Skip to main content

Why Measure the Vectorial Capacity of Sandflies?

  • Chapter
Leishmaniasis

Part of the book series: NATO ASI Series ((NSSA,volume 171))

Abstract

Lysenko & Beljaev 1, among others, have recently proposed that the malariologist’s concept of Vectorial Capacity will occupy a central place in future quantitative studies of leishmaniasis. The Vectorial Capacity should have an important role to play because the malarias and the leishmaniases have much in common, particularly in their mode of transmission. The vectors are flies which have cycles of bloodfeeding and egg-laying. The parasite has a latent period in the fly which may be quite long relative to the fly’s life expectancy. Further, although the leishmaniases are noted for their broad taste in vertebrate hosts, some species of Leishmania in some places have, in common with human Plasmodium species, just one principal vertebrate host which is infectious to the vector. Indian and Kenyan Le. donovani are examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Lysenko and A. E. Beljaev, Quantitative epidemiology, in: “The Leishmaniases, Volume 1,” W. Peters and R. Killick-Kendrick, eds., Academic Press, London (1986).

    Google Scholar 

  2. G. Macdonald, “The Epidemiology and Control of Malaria,” Oxford University Press, London (1957).

    Google Scholar 

  3. C. Garrett-Jones, Prognosis for the interruption of malaria transmission through assessment of the mosquito’s vectorial capacity, Nature 204: 1173 (1964).

    Article  PubMed  CAS  Google Scholar 

  4. C. Garrett-Jones, The human blood index of malaria vectors in relation to epidemiological assessment, Bull. World Health Org. 30: 241 (1964).

    PubMed  CAS  Google Scholar 

  5. C. Garrett-Jones and B. Grab, The assessment of insecticidal impact on the malaria mosquito’s vectorial capacity, from data on the proportion of parous females, Bull. World Health Org. 31: 37 (1964).

    Google Scholar 

  6. C. Garrett-Jones and G. R. Shidrawi, Malaria vectorial capacity of a population of Anopheles gambiae, Bull. World Health Org. 40: 531 (1969).

    CAS  Google Scholar 

  7. D. J. Bradley, Epidemiological models — theory and reality, in: “Population Dynamics of Infectious Diseases,” R. M. Anderson, ed., Chapman and Hall, London (1982).

    Google Scholar 

  8. P. R. Holmes and M. H. Birley, An improved method for survival rate analysis from time series of haematophagous dipteran populations, J. Anim Ecol. 56: 427 (1987).

    Article  Google Scholar 

  9. L. Molineaux and G. Gramiccia, “The Garki Project,” World Health Organization, Geneva (1980).

    Google Scholar 

  10. C. Dye, Vectorial Capacity: must we measure all its components?, Parasit. Today 2: 203 (1986).

    Article  CAS  Google Scholar 

  11. J.-A Rioux, G. Lanotte, H. Croset and J.-P. Dedet, Ecologie des leishmanioses dans le sud de la France 5. Pouvoir infestant comparé des diverses formes de leishmaniose canine vis-à-vis de Phlebotomus ariasi Tonnoir, 1921, Ann. Parasit. 47: 413 (1972).

    CAS  Google Scholar 

  12. R. D. Ward, A. L. Ribeiro, P. D. Ready and A. Murtagh, Reproductive isolation between different forms of Lutzomyia longipalpis (Lutz & Neiva), (Diptera: Psychodidae), the vector of Leishmania donovani chagasi Cunha & Chagas and its significance to kala-azar distribution in South America, Mem. Inst. Oswaldo Cruz 78: 269 (1983).

    Article  Google Scholar 

  13. R. Lane and P. D. Ready, Multivariate discrimination between Lutzomyia wellcomi the vector of mucocutaneous leishmaniasis and Lutzomyia complexus, Ann. trop. Med. Parasit. 79: 469 (1986).

    Google Scholar 

  14. D. M. Minter, Phlebotomus (Phlebotomus) celiae sp. nov. (Diptera, Psychodidae), a new sandfly from Kenya, Ann. trop. Med. Parasit. 56: 457 (1962).

    Google Scholar 

  15. W. Peters and R. Killick-Kendrick, “The Leishmaniases,” Academic Press, London (1986).

    Google Scholar 

  16. R. W. Ashford, M. A. Bray, M. P. Hutchinson and R. S. Bray, The epidemiology of cutaneous leishmaniasis in Ethiopia, Trans. Roy. Soc. Trop. Med. Hyg. 67: 568 (1973).

    Article  PubMed  CAS  Google Scholar 

  17. C. Dye, M. W. Guy, D. B. Elkins, T. J. Wilkes and R. Killick-Kendrick, The life expectancy of phlebotomine sandflies: first field estimates from southern France, Med. & Vet. Ent. 1: 417 (1987).

    Article  CAS  Google Scholar 

  18. R. Beach, G. Kilu and J. Leeuwenburg, Modification of sandfly biting behaviour by Leishmania leads to increased parasite transmission, Am. J. Trop. Med. Hyg. 34: 279 (1985).

    Google Scholar 

  19. R. Killick-Kendrick, A. J. Leaney, P. D. Ready and D. Molyneux, Leishmania in phlebotomid sandflies. IV. The transmission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longipalpis, Proc. Roy. Soc. London B 196: 105 (1977).

    Article  CAS  Google Scholar 

  20. R. Killick-Kendrick, The transmission of leishmaniasis by the bite of the sandfly, J. Roy. Army. Med. Corps 132: 134 (1986).

    Article  Google Scholar 

  21. W. A. Foster, Studies on leishmaniasis in Ethiopia III: Resting and breeding sites, flight behaviour, and seasonal abundance of Phlebotomus longipes (Diptera. Psychodidae), Ann. trop. Med. Parasit. 66: 313 (1972).

    PubMed  CAS  Google Scholar 

  22. J.-A. Rioux, R. Killick-Kendrick, J. Perieres, D.-P. Turner and Lanotte, Écologie des leishmanioses dans le sud de la France 13. Les sites de “flanc de coteau”, biotopes de transmission privilégies de la leishmaniose viscerale en Cévennes, Ann. Parasit. 55: 445 (1980).

    CAS  Google Scholar 

  23. J.-A. Rioux, J. Perieres, R. Killick-Kendrick, G. Lanotte, and M. Bailly, Ecologie des leishmanioses dans le sud de la France 17. Échantillonage des phlebotomes par le procède des pièges adhésifs. Comparison avec la technique de capture sur appât humain, Ann. Parasit. 57: 631 (1982).

    CAS  Google Scholar 

  24. A. K. Hati, Current status of leishmaniasis — vector biology, in: “Proceedings of the Indo-UK Workshop on Leishmaniasis,” Indian Council for Medical Research, Delhi (1983).

    Google Scholar 

  25. J. C. Beier, B. M. El Sawaf, A. I. Merdan, S. El Said and S. Doha, Sandflies (Diptera: Psychodidae) associated with visceral leishmaniasis in El Agamy, Alexandria Governorate, Egypt I. Population ecology, J. Med. Entomol. 23: 600 (1986).

    PubMed  CAS  Google Scholar 

  26. W. A. Foster, P. F. L. Boreham and C. H. Tempelis, Studies on leishmaniasis in Ethiopia. IV: Feeding behaviour of Phlebotomus longipes (Diptera: Psychodidae), Ann, trop. Med. Parasit. 66: 433 (1972).

    CAS  Google Scholar 

  27. M. W. Guy, R. Killick-Kendrick, G. S. Gill, J.-A. Rioux and R. S. Bray, Ecology of leishmaniasis in the south of France 19. Determination of the hosts of Phlebotomus ariasi Tonnoir, 1921 in the Cévennes by bloodmeal analyses, Ann. Parasit. Hum. Comp. 59: 449 (1984).

    CAS  Google Scholar 

  28. R. Killick-Kendrick, T. J. Wilkes, J.-A. Rioux, C. Dye and E. Guilvard, Ecology of leishmaniasis in the south of France 22. Field observations on gonotrophic concordance and variations in the length of the gono-trophic cycle of Phlebotomus ariasi Tonnoir, 1921 in the Cévennes, unpub.

    Google Scholar 

  29. A. V. Dolmatova, Geography, biology and ecology of sandflies (Phiebotonrinae) in the USSR, unpublished (1967).

    Google Scholar 

  30. C. Dye, The epidemiology of canine visceral leishmaniasis in southern France: classical theory offers another explanation of the data, Parasitology in press.

    Google Scholar 

  31. B. A. Southgate, The structure of foci of visceral leishmaniasis in north-eastern Kenya, in: “Ecologie des Leishmanioses,” Colloques Internationaux du CNRS, Paris (1977).

    Google Scholar 

  32. W. O. Kermack and A. G. McKendrick, Mathematical analysis of Dr. Napier’s statistics of house infection in kala-azar, Ind. J. Med. Res. 19: 343 (1931).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dye, C. (1989). Why Measure the Vectorial Capacity of Sandflies?. In: Hart, D.T. (eds) Leishmaniasis. NATO ASI Series, vol 171. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1575-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1575-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8862-6

  • Online ISBN: 978-1-4613-1575-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics