Skip to main content

Abstract

Intraoperative monitoring (IOM) may generally be separated into two categories: (1) evaluating real-time data to detect adverse changes in the nervous system giving the surgical team a chance either to reverse or to stop what is causing the change; (2) evaluating real-time data to help determine related physiological localization or guidance for the surgical team through specific procedural steps of a particular surgery. In both categories the surgical, anesthetic, and neuromonitoring personnel play a role in how the data is interpreted and incorporated during the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Umemura A, Jaggi JL, Hurtig HI, et al. Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg. 2003;98(4):779–84.

    Article  PubMed  Google Scholar 

  2. Apetauerova D, Schirmer CM, Shils JL, et al. Successful bilateral deep brain stimulation of the globus pallidus internus for persistent status dystonicus and generalized chorea. J Neurosurg. 2010;113(3):634–8.

    Article  PubMed  Google Scholar 

  3. Bekker AY, Kaufman B, Samir H, Doyle W. The use of dexmedetomidine infusion for awake craniotomy. Anesth Analg. 2001;92:1251–3.

    Article  PubMed  CAS  Google Scholar 

  4. Ruskin DN, Bergstrom DA, Kaneoke Y, et al. Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. J Neurophysiol. 1999;81:2046–55.

    PubMed  CAS  Google Scholar 

  5. Hutchison WD, Lozano AM. Microelectrode recordings in movement disorder surgery. In: Lozano AM, editor. Movement disorders surgery. Basel: Karger; 2000. p. 103–17.

    Google Scholar 

  6. Bohmdorfer W, Schwarzinger P, Binder S, et al. Temporary suppression of tremor by remifentanil in a patient with Parkinson’s disease during cataract extraction under local anesthesia. Anaesthesist. 2003;52:795–7.

    Article  PubMed  CAS  Google Scholar 

  7. Burton DA, Nicholson G, Hall GM. Anaesthesia in elderly patients with neurodegenerative disorders: special considerations. Drugs Aging. 2004;21:229–42.

    Article  PubMed  CAS  Google Scholar 

  8. Krauss JK, Akeyson EW, Giam P, et al. Propofol-induced dyskinesias in Parkinson’s disease. Anesth Analg. 1996;83:420–2.

    PubMed  CAS  Google Scholar 

  9. Ard J, Doyle W, Bekker A. Awake craniotomy with dexmedetomidine in pediatric patients. J Neurosurg Anesthesiol. 2003;15:263–6.

    Article  PubMed  Google Scholar 

  10. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42:33–84.

    Article  PubMed  Google Scholar 

  11. Almeida AN, Tavares C, Tibano A, et al. Dexmedetomidine for awake craniotomy without laryngeal mask. Arq Neuropsiquiatr. 2005;63:748–50.

    Article  PubMed  Google Scholar 

  12. Mack PF, Perrine K, Kobylarz E, et al. Dexmedetomidine and neurocognitive testing in awake craniotomy. J Neurosurg Anesthesiol. 2004;16:20–5.

    Article  PubMed  Google Scholar 

  13. Souter MJ, Rozet I, Ojemann JG, et al. Dexmedetomidine sedation during awake craniotomy for seizure resection: effects on electrocorticography. J Neurosurg Anesthesiol. 2007;19:38–44.

    Article  PubMed  Google Scholar 

  14. Rozet I, Muangman S, Vavilala MS, et al. Clinical experience with dexmedetomidine for implantation of deep brain stimulators in Parkinson’s disease. Anesth Analg. 2006;103:1224–8.

    Article  PubMed  CAS  Google Scholar 

  15. Uyar AS, Yagmurdur H, Fidan Y, et al. Dexmedetomidine attenuates the hemodynamic and neuroendocrinal responses to skull-pin head-holder application during craniotomy. J Neurosurg Anesthesiol. 2008;20:174–9.

    Article  PubMed  Google Scholar 

  16. Rozet I. Anesthesia for functional neurosurgery: the role of dexmedetomidine. Curr Opin Anaesthesiol. 2008;21:537–43.

    Article  PubMed  Google Scholar 

  17. Khatib R, Ebrahim Z, Rezai A. Anesthetic complications during deep brain stimulation. Anesthesiology. 2004;101:A379.

    Google Scholar 

  18. Vitek JL, Bakay RA, Hashimoto T, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg. 1998;88(6):1027–43.

    Article  PubMed  CAS  Google Scholar 

  19. Bertrand C, Poirier L, Martinez N, et al. Pneumotaxic localization, recording, stimulation, and section of basal brain structures in dyskinesia. Neurology. 1958;8(10):783–6.

    Article  PubMed  CAS  Google Scholar 

  20. Bertrand G, Jasper H, Wong A. Microelectrode study of the human thalamus: functional organization in the ventro-basal complex. Confin Neurol. 1967;29(2):81–6.

    Article  PubMed  CAS  Google Scholar 

  21. Albe-Fessard D, Arfel G, Guiot G, et al. Electrophysiological studies of some deep cerebral structures in man. J Neurol Sci. 1966;3(1):37–51.

    Article  PubMed  CAS  Google Scholar 

  22. Albe-Fessard D. Electrophysiological methods for the identification of thalamic nuclei. Z Neurol. 1973;205(1):15–28.

    Article  PubMed  CAS  Google Scholar 

  23. Sterio D, Berić A, Dogali M, et al. Neurophysiological properties of pallidal neurons in Parkinson’s disease. Ann Neurol. 1994;35(5):586–91.

    Article  PubMed  CAS  Google Scholar 

  24. Alterman RL, Sterio D, Beric A, et al. Microelectrode recording during posteroventral pallidotomy: impact on target selection and complications. Neurosurgery. 1999;44(2):315–21.

    Article  PubMed  CAS  Google Scholar 

  25. Hutchison WD, Allan RJ, Opitz H, et al. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol. 1998;44(4):622–8.

    Article  PubMed  CAS  Google Scholar 

  26. Forster A, Eljamel MS, Varma TR, et al. Audit of neurophysiological recording during movement disorder surgery. Stereotact Funct Neurosurg. 1999;72(2–4):154–6.

    Article  PubMed  CAS  Google Scholar 

  27. Zonenshayn M, Rezai AR, Mogilner AY, et al. Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery. 2000;47(2):282–92.

    Article  PubMed  CAS  Google Scholar 

  28. Hardy J. Electrophysiological localization and identification. J Neurosurg. 1966;24:410–4.

    Google Scholar 

  29. Lozano A, Hutchison W, Kiss Z, et al. Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg. 1996;84(2):194–202.

    Article  PubMed  CAS  Google Scholar 

  30. Bakay RA, DeLong MR, Vitek JL. Posteroventral pallidotomy for Parkinson’s disease. J Neurosurg. 1992;77(3):487–8.

    PubMed  CAS  Google Scholar 

  31. Baron MS, Vitek JL, Bakay RA, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol. 1996;40(3):355–66.

    Article  PubMed  CAS  Google Scholar 

  32. Sutton JP, Couldwell W, Lew MF, et al. Ventroposterior medial pallidotomy in patients with advanced Parkinson’s disease. Neurosurgery. 1995;36(6):1112–6.

    Article  PubMed  CAS  Google Scholar 

  33. Lang AE, Lozano AM, Montgomery E, et al. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med. 1997;337(15):1036–42.

    Article  PubMed  CAS  Google Scholar 

  34. Iacono RP, Shima F, Lonser RR, et al. The results, indications, and physiology of posteroventral pallidotomy for patients with Parkinson’s disease. Neurosurgery. 1995;36(6):1118–25.

    Article  PubMed  CAS  Google Scholar 

  35. Laitinen LV, Bergenheim AT, Hariz MI. Ventroposterolateral pallidotomy can abolish all parkinsonian symptoms. Stereotact Funct Neurosurg. 1992;58(1–4):14–21.

    Article  PubMed  CAS  Google Scholar 

  36. Laitinen LV. Ventroposterolateral pallidotomy. Stereotact Funct Neurosurg. 1994;62(1–4):41–52.

    Article  PubMed  CAS  Google Scholar 

  37. Vitek JL. Deep brain stimulation for Parkinson’s disease. A critical re-evaluation of STN versus GPi DBS. Stereotact Funct Neurosurg. 2002;78(3–4):119–31.

    Article  PubMed  Google Scholar 

  38. Moreau C, Defebvre L, Destee A, et al. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. 2008;71(2):80–4.

    Article  PubMed  CAS  Google Scholar 

  39. Brozova H, Barnaure I, Alterman RL, et al. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. 2009;72(8):770.

    Article  PubMed  Google Scholar 

  40. Brotchie J, Fitzer-Attas C. Mechanisms compensating for dopamine loss in early Parkinson disease. Neurology. 2009;72(7 Suppl):S32–8.

    Article  PubMed  CAS  Google Scholar 

  41. Chesselet MF. Dopamine and Parkinson’s disease: is the killer in the house? Mol Psychiatry. 2003;8(4):369–70.

    Article  PubMed  CAS  Google Scholar 

  42. Ekesbo A, Rydin E, Torstenson R, et al. Dopamine autoreceptor function is lost in advanced Parkinson’s disease. Neurology. 1999;52(1):120–5.

    Article  PubMed  CAS  Google Scholar 

  43. Welter ML, Houeto JL, Tezenas du Montcel S, et al. Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain. 2002;125:575–83.

    Google Scholar 

  44. Benabid AL, Benazzouz A, Hoffmann D, et al. Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord. 1998;13 Suppl 3:119–25.

    PubMed  Google Scholar 

  45. Vesper J, Chabardes S, Fraix V, et al. Dual channel deep brain stimulation system (Kinetra™) for Parkinson’s disease and essential tremor – a prospective multi-center open label clinical study. J Neurol Neurosurg Psychiatry. 2002;73:275–80.

    Article  PubMed  CAS  Google Scholar 

  46. Anderson VC, Burchiel KJ, Hogarth P, et al. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol. 2005;62:554–60.

    Article  PubMed  Google Scholar 

  47. Volkmann J, Allert N, Voges J, et al. Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology. 2001;56:548–51.

    Article  PubMed  CAS  Google Scholar 

  48. Blomstedt P, Hariz MI. Are complications less common in deep brain stimulation than in ablative procedures for movement disorders? Stereotact Funct Neurosurg. 2006;84(2–3):72–81.

    Article  PubMed  Google Scholar 

  49. Alkhani A, Lozano AM. Pallidotomy for parkinson disease: a review of contemporary literature. J Neurosurg. 2001;94(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  50. Beric A, Kelly PJ, Rezai A, et al. Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg. 2001;77(1–4):73–8.

    Article  PubMed  CAS  Google Scholar 

  51. Mason LJ, Cojocaru TT, Cole DJ. Surgical intervention and anesthetic ­management of the patient with Parkinson’s disease. Int Anesthesiol Clin. 1996;34(4):133–50.

    Article  PubMed  CAS  Google Scholar 

  52. Nicholson G, Pereira AC, Hall GM. Parkinson’s disease and anaesthesia. Br J Anaesth. 2002;89(6):904–16.

    Article  PubMed  CAS  Google Scholar 

  53. Gross M, Bannister R, Godwin-Austen R. Orthostatic hypotension in Parkinson’s disease. Lancet. 1972;1(7743):174–6.

    Article  PubMed  CAS  Google Scholar 

  54. Vincken WG, Gauthier SG, Dollfuss RE, et al. Involvement of upper-airway muscles in extrapyramidal disorders. A cause of airflow limitation. N Engl J Med. 1984;311(7):438–42.

    Article  PubMed  CAS  Google Scholar 

  55. Lee KH. Oromandibular dystonia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(4):491–6.

    Article  PubMed  Google Scholar 

  56. Farmer SF, Sheean GL, Mayston MJ, et al. Abnormal motor unit synchronization of antagonist muscles underlies pathological co-contraction in upper limb dystonia. Brain. 1998;121(Pt 5):801–14.

    Article  PubMed  Google Scholar 

  57. Gracies J-M, Simpson DM. Spastic dystonia. In: Brin MF, Comella C, Jankovic J, editors. Dystonia etiology, clinical features, and treatment. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 195–212.

    Google Scholar 

  58. Zhang JG, Zhang K, Wang ZC, et al. Deep brain stimulation in the treatment of secondary dystonia. Chin Med J (Engl). 2006;119(24):2069–74.

    PubMed  Google Scholar 

  59. Katsakiori PF, Kefalopoulou Z, Markaki E, et al. Deep brain stimulation for secondary dystonia: results in 8 patients. Acta Neurochir (Wien). 2009;151(5):473–8.

    Article  PubMed  CAS  Google Scholar 

  60. Sani S, Ostrem JL, Shimamoto S, et al. Single unit “pauser” characteristics of the globus pallidus pars externa distinguish primary dystonia from secondary dystonia and Parkinson’s disease. Exp Neurol. 2009;216(2):295–9.

    Article  PubMed  Google Scholar 

  61. Woehrle JC, Blahak C, Kekelia K, et al. Chronic deep brain stimulation for segmental dystonia. Stereotact Funct Neurosurg. 2009;87(6):379–84.

    Article  PubMed  Google Scholar 

  62. Schneider SA, Klein C. PINK1 type of young-onset Parkinson disease. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle: University of Washington; 2010. p. 1993–2010.

    Google Scholar 

  63. Raymond D, Bressman SB. Early-onset primary dystonia (DYT1). In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle: University of Washington; 2010. p. 1993–9.

    Google Scholar 

  64. Albanese A, Barnes MP, Bhatia KP, et al. A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report of an EFNS/MDS-ES Task Force. Eur J Neurol. 2006;13(5):433–44.

    Article  PubMed  CAS  Google Scholar 

  65. Shils JL, Tagliati M, Alterman RL. Neurophysiological monitoring during neurosurgery for movement disorders. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery: a modern intraoperative approach. Elsevier; New York City; 2002. p. 405–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay L. Shils .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shils, J.L., Mokeem, A.A., Arle, J.E. (2012). Deep Brain Stimulation. In: Koht, A., Sloan, T., Toleikis, J. (eds) Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0308-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0308-1_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0307-4

  • Online ISBN: 978-1-4614-0308-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics