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Abstract Given a polynomial Tn of degree n, consider the inverse image of R and
[−1,1], denoted by T −1

n (R) and T −1
n ([−1,1]), respectively. It is well known that

T −1
n (R) consists of n analytic Jordan arcs moving from ∞ to ∞. In this paper, we

give a necessary and sufficient condition such that (1) T −1
n ([−1,1]) consists of ν

analytic Jordan arcs and (2) T −1
n ([−1,1]) is connected, respectively.

1 Introduction

Let Pn be the set of all polynomials of degree n with complex coefficients. For
a polynomial Tn ∈ Pn, consider the inverse images T −1

n (R) and T −1
n ([−1,1]),

defined by

T −1
n (R) :=

{
z ∈ C : Tn(z) ∈ R

}
(1)

and

T −1
n ([−1,1]) :=

{
z ∈C : Tn(z) ∈ [−1,1]

}
, (2)

respectively. It is well known that T −1
n (R) consists of n analytic Jordan arcs mov-

ing from ∞ to ∞ which cross each other at points which are zeros of the derivative
T ′

n . In [11], Peherstorfer proved that T −1
n (R) may be split up into n Jordan arcs

(not necessarily analytic) moving from ∞ to ∞ with the additional property that Tn

is strictly monotone decreasing from +∞ to −∞ on each of the n Jordan arcs. Thus,
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T −1
n ([−1,1]) is the union of n (analytic) Jordan arcs and is obtained from T −1

n (R)
by cutting off the n arcs of T −1

n (R). In [14, Theorem 3], we gave a necessary and
sufficient condition such that T −1

n ([−1,1]) consists of 2 Jordan arcs, compare also
[5], where the proof can easily be extended to the case of � arcs, see also [11, Remark
after Corollary 2.2]. In the present paper, we will give a necessary and sufficient con-
dition such that (1) T −1

n ([−1,1]) consists of ν (but not less than ν) analytic Jordan
arcs (in Sect. 2) and (2) T −1

n ([−1,1]) is connected (in Sect. 3), respectively. From
a different point of view as in this paper, inverse polynomial images are considered,
e.g., in [6, 7, 15], and [8].

Inverse polynomial images are interesting for instance in approximation theory,
since each polynomial (suitable normed) of degree n is the minimal polynomial with
respect to the maximum norm on its inverse image, see [2, 4, 10], and [3].

2 The Number of (Analytic) Jordan Arcs of an Inverse
Polynomial Image

Let us start with a collection of important properties of the inverse images T −1
n (R)

and T −1
n ([−1,1]). Most of them are due to Peherstorfer [11] or classical well known

results. Let us point out that T −1
n (R) (and also T −1

n ([−1,1])), on the one hand
side, may be characterized by n analytic Jordan arcs and, on the other side, by n (not
necessarily analytic) Jordan arcs, on which Tn is strictly monotone.

Let C := {γ(t) : t ∈ [0,1]} be an analytic Jordan arc in C and let Tn ∈ Pn be a
polynomial such that Tn(γ(t)) ∈ R for all t ∈ [0,1]. We call a point z0 = γ(t0) a
saddle point of Tn on C if T ′

n (z0) = 0 and z0 is no extremum of Tn on C.

Lemma 1. Let Tn ∈ Pn be a polynomial of degree n.

(i) T −1
n (R) consists of n analytic Jordan arcs, denoted by C̃1,C̃2, . . . ,C̃n, in the

complex plane running from ∞ to ∞.
(ii) T −1

n (R) consists of n Jordan arcs, denoted by Γ̃1,Γ̃2, . . . ,Γ̃n, in the complex
plane running from ∞ to ∞, where on each Γ̃j , j = 1,2, . . . ,n, Tn(z) is strictly
monotone decreasing from +∞ to −∞.

(iii) A point z0 ∈ T −1
n (R) is a crossing point of exactly m, m ≥ 2, analytic Jordan

arcs C̃i1 ,C̃i2 , . . . ,C̃im , 1≤ i1 < i2 < · · ·< im ≤ n, if and only if z0 is a zero of T ′
n

with multiplicity m− 1. In this case, the m arcs are cutting each other at z0 in
successive angles of π/m. If m is odd then z0 is a saddle point of Re{Tn(z)}
on each of the m arcs. If m is even then, on m/2 arcs, z0 is a minimum of
Re{Tn(z)} and on the other m/2 arcs, z0 is a maximum of Re{Tn(z)}.

(iv) A point z0 ∈ T −1
n (R) is a crossing point of exactly m, m ≥ 2, Jordan arcs Γ̃i1 ,

Γ̃i2 , . . . ,Γ̃im , 1 ≤ i1 < i2 < · · · < im ≤ n, if and only if z0 is a zero of T ′
n with

multiplicity m− 1.
(v) T −1

n ([−1,1]) consists of n analytic Jordan arcs, denoted by C1,C2, . . . ,Cn,
where the 2n zeros of T 2

n − 1 are the endpoints of the n arcs. If z0 ∈ C

is a zero of T 2
n − 1 of multiplicity m, then exactly m analytic Jordan arcs
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Ci1 ,Ci2 , . . . ,Cim of T −1
n ([−1,1]), 1 ≤ i1 < i2 < · · · < im ≤ n, have z0 as com-

mon endpoint.
(vi) T −1

n ([−1,1]) consists of n Jordan arcs, denoted by Γ1,Γ2, . . . ,Γn, with Γj ⊂ Γ̃j ,
j = 1,2, . . . ,n, where on each Γj , Tn(z) is strictly monotone decreasing from
+1 to −1. If z0 ∈ C is a zero of T 2

n − 1 of multiplicity m then exactly m
Jordan arcs Γi1 , . . . ,Γim of T −1

n ([−1,1]), 1 ≤ i1 < i2 < · · · < im ≤ n, have z0

as common endpoint.
(vii) Two arcs Cj,Ck, j �= k, cross each other at most once (the same holds for

Γj,Γk).
(viii) Let S := T −1

n ([−1,1]), then the complement C\ S is connected.
(ix) Let S := T −1

n ([−1,1]) then, for Pn(z) := Tn((z− b)/a), a,b ∈ C, a �= 0, the
inverse image is P−1

n ([−1,1]) = aS+ b.
(x) T −1

n ([−1,1])⊆R if and only if the coefficients of Tn are real, Tn has n simple
real zeros and min

{|Tn(z)| : T ′
n (z) = 0

}≥ 1.
(xi) T −1

n (R) is symmetric with respect to the real line if and only if Tn(z) or
iTn(z) has real coefficients only.

Proof. (i), (iii), (iv), and (xi) are well known.
For (ii), see [11, Theorem 2.2].
Concerning the connection between (iii),(iv) and (v),(vi) note that each zero z0 of
Q2n(z) = T 2

n (z)− 1 ∈ P2n with multiplicity m is a zero of Q′
2n(z) = 2Tn(z)T ′

n (z)
with multiplicity m−1, hence a zero of T ′

n (z) with multiplicity m−1. Thus, (v) and
(vi) follow immediately from (i) and (iii) and (ii) and (iv), respectively.
(vii) follows immediately from (viii).
Concerning (viii), suppose that there exists a simple connected domain B, which
is surrounded by a subset of T −1

n ([−1,1]). Then the harmonic function v(x,y) :=
Im{Tn(x+ iy)} is zero on ∂B thus, by the maximum principle, v(x,y) is zero on B,
which is a contradiction.
(ix) follows from the definition of T −1

n ([−1,1]).
For (x), see [11, Corrolary 2.3].

Example 1. Consider the polynomial Tn(z) := 1+z2(z−1)3(z−2)4 of degree n= 9.
Figure 1 shows the inverse images T −1

n ([−1,1]) (solid line) and T −1
n (R) (dotted

and solid line). The zeros of Tn +1 and Tn −1 are marked with a circle and a disk,
respectively. One can easily identify the n = 9 analytic Jordan arcs C̃1,C̃2, . . . ,C̃n

which T −1
n (R) consists of, compare Lemma 1 (i), and the n = 9 analytic Jordan

arcs C1,C2, . . . ,Cn which T −1
n ([−1,1]) consists of, compare Lemma 1 (v), where

the endpoints of the arcs are exactly the circles and disks, i.e., the zeros of T 2
n − 1.

Note that C̃1 = R, C1 = [−0.215 . . . ,0] and C2 = [0,1].

Before we state the result concerning the minimal number of analytic Jordan arcs
T −1

n ([−1,1]) consists of, let us do some preparations. Let Tn ∈ Pn and consider the
zeros of the polynomial T 2

n −1 ∈ P2n. Let {a1,a2, . . . ,a2�} be the set of all zeros of
T 2

n −1 with odd multiplicity, where a1,a2, . . . ,a2� are pairwise distinct and each a j
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Fig. 1: Inverse images T −1
9 ([−1,1]) (solid line) and T −1

9 (R) (dotted and solid line)
for the polynomial T9(z) := 1+ z2(z− 1)3(z− 2)4

has multiplicity 2β j − 1, j = 1, . . . ,2�. Further, let

(b1,b2, . . . ,b2ν) := ( a1, . . . ,a1︸ ︷︷ ︸
(2β1−1)−times

, a2, . . . ,a2︸ ︷︷ ︸
(2β2−1)−times

, . . . , a2�, . . . ,a2�︸ ︷︷ ︸
(2β2�−1)−times

), (3)

thus

2ν =
2�

∑
j=1

(2β j − 1), (4)

i.e., b1,b2, . . . ,b2ν are the zeros of odd multiplicity written according to their
multiplicity.

Theorem 1. Let Tn ∈ Pn be any polynomial of degree n. Then, T −1
n ([−1,1]) con-

sists of ν (but not less than ν) analytic Jordan arcs with endpoints b1,b2, . . . ,b2ν if
and only if T 2

n − 1 has exactly 2ν zeros b1,b2, . . . ,b2ν (written according to their
multiplicity) of odd multiplicity.

Proof. By Lemma 1 (v), T −1
n ([−1,1]) consists of n analytic Jordan arcs C1,C2,

. . . ,Cn, which can be combined into ν analytic Jordan arcs in the following way.
Clearly, two analytic Jordan arcs Ci1 and Ci2 can be joined together into one ana-
lytic Jordan arc if they have the same endpoint, which is a zero of T 2

n − 1, and if
they lie on the same analytic Jordan arc C̃i3 of Lemma 1 (i). By Lemma 1 (iii) and
(v), such combinations are possible only at the zeros of T 2

n − 1 of even multiplic-
ity. More precisely, let d1,d2, . . . ,dk be the zeros of T 2

n − 1 with even multiplicities
2α1,2α2, . . . ,2αk, where, by assumption,

2α1 + 2α2 + · · ·+ 2αk = 2n− 2ν.
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By Lemma 1 (iii) and (v), at each point d j, the 2α j analytic Jordan arcs of
T −1

n ([−1,1]) can be combined into α j analytic arcs, j = 1,2, . . . ,k. Altogether, the
number of such combinations is α1 +α2 + · · ·+αk = n−ν , thus the total number of
n analytic Jordan arcs is reduced by n−ν , hence ν analytic Jordan arcs remain and
the sufficiency part is proved. Since, for each polynomial Tn ∈ Pn, there is a unique
ν ∈ {1,2, . . . ,n} such that T 2

n −1 has exactly 2ν zeros of odd multiplicity (counted
with multiplicity), the necessity part follows.

Example 2. For a better understanding of the combination of two analytic Jordan
arcs into one analytic Jordan arc, as done in the proof of Theorem 1, let us again
consider the inverse image of the polynomial of Example 1.

• The point d1 = 0 is a zero of Tn − 1 with multiplicity 2α1 = 2, thus 2 ana-
lytic Jordan arcs, here C1 and C2, have d1 as endpoint, compare Lemma 1 (v).
Along the arc C̃1, d1 is a maximum, along the arc C̃2, d1 is a minimum, compare
Lemma 1 (iii), thus the 2 analytic Jordan arcs C1 and C2 can be joined together
into one analytic Jordan arc C1 ∪C2.

• The point d2 = 2 is a zero of Tn−1 with multiplicity 2α2 = 4, thus 4 analytic Jor-
dan arcs, here C6, C7, C8 and C9, have d2 as endpoint. Along the arc C̃7 or C̃9, d3

is a maximum, along the arc C̃8 or C̃1, d3 is a minimum, compare Lemma 1 (iii).
Hence, the analytic Jordan arcs C6 and C9 can be combined into one analytic
Jordan arc C6 ∪C9, analogously C7 and C8 can be combined into C7 ∪C8.

• The point a1 = 1 is a zero of Tn − 1 with multiplicity 3, thus 3 analytic Jordan
arcs, here C2, C4 and C5, have a1 as endpoint. Since a1 is a saddle point along
each of the three analytic Jordan arcs C̃1,C̃4,C̃5, compare Lemma 1 (iii), no com-
bination of arcs can be done.

Altogether, we get α1 +α2 = 3 = n− ν combinations and therefore T −1
n ([−1,1])

consists of ν = 6 analytic Jordan arcs, which are given by C1∪C2, C3, C4, C5, C6∪C9

and C7 ∪C8.

Lemma 2. For any polynomial Tn(z) = cnzn + · · · ∈ Pn, cn ∈ C\{0}, there exists a
unique � ∈ {1,2, . . . ,n}, a unique monic polynomial H2�(z) = z2�+ · · · ∈ P2� with
pairwise distinct zeros a1,a2, . . . ,a2�, i.e.,

H2�(z) =
2�

∏
j=1

(z− a j), (5)

and a unique polynomial Un−�(z) = cnzn−�+ · · · ∈ Pn−� with the same leading co-
efficient cn such that the polynomial equation

T 2
n (z)− 1 = H2�(z)U

2
n−�(z) (6)

holds. Note that the points a1,a2, . . . ,a2� are exactly those zeros of T 2
n − 1 which

have odd multiplicity.

Proof. The assertion follows immediately by the fundamental theorem of algebra
for the polynomial Q2n(z) :=T 2

n (z)−1= c2
nz2n+ · · · ∈ P2n, where 2� is the number
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of distinct zeros of Q2n with odd multiplicity. It only remains to show that the case
� = 0 is not possible. If � = 0, then all zeros of Q2n are of even multiplicity. Thus
there are at least n zeros (counted with multiplicity) of Q′

2n which are also zeros of
Q2n but not zeros of Tn. Since Q′

2n(z) = 2Tn(z)T ′
n (z), there are at least n zeros

(counted with multiplicity) of T ′
n , which is a contradiction.

Let us point out that the polynomial equation (6) (sometimes called Pell equation)
is the starting point for investigations concerning minimal or orthogonal polynomi-
als on several intervals, see, e.g., [7, 9, 10, 12, 13, 18], and [19].

In [14, Theorem 3], we proved that the polynomial equation (6) (for � = 2) is
equivalent to the fact that T −1

n ([−1,1]) consists of two Jordan arcs (not necessarily
analytic), compare also [5]. The condition and the proof can be easily extended to
the general case of � arcs, compare also [11, Remark after Corollary 2.2]. In addi-
tion, we give an alternative proof similar to that of Theorem 1.

Theorem 2. Let Tn ∈ Pn be any polynomial of degree n. Then T −1
n ([−1,1]) con-

sists of � (but not less than �) Jordan arcs with endpoints a1,a2, . . . ,a2� if and only
if T 2

n − 1 has exactly 2� pairwise distinct zeros a1,a2, . . . ,a2�, 1 ≤ � ≤ n, of odd
multiplicity, i.e., if and only if Tn satisfies a polynomial equation of the form (6)
with H2� given in (5).

Proof. By Lemma 1 (vi), T −1
n ([−1,1]) consists of n Jordan arcs Γ1,Γ2, . . . ,Γn, which

can be combined into � Jordan arcs in the following way: Let d1,d2, . . . ,dk be those
zeros of T 2

n − 1 with even multiplicities 2α1,2α2, . . . ,2αk and let, as assumed
in the Theorem, a1,a2, . . . ,a2� be those zeros of T 2

n − 1 with odd multiplicities
2β1 − 1,2β2 − 1, . . . ,2β2�− 1, where

2α1 + 2α2 + · · ·+ 2αk +(2β1 − 1)+ (2β2− 1)+ · · ·+(2β2�− 1) = 2n (7)

holds. By Lemma 1 (vi), at each point d j, the 2α j Jordan arcs can be combined into
α j Jordan arcs, j = 1,2, . . . ,ν , and at each point a j, the 2β j − 1 Jordan arcs can
be combined into β j Jordan arcs, j = 1,2, . . . ,2�. Altogether, the number of such
combinations, using (7), is

α1 +α2 + · · ·+αν +(β1 − 1)+ (β2− 1)+ · · ·+(β2�− 1) = (n+ �)− 2�= n− �,

i.e., the total number n of Jordan arcs is reduced by n− �, thus � Jordan arcs remain
and the sufficiency part is proved. Since, by Lemma 2, for each polynomial Tn ∈ Pn

there is a unique � ∈ {1,2, . . . ,n} such that T 2
n − 1 has exactly 2� distinct zeros of

odd multiplicity, the necessity part is clear.

Example 3. Similar as after the proof of Theorem 1, let us illustrate the combina-
tion of Jordan arcs by the polynomial of Example 1. Taking a look at Fig. 1, one
can easily identify the n = 9 Jordan arcs Γ1,Γ2, . . . ,Γn ∈ T −1

n ([−1,1]), where each
arc Γj runs from a disk to a circle. Note that the two arcs, which cross at z ≈ 0.3,
may be chosen in two different ways. Now, T 2

n − 1 has the zero d1 = 0 with mul-
tiplicity 2α1 = 2, the zero d2 = 2 with multiplicity 2α2 = 4, and a zero a1 = 1
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with multiplicity 2β1 − 1 = 3, all other zeros a j have multiplicity 2β j − 1 = 1,
j = 2,3, . . . ,2�. Thus, it is possible to have one combination at d1 = 0, two com-
binations at d2 = 2 and one combination of Jordan arcs at a1 = 1. Altogether, we
obtain α1 +α2 +(β1 − 1) = 4 = n− � combinations and the number of Jordan arcs
is �= 5.

For the sake of completeness, let us mention two simple special cases, first
the case � = 1, see, e.g., [14, Remark 4], and second, the case when all endpoints
a1,a2, . . . ,a2� of the arcs are real, see [9].

Corollary 1. Let Tn ∈ Pn.

(i) T −1
n ([−1,1]) consists of � = 1 Jordan arc with endpoints a1,a2 ∈ C, a1 �=

a2, if and only if Tn is the classical Chebyshev polynomial of the first kind
(suitable normed), i.e., Tn(z) = Tn((2z− a1 − a2)/(a2 − a1)), where Tn(z) :=
cos(narccosz). In this case, T −1

n ([−1,1]) is the complex interval [a1,a2].
(ii) T −1

n ([−1,1]) = [a1,a2]∪ [a3,a4]∪ . . .∪ [a2�−1,a2�], a1,a2, . . . ,a2� ∈ R, a1 <
a2 < · · · < a2�, if and only if Tn satisfies the polynomial equation (6) with H2�

as in (5) and a1,a2, . . . ,a2� ∈ R, a1 < a2 < · · ·< a2�.

Let us consider the case of �= 2 Jordan arcs in more detail. Given four pairwise
distinct points a1,a2,a3,a4 ∈ C in the complex plane, define

H4(z) := (z− a1)(z− a2)(z− a3)(z− a4), (8)

and suppose that Tn(z) = cnzn+ · · · ∈ Pn satisfies a polynomial equation of the form

T 2
n (z)− 1 = H4(z)U

2
n−2(z) (9)

with Un−2(z) = cnzn−2+ · · · ∈ Pn−2. Then, by (9), there exists a z∗ ∈C such that the
derivative of Tn is given by

T ′
n (z) = n(z− z∗)Un−2(z). (10)

By Theorem 2, T −1
n ([−1,1]) consists of two Jordan arcs. Moreover, it is proved in

[14, Theorem 3] that the two Jordan arcs are crossing each other if and only if z∗ ∈
T −1

n ([−1,1]) (compare also Theorem 4). In this case, z∗ is the only crossing point.
Interestingly, the minimum number of analytic Jordan arcs is not always two, as the
next theorem says. In order to prove this result, we need the following lemma [14,
Lemma 1].

Lemma 3. Suppose that Tn ∈ Pn satisfies a polynomial equation of the form (9),
where H4 is given by (8), and let z∗ be given by (10).

(i) If z∗ is a zero of Un−2 then it is either a double zero of Un−2 or a zero of H .
(ii) If z∗ is a zero of H then z∗ is a simple zero of Un−2.

(iii) The point z∗ is the only possible common zero of H and Un−2.
(iv) If Un−2 has a zero y∗ of order greater than one then y∗ = z∗ and z∗ is a double

zero of Un−2.
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Theorem 3. Suppose that Tn ∈ Pn satisfies a polynomial equation of the form (9),
where H4 is given by (8), and let z∗ be given by (10). If z∗ /∈ {a1,a2,a3,a4} then
T −1

n ([−1,1]) consists of two analytic Jordan arcs. If z∗ ∈ {a1,a2,a3,a4} then
T −1

n ([−1,1]) consists of three analytic Jordan arcs, all with one endpoint at z∗,
and an angle of 2π/3 between two arcs at z∗.

Proof. We distinguish two cases:

1. Tn(z∗) /∈ {−1,1}: By Lemma 3, T 2
n − 1 has 4 simple zeros {a1,a2,a3,a4} and

n− 2 double zeros. Thus, by Theorem 1, T −1
n ([−1,1]) consists of two analytic

Jordan arcs.
2. Tn(z∗) ∈ {−1,1}:

2.1 If z∗ ∈ {a1,a2,a3,a4} then, by Lemma 3, T 2
n − 1 has 3 simple zeros given

by {a1,a2,a3,a4} \ {z∗}, n− 3 double zeros and one zero of multiplicity
3 (that is z∗). Thus, by Theorem 1, T −1

n ([−1,1]) consists of three analytic
Jordan arcs.

2.2 If z∗ /∈ {a1,a2,a3,a4} then, by Lemma 3, z∗ is a double zero of Un−2. Thus
T 2

n −1 has 4 simple zeros {a1,a2,a3,a4}, n−4 double zeros and one zero
of multiplicity 4 (that is z∗). Thus, by Theorem 1, T −1

n ([−1,1]) consists of
two analytic Jordan arcs.

The very last statement of the theorem follows immediately by Lemma 1 (iii).

Let us mention that in [14], see also [16] and [17], necessary and sufficient con-
ditions for four points a1,a2,a3,a4 ∈ C are given with the help of Jacobian elliptic
functions such that there exists a polynomial of degree n whose inverse image con-
sists of two Jordan arcs with the four points as endpoints. Concluding this section,
let us give two simple examples of inverse polynomial images.

Example 4.

(i) Let a1 =−1, a2 =−a, a3 = a and a4 = 1 with 0 < a < 1 and

H4(z) = (z− a1)(z− a2)(z− a3)(z− a4) = (z2 − 1)(z2 − a2).

If

T2(z) :=
2z2 − a2 − 1

1− a2 , U0(z) :=
2

1− a2 ,

then
T 2

2 (z)−H4(z)U
2

0 (z) = 1.

Thus, by Theorem 2, T −1
2 ([−1,1]) consists of two Jordan arcs with endpoints

a1, a2, a3, a4, more precisely T −1
2 ([−1,1]) = [−1,−a]∪ [a,1].

(ii) Let a1 = i, a2 =−i, a3 = a− i and a4 = a+ i with a > 0 and

H4(z) = (z− a1)(z− a2)(z− a3)(z− a4) = (z2 + 1)((z− a)2+ 1).
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Fig. 2: The inverse image T −1
2 ([−1,1]) for 0 < a < 2 (left plot), for a = 2 (middle

plot) and for a > 2 (right plot)

If

T2(z) :=
i
a

(
z2 − az+ 1

)
, U0(z) :=

i
a
,

then
T 2

2 (z)−H4(z)U
2

0 (z) = 1.

Thus, by Theorem 2, T −1
2 ([−1,1]) consists of two Jordan arcs with endpoints

a1, a2, a3, a4. More precisely, if 0 < a < 2,

T −1
2 ([−1,1]) =

{
x+ iy ∈C : − (x− a/2)2

1− a2/4
+

y2

1− a2/4
= 1

}
,

i.e., T −1
2 ([−1,1]) is an equilateral hyperbola (not crossing the real line) with

center at z0 = a/2 and asymptotes y =±(x− a/2).
If a = 2, T −1

2 ([−1,1]) = [i,a− i]∪ [−i,a+ i], i.e., the union of two complex
intervals.
If 2 < a < ∞,

T −1
2 ([−1,1]) =

{
x+ iy ∈ C :

(x− a/2)2

a2/4− 1
− y2

a2/4− 1
= 1

}
,

i.e., T −1
2 ([−1,1]) is an equilateral hyperbola with center at z0 = a/2, crossing

the real line at a/2±
√

a2/4− 1 and asymptotes y =±(x− a/2).
In Fig. 2, the sets T −1

2 ([−1,1]) including the asymptotes are plotted for the
three cases discussed above.

3 The Connectedness of an Inverse Polynomial Image

In the next theorem, we give a necessary and sufficient condition such that the in-
verse image is connected.
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Theorem 4. Let Tn ∈ Pn. The inverse image T −1
n ([−1,1]) is connected if and only

if all zeros of the derivative T ′
n lie in T −1

n ([−1,1]).

Proof. Let Γ :=
{

Γ1,Γ2, . . . ,Γn
}

denote the set of arcs of T −1
n ([−1,1]) as in

Lemma 1 (vi).
“⇐=”: Suppose that all zeros of T ′

n lie in Γ . Let A1 ∈ Γ be such that it contains
at least one zero z1 of T ′

n with multiplicity m1 ≥ 1. By Lemma 1 (ii), (iv) and (vi),
there are m1 additional arcs A2,A3, . . . ,Am1+1 ∈Γ containing z1. By Lemma 1 (vii),

A j ∩Ak = {z1} for j,k ∈ {1,2, . . . ,m1 + 1}, j �= k.

Now assume that there is another zero z2 of T ′
n , z2 �= z1, with multiplicity m2, on

A j∗ , j∗ ∈ {1,2, . . . ,m1 + 1}. Since no arc A j, j ∈ {1,2, . . . ,m1 + 1} \ { j∗} contains
z2, there are m2 curves Am1+1+ j ∈ Γ , j = 1,2, . . . ,m2, which cross each other at z2

and for which, by Lemma 1 (vii),

A j ∩Ak = {z2} for j,k ∈ {m1 + 2, . . . ,m1 +m2 + 1}, j �= k,

A j ∩Ak = /0 for j ∈ {1,2, . . . ,m1 + 1} \ { j∗},
k ∈ {m1 + 2, . . . ,m1 +m2 + 1}

A j∗ ∩Ak = {z2} for k ∈ {m1 + 2, . . . ,m1 +m2 + 1}.
If there is another zero z3 of T ′

n , z3 /∈ {z1,z2}, on A j∗∗ , j∗∗ ∈ {1,2, . . . ,m1+m2+1},
of multiplicity m3, we proceed as before.
We proceed like this until we have considered all zeros of T ′

n lying on the con-
structed set of arcs. Thus, we get a connected set of k∗+ 1 curves

A∗ := A1 ∪A2 ∪ . . .∪Ak∗+1

with k∗ zeros of T ′
n , counted with multiplicity, on A∗.

Next, we claim that k∗ = n− 1. Assume that k∗ < n− 1, then, by assumption, there
exists a curve Ak∗+2 ∈ Γ , for which

Ak∗+2 ∩A∗ = {}
and on which there is another zero of T ′

n . By the same procedure as before, we get
a set A∗∗ of k∗∗+1 arcs of Γ for which A∗ ∩A∗∗ = {} and k∗∗ zeros of T ′

n , counted
with multiplicity. If k∗ + k∗∗ = n− 1, then we would get a set of k∗ + k∗∗ + 2 =
n+ 1 arcs, which is a contradiction to Lemma 1 (i). If k∗+ k∗∗ < n− 1, we proceed
analogously and again, we get too many arcs, i.e., a contradiction to Lemma 1 (vi).
Thus, k∗ = n− 1 must hold and thus Γ is connected.

“=⇒”: Suppose that Γ is connected. Thus, it is possible to reorder Γ1,Γ2, . . . ,Γn

into Γk1 ,Γk2 , . . . ,Γkn such that Γk1 ∪ . . .∪Γk j is connected for each j ∈ {2, . . . ,n}. Now
we will count the crossing points (common points) of the arcs in the following way:
If there are m+1 arcs A1,A2, . . . ,Am+1 ∈Γ such that z0 ∈A j, j = 1,2, . . . ,Am+1, then
we will count the crossing point z0 m-times, i.e., we say A1, . . . ,Am+1 has m crossing
points. Hence, Γk1 ∪Γk2 has one crossing point, Γk1 ∪Γk2 ∪Γk3 has two crossing points,
Γk1 ∪Γk2 ∪Γk3 ∪Γk4 has 3 crossing points, and so on. Summing up, we arrive at n−1
crossing points which are, by Lemma 1 (iv) the zeros of T ′

n .
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Theorem 4 may be generalized to the question how many connected sets
T −1

n ([−1,1]) consists of. The proof runs along the same lines as that of Theorem 4.

Theorem 5. Let Tn ∈ Pn. The inverse image T −1
n ([−1,1]) consists of k, k ∈

{1,2, . . . ,n}, connected components B1,B2, . . . ,Bk with B1 ∪ B2 ∪ . . . ∪ Bk =
T −1

n ([−1,1]) and Bi ∩B j = {}, i �= j, if and only if n− k zeros of the derivative
T ′

n lie in T −1
n ([−1,1]).
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