Skip to main content

Association of Plants and Phytophagous Insects in Taiga Forest Ecosystems

  • Chapter
Forest Ecosystems in the Alaskan Taiga

Part of the book series: Ecological Studies ((ECOLSTUD,volume 57))

Abstract

Plant communities in taiga forest ecosystems harbor an array of insects that exploit the vast biomass within these ecosystems. Phytophagous insects with associated parasites, predators, and saprophytes form a discrete insect community. Phytophagous species often differ among plant communities, but the associated natural insect enemies are usually not host-specific and are associated with several species of forest insects. The taiga forest ecosystems of interior Alaska have variable site characteristics, including aspect and slope. These site differences (Van Cleve et al. 1983) affect both plant species composition and plant growth and vigor, which in turn affect the population dynamics of phytophagous insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, D.J. 1953. The natural control of forest insects in the tropics. Trans. Int. Congr. Entomol, Amsterdam, 1951. 2: 220–223.

    Google Scholar 

  • Baltensweiler, W., G. Benz, P. Bovey, and V. Delucchi. 1977. Dynamics of larch bud moth populations. Ann. Rev. Entomol. 22: 79–100.

    Article  Google Scholar 

  • Beckwith, R.C. 1968. The large aspen tortrix, Choristoneura conflictana (Wlkr.), in interior Alaska. Research Note PNW-81. USD A Forest Service, Pacific Northwest Forest and Range Experiment Station. Portland, OR. 10 pp.

    Google Scholar 

  • Beckwith, R.C. 1970. Influence of host foliage on larval survival and adult fecundity of Choristoneura conflictana ( Lepidoptera: Tortricidae). Can. Entomol. 102: 1474–1480.

    Google Scholar 

  • Benz, G. 1974. Negative Rückkoppelung durch Raum- und Nahrungskonkurrenz sowie zyklische Veränderung der Nahrungsgrundlage als Regelprinzip in der Popula-tionsdynamik des Grauen Lärchenwicklers, Zeiraphera diniana (Guenee) (Lep., Tortricidae). Z. ang. Entomol. 76: 196–228.

    Article  Google Scholar 

  • Cates, R.G. and D.F. Rhoades. 1977. Patterns in the production of antiherbivore chemical defenses in plant communities. Biochem. Syst. and Ecol. 5: 185–193.

    Article  CAS  Google Scholar 

  • Cates, R.G. 1980. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: the effect of resource abundance and plant chemistry. Oecologia (Berlin) 46: 22–31.

    Article  Google Scholar 

  • Cates, R.G. and H.J. Alexander. 1982. Host resistance and susceptibility, pp. 212–263 in J.B. Mitton and K.B. Sturgeon, eds. Bark Beetles in North American Conifers. University of Texas Press, Austin, TX. 557 pp.

    Google Scholar 

  • Cates, R.G., R.A. Redak, and C.B. Henderson. 1982. Patterns in defensive natural products chemistry: Douglas-fir and western spruce budworm interactions, pp. 1–19 in P. A Hedlin, ed. Plant Resistance to Insects. American Chemical Society Symposium Series 208, American Chemical Society, Washington, D.C. 375 pp.

    Google Scholar 

  • Feeney, P.P. 1976. Plant apparency and chemical defense, pp. 1–40 in J.W. Wallace and R.L. Mansell, eds. Biochemical Interactions Between Plants and Insects. Recent Advances in Phytochemistry, Vol. 10. Plenum Press, New York. 560 pp.

    Google Scholar 

  • Futuyma, D.J. and F. Gould. 1979. Associations of plants and insects in a deciduous forest. Ecol. Mong. 49: 33–50.

    Article  Google Scholar 

  • Hard, J.S. 1980. Change in abundance of some forest insect species relative to changes in weather, pp. 22–33 in First Alaskan Integrated Pest Management Conference Proceedings. Anchorage, AIC 92 pp.

    Google Scholar 

  • Haukioja, E. and T. Hakala. 1975. Herbivore cycles and periodic outbreaks. Formula-tion of a general hypothesis. Rep. Kevo Subarctic Res. Sta. 12: 1–9.

    Google Scholar 

  • Haukioja, E., K. Kapiainen, P. Niemelä, and J. Tuomi. 1983. Plant availability hypothesis and other explanations of herbivore cycles: complementary or exclusive alternatives? Oikos 40: 419–432.

    Article  Google Scholar 

  • Haukioja, E. and P. Niemelä. 1977. Retarded growth of a geometrid larva after mechanical damage to leaves of its host tree. Ann. Zool. Fennici. 14: 48–52.

    Google Scholar 

  • Haukioja, E. and P. Niemelä. 1979. Birch leaves as a resource for herbivores: seasonal occurrence of increased resistance in foliage after mechanical damage of adjacent leaves. Oecologia (Berlin) 39: 151–159.

    Article  Google Scholar 

  • Haukioja, E. 1980. On the role of plant defences in the fluctuation of herbivore populations. Oikos 35: 202–213.

    Article  Google Scholar 

  • Haukioja, E. 1982. Inducible defences of white birch to a geometrid defoliator, Epirrita autumnata. pp. 199–203 in Proceedings of 5th International Symposium on Insect-Plant Relationships. Pudoc, Wageningen, 1982.

    Google Scholar 

  • Horn, H.S. 1974. The ecology of secondary succession. Ann. Rev. Ecol. Syst. 5: 25–37.

    Google Scholar 

  • Ives, W.G.H. 1974. Weather and outbreaks of the spruce budworm, Choristoneura fumiferana. Environment Canada, Canadian Forestry Service, Northern Forest Research Centre Information Report. NOR-X-118.

    Google Scholar 

  • Ives, W.G.H. 1981. Environmental factors affecting 21 forest insect defoliators in Manitoba and Saskatchewan, 1945–69. Environment Canada, Canadian Forestry Service, Northern Forest Research Centre Information Report. NOR-X-233.

    Google Scholar 

  • Karban, R. and RE. Ricklefs. 1983. Host characteristics, sampling intensity, and species richness of Lepidoptera larvae on broad-leaved trees in southern Ontario. Ecology. 64: 636–641.

    Article  Google Scholar 

  • Lawton, J.H. and D. Schroder. 1977. Effects of plant type, size of geographical range and taxonomic isolation on number of insect species associated with British plants. Nature. 265: 137–140.

    Article  Google Scholar 

  • Lawton, J.H. and P.W. Price. 1979. Species richness of parasites on hosts: agromyzid flies on the British Umberlliferae. Animal Ecol. 48: 619–637.

    Article  Google Scholar 

  • Levin, D.A. 1976. The chemical defenses of plants to pathogens and herbivores. Ann. Rev. Ecol. Syst. 7: 121–159.

    Article  CAS  Google Scholar 

  • Price, P.W. 1977. General concepts on the evolutionary biology of parasites. Evolution. 31: 405–420.

    Article  Google Scholar 

  • Rhoades, D.F. and R.G. Cates. 1976. Toward a general theory of plant antiherbivore chemistry, pp. 168–213 in J.W. Wallace and RL. Mansell, (eds.) Biochemical Interactions Between Plants and Insects. Recent Advances in Phytochemistry, Vol. 10. Plenum Press, New York. 560 pp

    Google Scholar 

  • Rhoades, D.F. 1979. Evolution of plant chemical defense against herbivores, pp. 3–54 in G.A. Rosenthal and D.H. Janzen, eds. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York. 718 pp.

    Google Scholar 

  • Schultz, J.C. and I.T. Baldwin. 1982. Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science. 217: 149–151.

    Article  PubMed  CAS  Google Scholar 

  • Strong, D.R. 1974a. The insects of British trees: community equilibrium in ecological time. Ann. Missouri Bot. Garden. 61: 692–701.

    Article  Google Scholar 

  • Strong, D.R. 1974b. Nonasymptotic species richness models and the insects of British trees. Proc. Natl. Acad. Sci. (USA) 71: 2766–2769.

    Article  CAS  Google Scholar 

  • Strong, D.R. 1974c. Rapid asymptotic species accumulation in phytophagous insect communities: the pests of cacao. Science 185: 1064–1066.

    Article  PubMed  Google Scholar 

  • Strong, D.R. and D.A. Levin. 1975. Species richness of the parasitic fungi of the British trees. Proc. Natl. Acad. Sci. (USA) 72: 2116–2119.

    Article  CAS  Google Scholar 

  • Strong, D.R., E.D. McCoy, and J.R Rey. 1977. Time and the number of herbivore species: the pests of sugar-cane. Ecology 56: 167–175.

    Article  Google Scholar 

  • Strong, D.R. 1979. Biogeographic dynamics of insect-host plant communities. Ann. Rev. Entomol. 24: 89–119.

    Article  Google Scholar 

  • Strong, D.R. and D.A. Levin. 1979. Species richness of plant parasites and growth form of their hosts. Am. Naturalist 114: 1–22.

    Article  Google Scholar 

  • Tepedino, V.J. and N.L. Stanton, 1976. Cushion plants as islands. Oecolgia 25: 243–256.

    Article  Google Scholar 

  • Thorsteinson, A.J. 1960. Host selection in phytophagous insects. Ann. Rev. Ent. 5: 193–218.

    Article  Google Scholar 

  • Torgersen, T.R. and T.C. Beckwith. 1974. Parasitoids associated with large aspen tortrix Choristoneura conflictana (Lepidoptera: Tortricidae) in interior Alaska. Can. Entomol. 106: 1247–1265.

    Article  Google Scholar 

  • Van Cleve, K. and L.A. Viereck. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska, pp. 185–210 in D.C. West, H.H. Shugart, and D.B. Botkin, eds. Forest Succession, Concepts and Application. Springer-Verlag, New York. 517 pp.

    Google Scholar 

  • Van Cleve, K. and C.T. Dyrness. 1983. Introduction and overview of a multidisciplinary research project: the structure and function of a black spruce (Picea mariana) forest in relation to other fire-affected taiga ecosystems. Can. J. Forest Res. 13: 695–702.

    Article  Google Scholar 

  • Van Cleve, IC, C.T. Dyrness, L.A. Viereck, J. Fox, F.S. Chapin III, and W. Oechel. 1983. Characteristics of taiga ecosystems in interior Alaska. Bioscience 33: 39–44.

    Article  Google Scholar 

  • Viereck, L.A. 1970. Forest succession and soil development adjacent to the Chena River in interior Alaska. Arctic and Alpine Res. 2: 1–26.

    Article  Google Scholar 

  • Viereck, L.A., C.T. Dyrness, K. Van Cleve, and J. Foot. 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can. J. Forest Res. 13: 703–720.

    Article  Google Scholar 

  • Ward, L.K. and K.H. Lakhani. 1977. The conservation of juniper: the fauna of food- plant island sites in southern England. J. Appl. Ecol. 14: 121–135.

    Article  Google Scholar 

  • Wellington, W.G. 1954. Atmospheric circulation processes and insect ecology. Can. Entomol. 86: 312–333.

    Article  Google Scholar 

  • Wellington, W.G., C.R. Sullivan, and G.W. Green. 1966. Biometeorological research in Canadian forest entomology—a review. Biometeorology 10: 3–15.

    Article  Google Scholar 

  • Werner, R.A. 1977. Biology and behavior of the spear-marked black moth, Rheumaptera hastata, in interior Alaska. Ann. Ent. Soc. Am. 70: 328–336.

    Google Scholar 

  • Werner, R.A. and B.H. Baker. 1977. Spear-marked black moth. USDA Forest Service, Forest Insect and Disease Leaflet 156. 8 pp.

    Google Scholar 

  • Werner, R.A. 1978. Overwintering survival of the spear-marked black moth, Rheu-maptera hastata, (Lepidoptera:Geometridae), pupae in interior Alaska. Can. Entomol. 110: 877–882.

    Article  Google Scholar 

  • Werner, R.A. 1979. Influence of host foliage on development, survival, fecundity, and oviposition of the spear-marked black moth, Rheumaptera hastata (Lepidoptera: Geometridae). Can. Entomol. 111: 317–322.

    Article  Google Scholar 

  • Werner, R.A. 1980. Biology and behavior of a larch bud moth, Zeiraphera sp., in Alaska. Research Note. PNW-356. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. Portland, OR. 8 pp.

    Google Scholar 

  • Werner, R.A. 1981. Advantages and disadvantages of insect defoliation in the taiga ecosystem. Proceedings of 32nd Alaska Science Conference, Fairbanks, AFL pp. 148.

    Google Scholar 

  • Werner, R.A. 1983. Biomass, density, and nutrient content of plant arthropods in the taiga of Alaska. Can. J. Forest Res. 13: 729–739.

    Article  Google Scholar 

  • Werner, R.A. and E.H. Holsten. 1984a. Mortality of white spruce during a spruce beetle outbreak on the Kenai Peninsula in Alaska. Can. J. Forest Res. 13: 96–101.

    Article  Google Scholar 

  • Werner, R.A. and E.H. Holsten. 1984b. Scolytidae associated with felled white spruce in Alaska. Can. Entomol. 116: 465–471.

    Article  Google Scholar 

  • Werner, R.A. and E.H. Holsten. 1984b. Scolytidae associated with felled white spruce in Alaska. Can. Entomol. 116: 465–471.

    Article  Google Scholar 

  • Werner, R.A. and E.H. Holsten. 1984b. Scolytidae associated with felled white spruce in Alaska. Can. Entomol. 116: 465–471.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Werner, R.A. (1986). Association of Plants and Phytophagous Insects in Taiga Forest Ecosystems. In: Van Cleve, K., Chapin, F.S., Flanagan, P.W., Viereck, L.A., Dyrness, C.T. (eds) Forest Ecosystems in the Alaskan Taiga. Ecological Studies, vol 57. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4902-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4902-3_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9353-8

  • Online ISBN: 978-1-4612-4902-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics