Skip to main content

Herbal Medicines for the Management of Diabetes

  • Chapter
  • First Online:
Diabetes

Abstract

Herbal medicines have been used in the management of diabetes in traditional medicine. This chapter reviews recent findings of the most popular herbs reported to treat diabetes through their relevant mechanistic pathways. These include increased insulin secretion, improvement in insulin sensitivity, enhanced glucose uptake by adipose and muscle tissues, inhibition of glucose absorption from intestine, inhibition of glucose production from hepatocytes and anti-inflammatory activities. The pharmacological activities have highlighted the potential efficacy of these herbal medicines in the management of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stumvoll M, Goldstein BJ, van Haeften TW. Pathogenesis of type 2 diabetes. Endocr Res 2007; 32(1–2): 19–37.

    Article  CAS  PubMed  Google Scholar 

  2. Linger J, Parkin CG. Type 2 diabetes: an expanded view of pathophysiology and therapy. Postgrad Med 2010; 122(3):145–157.

    Article  Google Scholar 

  3. International Diabetes Federation. Diabetes and impaired glucose tolerance: global burden. [Online] IDF Diabetes Altas. Available: http://www.diabetesatlas.org/content/diabetes-and-impaired-glucose-tolerance [Accessed: 2011]. 2009.

  4. Montecucco F, Steffens S, Mach F. Insulin resistance: a proinflammatory state mediated by lipid-induced signaling dysfunction and involved in atherosclerotic plaque instability. Mediators Inflamm 2008; 2008:1–10.

    Article  CAS  Google Scholar 

  5. Taton J, Czech A, Piatkiewicz P. Insulin as the main regulator of cellular glucose utilization—aetiological aspects of insulin resistance. Endokrynol Pol 2010; 61(4):388–394.

    CAS  PubMed  Google Scholar 

  6. Scsti G. Pathophysiology of insulin resistance. Bailliercs Best Pract Res Clin Endocrinol Metab 2006; 20(4):665–679.

    Article  CAS  Google Scholar 

  7. Li WL, Zheng HC, Bukuru J et al. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004; 92(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  8. Andrade-Cetto A, Heinrich M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Etlinopharmacol 2005; 99(3)325–348.

    Article  Google Scholar 

  9. Mukherjee PK, Maiti K, Mukherjee K et al. Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol 2006; 106(1): 1–28.

    Article  CAS  PubMed  Google Scholar 

  10. Goldner M. Medicine: Issues to consider in this emerging form of health care Research in the Sociology of Health Care 2000; 17:215–236.

    Google Scholar 

  11. Yin J, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets 2008; 8(2):99–l 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bensky D, Barolet R. Chinese Herbal Medicine: Formulas and Strategies, 2nd ed. Seattle: Eastland Press, 2009.

    Google Scholar 

  13. Choate CJ. Modern medicine and traditional Chinese medicine: diabetes mellitus (Part one). Journal of Chinese Medicine 1998; 58:1–10.

    Google Scholar 

  14. Morrison JH. The Book Of Ayurveda, 1st ed. London: Simon and Schuster Australia, 1995.

    Google Scholar 

  15. Sharma H, Clark C. Introduction: What maharishi ayur-veda offers to clinical medicine. In: Sharma H, Clark C. Contemporary Ayurveda: Medicine and Research in Maharishi Ayur-Veda. New York: Churchill Livingstone, 1998.

    Google Scholar 

  16. Williamson EM. Major Herbs of Ayurveda, 2nd ed. Edinburgh: Churchill Livingstone, 2002.

    Google Scholar 

  17. Watkins PJ. Drury PL, Howell SL. Diabetes and its Management, 5th ed. Oxford: Blackwell Science; 1996.

    Google Scholar 

  18. Anderson A, Awang PD, Barton ND et al, eds. Professional Guide To Condition Herbs And Supplements. Newton: Intergrative Medicine Communications, 2000.

    Google Scholar 

  19. Weiss RF, Fintelmann V. Herbal Medicine, 2nd ed. New York: Thieme, 2000.

    Google Scholar 

  20. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81:81–100.

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki Y, Hikino H. Mechanisms of hypoglycemic activity of panaxans A and B. glycans of Panax ginseng roots: Effects on plasma level, secretion, sensitivity and binding of insulin in mice. Phytotherapy Research 1989; 3(1):20–24.

    Article  CAS  Google Scholar 

  22. Li GD, Lu ZQ. Effect of ginseng saponins on insulin release from isolated pancreatic islets in the rat. Zhoug Xi Yi. Tie He Za Zhi 1987; 7(6):357–359, 326.

    CAS  Google Scholar 

  23. Han KL, Jung MH, Sohn JH et al. Ginsenoside 20S-protopanaxatriol (PPT) activates peroxisome proliferator-activatedreceptorgamma(PPARgamma) in 3T3-L1 adipocytes. Biological and Pharmaceutical Bulletin 2006; 29(1): 110–113.

    Article  CAS  PubMed  Google Scholar 

  24. Waki I, Kyo H, Yasuda M et al. Effects of a hypoglycemic component of ginseng radix on insulin biosynthesis in normal and diabetic animals. J Pharmacobiodyn 1982; 5(8):547–554.

    Article  CAS  PubMed  Google Scholar 

  25. Kim K, Kim HY. Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J Ethnopharmacol 2008; 120(2):190–195.

    Article  CAS  PubMed  Google Scholar 

  26. Luo JZ, Luo L. American ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured beta cells. Evid Based Complement Alternat Med 2006; 3(3):365–372.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Park SM, Hong SM, Sung SR et al. Extracts of Rehmanniae radix, Ginseng radix and Scutellariae radix improve glucose-stimulated insulin secretion and beta-cell proliferation through IRS2 induction. Genes Nutr 2008; 2(4):347–351.

    Article  PubMed  Google Scholar 

  28. Yibchok-anun S, Adisakwattana S, Yao CY et al. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities. Biol Pharm Bull 2006; 29(6): 1126–1131.

    Article  CAS  PubMed  Google Scholar 

  29. Han C, Hui Q, Wang Y. Hypoglycaemic activity of saponin traction extracted from Momordica charantia in PEG/salt aqueous two-phase systems. Nat Prod Res 2008; 22(13): 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  30. Hafizur RM, Kabir N, Chishti S. Modulation of pancreatic beta-cells inneonatally streptozotocin-induced type 2 diabetic rats by the ethanolic extract of Momordica charantia fruit pulp. Nat Prod Res 2011; 25(4):353–367.

    Article  CAS  PubMed  Google Scholar 

  31. Abdollahi M, Zuki AB, Goh YM et al. Effects of Momordica charantia on pancreatic histopathological changes associated with streptozotocin-induced diabetes in neonatal rats. Histol Histopathol 2011; 26(1): 13–21.

    CAS  PubMed  Google Scholar 

  32. Persaud SJ, Al-Majed H, Raman A et al. Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. J Endocrinol 1999; 163(2):207–212.

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Asare-Anane H, Al-Romaiyan A et al. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse beta-cells and human islets of Langerhans. Cell Physiol Biochem 2009;23(l–3):125–132.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmed AB, Rao AS, Rao MV. In vitro callus and in vivo leaf extract of Gymnema sylvestre stimulate beta-cells regeneration and anti-diabetic activity in Wistar rats. Phytomedicine 2010; 17(13): 1033–1039.

    Article  PubMed  Google Scholar 

  35. Stull AJ, Cash KC, Johnson WD et al. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J Nutr 2010; 140(10): 1764–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takikawa M, Inoue S, Horio F et al. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activatedproteinkinase in diabetic mice. J Nutr 2010; 140(3):527–533.

    Article  CAS  PubMed  Google Scholar 

  37. Kannappan S, Anuradha CV. Insulin sensitizing actions of fenugreek seed polyphenols, quercetin and metformin in a rat model. Indian J Med Res 2009; 129(4):401–408.

    CAS  PubMed  Google Scholar 

  38. Gupta A, Gupta R, Lal B. Effect of Trigonella fenum—graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: a double blind placebo controlled study. J Assoc Physicians India 2001; 49:1057–1061.

    CAS  PubMed  Google Scholar 

  39. Klomann SD, Mueller AS, Pallauf J et al. Antidiabetic effects of bitter gourd extracts in insulin-resistant db; db mice. Br J Nutr 2010; 104(11):1613–1620.

    Article  CAS  PubMed  Google Scholar 

  40. Sridhar MG, Vinayagamoorthi R, Arul Suyambunathan V et al. Bitter gourd (Momordica charantia) improves insulin sensitivity by increasing skeletal muscle insulin-stimulated IRS-1 tyrosine phosphorylation in high-fat-fed rats. Br J Nutr 2008; 99(4):806–812.

    Article  CAS  PubMed  Google Scholar 

  41. Vuksan V, Sung MK, Sievenpiper JL et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Dis 2008; 18(1):46–56.

    Article  PubMed  Google Scholar 

  42. Lee HJ, Lee YH, Park SK et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the developraentof diabetes in Otsuka Long-Evans Tokushimafatty rats. Metabolism 2009; 58(8): 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  43. Mollah ML, Kim GS, Moon HK et al. Antiobesity effects of wild ginseng (Panax ginseng C.A. Meyer) mediated by PPAR-gamma, GLUT4 and LPL in ob/ob mice. Phytother Res 2009; 23(2):220–225.

    Article  PubMed  Google Scholar 

  44. Lee WK, Kao ST, Liu IM et al. Ginsenoside Rh2 is one of the active principles of Panax ginseng root to improve insulin sensitivity in fructose-rich chow-fed rats. Horm Metab Res 2007; 39(5):347–354.

    Article  CAS  PubMed  Google Scholar 

  45. Juan YC, Kuo YH, Chang CC et al. Administration of a decoction of sucrose-and polysaccharide-rich radix astragali (huang qi) ameliorated insulin resistance and Fatty liver but affected Beta-cell function in type 2 diabetic rats. Evid Based Complement Alternat Mod 2011; 2011:349807.

    Google Scholar 

  46. Liu M, Wu K, Mao X et al. Astragalus polysaccharide improves insulin sensitivity in KKAy mice: regulation ofPKB/GLUT4 signaling in skeletal muscle. J Ethnopharmacol 2010; 127(1):32–37.

    Article  CAS  PubMed  Google Scholar 

  47. Mao XQ, Yu F, Wang N et al. Hypoglycemic effect of polysaccharide enriched extract of Astragalus ineinbranaceus in diet induced insulin resistant C57BL/6J mice and its potential mechanism. Phytomedicine 2009; 16(5):416–425.

    Article  CAS  PubMed  Google Scholar 

  48. Serisier S, Leray V, Poudroux W et al. Effects of green tea on insulin sensitivity, lipid profile and expression of PPARalpha and PPARgamma and their target genes in obese dogs. Br J Nutr 2008; 99(6): 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  49. John Wahren, Ekberg K. Splanchnic regulation of glucose production. Annu Rev Nutr 2007; 27:329–345.

    Article  CAS  Google Scholar 

  50. Wolfs MGM, Hofker MH, Wijmenga C et al. Type 2 diabetes mellitus: new genetic insights will lead to new therapeutics. Curr Genomics 2009; 10:110–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Agius L, Aiston SMM. GKRP/GK Control of metabolic fluxes in hepatocytes. In: Matschinsky FM, Magnusou MA, eds. Glucokinase and Glycaemic Disease. Basel: Karger, 208–221.

    Google Scholar 

  52. Ulbricht C, Seamon E, eds. Natural Standard Herbal Phannacotherapy: An Evidence-Based Approach. St. Louis: Mosby/Elsevier, 2009.

    Google Scholar 

  53. Radziuk J, Pye S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev 2001; 17:250–212.

    Article  CAS  PubMed  Google Scholar 

  54. Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2003; 285:E685–E692.

    Article  CAS  PubMed  Google Scholar 

  55. Kim SJ, Yuan FID, Chung SH. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010; 33:325–328.

    Article  PubMed  Google Scholar 

  56. Williamson E, ed. Major Herbs of Ayurveda. China: Elsevier Science, 2002.

    Google Scholar 

  57. Jun Yin, Zhang H, Ye J. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets 2008; 8(2):99–l11.

    Article  Google Scholar 

  58. Thorne Research Inc. Momordica charantia (bitter melon). Alternative Medicine Review 2007; 12(4): 360–363.

    Google Scholar 

  59. Hui H, Tang G, Go VLW. Review hypoglycemic herbs and their action mechanisms. Chin Med 2009; 4:1–11.

    Article  CAS  Google Scholar 

  60. Mao X-q, Wu Y, Wu K et al. Astragalus polysaccharide reduces hepatic endoplasmic reticulum stress and restores glucose homeostasis in a diabetic KKAy mouse model. Acta Pharmacol Sin 2007; 28:1947–1956.

    Article  CAS  PubMed  Google Scholar 

  61. Zou F, Mao X-q, Wang N et al. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK Acta Pharmacol Sin 2009; 30:1607–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Waltner-Law ME, Wang XL, Law BK et al. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002; 277:34933–34940.

    Article  CAS  PubMed  Google Scholar 

  63. Staehr P, Hother-Niclsen O, Beck-Nielsen H. Hepatic glucose production therapeutic target in type 2 diabetes. Diabetes Obes Metab 2001; 4:215–223.

    Article  Google Scholar 

  64. Tiwari AK, Rao JM. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: Present status and future prospects. Current Science 2002; 83:30–38.

    CAS  Google Scholar 

  65. Shen Y, Fukushima M, Ito Y et al. Verification of the antidiabetic effects of cinnamon (Cinnamomum zeylanicum) using insulin-uncontrolled type 1 diabetic rats and cultured adipocytes. Biosci Biotechnol Biochem 2010; 74(12):2418–2425.

    Article  CAS  PubMed  Google Scholar 

  66. Kim W, Khil LY, Clark R et al. Naphthaleuemethyl ester derivative of dihydroxyhydrocinnamic acid, a component of cinnamon, increases glucose disposal by enhancing translocation of glucose transporter 4. Diabetologia 2006; 49(10):2437–2448.

    Article  CAS  PubMed  Google Scholar 

  67. Cao H, Graves DJ, Anderson RA. Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes. Phytomedicine 2010; 17(13): 1027–1032.

    Article  CAS  PubMed  Google Scholar 

  68. Cao II, Polansky MM, Anderson RA Cinnamon extract and polyphenols affect the expression oftristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys 2007; 459(2):214–222.

    Article  CAS  PubMed  Google Scholar 

  69. Cao H, Hininger-Favier I, Kelly MA et al. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J Agric Food Chem 2007; 55(15):6372–6378.

    Article  CAS  PubMed  Google Scholar 

  70. Wu L-Y, Juan C-C, Hwang LS et al. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr 2004; 43(2): 116–124.

    Article  CAS  PubMed  Google Scholar 

  71. Nishiumi S, Bessyo H, Kubo M et al. Green and black tea suppress hyperglycemia and insulin resistance by retaining the expression of glucose transporter 4 in muscle of high-fat diet-fed C57BL/6J mice. J Agric Food Chem 2010; 58(24):12916–12923.

    Article  CAS  PubMed  Google Scholar 

  72. Ashida H, Furuyashiki T, Nagayasu H et al. Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors 2004; 22(l–4):135–140.

    Article  CAS  PubMed  Google Scholar 

  73. Ueda M, Nishiumi S, Nagayasu H et al. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem Biophys Res Commun 2008; 377(1):286–290.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang ZF, Li Q, Liang J et al. Epigallocatechin-3-O-gallate (EGCG) protects the insulin sensitivity in rat L6 muscle cells exposed to dexamethasone condition. Phytomodicinc 2010; 17(1):14–18.

    Article  CAS  Google Scholar 

  75. Mohammad S. Taha A, Akhtar K et al. In vivo effect of Trigonella foenum graecum on the expression of pyruvate kinase, phosphoenolpyruvate carboxykinase, and distribution of glucose transporter (GLUT4) in ailoxan-diabetic rats. Can J Physiol Pharmacol 2006; 84(6):647–654.

    Article  CAS  PubMed  Google Scholar 

  76. Vijayakumar MV, Singh S, Chhipa RR et al. The hypoglycaemic activity of fenugreek seed extract is mediated through the stimulation of an insulin signalling pathway. Br J Pharmacol 2005; 146(1):41–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shih CC, Lin CH, Lin WL et al. Momordica charantia extract on insulin resistance and the skeletal muscle GLUT4 protein in fructose-fed rats. J Ethnopharmacol 2009; 123(1):82–90.

    Article  PubMed  Google Scholar 

  78. Kumar R, Balaji S, Uma TS et al. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. J Ethnopharmacol 2009; 126(3):533–537.

    Article  PubMed  Google Scholar 

  79. Tan M-J, Ye J-M, Turner N et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 2008; 15(3):263–273.

    Article  PubMed  CAS  Google Scholar 

  80. Ma X, Egawa T, Kimura II et al. Berberine-induced activation of 5′-adenosine monophosphate-activated protein kinase and glucose transport in rat skeletal muscles. Metabolism 2010; 59(11):1619–1627.

    Article  CAS  PubMed  Google Scholar 

  81. Lim S, Yoon JW, Choi SH et al. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolism 2009; 58(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  82. Huang Y-C, Lin C-Y, Huang S-F et al. Effect and mechanism of ginscnosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J Agric Food Chem 2010; 58(10):6039–6047.

    Article  CAS  PubMed  Google Scholar 

  83. Shang W, Yang Y, Zhou L et al. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008; 198(3):561–569.

    Article  CAS  PubMed  Google Scholar 

  84. Kim M, Ahn BY, Lee JS et al. The ginsenoside Rg3 has a stimulator’ effect on insulin signaling in L6 myotubes. Biochem Biophys Res Commun 2009; 389(l):70–73.

    Article  CAS  PubMed  Google Scholar 

  85. Zhao R, Li Q, Xiao B. Effect of Lycium barbarura polysaccharide on the improvement of insulin resistance in NIDDM rats. Yakugaku Zasshi 2005; 125(12):981–988.

    Article  CAS  PubMed  Google Scholar 

  86. Shieh J-P, Cheng K-C, Chung H-H et al. Plasma glucose lowering mechanisms of catalpol, an active principle from roots of Rehmannia glutinosa, in streptozotocin-induced diabetic rats. J Agric Food Chem 2011; 59:3747–3753.

    Article  CAS  PubMed  Google Scholar 

  87. Gao X, Li B, Jiang H et al. Dioscorea opposita reverses dexamethasone induced insulin resistance. Fitoterapia 2007; 78(1): 12–15.

    Article  PubMed  Google Scholar 

  88. Liu M, Wu K, Mao X et al. Astragalus polysaccharide improves insulin sensitivity in KKAy mice: regulation of PKB/GLUT4 signaling in skeletal muscle. J Ethnopharmacol 2010; 127(1):32–37.

    Article  CAS  PubMed  Google Scholar 

  89. Hsu F-L, Liu IM, Kuo D-H et al. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J Nat Prod 2003; 66(6):788–792.

    Article  CAS  PubMed  Google Scholar 

  90. American Diabetes Association. Postprandial blood glucose. Diabetes Care 2001; 24(4):775–778.

    Article  Google Scholar 

  91. Coutinho M, Gerstein HC, Wang Y et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999; 22(2):233–240.

    Article  CAS  PubMed  Google Scholar 

  92. Boutati EI, Raptis SA. Postprandial hyperglycaemia in type 2 diabetes:pathophysiological aspects,teleological notions and flags for clinical practice. Diabetes Metab Res Rev 2004; 20Suppl 2:S13–S23.

    Article  PubMed  Google Scholar 

  93. Li Y, Wen S, Kota BP et al. Punica granatum flower extract, a potent alpha-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol 2005; 99(2):239–244.

    Article  PubMed  Google Scholar 

  94. Nhiem NX, Kiem PV, Minh CV et al. Alpha-Glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of Momordica charantia. Chem Pharm Bull (Tokyo) 2010; 58(5):720–724.

    Article  Google Scholar 

  95. Uebanso T, Arai H, Taketani Y et al. Extracts of Momordica charantia suppress postprandial hyperglycemia in rats. J Nutr Sci Vitaminol (Tokyo) 2007; 53(6):482–488.

    Article  CAS  Google Scholar 

  96. Shetty A, Kumar G, Salimath P. Bitter gourd (Momordica charantia) modulates activities of intestinal and renal disaccharidases in streptozotocin-induced diabetic rats. Mol Nutr Food Res 2005; 49(8): 791–796.

    Article  Google Scholar 

  97. Matsuur H, Asakawa C, Kurimoto M et al. Alpha-glucosidascinhibitorfrom the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa. Biosci Biotechnol Biochem 2002; 66(7):1576–1578.

    Article  PubMed  Google Scholar 

  98. Hansawasdi C, Kawabata X Alpha-glucosidase inhibitory effect of mulberry (Moras alba) leaves on Caco-2. Fitoterapia 2006; 77(7–8):568–573.

    Article  PubMed  Google Scholar 

  99. Miyahara C, Miyazawa M, Satoh S et al. Inhibitory effects ofmulberry leaf extract on postprandial hyperglycemia in nornial rats. J Nutr Sci Vitaminol (Tokyo) 2004; 50(3): 161–164.

    Article  CAS  Google Scholar 

  100. Kwon HJ, Chung JY, Kim JY et al. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. J Agric Food Chem 2011; 59(7):3014–3019.

    Article  CAS  PubMed  Google Scholar 

  101. Park JM, Bong lIY, Jeong III et al. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats. Nutr Res Pract 2009; 3(4):272–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yatsunami K, Ichida M, Onodera S. Therelationship between 1-deoxynojirimycin content and alpha-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (Morns spp.) in Kyoto, Japan. J Nat Med 2008; 62(l):63–66.

    CAS  PubMed  Google Scholar 

  103. Kimura T, Nakagawa K, Kubota H et al. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in hum ans. J Agric Food Chem 2007;55(14): 5869–5874.

    Article  CAS  PubMed  Google Scholar 

  104. Kim SD, Nho HJ. Isolation and characterization of alpha-glucosidase inhibitor from the fungus Ganoderma lucidum. J Microbiol 2004; 42(3):223–227.

    CAS  PubMed  Google Scholar 

  105. Gad MZ, El-Sawalhi MM, Ismail MF et al. Biochemical study of the anti-diabetic action of the Egyptian plants fenugreek and balanites. Mol Cell Biochem 2006; 281(1–2):173–183.

    Article  CAS  PubMed  Google Scholar 

  106. P S, Zinjarde SS, Bhargava S Y et al. Potent alpha-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern Med 2011; 11:5.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ponnusamy S, Ravindran R, Zinjarde S et al. Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evid Based Complement Alternat Med 2011; 2011.

    Google Scholar 

  108. Du ZY, Liu RR, Shao WY et al. Alpha-glucosidase inhibition of natural curcuminoids and curcumin analogs. Eur J Med Chem 2006; 41(2):213–218.

    Article  CAS  PubMed  Google Scholar 

  109. Rani MP, Padmakumari KP, Sankarikutty B et al. Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. Int JFood Sci Nutr 2011; 62(2): 106–110.

    Article  CAS  Google Scholar 

  110. Koh LW, Wong LL, Loo YY et al. Evaluation of different teas against starch digestibility by mammalian glycosidases. J Agric Food Chem 2010; 58(1):148–154.

    Article  CAS  PubMed  Google Scholar 

  111. McDougall GJ, Shpiro F, Dobson P et al. Different polyphenolic components of soft fruitsinhibitalpha-amylase and alpha-glucosidase. J Agric Food Chem 2005; 53(7):2760–2766.

    Article  CAS  PubMed  Google Scholar 

  112. Li DQ, Qian ZM, Li SP. Inhibition of three selected beverage extracts on alpha-glucosidase and rapid identification of their active compounds using HPLC-DAD-MS/MS and biochemical detection. J Agric Food Chem 2010; 58(11):6608–6613.

    Article  CAS  PubMed  Google Scholar 

  113. Abeywickrama KR, Ratnasooriya WD, Amarakoon AM. Oral hypoglycaemic, antihyperglycaemic and antidiabetic activities of Sri Lankan Broken Orange Pekoe Farmings (BOPF) grade black tea (Camellia sinensis L.) in rats. J Ethnophannacol 2011.

    Google Scholar 

  114. Huang TH, Peng G, Li GQ et al. Salaciaoblongaroot improves postprandial hyperlipidemiaand hepatic steatosis in Zucker diabetic fatty rats: activation of PPAR-alpha. Toxicol Appl Pharmacol 2006; 210(3):225–235.

    Article  PubMed  CAS  Google Scholar 

  115. Li Y, Peng G, Li Q et al. Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese Zuckerrats. Life Sci 2004; 75(14):1735–1746.

    Article  CAS  PubMed  Google Scholar 

  116. Muraoka O, Morikawa T, Miyake S et al. Quantitative analysis of neosalacinol and neokotalanol, another two potent alpha-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography. J Nat Med 2011; 65(1):142–148.

    Article  CAS  PubMed  Google Scholar 

  117. Muraoka O, Morikawa T, Miyake S et al. Quantitative determination of potent alpha-glucosidase inhibitors, salacinol and kolalanol, in Salacia species using liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2010; 52(5):770–773.

    Article  CAS  PubMed  Google Scholar 

  118. Williams JA, Choe YS, Noss MJ et al. Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am J Clin Nutr 2007; 86(1):124–130.

    Article  CAS  PubMed  Google Scholar 

  119. Xie W, Tanabe G, Akaki J et al. Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent alpha-glucosidase inhibitors. Bioorg Med Chem 2011; 19(6):2015–2022.

    Article  CAS  PubMed  Google Scholar 

  120. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation and preliminary results of a longterm follow-up of the diabetes control and complications trial cohort. Diabetes Care 1999; 22(1):99–111.

    Article  PubMed  Google Scholar 

  121. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14):977–986.

    Article  Google Scholar 

  122. Duckworth W, Abraira C, Moritz T et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 2009; 360(2): 129–139.

    Article  CAS  PubMed  Google Scholar 

  123. Omar EA, Kam A, Alqahtani A et al. Herbal medicines and nutraceuticals for diabetic vascular complications: mechanisms of action and bioactive phytochemicals.Curr Pharm Des 2010; 16(34):3776–3807.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Q. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Li, G.Q. et al. (2013). Herbal Medicines for the Management of Diabetes. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_28

Download citation

Publish with us

Policies and ethics