Skip to main content

Roles of Vitamins as Coenzymes

  • Chapter
Nutrition and the Adult

Part of the book series: Human Nutrition ((HUNU,volume 3B))

Abstract

Vitamins that serve as precursors of coenzymes are principally the B vitamins. These substances occur not only in the free form but also in bound forms from which they must be liberated in the digestive tract by appropriate secreted enzymes before they can be utilized. The transport of vitamins from the digestive tract into the bloodstream and to various cells and finally into the cells may require specific transport proteins for a particular vitamin. Within the cells, most members of the group of B vitamins are converted into coenzyme forms which are required for the activity of specific enzymes. Such a coenzyme may be attached by ionic, coordinate covalent, or, in some cases, covalent bonding to an apoenzyme to provide an enzyme (holoenzyme) catalyzing a specific reaction. In some instances, the vitamin itself is bound covalently to the apoenzyme (protein) directly to form the holoenzyme. Coenzymes are usually integrally involved in the catalytic process of the enzyme, but many coenzymes also serve as cosubstrates or carriers of groups to be modified by enzymic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, R. H., and Dolphin, D., 1976, The vitamin B12 coenzyme, Acc. Chem. Res. 9: 114.

    Article  CAS  Google Scholar 

  • Abeles, R. H., and Lee, H. A., Jr., 1962, An intramolecular oxidation reduction requiring a cobamide coenzyme, J. Biol. Chem. 236: 2347.

    Google Scholar 

  • Abiko, Y., 1967, Investigations on pantothenic acid and its related compounds, J. Biochem. 61: 290.

    CAS  Google Scholar 

  • Abiko, Y., 1975, Metabolism of coenzyme A, in: Metabolic Pathways, Vol. VII ( D. M. Greenberg, ed.), pp. 1–25, Academic Press, New York.

    Google Scholar 

  • Adams, J. M., and Capecchi, M. R., 1966, N-Formylmethionyl-sRNA as the initiator of protein synthesis, Proc. Natl. Acad. Sci. U.S.A. 55: 147.

    Article  CAS  Google Scholar 

  • Adams, M. J., Buehner, M., Chandrasekhar, K., Ford, G. C., Hackert, M. L., Liljas, A., Rossman, M. G., Smiley, I. E., Allison, W. S., Everse, J., Kaplan, N. O., and Taylor, S. S., 1973, Structure-function relationships in lactate dehydrogenase (amino-acid sequence/crystallographic structure), Proc. Natl. Acad. Sci. U.S.A. 70: 1968.

    Article  CAS  Google Scholar 

  • Akashi, K. A., and Kurahashi, K., 1977, Formylation of enzyme-bound valine and stepwise elongation of intermediate peptides of gramicidin A by a cell-free enzyme system, Biochem. Biophys. Res. Commun. 77: 259.

    Article  CAS  Google Scholar 

  • Alberts, A. W., Gordon, S. G., and Vagelos, P. R., 1971, Acetyl CoA carboxylase: The purified transcarboxylase component, Proc. Natl. Acad. Sci. U.S.A. 68: 1259.

    Article  CAS  Google Scholar 

  • Alexander, N., and Greenberg, D. M., 1955, Studies on the biosynthesis of serine, J. Biol. Chem. 214: 821.

    CAS  Google Scholar 

  • Auhagen, E., 1932, Cocarboxylase, a new coenzyme of alcoholic fermentation, Z. Physiol. Chem. 204: 149.

    Article  CAS  Google Scholar 

  • Ayling, J. E., Dunathan, H. C., and Snell, E. E., 1968, Stereochemistry of transamination catalyzed by pyridoxamine-pyruvate transaminase, Biochemistry 7: 4537.

    Article  CAS  Google Scholar 

  • Babior, G. M., McCarty, T. J., and Abeles, R. H., 1974, The mechanism of action of ethanolamine ammonia-lyase, a B12 dependent enzyme, J. Biol. Chem. 249: 1689.

    CAS  Google Scholar 

  • Baddiley, J., Thain, E. M., Novelli, G. D., and Lippmann, F., 1953, Structure of coenzyme A, Nature 171: 76.

    Article  CAS  Google Scholar 

  • Baggot, J. E., and Krumdieck, C. L., 1979, Folylpoly-y-glutamates as cosubstrates of 10-formyltetrahydrofolate:5’-phosphoribosyl-5-amino-4-imidazolecarboxamide formyltransferase, Biochemistry 18: 1036.

    Article  Google Scholar 

  • Barker, H. A., Weissbach, H., and Smyth, R. D., 1958, A coenzyme containing pseudovitamin B12, Proc. Natl. Acad. Sci. U.S.A. 44: 1093.

    Article  CAS  Google Scholar 

  • Barker, H. A., Smyth, R. D., Weissbach, H., Toohey, J. I., Ladd, J. N., and Volcani, B. E., 1960, Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole, J. Biol. Chem. 235: 480.

    CAS  Google Scholar 

  • Bates, M. J., Danson, G. H., Hooper, E. A., and Perham, R. N., 1977, Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex of Escherichia coli, Nature 268: 313.

    Article  CAS  Google Scholar 

  • Batterham, T. J., Ghambeer, R. K., Blakley, R. L., and Brownson, C., 1967, Cobamides and ribonucleotide reduction. IV. Stereochemistry of hydrogen transfer to the deoxyribonucleotide, Biochemistry 6: 1203.

    Article  CAS  Google Scholar 

  • Beadle, G. W., Mitchell, H. K., and Nyc, J. F., 1947, Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by Neurospora, Proc. Natl. Acad. Sci. U.S.A. 33: 155.

    Article  CAS  Google Scholar 

  • Beinert, H., 1963, Electron-transferring flavoprotein, in: The Enzymes, Vol. 7, 2nd ed. ( P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 467–476, Academic Press, New York.

    Google Scholar 

  • Bertino, J. R., Simmons, B., and Donohue, D. M., 1962, Purification and properties of formate-activating enzyme from erythrocytes, J. Biol. Chem. 237: 1314.

    CAS  Google Scholar 

  • Blakley, R. L., 1954, The interconversion of serine and glycine: Role of pteroylglutamic acid and other cofactors, Biochem. J. 58: 448.

    CAS  Google Scholar 

  • Blakley, R. L., 1965, Cobamides and ribonucleotide reduction. I. Cobamide stimulation of ribo-nucleotide reduction in extracts of Lactobacillus leichmannii, J. Biol. Chem. 240: 2173.

    Google Scholar 

  • Blakley, R. L., and Barker, H. A., 1964, Cobamide stimulation of the reduction of ribotides to deoxyribotides in Lactobacillus leichmannii, Biochem. Biophys. Res. Commun. 16: 391.

    Article  CAS  Google Scholar 

  • Blaylock, B. A., 1968, Cobamide-dependent methanol-cyanocob (1) alamin methyltransferase of Methanosarcina barkeri, Arch. Biochem. Biophys. 124: 314.

    Article  CAS  Google Scholar 

  • Blaylock, B. A., and Stadtman, T. C., 1966, Methane biosynthesis by Methanosarcina barkeri, Arch. Biochem. Biophys. 116: 138.

    Article  CAS  Google Scholar 

  • Bokman, A. H., and Schweigert, B. S., 1950, 3-Hydroxyanthranilic acid metabolism. III. Molar conversion to quinolinic acid, J. Biol. Chem. 186: 153.

    Google Scholar 

  • Bond, T. J., Bardos, T. J., Sibley, M., and Shive, W., 1949, The folinic acid group: A series of new vitamins related to folic acid, J. Am. Chem. Soc. 71: 3852.

    Article  CAS  Google Scholar 

  • Bonner, D., 1948, Identification of a natural precursor of nicotinic acid, Proc. Natl. Acad. Sci. U.S.A. 34: 5.

    Article  CAS  Google Scholar 

  • Bradbeer, C., 1965, The Clostridia) fermentations of choline and ethanolamine, J. Biol. Chem. 240: 4675.

    CAS  Google Scholar 

  • Braunstein, A. E., 1973, Amino group transfer, in: The Enzymes Vol. IX, 3rd ed. ( P. D. Boyer, ed.), pp. 379–481, Academic Press, New York.

    Google Scholar 

  • Braunstein, A. E., and Shemyakin, M. M., 1953, A theory of amino acid metabolic processes catalyzed by pyridoxal-dependent enzymes, Biokhimiya 18: 393.

    Google Scholar 

  • Breslow, R., 1958, On the mechanism of thiamine action. IV. Evidence from studies on model systems, J . Am. Chem. Soc. 80: 3719.

    Article  CAS  Google Scholar 

  • Bright, H. J., and Porter, D. J. T., 1975, Flavoprotein oxidases, in: The Enzymes, Vol. XII, 3rd ed. ( P. D. Boyer, ed.), pp. 421–505, Academic Press, New York.

    Google Scholar 

  • Brodie, A. F., Weber, M. M., and Gray, C. T., 1958, The role of vitamin K, in coupled oxidative phosphorylation, Biochim. Biophys. Acta 25: 448.

    Article  Google Scholar 

  • Brown, G. M., 1959, The metabolism of pantothenic acid, J . Biol. Chem. 234: 370.

    CAS  Google Scholar 

  • Brown, G. M., and Reynolds, J. T., 1963, Biogenesis of the water-soluble vitamins, in: Annual Reviews of Biochemistry, Vol. 32 (E. E. Snell, J. M. Luck, F. W. Allen, and G. MacKinney, eds.), pp. 419-. 462, Annual Reviews, Inc., Palo Alto, California.

    Google Scholar 

  • Brustlein, M., and Bruice, T. C., 1972, Demonstration of a direct hydrogen transfer between NADH and a deazaflavin, J . Am. Chem. Soc. 94: 6548

    Article  CAS  Google Scholar 

  • Buchanan, J. M., and Sonne, J. C., 1946, The utilization of formate in uric acid synthesis, J . Biol. Chem. 166: 781.

    CAS  Google Scholar 

  • Burke, G. T., Mangum, J. H., and Brodie, J. D., 1971, Mechanism of mammalian cobalamindependent methionine biosynthesis, Biochemistry 10: 3079.

    Article  CAS  Google Scholar 

  • Caplan, A. I., and Rosenberg, M. J., 1975, Interrelationship between poly(ADP-Rib) synthesis, intracellular NAD levels, and muscle or cartilage differentiation from mesodermal cells of embryonic chick limb, Proc. Natl. Acad. Sci. U.S.A. 72: 1852.

    Article  CAS  Google Scholar 

  • Clark, B. F. C., and Marcker, K. A., 1965, Coding response of N-formylmethionyl-sRNA to UUG, Nature 207: 1038.

    Article  CAS  Google Scholar 

  • Clark, B. F. C., and Marcker, K. A., 1966, The role of N-formylmethionyl-sRNA in protein biosynthesis, J . Mol. Biol. 17: 394.

    Article  CAS  Google Scholar 

  • Collier, R. J., 1975, Diphtheria toxin: Mode of action and structure, Bacteriol. Rev. 39: 54.

    CAS  Google Scholar 

  • Collins, J. H., and Reed, L. J., 1977, Acyl group and electron pair relay system: A network of interacting lipoyl moieties in the pyruvate and a-ketoglutarate dehydrogenase complexes from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 74: 4223.

    Article  CAS  Google Scholar 

  • Colyer, R. A., Burdette, K. E., and Kidwell, W. R., 1973, Poly ADP-ribose synthesis and DNA replication in synchronized mouse L-cells, Biochem. Biophys. Res. Commun. 53: 960.

    Article  CAS  Google Scholar 

  • Cornforth, J. W., Ryback, G., Popjok, G., Donninger, C., and Schroepfer, G., Jr., 1962, Stereochemistry of enzymic hydrogen transfer to pyridine nucleotides, Biochem. Biophys. Res. Commun. 9: 371.

    Article  CAS  Google Scholar 

  • Craine, J. E., Hall, E. S., and Kaufman, S., 1972, The isolation and characterization of dihydropteridine reductase from sheep liver, J . Biol. Chem. 247: 6082.

    CAS  Google Scholar 

  • Crane, F. L., Mii, S., Hauge, J. G., Green, D. E., and Beinert, H., 1956, On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. I. The general fatty acyl coenzyme A dehydrogenase, J . Biol. Chem. 218: 701.

    CAS  Google Scholar 

  • Crane, F. L., Hatefi, Y., Lester, R. L., and Widmer, C., 1957, Isolation of a quinone from beef heart mitochondria, Biochim. Biophys. Acta 25: 220.

    Article  CAS  Google Scholar 

  • Crane, F. L., Widmer, C., Lester, R. L., and Hatefi, Y., 1959, Studies on the electron transport system. XV. Coenzyme Q (Q 275) and the succinoxidase activity of the electron transport particle, Biochim. Biophys. Acta 31: 476.

    Article  CAS  Google Scholar 

  • Diago, K., and Reed, L. J., 1962, The amino acid sequence around the N-e-lipoyllysine residue in a-keto acid dehydrogenation complexes, J . Am. Chem. Soc. 84: 666.

    Article  Google Scholar 

  • Davis, L., and Metzler, D. E., 1972, Pyridoxal linked elimination and replacement reactions, in: The Enzymes, Vol. VII, 3rd ed. ( P. D. Boyer, ed.), pp. 33–74, Academic Press, New York.

    Google Scholar 

  • deCastro, F. T., Price, J. M., and Brown, P. R., 1956, Reduced triphosphopyridine nucleotide requirement for the enzymatic formation of 3-hydroxykynurenine from L-kynurenine, J . Am. Chem. Soc. 78: 2904.

    Article  CAS  Google Scholar 

  • Dev, I. K., and Harvey, R. J., 1978a, N10-Formyltetrahydrofolic acid is the formyl donor for glycinamide ribotide transformylase in Escherichia coli, J . Biol. Chem. 253: 4242.

    CAS  Google Scholar 

  • Dev, I. K., and Harvey, R. J., 1978b, A complex of N5“0-methylenetetrahydrofolate dehydrogenase and N510-methenyltetrahydrofolate cyclohydrolase in Escherichia coli, J. Biol. Chem. 253: 4245.

    CAS  Google Scholar 

  • Dimroth, P., Guchhait, R. B., Stoll, E., and Lane, M. D., 1970, Enzymatic carboxylation of biotin: Molecular and catalytic properties of a component enzyme of acetyl CoA carboxylase, Proc. Natl. Acad. Sci. U.S.A. 67: 1353.

    Article  CAS  Google Scholar 

  • Dunathan, H. C., and Voet, J. G., 1974, Stereochemical evidence for the evolution of pyridoxalphosphate enzymes of various function from a common ancestor, Proc. Natl. Acad. Sci. U.S.A. 71: 3888.

    Article  CAS  Google Scholar 

  • Dyer, J. K., and Costilow, R. N., 1970, 2,4-Diaminovaleric acid: An intermediate in the anerobic oxidation of ornithine by Clostridium sticklandii, J. Bacteriol. 101: 77.

    Google Scholar 

  • Eakin, R. E., Snell, E. E., and Williams, R. J., 1941, The concentration and assay of avidin, the injury-producing protein in raw egg white, J. Biol. Chem. 140: 535.

    CAS  Google Scholar 

  • Eggerer, H., Overath, P., Lynen, F., and Stadtman, E. R., 1960, On the mechanism of the cobamide coenzyme dependent isomerization of methylmalonyl CoA to succinyl CoA, J. Am. Chem. Soc. 82: 2643.

    Article  CAS  Google Scholar 

  • Eley, N. H., Namihira, G., Hamilton, L., Munk, P., and Reed, L. J., 1972, a-Keto acid dehydrogenase complexes. XVIII. Subunit composition of the Escherichia coli pyruvate dehydrogenase complex, Arch. Biochem. Biophys. 152: 655.

    Google Scholar 

  • Elovson, J., and Vagelos, P. R., 1968, Acyl carrier protein. X. Acyl carrier protein synthetase, J. Biol. Chem. 243: 3603.

    CAS  Google Scholar 

  • Elvehjem, C. A., Madden, R. J., Strong, F. M., and Wooley, D. W., 1937, Relation of nicotinic acid and nicotinic acid amide to canine black tongue, J. Am. Chem. Soc. 59: 1767.

    Article  Google Scholar 

  • Entsch, B., Ballou, D. P., and Massey, V., 1976, Flavin-oxygen derivatives involved in hydrox- ylation by p-hydroxybenzoate hydroxylase, J. Biol. Chem. 251: 2550.

    CAS  Google Scholar 

  • Euler, H. v., Albers, H., and Schlenk, F., 1935, Cozymase, Z. Physiol. Chem. 237: 1.

    Article  Google Scholar 

  • Euler, H. v., Albers, H., and Schlenk, F., 1936, Chemical investigations on highly purified cozymase, Z. Physiol. Chem. 240: 113.

    Article  Google Scholar 

  • Farman, H. J., and Kennedy, J., 1975, Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid, J. Biol. Chem. 250: 4322.

    Google Scholar 

  • Fernlund, P., Stenflo, J., Roepstorff, P., and Thomsen, J., 1975, Vitamin K and the biosynthesis of prothrombin. V. y-Carboxyglutamic acids, the vitamin K-dependent structures in pro-thrombin, J. Biol. Chem. 250: 6125.

    CAS  Google Scholar 

  • Festenstein, G. H., Heaton, F. W., Lowe, J. S., and Morton, R. A., 1955, A constituent of the unsaponifiable portion of animal tissue lipids, Biochem. J. 59: 558.

    CAS  Google Scholar 

  • Fisher, H. F., Conn, E. E., Vennesland, B., and Westheimer, F. H., 1953, The enzymatic transfer of hydrogen. I. The reaction catalyzed by alcohol dehydrogenase, J. Biol. Chem. 202: 687.

    CAS  Google Scholar 

  • Flaks, J. G., and Cohen, S. S., 1959, Virus-induced acquisition of metabolic function. I. Enzymatic formation of 5-hydroxymethyldeoxycytidylate, J. Biol. Chem. 234: 1501.

    CAS  Google Scholar 

  • Flaks, J. G., Erwin, M. J., and Buchanan, J. M., 1957, Biosynthesis of the purines. XVIII. 5-Amino-l-ribosyl-4-imidazolecarboxamide 5’-phosphate transformylase and inosinicase, J. Biol. Chem. 229: 603.

    CAS  Google Scholar 

  • Flavin, M., and Ochoa, S., 1957, Metabolism of propionic acid in animal tissues. I. Enzymatic conversion of propionate to succinate, J. Biol. Chem. 229: 965.

    CAS  Google Scholar 

  • Flynn, E. H., Bond, T. J., Bardos, T. J., and Shive, W., 1951, A synthetic compound with folinic acid activity, J. Am. Chem. Soc. 73: 1979.

    Google Scholar 

  • Folkers, K., and Yamamura, Y., 1977, Biochemical and clinical aspects of coenzyme Q, in: Proceedings of the International Symposium on Coenzyme Q ( K. Folkers and Y. Yamamura, eds.), Elsevier Scientific Publishing Co., New York.

    Google Scholar 

  • Formica, J. V., and Brady, R. O., 1959, The enzymatic carboxylation of acetyl coenzyme A, J. Am. Chem. Soc. 81: 752.

    CAS  Google Scholar 

  • Foster, M. A., Dilworth, M. J., and Woods, D. D., 1964a, Cobalamin and the synthesis of methionine by Escherichia coli, Nature 201: 39.

    Article  CAS  Google Scholar 

  • Foster, M. A., Tejerina, G., Guest, J. R., and Woods, D. D., 1964b, Two enzymatic mechanisms for the methylation of homocysteine by extracts of Escherichia coli, Biochem. J. 92: 476.

    CAS  Google Scholar 

  • Fouts, P. J., Helmer, O. M., Lepkovsky, S., and Jukes, T. H., 1937, Treatment of human pellagra with nicotinic acid, Proc. Soc. Exp. Biol. Med. 37: 405.

    Google Scholar 

  • Frey, P. A., Essenberg, M. K., and Abeles, R. H., 1967, The mechanism of hydrogen transfer in the cobamide coenzyme-dependent dioldehydrase reaction, J. Biol. Chem. 242: 5369.

    CAS  Google Scholar 

  • Friedkin, M., 1957, The enzymatic conversion of deoxyuridylic acid to thymidylic acid and the participation of tetrahydrofolic acid, Fed. Proc. Fed. Am. Soc. Exp. Biol. 16: 183.

    Google Scholar 

  • Friedman, P. A., Kappelman, A. H., and Kaufman, S., 1972, Partial purification and characteri-zation of tryptophan hydroxylase from rabbit hindbrain, J. Biol. Chem. 247: 4165.

    CAS  Google Scholar 

  • Froyshov, O., and Laland, S. G., 1974, On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis, Eur. J. Biochem. 46: 235.

    Article  CAS  Google Scholar 

  • Galivan, J. H., and Allen, S. H. G., 1968, Methylmalonyl coenzyme A decarboxylase: Its role in succinate decarboxylation by Micrococcus lactilyticus, J. Biol. Chem. 243: 1253.

    CAS  Google Scholar 

  • Gibson, Q. H., and Hastings, J. W., 1962, The oxidation of reduced flavin mononucleotide by molecular oxygen, Biochem. J. 83: 368.

    CAS  Google Scholar 

  • Gill, D. M., 1975, Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro, Proc. Natl. Acad. Sci. U.S.A. 72: 2064.

    Article  CAS  Google Scholar 

  • Gill, D. M., Evans, D. J., Jr., and Evans, D. G., 1976, Mechanism of activation of adenylate cyclase in vitro by polymyxin-released, heat-labile enterotoxin of Escherichia coli, J. Infect. Dis. 133: 5103.

    Google Scholar 

  • Goff, C. G., 1974, Chemical structure of a modification of the Escherichia coli ribonucleic acid polymerase a polypeptides induced by bacteriophage T4 infection, J. Biol. Chem. 249: 6181.

    CAS  Google Scholar 

  • Goldman, D. S., 1954, Studies on the fatty acid oxidizing system of animal tissues. VII. The /3ketoacyl coenzyme A cleavage enzyme, J. Biol. Chem. 208: 345.

    CAS  Google Scholar 

  • Goldman, D. S., 1959, Enzyme systems in the mycobacteria. VI. Pyruvic dehydrogenase system, Biochim. Biophys. Acta 32: 80.

    Article  CAS  Google Scholar 

  • Goldman, D. S., 1960, Enzyme systems in the mycobacteria. IX. The reductive acylation of lipoic acid, Biochim. Biophys. Acta 45: 279.

    Article  CAS  Google Scholar 

  • Goldman, P., and Vagelos, P. R., 1962, The formation of enzyme-bound acetoacetate and its conversion to long chain fatty acids, Biochem. Biophys. Res. Commun. 7: 414.

    Article  CAS  Google Scholar 

  • Goldthwait, D. A., Peabody, R. A., and Greenberg, G. R., 1956, On the mechanism of synthesis of glycinamide ribotide and its formyl derivative, J. Biol. Chem. 221: 569.

    CAS  Google Scholar 

  • Goulian, M., and Beck, W. S., 1966, Purification and properties of cobamide-dependent ribonucleotide reductase from Lactobacillus leichmannii, J. Biol. Chem. 241: 4233.

    CAS  Google Scholar 

  • Graves, D. J., and Wang, J. H., 1972, a-Glucan phosphorylases—Chemical and physical basis of catalysis and regulation, in: The Enzymes Vol. VII, 3rd ed. (P. D. Boyer, ed.), pp. 435–482, Academic Press, New York.

    Google Scholar 

  • Green, D. E., Ziegler, D. M., and Doeg, K. A., 1959, Sequence of components in the succinic chain of the mitochondrial electron transport system, Arch. Biochem. Biophys. 85: 280.

    Article  CAS  Google Scholar 

  • Green, D. E., Goldman, D. S., Mii, S., and Beinert, H., 1953, The acetoacetate activation and cleavage enzyme system, J. Biol. Chem. 202: 137.

    CAS  Google Scholar 

  • Green, D. E., Mii, S., Mahler, H. R., and Boch, R. M., 1954, Studies on the fatty acid oxidizing system of animal tissues. III. Butyryl coenzyme A dehydrogenase, J. Biol. Chem. 206:1. Greenberg, G. R., 1954, A formylation cofactor, J. Am. Chem. Soc. 76: 1458.

    Article  Google Scholar 

  • Griffiths, D. E., 1976, Studies of energy-linked reactions—Net synthesis of adenosine triphosphate by isolated adenosine triphosphate synthase preparations: A role for lipoic acid and unsaturated fatty acids, Biochem. J. 160: 809.

    CAS  Google Scholar 

  • Griffiths, D. E., Hyams, R. L., Bertoli, E., and Carver, M., 1977, Studies of energy linked reactions: A cofactor function for unsaturated fatty acids in oxidative phosphorylation; studies with a yeast auxotroph, Biochem. Biophys. Res. Commun. 75: 449.

    Article  CAS  Google Scholar 

  • Guchhait, R. B., Moss, J., Sokolski, W., and Lane, M. D., 1971, The carboxyl transferase component of acetyl CoA carboxylase: Structural evidence for intersubunit translocation of the biotin prosthetic group, Proc. Natl. Acad. Sci. U.S.A. 68: 653.

    Article  CAS  Google Scholar 

  • Guest, J. R., Friedman, S., Woods, D. D., and Smith, E. L., 1962, A methyl analogue of cobamide coenzyme in relation to methionine synthesis by bacteria, Nature 195: 340.

    Article  CAS  Google Scholar 

  • Guggenheim, S., and Flavin, M., 1969, Cystathionine y-synthase. A pyridoxal phosphate enzyme catalyzing rapid exchanges of ß and a hydrogen atoms in amino acids, J. Biol. Chem. 244: 6217.

    CAS  Google Scholar 

  • Guirard, B. M., Snell, E. E., and Williams, R. J., 1946, The nutritional role of acetate for lactic acid bacteria. I. The response to substances related to acetate, Arch. Biochem. 9: 361.

    CAS  Google Scholar 

  • Gunsalus, I. C., 1954a, Group transfer and acyl-generating functions of lipoic acid derivatives, in The Mechanism of Enzyme Action ( W. D. McElroy and B. Glass, eds.), pp. 545–580, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Gunsalus, I. C., 1954b, Oxidative and transfer reactions of lipoic acid, Fed. Proc. Fed. Am. Soc. Exp. Biol. 13: 715.

    CAS  Google Scholar 

  • Gunsalus, I. C., and Smith, R. A., 1958, Oxidation and energy coupling in keto acid metabolism, in: Proceedings of the International Symposium on Enzyme Chemistry ( K. Ichihara, ed.), pp. 77–86, Maruzen Co., Tokyo.

    Google Scholar 

  • Gunsalus, I. C., Bellamy, W. D., and Umbreit, W. W., 1944, A phosphorylated derivative of pyridoxal as the coenzyme of tyrosine decarboxylase, J . Biol. Chem. 155: 685.

    CAS  Google Scholar 

  • Gurnani, S., Mistry, S. P., and Johnson, B. C., 1960, Function of vitamin B12 in methylmalonate metabolism. I. Effect of a cofactor form of B12 on the activity of methylmalonyl-CoA isomerase, Biochim. Biophys. Acta 38: 187.

    Article  CAS  Google Scholar 

  • Hager, L. P., and Gunsalus, I. C., 1953, Lipoic acid dehydrogenase: The function of E. coli fraction B, J. Am. Chem. Soc. 75: 5767.

    Article  CAS  Google Scholar 

  • Hajdu, J., and Sigman, D. S., 1975, Model dehydrogenase reactions, neighboring group effects in dihydronicotinamide reductions, J. Am. Chem. Soc. 97: 3524.

    Article  CAS  Google Scholar 

  • Harden, A., and Young, W. J., 1905, The alcoholic ferment of yeast juice, J. Physiol. (Proceedings of November 12, 1904 ): 32.

    Google Scholar 

  • Hartman, S. C., and Buchanan, J. M., 1959, Biosynthesis of the purines. XXVI. The identification of the formyl donors of the transformylation reactions, J. Biol. Chem. 234: 1812.

    CAS  Google Scholar 

  • Hatefi, Y., and Stiggall, D. L., 1976, Metal-containing flavoprotein dehydrogenases, in: The Enzymes, Vol. XIII, 3rd ed. ( P. D. Boyer, ed.), pp. 175–297, Academic Press, New York.

    Google Scholar 

  • Hatefi, Y., Lester, R. L., Crane, F. L., and Widmer, C., 1959, Studies on the electron transport system. XVI. Enzymic oxidoreduction reactions of coenzyme Q, Biochim. Biophys. Acta 31: 490.

    Article  CAS  Google Scholar 

  • Hatefi, Y., Haavik, A. G., and Griffiths, D. E., 1962, Studies on the electron transport system. XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase, J. Biol. Chem. 237: 1676.

    CAS  Google Scholar 

  • Hemmerich, P., and Massey, V., 1977, Flavin and 5-deazaflavin: A chemical evaluation of `modified’ flavoproteins with respect to the mechanisms of redox biocatalysis, FEBS Lett. 84: 5.

    Article  CAS  Google Scholar 

  • Hemmerich, P., and Muller, F., 1973, Ravine-molecular oxygen interaction mechanisms and the function of flavine in hydroxylation reactions, Ann. N. Y. Acad. Sci. 212: 13.

    Article  CAS  Google Scholar 

  • Henderson, L. M., and Ramasarma, G. B., 1949, Quinolinic acid metabolism. III. Formation from 3-hydroxyanthranilic acid by rat liver preparations, J. Biol. Chem. 181: 687.

    CAS  Google Scholar 

  • Himes, R. H., and Rabinowitz, J. C., 1962, Formyltetrahydrofolate synthetase. II. Characteristics of the enzyme and the enzymic reaction, J. Biol. Chem. 237: 2903.

    CAS  Google Scholar 

  • Hoagland, M. B., and Novelli, G. D., 1954, Biosynthesis of coenzyme A from phosphopantetheine and of pantetheine from pantothenate, J. Biol. Chem. 207: 767.

    CAS  Google Scholar 

  • Hogencamp, H. P. C., Ghambeer, R. K., Brownson, C., Blakley, R. L., and Vitols, E., 1968, Cobamides and ribonucleotide reduction, J. Biol. Chem. 243: 799.

    Google Scholar 

  • Holbrook, J. J., Liljas, A., Steindel, S. J., and Rossmann, M. G., 1975, Lactate dehydrogenase, in: The Enzymes, Vol. XI ( P. D. Boyer, ed.), pp. 191–292, Academic Press, New York.

    Google Scholar 

  • Holzer, H., and Beauchamp, K., 1959, Detection and characterization of intermediates of the decarboxylation and oxidation of pyruvate: “Activated pyruvate” and “activated acetaldehyde,” Angew. Chem. 71: 776.

    Article  CAS  Google Scholar 

  • Honjo, T., Nishizuka, Y., Hayaishi, O., and Kato, I., 1968, Diptheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis, J. Biol. Chem. 243: 35–53.

    Google Scholar 

  • Honjo, T., Nishizuka, Y., Kato, I., and Hayaishi, O., 1971, Adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis of diphtheria toxin, J. Biol. Chem. 246: 4251.

    CAS  Google Scholar 

  • Horecker, B. L., and Smyrniotis, P. Z., 1953, The coenzyme function of thiamine pyrophosphate in pentose phosphate metabolism, J. Am. Chem. Soc. 75: 1009.

    Article  CAS  Google Scholar 

  • Hughes, R. C., Jenkins, W. T., and Fischer, E. H., 1962, The site of binding of pyridoxal-5’-phosphate to heart glutamic-aspartic transaminase, Proc. Natl. Acad. Sci. U.S.A. 48: 1615.

    Article  CAS  Google Scholar 

  • Iglewski, B. H., and Kabat, D., 1975, NAD-Dependent inhibition of protein synthesis in Pseu-domonas aeruginosa toxin, Proc. Natl. Acad. Sci. U.S.A. 72: 2284.

    Article  CAS  Google Scholar 

  • Iyanagi, T., Makino, N., and Mason, H. S., 1974, Redox properties of the reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 and reduced nicotinamide adenine dinucleotide-cytochrome b5 reductases, Biochemistry 13: 1701.

    Article  CAS  Google Scholar 

  • Jakoby, W. B., and Bonner, D. M., 1953, Kynureninase from Neurospora: Purification and properties, J. Biol. Chem. 205: 699.

    CAS  Google Scholar 

  • Jeng, I. M., Somack, R., and Barker, H. A., 1974, Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A, Biochemistry 13: 2898.

    Article  CAS  Google Scholar 

  • Joshi, V. C., and Wakil, S. J., 1970, Studies on the mechanism of fatty acid synthesis, XXVI. Purification and properties of malonyl-coenzyme A-acyl carrier protein transacylase of Escherichia coli, Arch. Biochem. Biophys. 143: 493.

    Article  Google Scholar 

  • Kaplan, B. H., and Stadtman, E. R., 1968, Ethanolamine deaminase, a cobamide coenzyme-dependent enzyme, J. Biol. Chem. 243: 1787.

    CAS  Google Scholar 

  • Kaplan, M. M., and Flavin, M., 1965, Threonine biosynthesis: On the pathway in fungi and bacteria and the mechanism of the isomerization reaction, J. Biol. Chem. 240: 3928.

    CAS  Google Scholar 

  • Kaufman, S., 1964, Studies on the structure of the primary oxidation product formed from tetrahydropteridines during phenylalanine hydroxylation, J. Biol. Chem. 239: 332.

    CAS  Google Scholar 

  • Kaziro, Y., and Ochoa, S., 1961, Mechanism of the propionyl carboxylase reaction. I. Carboxy-lation and decarboxylation of the enzyme, J. Biol. Chem. 236: 3131.

    CAS  Google Scholar 

  • Kearney, E., and Englard, S., 1951, The enzymatic phosphorylation of riboflavin, J . Biol. Chem. 193: 821.

    CAS  Google Scholar 

  • Kearney, E. B., Salach, J. I., Walker, W. H., Seng, R. L., Kenney, W., Zeszotek, E., and Singer, T. P., 1971, The covalently bound flavin of hepatic monoamine oxidase. I. Isolation and sequence of a flavin peptide and evidence for binding at the 8a position, Eur. J. Biochem. 24: 321.

    Article  CAS  Google Scholar 

  • Kenney, W. C., Walker, W. H., and Singer, T. P., 1972, Studies on succinate dehydrogenase. XX. Amino acid sequence around the flavin site, J. Biol. Chem. 247: 4510.

    CAS  Google Scholar 

  • Kisliuk, R. L., 1957, Studies on the mechanism of formaldehyde incorporation into serine, J . Biol. Chem. 227: 805.

    CAS  Google Scholar 

  • Kleinkauf, H., Riokoski, R., Jr., and Lipmann, F., 1971, Pantetheine-linked peptide intermediates in gramicidin A and tyrocidine biosynthesis, Proc. Natl. Acad. Sci. U.S.A. 68: 2069.

    Article  CAS  Google Scholar 

  • Knappe, J., Ringelmann, E., and Lynen, F., 1961, Biochemical function of the biotins. III. Chemical constitution of the enzymic formation of carboxybiotins, Biochem. Z. 335: 168.

    CAS  Google Scholar 

  • Knight, B. C. J. G., 1937, Nicotinic acid and the growth of Staphylococcus aureus, Nature 139: 628.

    Article  CAS  Google Scholar 

  • Knight, E., Jr., and Hardy, R. W. F., 1966, Isolation and characteristics of flavodoxin from nitrogen-fixing Clostridium pasteurianum, J. Biol. Chem. 241: 2752.

    Google Scholar 

  • Knight, E., Jr., and Hardy, R. W. F., 1967, Flavodoxin—Chemical and biological properties, J . Biol. Chem. 242: 1370.

    CAS  Google Scholar 

  • Knight, E., Jr., D’Eustachio, A. J., and Hardy, R. W. F., 1966, Flavodoxin: A flavoprotein with ferredoxin activity from Clostridium pasteurianum, Biochim. Biophys. Acta 113: 626.

    CAS  Google Scholar 

  • Knox, W. G., and Mehler, A. H., 1950, The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan peroxidase-oxidase system forming formyl kynurenine, J. Biol. Chem. 187: 419.

    CAS  Google Scholar 

  • Kochi, H., and Kikuchi, G., 1976, Mechanism of reversible glycine cleavage reaction in Arthrobacter globifbrmis, Arch. Biochem. Biophys. 173: 71.

    Article  CAS  Google Scholar 

  • Koike, M., and Reed, L. J., 1960, a-Keto acid dehydrogenation complexes. II. The role of protein-bound lipoic acid and flavin adenine dinucleotide, J. Biol. Chem. 235: 1931.

    Google Scholar 

  • Koike, M. Reed, L., J., and Carroll, W. R., 1960, a-Keto acid dehydrogenation complexes. I. Purification and properties of pyruvate and a-ketoglutarate dehydrogenation complexes of Escherichia coli, J. Biol. Chem. 235: 1924.

    Google Scholar 

  • Koike, M., Reed, L. J., and Carroll, W. R., 1963, a-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex, J. Biol. Chem. 238: 30.

    Google Scholar 

  • Korkes, S., delCampillo, A., Gunsalus, I. C., and Ochoa, S., 1951, Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor, J. Biol. Chem. 193: 721.

    CAS  Google Scholar 

  • Kornberg, A., 1950a, Reversible enzymatic synthesis of diphosphopyridine nucleotide and inorganic pyrophosphate, J. Biol. Chem. 182: 779.

    CAS  Google Scholar 

  • Kornberg, A., I950b, Enzymatic synthesis of triphosphopyridine nucleotide, J. Biol. Chem. 182: 805.

    Google Scholar 

  • Kosow, D. P., Huang, S. C., and Lane, M. D., 1962, Propionyl holocarboxylase synthesis. I. Preparation and properties of the enzyme system, J. Biol. Chem. 237: 3633.

    CAS  Google Scholar 

  • Krakow, G., and Barkulis, S. S., 1956, Conversion of glyoxylate to hydroxypyruvate by extracts of Escherichia coli, Biochim. Biophys. Acta 21: 593.

    Article  CAS  Google Scholar 

  • Krampitz, L. O., 1969, Catalytic functions of thiamin diphosphate, in: Annual Reviews of Biochemistry, Vol. 38 ( E. E. Snell, P. E. Boyer, A. Meister, and R. L. Sinsheimer, eds.), pp. 213–240, Annual Reviews, Inc. Palo Alto, California.

    Google Scholar 

  • Krampitz, L. O., Greull, G., Miller, C. S., Bicking, J. B., Skeggs, H. R., and Sprague, J. M., 1958, An active acetaldehyde-thiamine intermediate, J. Am. Chem. Soc. 80: 5893.

    Google Scholar 

  • Krehl, W. A., Teply, L. J., Sarma, P. S., and Elvehjem, C. A., 1945, Growth retarding effect of corn in nicotinic acid-low rations and its counteraction by tryptophane, Science 101: 489.

    Article  Google Scholar 

  • Krisnangkura, K., and Sweeley, C. C., 1976, Studies on the mechanism of 3-ketosphinganine synthetase, J. Biol. Chem. 251: 1597.

    CAS  Google Scholar 

  • Kun, E., Zimber, P. H., Chang, A. C. Y., Puschendorf, B., and Grunicke, H., 1975, Macromolecular enzymatic product of NAD+ in liver mitochondria, Proc. Natl. Acad. Sci. U.S.A. 72: 1436.

    Article  CAS  Google Scholar 

  • Kung, H. F., Cederbaum, S., Tsai, L., and Stadtman, T. C., 1970, Nicotinic acid metabolism. V. A cobamide coenzyme-dependent conversion of a-methyleneglutaric acid to dimethylmaloic acid, Proc. Natl. Acad. Sci. U.S.A. 65: 978.

    Article  CAS  Google Scholar 

  • Lane, M. D., and Lynen, F., 1963, The biochemical function of biotin. VI. Chemical structure of the carboxylated active site of propionyl carboxylase, Proc. Natl. Acad. Sci. U.S.A. 49: 379.

    Article  CAS  Google Scholar 

  • Lardy, H. A., and Adler, J., 1956, Synthesis of succinate from propionate and bicarbonate by soluble enzymes from liver mitochondria, J. Biol. Chem. 219: 933.

    CAS  Google Scholar 

  • Lardy, H. A., Potter, R. L., and Elvehjem, C. A., 1947, The role of biotin in bicarbonate utilization by bacteria, J. Biol. Chem. 169: 451.

    CAS  Google Scholar 

  • Larrabee, A. R., Rosenthal, S., Cathou, R. E., and Buchanan, J. M., 1961, A methylated derivative of tetrahydrofolate as an intermediate of methionine biosynthesis, J. Am. Chem. Soc. 83: 4094.

    Article  CAS  Google Scholar 

  • Larson, A. E., Whitlon, D. S., and Suttie, J. W., 1979, Factors affecting the vitamin K-dependent microsomal carboxylation system, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 876.

    Google Scholar 

  • Leder, I. G., 1975, Thiamine, biosynthesis and function, in: Metabolic Pathways, Vol. VII, 3rd ed. ( D. M. Greenberg, ed.), pp. 57–85, Academic Press, New York.

    Google Scholar 

  • Lee, H. A., Jr., and Abeles, R. H., 1963, Purification and properties of dioldehydratase, an enzyme requiring a cobamide coenzyme, J. Biol. Chem. 238: 2367.

    CAS  Google Scholar 

  • Lehninger, A. L., and Greville, G. D., 1953a, The enzymatic oxidation of D- and L-ß-hydroxybutyrate, J. Am. Chem. Soc. 75: 1515.

    Article  CAS  Google Scholar 

  • Lehninger, A. L., and Greville, G. D., 1953b, The enzymic oxidation of D- and L-ß-hydroxybutyrate, Biochim. Biophys. Acta 12: 188.

    Article  CAS  Google Scholar 

  • Lengyel, P., Mazumder, R., and Ochoa, S., 1960, Mammalian methylmalonyl isomerase and vitamin B12 coenzymes, Proc. Natl. Acad. Sci. U.S.A. 46: 1312.

    Article  CAS  Google Scholar 

  • Lester, R. L., Crane, E. L., and Hatefi, Y., 1958, Coenzyme Q: A new group of quinones, J. Am. Chem. Soc. 80: 4751.

    Article  CAS  Google Scholar 

  • Levy, H. R., Talalay, P, and Verneslands, B., 1962, Steric course of enzymatic ‘reactions at meso carbon atoms: Application of hydrogen isotopes, in: Progress in Stereochemistry, 3 ( P. B. D. De la Mare and W. Klyne, eds.), pp. 299–349, Butterworths, London.

    Google Scholar 

  • Lin, L. F. H., and Henderson, L. M., 1972, Pyridinium precursors of pyridine nucleotides in perfused rat kidney and in the testis, J. Biol. Chem. 247: 8023.

    CAS  Google Scholar 

  • Linn, B. O., Trenner, N. R., Arison, B. H., Weston, R. G., Shunk, C. H., and Folkers, K., 1960, Coenzyme Q. XII. Ethoxy homologs of coenzyme Q10. Artifact of isolation, J. Am. Chem. Soc. 82: 1647.

    Article  CAS  Google Scholar 

  • Lipmann, F., 1945, Acetylation of sulfanilamide by liver homogenates and extracts, J. Biol. Chem. 160: 173.

    CAS  Google Scholar 

  • Lipmann, F., and Kaplan, N. O., 1946, A common factor in the enzymatic acetylation of sulfanilamide and of choline, J. Biol. Chem. 162: 743.

    CAS  Google Scholar 

  • Lohmann, K., and Schuster, P., 1937, Cocarboxylase, Naturwissenschaften 25: 26.

    Article  CAS  Google Scholar 

  • Loughlin, R. E., Elford, H. L., and Buchanan, J. M., 1964, Enzymatic synthesis of the methyl group of methionine. VII. Isolation of a cobalamin-containing transmethylase (5-methylte-trahydrofolate-homocysteine) from mammalian liver, J. Biol. Chem. 239: 2888.

    CAS  Google Scholar 

  • Lwoff, A., and Lwoff, M., 1936a, The nature of the factor V. C. R. Acad. Sci. 203: 520.

    CAS  Google Scholar 

  • Lwoff, A., and Lwoff, M., 1936b, The physiological role of the codehydrogenases for Haemophilus parainfluenzae, C. R. Acad. Sci. 203: 896.

    CAS  Google Scholar 

  • Lwoff, A., and Lwoff, M., 1937, Physiological function of growth factor V, Proc. R. Soc. London B 122: 360.

    Article  CAS  Google Scholar 

  • Lynen, F., 1961, Biosynthesis of saturated fatty acids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20: 941.

    CAS  Google Scholar 

  • Lynen, F., Reichert, E., and Rueff, L., 1951, Biological degradation of acetic acid. VI. Isolation and chemical nature of activated acetic acid, Ann. Chem. Liebigs 574: 1.

    Article  CAS  Google Scholar 

  • Lynen, F., Wessely, L., Wieland, O., and Rueff, L., 1952, Zur ß-Oxydation der Fettsäuren, Angew. Chem. 64: 687.

    Article  CAS  Google Scholar 

  • Lynen, F., Knappe, J., Lorch, E., Jutting, G., and Ringelmann, E., 1959, Die biochemische Funktion des Biotins, Angew. Chem. 71: 481.

    Article  CAS  Google Scholar 

  • Lynen, F., Knappe, J., Lorch, E., Jutting, G., Ringelmann, E., and Lachance, J. P., 1961, Biochemical functions of the biotins. II. Purification and mode of action of ß-methylcrotonoyl carboxylase, Biochem. Z. 335: 123.

    CAS  Google Scholar 

  • Mack, D. O., Suen, E. T., Girardot, J. M., Miller, J. A., Delaney, R., and Johnson, B. C., 1976, Soluble enzyme system for vitamin K-dependent carboxylation, J. Biol. Chem. 251: 3269.

    CAS  Google Scholar 

  • Majerus, P. W., Alberts, A. W., and Vagelos, P. R., 1965, Acyl carrier protein, J. Biol. Chem. 240: 4723.

    CAS  Google Scholar 

  • Massey, V., 1958, The identity of diaphorase and lipoic dehydrogenase, Biochim. Biophys. Acta 30: 205.

    Article  CAS  Google Scholar 

  • Massey, V., 1960, The identity of diaphorase and lipoyl dehydrogenase, Biochim. Biophys. Acta 37: 314.

    Article  CAS  Google Scholar 

  • Massey, V., and Ghisla, S., 1974, Role of charge-transfer interactions in flavoprotein catalysis, Ann N.Y. Acad. Sci. 227: 446.

    Article  Google Scholar 

  • Massey, V., and Hemmerich P., 1975, Flavin and pteridine monooxygenases, in: The Enzymes, Vol. XII, 3rd ed. ( P. D. Boyer, ed.), pp. 191–252, Academic Press, New York.

    Google Scholar 

  • Massey, V., and Palmer, G., 1966, On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones, Biochemistry 5: 3181.

    Article  CAS  Google Scholar 

  • Massey, V., Strickland, S., Mayhew, S. G., Howell, L. G., Engel, P. C., Matthews, R. G., Schuman, M., and Sullivan, P. A., 1969a, The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen, Biochem. Biophys. Res. Commun. 36: 891.

    Article  CAS  Google Scholar 

  • Massey, V., Muller, F., Feldberg, R., Schuman, M., Sullivan, P. A., Howell, L. G., Mayhew, S. G., Matthews, R. G., and Foust, G. P., 1969b, The reactivity of flavoproteins with sulfite, J. Biol. Chem. 244: 3999.

    CAS  Google Scholar 

  • Massey, V., Palmer, G., and Ballou, D. P., 1971, On the reaction of reduced flavins and flavo-proteins with molecular oxygen, in: Flavins and Flavoproteins ( H. Kamin, ed.), pp. 349–362, University Park Press, Baltimore.

    Google Scholar 

  • Masters, B. S. S., Kamin, H., Gibson, Q. H., and Williams, C. H., Jr., 1965, Studies on the mechanism of microsomal triphosphopyridine nucleotide-cytochrome c reductase, J. Biol. Chem. 240: 921.

    CAS  Google Scholar 

  • Matthews, R. G., Ballou, D. P., Thorpe, C., and Williams, C. H., Jr., 1977, Ion pair formation in pig heart lipoamide dehydrogenase—Rationalization of pH profiles for reactivity of oxidized enzyme with dihydrolipoamide and 2-electron-reduced enzyme with lipoamide and iodoacetamide, J . Biol. Chem. 252: 3199.

    CAS  Google Scholar 

  • May, M., Bardos, T. J., Barger, F. L., Lansford, M., Ravel, J. M., Sutherland, G. L., and Shive, W., 1951, Synthetic and degradative investigations of the structure of folinic acid-SF, J . Am. Chem. Soc. 73: 3067.

    Article  CAS  Google Scholar 

  • Mayhew, S. G., and Ludwig, M. L., 1975, Flavodoxins and electron transferring flavoproteins, in: The Enzymes, Vol. XII, 3rd ed. ( P. D. Boyer, ed.), pp. 57–118, Academic Press, New York.

    Google Scholar 

  • Mazumder, R., Sasakawa, T., and Ochoa, S., 1963, Metabolism of propionic acid in animal tissues. X. Methylmalonyl coenzyme A mutase holoenzyme, J. Biol. Chem. 238: 50.

    CAS  Google Scholar 

  • McBride, B. C., and Wolfe, R. S., 1971, A new coenzyme of methyl transfer, coenzyme M, Biochemistry 10: 2317.

    Article  CAS  Google Scholar 

  • Mehler, A. H., and Knox, W. E., 1950, The conversion of tryptophan to kynurenine in liver. II. The enzymatic hydrolysis of formyl kynurenine, J. Biol. Chem. 187: 431.

    CAS  Google Scholar 

  • Metzler, D., Ikawa, M., and Snell, E. E., 1954, A general mechanism for vitamin BB-catalyzed reactions, J. Am. Chem. Soc. 76: 648.

    Article  CAS  Google Scholar 

  • Miller, A., and Waelsch, H., 1957, Formimino transfer from formamidinoglutaric acid to tetrahydrofolic acid, J. Biol. Chem. 228: 397.

    CAS  Google Scholar 

  • Miller, W. W., and Richards, J. H., 1969, Mechanism of action of coenzyme B12. Hydrogen transfer in the isomerization of methylmalonyl coenzyme A to succinyl coenzyme A, J. Am. Chem. Soc. 91: 1498.

    Article  CAS  Google Scholar 

  • Mitchell, H. K., and Nyc, J. F., 1948, Hydroxyanthranilic acid as a precursor of nicotinic acid in Neurospora, Proc. Natl. Acad. Sci. U.S.A. 34: 1.

    Article  CAS  Google Scholar 

  • Miyake, A., Bokman, A. H., and Schweigert, B. S., 1954, 3-Hydroxyanthranilic acid metabolism. VI. Chemical studies on intermediate, J. Biol. Chem. 211:391.

    Google Scholar 

  • Miziorko, H. M., Clinkenbeard, K. D., Reed, W. D., and Lane, M. D., 1975, 3-Hydroxy-3methylglutaryl coenzyme A synthetase, J. Biol. Chem. 250: 5768.

    Google Scholar 

  • Mizuhara, S., Tamura, R., and Arata, H., 1951, The mechanism of thiamine action. II. Proc. Jpn. Acad. 27: 302.

    CAS  Google Scholar 

  • Möhler, H., Briihmüller, M., and Decker, K., 1972, Covalently bound flavin in D-6-hydroxynicotine oxidase from Arthrobacter oxidans, Eur. J. Biochem. 29: 152.

    Article  Google Scholar 

  • Momose, K., and Rudney, H., 1972, 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria from p-hydroxybenzoate and isopentenyl pyrophosphate. A demonstration of isoprenoid synthesis in rat liver mitochondria, J. Biol. Chem. 247: 3930.

    Google Scholar 

  • Morton, R. A., 1956, Minor constituents of unsaponifiable fractions of kidney, liver and other tissues from various species, in: Biochemical Problems of Lipids ( G. Popjak and E. LeBreton, eds.), pp. 395–400, Butterworths, London.

    Google Scholar 

  • Moss, J., and Lane, D. M., 1971, The biotin dependent enzymes, in: Advances in Enzymology, Vol. 35 ( A. Meister, ed.), pp. 321–442, Interscience Publishers, New York.

    Google Scholar 

  • Motokawa, Y., and Kikuchi, G., 1974, Glycine metabolism by rat liver mitochondria—Reconstitution of the reversible glycine cleavage system with partially purified protein components, Arch. Biochem. Biophys. 164: 624.

    Article  CAS  Google Scholar 

  • Muller, F., Hemmerich, P., and Ehrenberg, A. 1971, On the molecular and submolecular structure of flavin free radicals and their properties, in: Flavins and Flavoproteins ( H. Kamin, ed.), pp. 107–122, University Park Press, Baltimore.

    Google Scholar 

  • Nachmansohn, D., and Berman, M., 1946, Studies on choline acetylase. III. On the preparation of the coenzyme and its effect on the enzyme, J. Biol. Chem. 165: 551.

    CAS  Google Scholar 

  • Nakayama, H., and Hayashi, R., 1972, Biosynthesis of thiamine pyrophosphate in Escherichia coli, J. Bacteriol. 109: 936.

    CAS  Google Scholar 

  • Nawa, H., Brady, W. T., Koike, M., and Reed, L. J., 1960, Studies on the nature of protein-bound lipoic acid, J. Am. Chem. Soc. 82: 896.

    Article  CAS  Google Scholar 

  • Nelsestuen, G. L., Zytkovicz, T. H., and Howard, J. B., 1974, The mode of action of vitamin K. Identification of y-carboxyglutamic acid as a component of prothrombin, J. Biol. Chem. 249: 6347.

    CAS  Google Scholar 

  • Nervi, A. M., Alberts, A. W., and Vagelos, P. R., 1971, Acetyl CoA carboxylase. III. Purification and properties of a biotin carboxyl carrier protein, Arch. Biochem. Biophys. 143: 401.

    Article  CAS  Google Scholar 

  • Newton, N. A., Cox, G. B., and Gibson, F., 1971, The function of menaquinone (vitamin K2) in Escherichia coli K-12, Biochim Biophys. Acta 244: 155.

    Article  CAS  Google Scholar 

  • Nishino, H., Iwashima, A., and Nose, Y., 1971, Biogenesis of cocarboxylase in Escherichia coli: A novel enzyme catalyzing the formation of thiamine pyrophosphate from thiamine mono-phosphate, Biochem. Biophys. Res. Commun. 45: 363.

    Article  CAS  Google Scholar 

  • Nishizuka, Y., and Hayaishi, O., 1963, Studies on the biosynthesis of nicotinamide adenine dinucleotide, enzymic synthesis of niacin ribonucleotide from 3-hydroxyanthranilic acid in mammalian tissue, J. Biol. Chem. 238: 3369.

    CAS  Google Scholar 

  • Novelli, G. D., Kaplan, N. O., and Lipmann, F., 1949, The liberation of pantothenic acid from coenzyme A, J . Biol. Chem. 177: 97.

    CAS  Google Scholar 

  • Novelli, G. D., Schmetz, F. J., Jr., and Kaplan, N. O., 1954, Enzymatic degradation and resynthesis of coenzyme A, J. Biol. Chem. 206: 533.

    CAS  Google Scholar 

  • Ohnishi, T., Winter, D. B., Lim, J., and King, T. E., 1973, Low temperature electron paramagnetic resonance studies on two iron-sulfur centers in cardiac succinate dehydrogenase, Biochem. Biophys. Res. Commun. 53: 231.

    Article  CAS  Google Scholar 

  • O’Kane, D. J., and Gunsalus, I. C., 1948, Pyruvic acid metabolism. A factor required for oxidation by Streptococcus faecalis, J. Bacteriol. 56: 499.

    Google Scholar 

  • Olivera, B. M., and Lehman, I. R., 1967, Diphosphopyridine nucleotide: A cofactor for the polynucleotide-joining enzyme from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 57: 1700.

    Article  CAS  Google Scholar 

  • Olson, J. S., Ballou, D. P., Palmer, G., and Massey, V., 1974a, The reaction of xanthine oxidase with molecular oxygen, J. Biol. Chem. 249: 4350.

    CAS  Google Scholar 

  • Olson, J. S., Ballou, D. P., Palmer, G., and Massey, V., 1974b, The mechanism of action of xanthine oxidase, J. Biol. Chem. 249: 4363.

    CAS  Google Scholar 

  • Orme-Johnson, N. R., Orme-Johnson, W. H., Hansen, R. E., Beinert, H., and Hatefi, Y., 1971, EPR detectable electron acceptors in submitochondrial particles from beef heart with special reference to the iron-sulfur components of DPNH-ubiquinone reductase, Biochem. Biophys. Res. Commun. 44: 446.

    Article  CAS  Google Scholar 

  • Orme-Johnson, N. H., Hansen, R. E., and Beinert, H., 1974, Electron paramagnetic resonance-detectable electron acceptors in beef heart mitochondria, J. Biol. Chem. 249: 1922.

    CAS  Google Scholar 

  • Osborn, M. J., and Huennekens, F. M., 1957, Participation of anhydroleucovorin in the hydroxymethyl tetrahydrofolic dehydrogenase system, Biochim. Biophys. Acta 26: 646.

    Article  CAS  Google Scholar 

  • Osborn, M. J., Hatefi, Y., Kay, L. D., and Huennekens, F. M., 1957, Evidence for the enzymic deacylation of N10-formyl tetrahydrofolic acid, Biochim. Biophys. Acta 26: 208.

    Article  CAS  Google Scholar 

  • Parker, D. J., Wood, H. G., Ghambeer, R. K., and Ljungdahl, L. G., 1972, Total synthesis of acetate from carbon dioxide. Retention of deuterium during carboxylation of trideuteriomethyltetrahydrofolate or trideuteriomethylcobalamin, Biochemistry 11: 3074.

    Article  CAS  Google Scholar 

  • Pierpont, W. S., Hughes, D. E., Baddiley, J., and Mathias, A. P., 1955, The phosphorylation of pantothenic acid by Lactobacillus arabinosus 17–5, Biochem. J. 61: 368.

    Google Scholar 

  • Poston, J. M., Kuratomi, K., and Stadtman, E. R., 1966, The conversion of carbon dioxide to acetate, J. Biol. Chem. 241: 4209.

    CAS  Google Scholar 

  • Preiss, J., and Handler, P., 1958a, Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates, J. Biol. Chem. 233: 488.

    CAS  Google Scholar 

  • Preiss, J., and Handler, P., 1958b, Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects, J. Biol. Chem. 233: 493.

    CAS  Google Scholar 

  • Pugh, E. L., and Wakil, S. J. 1965, Studies on the mechanism of fatty acid synthesis. XIV. The prosthetic group of acyl carrier protein and the mode of its attachment to the protein, J. Biol. Chem. 240:4727.

    Google Scholar 

  • Purko, M., Nelson, W. O., and Wood, W. A., 1954, The role of p-aminobenzoate in pantoate synthesis by Bacterium linens, J. Biol. Chem. 207: 51.

    CAS  Google Scholar 

  • Rabinowitz, J. C., and Pricer, W. E., Jr., 1956a, The enzymatic synthesis of N10-formyltetrahy-drofolic acid and its role in ATP formation during formiminoglycine degradation, J . Am. Chem. Soc. 78: 4176.

    Article  CAS  Google Scholar 

  • Rabinowitz, J. C., and Pricer, W. E., Jr., 1956b, Formimino-tetrahydrofolic acid and methenyltetrahydrofolic acid as intermediates in the formation of N10-formyltetrahydrofolic acid, J . Am. Chem. Soc. 78: 5702.

    Article  CAS  Google Scholar 

  • Racker, E., De la Haba, G., and Leder, I. G., 1953, Thiamine pyrophosphate, a coenzyme of transketolase, J . Am. Chem. Soc. 75: 1010.

    Article  CAS  Google Scholar 

  • Reed, L. J., 1960, Lipoic acid, in: The Enzymes, Vol. 3. ( P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 195–223, Academic Press, New York.

    Google Scholar 

  • Reed, L. J., 1962, Biochemistry of lipoic acid, in: Vitamins and Hormones, Vol. 20 (R. S. Harris and I. G. Wool, eds.), pp. 1–38, Academic Press, New York.

    Google Scholar 

  • Reed, L. J., Leach, F. R., and Koike, M., 1958a, Studies on a lipoic acid-activating system, J. Biol. Chem. 232: 123.

    CAS  Google Scholar 

  • Reed, L. J., Koike, M., Levitch, M. E., and Leach, F. R., 1958b, Studies on the nature and reactions of protein bound lipoic acid, J. Biol. Chem. 232: 143.

    CAS  Google Scholar 

  • Reed, L. J., Pettit, F. H., Eley, M. H., Hamilton, L., Collins, J. H. and Oliver, R. M., 1975, Reconstitution of the Escherchia coli pyruvate dehydrogenase complex, Proc. Natl. Acad. Sci. U.S.A. 72: 3068.

    Article  CAS  Google Scholar 

  • Ridley, W. P., Dizikes, L. J., and Woods, J. M., 1977, Biomethylation of toxic elements in the environment, Science 197: 329.

    Article  CAS  Google Scholar 

  • Riley, W. D., and Snell, E. E., 1968, Histidine decarboxylase of Lactobacillus 30a. IV. The presence of covalently bound pyruvate as the prosthetic group, Biochemistry 7: 3520.

    Article  CAS  Google Scholar 

  • Rilling, H. C., and Coon, M. J., 1960, The enzymatic isomerization of ß-methylvinylacetyl coenzyme A and the specificity of the bacterial ß-methylcrotonyl coenzyme A carboxylase, J . Biol. Chem. 235: 3087.

    CAS  Google Scholar 

  • Roberts, J. H., Stark, P., and Smulson, M., 1973, Stimulation of DNA synthesis by adenosine diphosphoribosylation of HeLa nuclear proteins during the cell cycle, Biochem. Biophys. Res. Commun. 52: 43.

    Article  CAS  Google Scholar 

  • Robinson, J. R., Klein, S. M., and Sagers, R. D., 1973, Glycine metabolism—Lipoic acid as the prosthetic group in the electron transfer protein P2, from Peptococcus glycinophilus, J. Biol. Chem. 248: 5319.

    CAS  Google Scholar 

  • Robinson, W. G., Bacchhawat, B. K., and Coon, M. J., 1956, Tiglyl coenzyme A and a-methylacetoacetyl coenzyme A, intermediates in the enzymatic degradation of isoleucine, J . Biol. Chem. 218: 391.

    CAS  Google Scholar 

  • Rodwell, V. W., 1969, Carbon catabolism of amino acid, part II, in: Metabolic Pathways, Vol. III (D. M. Greenberg, ed.), pp. 191–235, Academic Press, New York.

    Google Scholar 

  • Roon, R. J., and Levenberg, B., 1968, The adenosine triphosphate-dependent, avidin-sensitive enzymatic cleavage of urea in yeast and green algae, J. Biol Chem. 243: 5213.

    CAS  Google Scholar 

  • Rossmann, M. G., Adams, M. J., Buehner, M., Ford, G. C., Hackert, M. L., Lentz, P. J., Jr., McPherson, A., Jr., Schevitz, R. W., and Smiley, I. E., 1972, Structural constraints of possible mechanism of lactate dehydrogenase as shown by high resolution studies of the apoenzyme and a variety of enzyme complexes, Cold Spring Harbor Symp. Quant. Biol. 36: 179.

    Google Scholar 

  • Rossmann, M. G., Liljas, A., Branden, C., and Banaszak, L. J., 1975, Evolutionary and structural relationships among dehydrogenases, in: The Enzymes, Vol. XI, 3rd ed. ( P. D. Boyer, ed.), pp. 61–102, Academic Press, New York.

    Google Scholar 

  • Rubenstein, P. A., and Strominger, J. L., 1974, Enyzmatic synthesis of cytidine diphosphate 3,6dideoxyhexoses. VII. Mechanistic roles of enzyme E, and pyridoxamine 5’-phosphate in the formation of cytidine diphosphate-4-keto-3, 6-dideoxy-D-glucose from cytidine diphosphate4-keto-6-deoxy-D-glucose, J . Biol. Chem. 249: 3776.

    CAS  Google Scholar 

  • Sadowski, J. A., Esmon, C. T., and Suttie, J. W., 1976, Vitamin K dependent carboxylase requirements of the rat liver microsomal enzyme system, J. Biol. Chem. 251: 2770.

    Google Scholar 

  • Sagers, R. D., Beck, J. V., Gruber, W., and Gunsalus, I. C., 1956, A tetrahydro-folic acid linked formimino transfer enzyme, J. Amer. Chem. Soc. 78: 694.

    CAS  Google Scholar 

  • Saito, Y., Hayaishi, O., and Rothberg, S., 1957, Studies on oxygenases. Enzymatic formation of 3-hydroxy-L-kynurenine from L-kynurenine, J. Biol. Chem. 229: 921.

    CAS  Google Scholar 

  • Salach, J., Walker, W. H., Singer, T. P., Ehrenberg, A., Hemmerich, P., Ghisla, S., and Hartmann, U., 1972, Studies on succinate dehydrogenase. Site of attachment of the covalentlybound flavin to the peptide chain, Eur. J. Biochem. 26: 267.

    Article  CAS  Google Scholar 

  • Sando, G. N., Blakley, R. L., Hogenkamp, H. P. C. and Hoffmann, P. J., 1975, Studies on the mechanism of adenosylcobalamin-dependent ribonucleotide reduction by the use of analogs of the coenzyme, J. Biol. Chem. 250: 8774.

    CAS  Google Scholar 

  • Sato, K., Orr, J. C., Babior, B. M., and Abeles, R. H., 1976, The mechanism of action of ethanolamine ammonia-lyase, an adenosylcobalamin-dependent enzyme, J. Biol. Chem. 251: 3734.

    CAS  Google Scholar 

  • Sauberlich, H. E., and Baumann, C. A., 1948, A factor required for the growth of Leuconostoc citrovorum, J. Biol. Chem. 176: 165.

    CAS  Google Scholar 

  • Schirch, L., and Gross, T., 1968, Serine transhydroxymethylase. Identification as the threonine and allothreonine aldolases, J. Biol. Chem. 243: 5651.

    CAS  Google Scholar 

  • Schlenk, F., and Euler, H. v., 1936, The coenzyme systems of carboxylase, Naturwissenschaften 24: 794.

    Article  CAS  Google Scholar 

  • Schnakerz, K. D., and Noltmann, E. A., 1971, Pyridoxal 5’-phosphate as a site-specific protein reagent for a catalytically critical lysine residue in rabbit muscle phosphoglucose isomerase, Biochemistry 10: 4837.

    Article  Google Scholar 

  • Schneider, Z., and Pawelkiewicz, J., 1966, The properties of glycerol dehydratase isolated from Aerobacter aerogenes and the properties of the apoenzyme subunits, Acta Biochim. Pol. 13: 311.

    CAS  Google Scholar 

  • Scholnick, P. L., Hammaker, L. E., and Marver, H. S., 1972, Soluble S-aminolevulinic acid synthetase of rat liver. II. Studies related to the mechanism of enzyme action and hemin inhibition, J. Biol. Chem. 247: 4132.

    CAS  Google Scholar 

  • Schramm, M., Klybas, V., and Racker, E., 1958, Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum, J. Biol. Chem. 233: 1283.

    CAS  Google Scholar 

  • Schrauzer, G. N., 1977, New developments in the field of vitamin B12: Enzymatic reactions dependent upon corrins and coenzyme B12, Angew. Chem. Int. Ed. 16: 233.

    Article  CAS  Google Scholar 

  • Schrecker, A. W., and Kornberg, A., 1950, Reversible enzymatic synthesis of flavin adenine dinucleotide, J. Biol. Chem. 182: 795.

    CAS  Google Scholar 

  • Seubert, W., and Lynen, F., 1953, Enzymes of the fatty acid cycle. II. Ethylene reductase, J. Am. Chem. Soc. 75: 2787.

    Article  CAS  Google Scholar 

  • Seubert, W., and Remberger, U., 1963, Degradation of isoprenoid compounds by bacteria. II. The role of carbon dioxide, Biochem. Z. 338: 245.

    CAS  Google Scholar 

  • Shive, W., 1950, The utilization of antimetabolites in the study of biochemical processes in living organisms, Ann. N.Y. Acad. Sci. 52: 1212.

    Google Scholar 

  • Shive, W., and Rogers, L. L., 1947, Involvement of biotin in the biosynthesis of oxalacetic and a-ketoglutaric acids, J. Biol. Chem. 169: 453.

    CAS  Google Scholar 

  • Shive, W., Ackermann, W. W., Gordon, M., Getzendaner, M. E., and Eakin, R. E., 1947, 5(4)-Amino-4(5)-imidazolecarboxamide, a precursor of purines, J. Am. Chem. Soc. 69: 725.

    Article  CAS  Google Scholar 

  • Shive, W., Ravel, J. M., and Eakin, R. E., 1948, An interrelationship of thymidine and vitamin B12, J. Am. Chem. Soc. 70: 2614.

    Google Scholar 

  • Silverman, M., Keresztesy, J. C., Koval, G. J., and Gardiner, R. C., 1957, Citrovorum factor and the synthesis of formylglutamic acid., J. Biol. Chem. 226: 83.

    CAS  Google Scholar 

  • Singer, T. P., 1966, Flavoprotein dehydrogenases of the respiratory chain, Compr. Biochem. 14: 127.

    CAS  Google Scholar 

  • Smiley, K. L., and Sobolov, M., 1962, A cobamide-requiring glycerol dehydrase from an acroleinforming Lactobacillus, Arch. Biochem. Biophys. 97: 538.

    Article  CAS  Google Scholar 

  • Smillie, R. M., 1965, Isolation of two proteins with chloroplast ferredoxin activity from a blue-green alga, Biochem. Biophys. Res. Commun. 20: 621.

    Article  CAS  Google Scholar 

  • Smith, D. T., Ruffin, J. M., and Smith, S. G., 1937, Pellagra successfully treated with nicotinic acid. A case report, J. Am. Med. Assoc. 109: 2054.

    Article  CAS  Google Scholar 

  • Smith, R. M., and Monty, K. J., 1959, Vitamin B,Z and propionate metabolism, Biochem. Biophys. Res. Commun. 1: 105.

    Article  CAS  Google Scholar 

  • Smith, S. B., Brustlein, M., and Bruice, T. C., 1974, Electrophilicity of the 8 position of the isoalloxazine (flavine) ring system. Comment on the mechanism of oxidation of dihydroisoalloxazine, J. Am. Chem. Soc. 96: 3696.

    Article  CAS  Google Scholar 

  • Snell, E. E., 1944, The vitamin activities of “pyridoxal” and “pyridoxamine,” J. Biol. Chem. 154: 313.

    CAS  Google Scholar 

  • Snell, E. E., 1945, The vitamin Bg group. V. The reversible interconversion of pyridoxal and pyridoxamine by transamination reactions, J. Am. Chem. Soc. 67: 194.

    Article  CAS  Google Scholar 

  • Snell, E. E., and DiMari, S. J., 1970, Schiff base intermediates in enzyme catalysis, in: The Enzymes, Vol. II, 3rd ed. ( P. D. Boyer, ed.), pp. 335–370, Academic Press, New York.

    Google Scholar 

  • Snell, E. E., Brown, G. M., Peter, V. J., Craig, J. A., Whittle, E. L., Moore, J. A., McGlohon, V. M., and Bird, O. D., 1950, Chemical nature and synthesis of the Lactobacillus bulgaricus factor, J. Am. Chem. Soc. 72: 5349.

    Article  CAS  Google Scholar 

  • Soodak, M., and Lipmann, F., 1948, Enzymatic condensation of acetate to acetoacetate in liver extracts, J. Biol. Chem. 175: 999.

    CAS  Google Scholar 

  • Spies, T. D., Cooper, C., and Blankenhorn, M. A., 1938, The use of nicotinic acid in the treatment of pellagra, J. Am. Med. Assoc. 110: 622.

    Article  CAS  Google Scholar 

  • Sprecher, M., Clark, M. J., and Sprinson, D. B., 1966a, The absolute configuration of methylmalonyl coenzyme A and stereochemistry of the methylmalonyl coenzyme A mutase reaction, J. Biol. Chem. 241: 872.

    CAS  Google Scholar 

  • Sprecher, M., Clark, M. J., and Sprinson, D. B., 1966b, Stereochemistry of the glutamate mutase reaction, J. Biol. Chem. 241: 864.

    CAS  Google Scholar 

  • Stadtman, T. C., and Renz, P., 1968, Anaerobic degradation of lysine. V. Some properties of the cobamide-dependent ß-lysine mutase of Clostridium sticklandii, Arch. Biochem. Biophys. 125: 226.

    Article  CAS  Google Scholar 

  • Stadtman, T. C., and Tsai, L., 1967, A cobamide coenzyme dependent migration of the e-amino group of D-lysine, Biochem. Biophys. Res. Commun. 28: 920.

    Article  CAS  Google Scholar 

  • Stenflo, J., 1976, A new vitamin K-dependent protein. Purification from bovine plasma and preliminary characterization, J. Biol. Chem. 251: 355.

    CAS  Google Scholar 

  • Stenflo, J., Femlund, P., Egan, W., and Roepstorff, P., 1974, Vitamin K dependent modifications of glutamic acid residues in prothrombin, Proc. Natl. Acad. Sci. U.S.A. 71: 2730.

    Article  CAS  Google Scholar 

  • Stern, J. R., 1967, Oxalacetate decarboxylase of Aerobacter aerogenes. I. Inhibition by avidin and requirement for sodium ion, Biochemistry 6: 3545.

    Article  CAS  Google Scholar 

  • Stern, J. R., and delCampillo, A., 1956, Enzymes of fatty acid metabolism. II. Properties of crystalline crotonase, J. Biol. Chem. 218: 985.

    CAS  Google Scholar 

  • Stern, J. R., and Ochoa, S., 1949, Enzymatic synthesis of citric acid by condensation of acetate and oxalacetate, J. Biol. Chem. 179: 491.

    CAS  Google Scholar 

  • Stern, J. R., and Ochoa, S., 1951, Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes, J. Biol. Chem. 191: 161.

    CAS  Google Scholar 

  • Stern, J. R., Coon, M. J., and delCampillo, A., 1953a, Acetoacetyl coenzyme A as intermediate in the enzymatic breakdown and synthesis of acetoacetate, J. Am. Chem. Soc. 75: 1517.

    Article  CAS  Google Scholar 

  • Stern, J. R., Coon, M. J., and delCampillo, A., 1953b, Enzymatic breakdown and synthesis of acetoacetate, Nature 171: 28.

    Article  CAS  Google Scholar 

  • Stern, J. R., delCampillo, A., and Raw, I., 1956, Enzymes of fatty acid metabolism. I. General introduction; crystalline crotonase, J. Biol. Chem. 218: 971.

    CAS  Google Scholar 

  • Straub, F. C., 1939, Isolation and properties of a flavoprotein from heart muscle tissue, Biochem. J. 33: 787.

    CAS  Google Scholar 

  • Suhadolnik, R. J., Baur, R., Lichtenwalner, D. M., Vematsu, T., Roberts, J. H., Sudhakar, S., and Smulsen, M., 1977, ADP-Ribosylation of isolated nuclei from HeLa cells, rat liver, fetal rat liver, and Novikoff hepatoma, J. Biol. Chem. 252: 4134.

    CAS  Google Scholar 

  • Suttie, J. W., Hagman, J. M., Lehrman, S. R., and Rich, D. H., 1976, Vitamin K-dependent carboxylase development of a peptide substrate, J. Biol. Chem. 251: 5827.

    CAS  Google Scholar 

  • Swick, R. W., and Wood, H. G., 1960, The role of transcarboxylation in propionic acid fermentation, Proc. Natl. Acad. Sci. U.S.A. 46: 28.

    Article  CAS  Google Scholar 

  • Tabor, H., and Wyngarden, L., 1959, The enzymatic formation of formiminotetrahydrofolic acid, 5,10-methenyltetrahydrofolic acid, and 10-formyltetrahydrofolic acid in the metabolism of formiminoglutamic acid, J. Biol. Chem. 234: 1830.

    CAS  Google Scholar 

  • Takeyama, S., Hatch, F. T., and Buchanan, J. M., 1961, Enzymatic synthesis of the methyl group of methionine. II. Involvement of vitamin B12, J. Biol. Chem. 236: 1102.

    CAS  Google Scholar 

  • Tanaka, T., and Knox, W. E., 1959, The nature and mechanism of the tryptophan pyrrolase (peroxidase-oxidase) reaction of Pseudomonas and of rat liver, J. Biol. Chem. 234: 1162.

    CAS  Google Scholar 

  • Tate, S. S., and Meister, A., 1971, L-Aspartate-/3-decarboxylase; structure, catalytic activities, and allosteric regulation, in: Advances in Enzymology, Vol. 35 ( A. Meister, ed.), pp. 503–543, Interscience Publishers, New York.

    Google Scholar 

  • Taylor, C. D., and Wolfe, R. S., 1974a, Structure and methylation of coenzyme M, J. Biol. Chem. 249: 4879.

    CAS  Google Scholar 

  • Taylor, C. D., and Wolfe, R. S., I974b, A simplified assay for coenzyme M, J. Biol. Chem. 249: 4886.

    Google Scholar 

  • Taylor, R. T., and Weissbach, H., I967a, N5-Methyltetrahydrofolate-homocysteine transmethylase. Partial purification and properties, J. Biol. Chem. 242: 1502.

    Google Scholar 

  • Taylor, R. T., and Weissbach, H., 1967b, Enzymic synthesis of methionine: Formation of a radioactive cobamide enzyme with N5-methyl-’4C-tetrahydrofolate, Arch. Biochem. Biophys. 119: 572.

    Article  CAS  Google Scholar 

  • Taylor, R. T., and Weissbach, H., 1973, N5-Methyltetrahydrofolate homocysteine methyltransferases, in: The Enzymes, Vol. IX, 3rd ed. ( P. D. Boyer, ed.), pp. 121–165, Academic Press, New York.

    Google Scholar 

  • Theorell, H., 1935, Purification of the active group of the yellow enzyme, Biochem. Z. 275: 344.

    CAS  Google Scholar 

  • Trenner, N. R., Arison, B. H., Erickson, R. E., Shunk, C. H., Wolf, D. E., and Folkers, K., 1959, Coenzyme Q. VIII. Structure studies on a plant quinone, J. Am. Chem. Soc. 81: 2026.

    Article  CAS  Google Scholar 

  • Trumpower, B. L., Aiyar, A. S., Opliger, C. E., and Olson, R. E., 1972, Studies on ubiquinone-The isolation and identification of 5-demethoxyubiquinone-9 as an intermediate in biosynthesis of ubiquinone 9 in the rat, J. Biol. Chem. 247: 2499.

    CAS  Google Scholar 

  • Tsuda, Y., and Friedmann, H. C., 1970, Formation of 2-amino-4-ketopentanoic acid from ornithine by extracts of Clostridium sticklandii, Fed. Proc. Fed. Am. Soc. Exp. Biol. 29: 597.

    Google Scholar 

  • Ueda, K., Omachi, A., Kawaichi, M., and Hayaishi, O., 1975, Natural occurrence of poly(ADP-ribosyl) histones in rat liver, Proc. Natl. Acad. Sci. U.S.A. 72: 205.

    Article  CAS  Google Scholar 

  • Ukai, T., Tanaka, S., and Dokawa, S., 1943, A new catalyst for acyloin condensation. I., J. Pharm. Soc. Japan 63: 269.

    Google Scholar 

  • Ullrich, J., Ostrovsky, Y. M., Eyzaquirre, J., and Holzer, H., 1970, Thiamine pyrophosphate-catalyzed enzymatic decarboxylation of a-oxo acids, in: Vitamins and Hormones, Vol. 28 ( R. S. Harris, P. L. Munson, and E. Diczfzlusy, eds.), pp. 365–398, Academic Press, New York.

    Google Scholar 

  • Utter, M. F., Barden, R. E., and Taylor, B. L., 1975, Pyruvate carboxylase: An evulation of the relationships between structure and mechanism and between structure and catalytic activity, in: Advances in Enzymology, Vol. 42 ( A. Meister, ed.), pp. 1–72, John Wiley and Sons, New York.

    Google Scholar 

  • Uyeda, K., and Rabinowitz, J. C., 1965, Metabolism of formiminoglycine. Glycine formiminotransferase, J. Biol. Chem. 240: 1701.

    Google Scholar 

  • Uyeda, K., and Rabinowitz, J. C., 1971, Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism, J. Biol. Chem. 246: 3120.

    CAS  Google Scholar 

  • Vagelos, P. R., 1973, Acyl group transfer (acyl carrier protein), in: The Enzymes, Vol. VIII ( P. D. Boyer, ed.), pp. 155–199, Academic Press, New York.

    Google Scholar 

  • Vagelos, P. R., and Larrabee, A. R., 1967, Acyl carrier protein. IX. Acyl carrier protein hydrolase, J. Biol. Chem. 242: 1776.

    CAS  Google Scholar 

  • Vanaman, T. C., Wakil, S. J., and Hill, R. L., 1968, The complete amino acid sequence of the acyl carrier protein of Escherichia coli, J. Biol. Chem. 243: 6420.

    CAS  Google Scholar 

  • Volpe, J. J., and Vagelos, P. R., 1976, Mechanisms and regulation of biosynthesis of saturated fatty acids, Physiol. Rev. 56: 339.

    CAS  Google Scholar 

  • Wakil, S. J., 1956, Studies on the fatty acid oxidizing system of animal tissues. IX. Stereospecificity of unsaturated acyl CoA hydrase, Biochim. Biophys. Acta 19: 497.

    Article  CAS  Google Scholar 

  • Wakil, S. J., 1958, A malonic acid derivative as an intermediate in fatty acid synthesis, J. Am. Chem. Soc. 80: 6465.

    Article  CAS  Google Scholar 

  • Wakil, S. J., and Gibson, D. M., 1960, Studies on the mechanism of fatty acid synthesis. VIII. The participation of protein-bound biotin in the biosynthesis of fatty acids. Biochim. Biophys. Acta 41: 122.

    Article  CAS  Google Scholar 

  • Wakil, S. J., Green, D. E., Mii, S., and Mahler, H. R., 1954, Studies on the fatty acid oxidizing system of animal tissues. VI. ß-Hydroxyacyl coenzyme A dehydrogenase, J. Biol. Chem. 207: 631.

    CAS  Google Scholar 

  • Wakil, S. J., Titchener, E. B., and Gibson, D. M., 1958, Evidence for the participation of biotin in the enzymic synthesis of fatty acids, Biochim. Biophys. Acta 29: 225.

    Article  CAS  Google Scholar 

  • Walker, W. H., Kearney, E., Seng, R. L., and Singer, T. P., 1971, The covalently-bound flavin of hepatic monoamine oxidase. 2. Identification and properties of cysteinyl riboflavin, Eur. J. Biochem. 24: 328.

    Article  CAS  Google Scholar 

  • Walker, W. H., Singer, T. P., Ghisla, S., Hemmerich, P., Hartman, U., and Zeszotek, E., 1972, Studies on succinate dehydrogenase 8a-histidyl-FAD as the active center of succinate dehydrogenase, Eur. J. Biochem. 26: 279.

    Article  CAS  Google Scholar 

  • Walker, W. H., Kenney, W. C., Edmonson, D. E., Singer, T. P., Cronins, J. R., and Hendriks, R., 1974, The covalently bound flavin of Chromatium cytochrome C552. I. Evidence for cysteine thiohemiacetal at the 8a position, Eur. J. Biochem. 48: 439.

    Article  CAS  Google Scholar 

  • Wang, T., and Kaplan, N. O., 1954, Kinases for the synthesis of coenzyme A and triphosphopyridine nucleotide, J. Biol. Chem. 206: 311.

    CAS  Google Scholar 

  • Wang, T., Shuster, L., and Kaplan, N. O., 1952, Nature of monoester phosphate group in coenzyme A, J. Am. Chem. Soc. 74: 3204.

    CAS  Google Scholar 

  • Warburg, O., and Christian, W., 1932a, A second oxygen-transfer enzyme and its absorption spectrum, Naturwissenschaften 20: 688.

    Article  CAS  Google Scholar 

  • Warburg, O., and Christian, W., 1932b, A new oxidation enzyme and its absorption spectrum, Biochem. Z. 254: 438.

    CAS  Google Scholar 

  • Warburg, O., and Christian, W., 1934, The problem of the coenzyme, Biochem. Z. 274:112.

    CAS  Google Scholar 

  • Warburg, O., and Christian, W., 1938a, Coenzyme of the D-alaninedehydrogenase, Naturwissen-schaften 26: 235.

    Article  CAS  Google Scholar 

  • Warburg, O., and Christian, W., 1938b, Coenzyme of the 0-amino acid deaminase, Biochem. Z. 295: 261.

    CAS  Google Scholar 

  • Warburg, O., and Christian, W., 1938c, Isolation of the prosthetic group of the D-amino acid oxidase, Biochem. Z. 298: 150.

    CAS  Google Scholar 

  • Ward, G. B., Brown, G. M., and Snell, E. E., 1955, Phosphorylation of pantothenic acid and pantetheine by an enzyme from Proteus morganii, J. Biol. Chem. 213: 869.

    CAS  Google Scholar 

  • Warren, L., and Buchanan, J. M., 1957, Biosynthesis of the purines. XIX. 2-Amino-N-ribosyla- cetamide 5’-phosphate (glycinamide ribotide) transformylase, J. Biol. Chem. 229: 613.

    CAS  Google Scholar 

  • Watkinson, I. A., Wilton, D. C., Rahimtula, A. D., and Akhtar, M. M., 1971, The substrate activation in some pyridine nucleotide linked enzymic reactions. The conversion of desmosterol into cholesterol, Eur. J. Biochem. 23: 1.

    Article  CAS  Google Scholar 

  • Weissbach, H., Toohey, J. I., and Barker, H. A., 1959, Isolation and properties of B12 coenzymes containing benzimidazole or dimethylbenzimidazole, Proc. Natl. Acad. Sci. U.S.A. 45: 521.

    Article  CAS  Google Scholar 

  • Wessman, G. E., and Werkman, C. H., 1950, Biotin in the assimilation of heavy carbon in oxalacetate, Arch. Biochem. Biophys. 26: 214.

    CAS  Google Scholar 

  • Westheimer, F. H., Fisher, H. F., Conn, E. E., and Vennesland, B., 1951, The enzymatic transfer of hydrogen from alcohol to DPN, J. Am. Chem. Soc. 73: 2403.

    Article  CAS  Google Scholar 

  • Whiteley, H. R., and McCormick, N. G., 1963, Degradation of pyruvate by Micrococcus lactilyticus. III. Properties and cofactor requirements of the carbon dioxide-exchange reaction, J. Bacteriol. 85: 382.

    CAS  Google Scholar 

  • Whitney, P. A., and Cooper, T. G., 1972, Urea carboxylase and allophanate hydrolase: Two components of adenosine triphosphate-urea amido-lyase in Saccharomyces cerevisiae, J. Biol. Chem. 247: 1349.

    CAS  Google Scholar 

  • Williams, C. H., Jr., 1976, Flavin-containing dehydrogenases, in: The Enzymes, Vol. XIII, 3rd ed. ( P. D. Boyer, ed.), pp. 89–173, Academic Press, New York.

    Google Scholar 

  • Wilson, E. M., and Snell, E. E., 1962, Metabolism of a-methylserne. I. a-Methylserine hydroxymethyltransferase, J. Biol. Chem. 237: 3171.

    CAS  Google Scholar 

  • Wilton, D. C., Munday, K. A., Skinner, S. J. M., and Akhtar, M., 1968, The biological conversion of 7-dehydrocholesterol into cholesterol and comments on the reduction of double bonds, Biochem J. 106: 803.

    CAS  Google Scholar 

  • Wiss, O., 1949, The L-kynurenine-splitting enzyme kynureninase, Hely. Chim. Acta 32: 1694.

    Article  CAS  Google Scholar 

  • Wolf, P. E., Hoffman, C. H., Trenner, N. R., Arison, B. H., Shunk, C. H., Linn, B. O., McPherson, J. F., and Folkers, K., 1958, Coenzyme Q. I. Structure studies on the coenzyme Q group. J. Am. Chem. Soc. 80: 4752.

    Article  CAS  Google Scholar 

  • Wright, L. D., Cresson, E. L., Skeggs, H. R., Wood, T. R., Peck, R. L., Wolf, D. E., and Folkers, K., 1952, Isolation of crystalline biocytin from yeast extract. J. Am. Chem. Soc. 74: 1996.

    Google Scholar 

  • Yoshihara, K., Tanigawa, Y., Burzio, L., and Koide, S. S., 1975, Evidence for adenosine diphosphate ribosylation of Ca2+,Mg2+-dependent endonuclease, Proc. Natl. Acad. Sci. U.S.A. 72: 289.

    Article  CAS  Google Scholar 

  • Zagalak, B., Frey, P. A., Karabatsos, G. L., and Abeles, R. H., 1966, The stereochemistry of the conversion of D and L 1,2-propanediols to propionaldehyde, J. Biol. Chem. 241: 3028.

    CAS  Google Scholar 

  • Zaman, Z., Jordan, P. M., and Akhtar, M., 1973, Mechanism and stereochemistry of the 5-aminolevulinate synthetase reaction, Biochem. J. 135: 257.

    CAS  Google Scholar 

  • Ziegler, D. M., and Doeg, K. A., 1959, The isolation of a functionally intact succinic dehydrogenase-cytochrome b complex from beef heart mitochondria, Arch. Biochem. Biophys. 85: 282.

    Article  CAS  Google Scholar 

  • Ziegler, D. M., and Poulsen, L. L., 1977, Protein disulfide bond synthesis: A possible intracellular mechanism, Trends Biochem. Sci. 2: 79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Shive, W., Lansford, E.M. (1980). Roles of Vitamins as Coenzymes. In: Alfin-Slater, R.B., Kritchevsky, D. (eds) Nutrition and the Adult. Human Nutrition, vol 3B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7216-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7216-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7218-3

  • Online ISBN: 978-1-4615-7216-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics