Skip to main content

Simulation of the Effect of the Tundra Vascular Plant Canopy on the Productivity of Four Plant Species

  • Chapter
Vegetation and Production Ecology of an Alaskan Arctic Tundra

Part of the book series: Ecological Studies ((ECOLSTUD,volume 29))

Abstract

The physical environment and the structure of the vegetation are two important components which influence the nature and stability of tundra ecosystems. Low temperatures, low solar and infrared irradiances, high wind speeds, permanently frozen subsoil, and impeded water drainage restrict the development of the vegetation by affecting plant growth and development, vegetation composition, and soil faunal activity and decomposition (Bliss, 1956; Billings and Mooney, 1968; Price, 1971; McCown, 1973; Savile, 1972). The vascular plant canopy, although short, affects the solar and infrared irradiances, wind speeds, and air and surface temperatures at the moss or organic mat surface, and the depth of thaw (Drury, 1956; Price, 1971; Matveyeva, 1971; Brown, 1973; Dingman and Koutz, 1974; Miller et al., 1976; Ng and Miller, 1977). Thus, within the interactive vegetation-soil systems, the structure of the vascular plant canopy influences the production of the vascular plant and the production and distribution of moss species, by affecting the microclimate of the vascular plant canopy and moss. This chapter analyzes, by simulation models, the effects of the vascular plant canopy on microclimate and the effect of microclimate on production by vascular plants and moss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Billings, W. D., and H. A. Mooney. (1968) The ecology of arctic and alpine plants. Biol. Rev., 43: 481–529.

    Article  Google Scholar 

  • Bliss, L. C. (1956) A comparison of plant development in microenvironments of arctic and alpine tundras. Ecol. Monogr., 26: 303–337.

    Article  Google Scholar 

  • Brown, R. J. E. (1973) Influence of climatic and terrain factors on ground temperatures at three locations in the permafrost region of Canada. Permafrost: North American Contribution to the Second International Conference, Washington, D.C.: National Academy of Sciences, pp. 27–34.

    Google Scholar 

  • Coyne, P. I., and J. J. Kelley. (1975) CO2 exchange over the Alaskan arctic tundra: Meteorological assessment by an aerodynamic method. J. Appl. Ecol., 12: 587–611.

    Article  CAS  Google Scholar 

  • Dennis, J. G., L. L. Tieszen, and M. Vetter. (1978) Seasonal dynamics of above-and belowground production of vascular plants at Barrow, Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 4.

    Google Scholar 

  • Dingman, S. L., and R. F. Koutz. (1974) Relations among vegetation, permafrost, and potential insolation in central Alaska. Arct. Alp. Res., 6: 37–47.

    Article  Google Scholar 

  • Drury, W. H. (1956) Bog flats and physiographic processes in the upper Kuskokwim River region, Alaska. Contrib. Gray Herb. Harv., 130 pp.

    Google Scholar 

  • Duncan, W. C., R. S. Loomis, W. A. Williams, and R. Hanau. (1967) A model for simulating photosynthesis in plant communities. Hilgardia, 38: 181–205.

    Google Scholar 

  • Leyton, L., E. R. C. Reynolds, and F. B. Thompson. (1967) Rainfall interception in forest and moorland. In Forest Hydrology (W. E. Sooper and H. W. Lull, Eds.). Oxford: Pergamon Press. pp. 163–178.

    Google Scholar 

  • McCown, B. H. (1973) Growth and survival of northern plants at low soil temperatures. U.S. Army Cold Regions Res. Engin. Lab. Spec. Rep., 186: 1–15.

    Google Scholar 

  • Matveyeva, N. V. (1971) Dynamics of permafrost thawing in western Taimyr (Dinamika ottaivaniia merzloty v tundrakh zapadnogo Taimyr). In Biogeocenoses of Taimyr Tundra and Their Productivity, Vol. 1, pp. 45–56 (Biogeotsenozy Taimyrskoi tundry i ikh productivnost’). Leningrad: Nauka. (International Tundra Biome Translation 6, April 1972; Translator: P. Kuchar, 10 pp.)

    Google Scholar 

  • Miller, P. C., W. A. Stoner, and L. L. Tieszen. (1976) A model of stand photosynthesis for the wet meadow tundra at Barrow, Alaska. Ecology, 57: 411–430.

    Article  CAS  Google Scholar 

  • Miller, P. C., W. C. Oechel, W. A. Stoner, and B. Sveinbjömsson. (1978) Simulation of CO2 uptake and water relations of four arctic bryophytes at Point Barrow, Alaska. Photosynthetica, 12: 7–20.

    CAS  Google Scholar 

  • Nakano, Y., and J. Brown. (1972) Mathematical modeling and validation of the thermal regimes in tundra soils, Barrow, Alaska. Arct. Alp. Res., 4: 19–38.

    Article  Google Scholar 

  • Ng, E., and P. C. Miller. (1975) A model of the effect of tundra vegetation on soil temperatures. In Climate of the Arctic. 24th Alaska Science Conference, Fairbanks, Alaska, August 15–17, 1973 (G. Weiler and S. A. Bowling, Eds.). Geophysical Institute, University of Alaska, Fairbanks, Alaska, pp. 222–226.

    Google Scholar 

  • Ng, E., and P. C. Miller. (1977) Validation of a model of the effects of tundra vegetation on soil temperatures. Arct. Alp. Res., 9: 89–104.

    Article  Google Scholar 

  • Oechel, W. C. (1976) Seasonal patterns of temperature response of CO2 flux and acclimation in arctic mosses growing in situ. Photosynthetica, 10: 447–456.

    Google Scholar 

  • Oechel, W. C., and N. J. Collins. (1976) Comparative CO2 exchange patterns in mosses from two tundra habitats at Barrow, Alaska. Can. J. Bot., 54: 1355–1369.

    Article  CAS  Google Scholar 

  • Peterson, W. L., and J. M. Mayo. (1975) Moisture stress and its effects on photosynthesis in Dicranum polysetum. Can. J. Bot., 53: 2897–2900.

    Article  Google Scholar 

  • Price, L. W. (1971) Vegetation, microtopography and depth of active layer on different exposures in subarctic alpine tundra. Ecology, 52: 638–647.

    Article  Google Scholar 

  • Reynolds, E. R. C., and L. Leyton. (1963) Measurement and significancy of throughfall in forest stands. In The Water Relations of Plants (A. J. Rutter and F. H. Whitehead, Eds.). New York: J. Wiley and Sons Inc., 394 pp.

    Google Scholar 

  • Savile, D. B. O. (1972) Arctic Adaptations in Plants. Can. Dep. Agric. Monogr. 6, 81 pp.

    Google Scholar 

  • Shaver, G. R., and W. D. Billings. (1975) Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology, 56: 401–409.

    Article  Google Scholar 

  • Slatyer, R. O. (1962) Methodology of a water balance study conducted on a desert woodland (Acacia aneura F. Muell.). In Symposium on Plant-water Relations in Arid and Semi-arid Conditions. Paris: Unesco, pp. 15–26.

    Google Scholar 

  • Slatyer, R. O. (1965) Measurements of precipitation interception by an arid zone plant community (Acacia aneura F. Muell.). In Methodology of Plant Ecophysiology (F. E. Eckardt, Ed.). Paris: Unesco, pp. 181–192.

    Google Scholar 

  • Stoner, W. A., and P. C. Miller. (1975) Water relations of plant species in the wet coastal tundra at Barrow, Alaska. Arct. Alp. Res., 7: 109–124.

    Article  Google Scholar 

  • Stoner, W. A., P. C. Miller, and L. L. Tieszen. (1978) A model of plant growth and phosphorus allocation for Dupontia fisheri in coastal, wet, meadow tundra. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 24.

    Google Scholar 

  • Tieszen, L. L. (1975) CO2 exchange in the Alaskan Arctic Tundra: Seasonal changes in the rate of photosynthesis of four species. Photosynthetica, 9: 376–390.

    Google Scholar 

  • Warren Wilson, J. (1965) Stand structure and light penetration. I. Analysis by point quadrats. J. Appl. EcoI., 2: 383–390.

    Article  Google Scholar 

  • Webber, P. J. (1978) Spatial and temporal variation of the vegetation and its production, Barrow, Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (L. L. Tieszen, Ed.). New York: Springer-Verlag, Chap. 3.

    Google Scholar 

Download references

Authors

Editor information

Larry L. Tieszen

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Stoner, W.A., Miller, P.C., Oechel, W.C. (1978). Simulation of the Effect of the Tundra Vascular Plant Canopy on the Productivity of Four Plant Species. In: Tieszen, L.L. (eds) Vegetation and Production Ecology of an Alaskan Arctic Tundra. Ecological Studies, vol 29. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-6307-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-6307-4_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6309-8

  • Online ISBN: 978-1-4612-6307-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics