12. F. H. Westheimer and W. H. Jones, The effect of solvent on some reaction rates, J. Am. Chem. Soc. 63, 3283–3286 (1941).

    Article  CAS  Google Scholar 

  13. J. Hine, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1962), p. 305.

    Google Scholar 

  14. L. P. Hammett, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1970), Chap. 5.

    Google Scholar 

  15. T. S. Straub and M. L. Bender, Cycloamylases as enzyme models. The decarboxylation of benzoylacetic acids, J. Am. Chem. Soc. 94, 8881–8888 (1972).

    Article  CAS  Google Scholar 

  16. R. W. Hay and K. R. Tate, The kinetics of decarboxylation of benzoylacetic acid and its pmethoxy and p-nitro derivatives in dioxane-water mixtures, Aust. J. Chem. 23, 1407–1413 (1970).

    Article  CAS  Google Scholar 

  17. M. W. Logue, R. M. Pollack, and V. P. Vitullo, unpublished observations.

    Google Scholar 

  18. E. O. Wiig, Carbon dioxide cleavage from acetone dicarboxylic acid, J. Phys. Chem. 32, 961–989 (1928).

    Article  CAS  Google Scholar 

  19. G. A. Hall, Jr., and E. S. Hanrahan, Kinetics of the decarboxylation of phenylmalonic acid, J. Chem. Phys. 69, 2402–2406 (1965).

    Article  CAS  Google Scholar 

  20. K. J. Pedersen, The hydrolysis of ethyl acetoacetate and the decarboxylation of acetoacetic acid in strongly acid solution, Acta Chem. Scand. 15, 1718–1722 (1961).

    Article  CAS  Google Scholar 

  21. D. S. Noyce and Sr. M. A. Matesich, The decarboxylation of benzoylacetic acids in aqueous sulfuric acid, J. Chem. Phys. Chem. 32, 3243–3244 (1967).

    CAS  Google Scholar 

  22. C. G. Swain, R. F. W. Bader, R. M. Esteve, Jr., and R. N. Griffin, Use of substituent effects on isotope effects to distinguish between proton and hydride transfers. Part II. Mechanisms of decarboxylation of ß-keto acids in benzene, J. Am. Chem. Soc. 83, 1951–1955 (1961).

    Article  CAS  Google Scholar 

  23. E. M. Hodnett and R. L. Rowton, C14-isotope effects in the decarboxylation of 2-benzoylpropionic acid, Radioisotopes Phys. Sci. Ind. Proc. Conf. Use, Copenhagen 1960 3, 225–233 (1962).

    CAS  Google Scholar 

  24. A. Wood, Carbon isotope effects in the decarboxylation of oxaloacetic acid, Trans. Faraday Soc. 60, 1263–1267 (1964).

    Article  CAS  Google Scholar 

  25. A. Wood, Carbon isotope effects in the decarboxylation of oxaloacetic acid, Trans. Faraday Soc. 62, 1231–1235 (1966).

    Article  CAS  Google Scholar 

  26. J. Bigeleisen and L. Friedman, C13 isotope effect in the decarboxylation of malonic acid, J. Chem. Phys. 17, 998–999 (1949).

    Article  CAS  Google Scholar 

  27. P. E. Yankwich and M. Calvin, An effect of isotopic mass on the rate of a reaction involving the carbon-carbon bond, J. Chem. Phys. 17, 109–110 (1949).

    Article  CAS  Google Scholar 

  28. J. G. Lindsay, A. N. Boums, and H. G. Thode, C13 isotope effect in the decarboxylation of normal malonic acid, Can. J. Chem. 29, 192–200 (1951).

    Article  PubMed  CAS  Google Scholar 

  29. P. E. Yankwich and A. L. Promisolow, Intramolecular carbon isotope effect in the decarboxylation of liquid malonic acid near the melting point, J. Am. Chem. Soc. 76, 4648–4651 (1954).

    Article  CAS  Google Scholar 

  30. A. Roe and M. Hellmann, Determination of an isotope effect in the decarboxylation of malonic-1-C14 acid, J. Chem. Phys. 19, 660 (1951).

    Article  CAS  Google Scholar 

  31. P. E. Yankwich, A. L. Promisolow, and R. F. Nystrom, C14 and C13 intramolecular isotope effects in the decarboxylation of liquid malonic acid at 140.5°, J. Am. Chem. Soc. 76, 5893–5895 (1954).

    Article  CAS  Google Scholar 

  32. A. Fry, in: Isotope Effects in Chemical Reactions ( C. J. Collins and N. S. Bowman, eds.), p. 364–414, Van Nostrand Reinhold, New York (1970).

    Google Scholar 

  33. F. H. Westheimer, The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium, Chem. Rev. 61, 265–273 (1961).

    Article  CAS  Google Scholar 

  34. J. Kurz, Transition state characterization for catalyzed reactions, J. Am. Chem. Soc. 85, 987–991 (1963).

    Google Scholar 

  35. G. M. Loudon, Aminolysis of a-acetoxystyrenes. The pKa of acetophenones in aqueous solution, J. Am. Chem. Soc. 98, 3591–3597 (1976).

    Article  Google Scholar 

  36. E. M. Arnett, Quantitative comparisons of weak organic bases, J. Am. Chem. 1, 223–405 (1963). The pKa value was corrected to the Hp scale as evaluated by Jorgenson and Hartter. 3 7 )

    Google Scholar 

  37. M. J. Jorgenson and D. R. Hartter, A critical re-evaluation of the Hammett acidity function at moderate and high acid concentrations of sulfuric acid. New Ho values based solely on a set of primary aniline indicators, J. Am. Chem. Soc. 85, 878–883 (1963).

    Article  CAS  Google Scholar 

  38. C. G. Swain, D. A. Kuhn, and R. L. Schowen, Effect of structural changes in reactants on the position of hydrogen-bonding hydrogens and solvating molecules in transition states. The mechanism of tetrahydrofuran formation from 4-chlorobutanol, J. Am. Chem. Soc. 87, 1553–1561 (1965).

    Article  Google Scholar 

  39. R. L. Schowen, Mechanistic deductions from solvent isotope effects, J. Am. Chem. Soc. 9, 275–332 (1972).

    CAS  Google Scholar 

  40. C. S. Tsai, Y. T. Lin, and E. E. Sharkawi, Mechanism of the decarboxylation of monoethyl oxalacetate, J. Am. Chem. 37, 85–87 (1972).

    CAS  Google Scholar 

  41. E. R. Thornton, A simple theory for predicting the effects of substituent changes on transition state geometry, J. Am. Chem. Soc. 89, 2915–2927 (1967).

    Article  CAS  Google Scholar 

  42. J. Hine and W. H. Sachs, Possible bifunctional catalysis by 2-dimethylaminoethylamine in the dealdolization of diacetone alcohol, J. Am. Chem. 39, 1937–1944 (1974).

    CAS  Google Scholar 

  43. J. Del Bene and J. A. Pople, Theory of molecular interactions. I. Molecular orbital studies of water polymers using a minimal Slater-type basis, J. Chem. Phys. 52, 4858–4866 (1970).

    Article  Google Scholar 

  44. P. A. Kollman, A theory of hydrogen bond directionality, J. Am. Chem. Soc. 94, 1837–1842 (1972).

    Article  CAS  Google Scholar 

  45. R. D. Gandour, Structural requirements for intramolecular proton transfers, Tetrahedron Lett. 1974, 295–298.

    Google Scholar 

  46. R. W. Hay and M. A. Bond, Kinetics of the decarboxylation of acetoacetic acid, Au.rt. J. Chem. 20, 1823–1828 (1967).

    Article  CAS  Google Scholar 

  47. J. R. Jones, R. E. Marks, and S. C. Subbarao, Kinetic isotope effects. Part 2. Rates of abstraction of hydrogen and tritium from acetophenone and some para-and meta-substituted acetophenones in alkaline media, Trans. Faraday Soc. 63, 111–123 (1967).

    Article  CAS  Google Scholar 

  48. C. G. Swain, E. C. Stivers, J. F. Reuwer, Jr., and L. J. Schaad, Use of hydrogen isotope effects to identify the attacking nucleophile in the enolization of ketones catalyzed by acidic acid, J. Am. Chem. Soc. 80, 5885–5893 (1958).

    Article  CAS  Google Scholar 

  49. J. E. Dixon and T. C. Bruice, Dependence of the primary isotope effect (kH/ku) on base strength for the primary amine catalyzed ionization of nitroethane, J. Am. Chem. Soc. 92, 905–909 (1970).

    Article  CAS  Google Scholar 

  50. R. P. Bell and D. M. Goodall, Kinetic hydrogen isotope effects in the ionization of some nitropäraffins, Proc. R. Soc. London Ser. A 294, 273–296 (1966).

    Article  CAS  Google Scholar 

  51. I. Fridovich and F. H. Westheimer, On the mechanism of the enzymatic decarboxylation of acetoacetate. II, J. Am. Chem. Soc. 84, 3208–3209 (1962).

    Article  CAS  Google Scholar 

  52. S. Warren, B. Zerner, and F. H. Westheimer, Acetoacetate decarboxylase. Identification of lysine at the active site, Biochemistry 5, 817–822 (1966).

    Article  PubMed  CAS  Google Scholar 

  53. K. J. Pedersen, Amine catalysis in the decarboxylation of oxalacetic acid, Acta Chem. Scand. 8, 710–722 (1954).

    Article  CAS  Google Scholar 

  54. J. P. Guthrie and F. H. Westheimer, Cyanomethylamine as a model for acetoacetate de-carboxylase, Fed. Proc. Fed. Am. Soc. Exp. Biol. 26, 562 (1967).

    Google Scholar 

  55. J. P. Guthrie and F. Jordan, Amine-catalyzed decarboxylation of acetoacetic acid. The rate constant for decarboxylation of a ß-imino acid, J. Am. Chem. Soc. 94, 9136–9141 (1972).

    Article  CAS  Google Scholar 

  56. B. R. Brown, The mechanism of thermal decarboxylation, Q. Rev., Chem. Soc. 1951, 131–146.

    Google Scholar 

  57. K. Taguchi and F. H. Westheimer, Decarboxylation of Schiff bases, J. Am. Chem. Soc. 95, 7413–7423 (1973).

    Article  CAS  Google Scholar 

  58. R. W. Hay, The aniline catalyzed decarboxylation of oxaloacetic acid, Aust. J. Chem. 18, 337–351 (1965).

    Article  CAS  Google Scholar 

  59. M. H. O’Leary and R. L. Baughn, Acetoacetate decarboxylase. Identification of the rate-determining step in the primary amine catalyzed reaction and in the enzymic reaction, J. Am. Chem. Soc. 94, 626–630 (1972).

    Article  PubMed  Google Scholar 

  60. J. Hine, B. C. Menon, J. H. Jensen, and J. Mulders, Catalysis of a-hydrogen exchange. II. Isobutyraldehyde 2-d exchange via n-methyliminium ion formation, J. Am. Chem. Soc. 88, 3367–3373 (1966).

    Article  CAS  Google Scholar 

  61. M. L. Bender and A. Williams, Ketimine intermediates in amine-catalyzed enolization of acetone, J. Am. Chem. Soc. 88, 2502–2508 (1966).

    Article  CAS  Google Scholar 

  62. J. Hine, J. C. Craig, J. Underwood II, and F. A. Via, Kinetics and mechanism of the hydrolysis of N-isobutylidenemethylamine in aqueous solution, J. Am. Chem. Soc. 92, 5194–5199 (1970).

    Article  CAS  Google Scholar 

  63. F. R. Stermitz and W. H. Huang, Thermal and photodecarboxylation of 2-, 3-, and 4-pyridylacetic acid, J. Am. Chem. Soc. 93, 3427–3431 (1971).

    Article  CAS  Google Scholar 

  64. P. J. Taylor, The decarboxylation of some heterocyclic acetic acids, J. Chem. Soc. Perkin Trans. 2, 1972, 1077–1086.

    Google Scholar 

  65. R. G. Button and P. J. Taylor, The decarboxylation of some heterocyclic acetic acids. Part II. Direct and indirect evidence for the zwitterionic mechanisms, J. Chem. Soc. Perkin Trans 2 1973, 557–567.

    Google Scholar 

  66. W. P. Jencks, General acid—base catalysis of complex reactions in water, Chem. Rev. 72, 705–718 (1972).

    Article  CAS  Google Scholar 

  67. R. T. Arnold, O. C. Elmer, and R. M. Dodson, Thermal decarboxylation of unsaturated acids, J. Am. Chem. Soc. 72, 4359–4361 (1950).

    Article  CAS  Google Scholar 

  68. G. G. Smith and S. E. Blau, Decarboxylation, I. Kinetic study of the vapor phase thermal decarboxylation of 3-butenoic acid, J. Phys. Chem. 68, 1231 (1964).

    Article  CAS  Google Scholar 

  69. D. B. Bigley and J. C. Thurman, Studies in decarboxylation. Part II. Kinetic evidence for the mechanism of thermal decarboxylation of ß, y-unsaturated acids, J. Chem. Soc. 1965, 6202–6205.

    Google Scholar 

  70. B. D. Bigley and J. C. Thurman, Studies in decarboxylation. Part III. The thermal decarboxylation of 2,2-dimethyl-3-phenylbut-3-enoic acid, J. Chem. Soc. B 1966, 1076–1077.

    Google Scholar 

  71. D. B. Bigley, Studies in decarboxylation. Part I. The mechanism of decarboxylation of unsaturated acids, J. Chem. Soc. B 1964, 3894–3899.

    Google Scholar 

  72. D. B. Bigley and J. C. Thurman, Studies in decarboxylation. Part V. Kinetic isotope effects in the gas-phase thermal decarboxylation of 2,2-dimethyl-4-phenylbut-3-enoic acid, J. Chem. Soc B 1967, 941–943.

    Google Scholar 

  73. D. B. Bigley and J. C. Thurman, Studies in decarboxylation. Part VI. A comparison of the transition states for the decarboxylation of ß-keto and ß,y-unsaturated acids, J. Chem. Soc. B 1968, 436–440.

    Google Scholar 

  74. D. B. Bigley and R. W. May, Studies in decarboxylation. Part IV. The effect of alkyl substituents on the rate of gas-phase decarboxylation of some ß,y-unsaturated acids, J. Chem. Soc. 1967, 557–561.

    Google Scholar 

  75. D. B. Bigley and J. C. Thurman, On the transition state for decarboxylation of ß-keto acids and ß,y-unsaturated acids, Tetrahedron Lett. 1967, 2377–2380.

    Google Scholar 

  76. I. Fridovich, Acetoacetate decarboxylase, Enzymes 6, 255–271 (1972).

    Article  CAS  Google Scholar 

  77. G. A. Hamilton and F. H. Westheimer, On the mechanism of the enzymatic decarboxylation of acetoacetate, J. Am. Chem. Soc. 81, 6332–6333 (1959).

    Article  CAS  Google Scholar 

  78. D. E. Schmidt and F. H. Westheimer, pK of the lysine amino group at the active site of aceto-acetate decarboxylase, Biochemistry 10, 1249–1253 (1971).

    Article  PubMed  Google Scholar 

  79. P. A. Frey, F. C. Kokesh, and F. H. Westheimer, A reporter group at the active site of aceto-acetate decarboxylase. I. Ionization constant of the amino group, J. Am. Chem. Soc. 93, 7266–7269 (1971).

    Article  PubMed  CAS  Google Scholar 

  80. F. C. Kokesh and F. H. Westheimer, A. reporter group at the active site of acetoacetate decarboxylase. Il. Ionization constant of the amino group, J. Am. Chem. Soc. 93, 7270–7274 (1971).

    Google Scholar 

  81. W. P. Jencks, Catalysis in Chemistry and Enzymology,McGraw-Hill, New York (1969), pp. 490ff.

    Google Scholar 

  82. J. Hine, M. S. Cholod, and W. K. Chess, Jr., Kinetics of the formation of imines from acetone and primary amines. Evidence for internal acid-catalyzed dehydration of certain intermediate carbinolamines, J. Am. Chem. Soc. 95, 4270–4276 (1973).

    Article  CAS  Google Scholar 

  83. J. Hine and W. S. Li, Internal catalysis in imine formation from acetone and acetone-a6 and conformationally constrained derivatives of N,N-dimethyl-l,3-propanediamine, J. Am. ChemChem. 40, 2622–2626 (1975).

    CAS  Google Scholar 

  84. R. M. Pollack and R. H. Kayser, unpublished observations.

    Google Scholar 

  85. R. M. Pollack and M. Brault, Synergism of the effect of solvent and of general base catalysis in the hydrolysis of a Schiff base, J. Am. Chem. Soc. 98, 247–248 (1976).

    Article  CAS  Google Scholar 

  86. J. Crosby, R. Stone, and G. E. Lienhard, Mechanisms of thiamine-catalyzed reactions. Decarboxylation of 2-(1-carboxy-l -hydroxyethyl)-3,4-dimethylthiazolium chloride, J. Am. Chem. Soc. 92, 2891–2900 (1970).

    Article  PubMed  CAS  Google Scholar 

  87. M. L. Bender and A. Williams, Ketimine intermediates in amine-catalyzed enolization of acetone, J. Am. Chem. Soc. 88, 2502–2508 (1966).

    Article  CAS  Google Scholar 

  88. C. H. Rochester, Acidity Functions,Academic Press, New York (1970), Chap. 7.

    Google Scholar 

  89. R. Kluger and K. Nakaoka, Inhibition of acetoacetate decarboxylase by ketophosphonates. Structural and dynamic probes of the active site, Biochemistry 13, 910–914 (1974).

    Article  PubMed  CAS  Google Scholar 

  90. W. Tagaki and F. H. Westheimer, Acetoacetate decarboxylase. Catalysis of hydrogen—deuterium exchange in acetone, Biochemistry 7, 901–905 (1968).

    Article  PubMed  CAS  Google Scholar 

  91. G. Hammons, F. H. Westheimer, K. Nakaoka, and R. Kluger, Proton-exchange reactions of acetone and butanone. Resolution of steps in catalysis by acetoacetate decarboxylase, J. Am. Chem. Soc. 97, 1568–1671 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pollack, R.M. (1978). Decarboxylations of β-Keto Acids and Related Compounds. In: Gandour, R.D., Schowen, R.L. (eds) Transition States of Biochemical Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-9978-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-9978-0_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-9980-3

  • Online ISBN: 978-1-4684-9978-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics