Skip to main content

Autoimmunity Against the Nicotinic Acetylcholine Receptor and the Presynaptic Calcium Channel at the Neuromuscular Junction

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 112 Accesses

Abstract

Before noon, the stores of the spirits which influenced the muscles being almost spent, they are scarcely able to move hand or foot. . . . this person for some time speaks freely and readily enough, but after long, hasty or laborious speaking, presently she becomes mute as a fish and cannot bring forth a word.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willis T. De anima brutorum. In: Kempton JW, ed. Living with Myasthenia Gravis. Springfield, 111.: Charles C Thomas; 1972:5.

    Google Scholar 

  2. Cohen IR, Young DB. Autoimmunity, Microbial immunity and the immunological homunculus. Immunol Today 1991; 12:105.

    CAS  Google Scholar 

  3. Engel AG. Myasthenia Gravis and myasthenic syndromes. Ann Neurol 1984; 16:519.

    PubMed  CAS  Google Scholar 

  4. Levinson AI, Zweiman B, Lisak RP. Immunopathogenesis and treatment of Myasthenia Gravis. J Clin Immunol 1987; 7:187.

    PubMed  CAS  Google Scholar 

  5. Lindstrom J, Shelton D, Fujii Y. Myasthenia Gravis. Adv in Immunol 1988; 42:233.

    CAS  Google Scholar 

  6. Schönbeck S, Chrestel S, Hohlfeld R. Myasthenia Gravis: Prototype of the antireceptor autoimmune diseases. Intl Rev Neurobiol 1990; 32:175.

    Google Scholar 

  7. Myasthenia Gravis and Related Disorders: Experimental and Clinical Aspects. In: Penn AS, Richman DP, Ruff RL, Lennon VA, eds. Ann NY Acad Sei (in press).

    Google Scholar 

  8. Engel AG, Fukuoka T, Lang B, Newsom-Davis J, Vincent A, Wray D. Lambert-Eaton myasthenic syndrome IgG: Early morphologic effects and immunolocalization at the motor endplate. Ann NY Acad Sei 1987; 505:333.

    CAS  Google Scholar 

  9. Sher E, Biancardi E, Passafaro M, Clementi F. Physiopathology of neuronal voltage-operated calcium channels. FASEB J 1991; 5:2677.

    PubMed  CAS  Google Scholar 

  10. Toyka KV, Drachman DB, Pestronk A, Kao I. Mysthenia Gravis: Passive transfer from man to mouse. Science 1975; 190:397.

    PubMed  CAS  Google Scholar 

  11. Lindstrom J, Engel MA, Seybold M, Lennon VA, Lambert EH. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine receptor antibodies. J Exp Med 1976; 144:739.

    CAS  Google Scholar 

  12. Vincent A, Lang B, Newsom-Davis J. Autoimmunity to the voltage-gated calcium channels underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder. Trends Neurol Sei 1989; 12:496.

    CAS  Google Scholar 

  13. Dayan CH, Londie M, Corcoran AE, Grubeck-Loebestein B, James RFL, Rapoport B, Feldmann M. Autoantigen recognition by thyroid-infiltrating T cells in Graves disease. Proc Natl Acad Sei USA 1991; 88:7415.

    CAS  Google Scholar 

  14. Campbell H, Bramwell E. Myasthenia Gravis. Brain 1900; 23:277.

    Google Scholar 

  15. Weigart G. The thymus in Myasthenia Gravis. Neurol Zentrabl 1901; 20:597.

    Google Scholar 

  16. Schumacher J, Roth J. Thymektomic bei einem Fall von Morbus Basedowi mit Myasthenia. Mitt Grenzebieten Med Clin 1913; 25:745.

    Google Scholar 

  17. Dale HH, Feldberg W. Chemical transmission at motor nerve ending in voluntary muscle? J Physiol 1934; 81:39.

    CAS  Google Scholar 

  18. Walker M. Treatment of Myasthenia Gravis with physostigmine. Lancet 1934; 1:1200.

    Google Scholar 

  19. Blalock A, Harvey AM, Ford FR, et al. Treatment of myasthenia gravis by removal of the thymus gland. JAMA 1941; 117:1529.

    Google Scholar 

  20. Simpson JA. Myasthenia gravis, a new hypothesis. Scott Med J 1960; 5:419.

    Google Scholar 

  21. Drachman DB. Myasthenia gravis: Biology and treatment. Ann NY Acad Sei 1976:274.

    Google Scholar 

  22. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science 1973; 180:571.

    Google Scholar 

  23. Elmqvist D, Lambert EH. Detailed analysis of neuromuscular transmission in a patient with the myasthenic syndrome sometimes associated with bronchogenic carcinoma. Mayo Clin Proc 1968; 43:689–713.

    PubMed  CAS  Google Scholar 

  24. Comola M, Nemni R, Sher E, Quattrini A, Faravelli A, Comi G, Corbo M, Clementi F, Canal N. Lambert-Eaton myasthenic syndrome and polyneuropathy in a patient with epidermoid carcinoma of the lung. Eur Neurol 1993; 33:121–125.

    PubMed  CAS  Google Scholar 

  25. Sculier JP, Feld R, Evans WK, DeBoer G, Shepherd FA, Payne DG, Pringle JF, Yeoh JL, Quirt IC, Curtis JE. Neurologic disorders in patients with small cell lung cancer. Cancer 1987; 60(9):2275.

    PubMed  CAS  Google Scholar 

  26. O’Neill JH, Murray NMF, Newsom-Davis J. The Lambert-Eaton myasthenic syndrome: A review of 50 cases. Brain 1988; 111:577.

    PubMed  Google Scholar 

  27. Anderson HJ, Churcill-Davidson HC, Richardson AT. Bronchial neoplasm with myasthenia: Prolonged apnea after administration of succinyl-choline. Lancet 1953; 2:1291.

    Google Scholar 

  28. Lambert EH, Eaton LM, Rooke ED. Defect of neuromuscular conduction associated with malignant neoplasm. Am J Physiol 1956; 187:612.

    Google Scholar 

  29. Fukunaga H, Engel AG, Lang B, Newsom-Davis J, Vincent A. Passive transfer of Lambert-Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc Natl Acad Sei USA 1983; 80:7636.

    CAS  Google Scholar 

  30. Newsom-Davis J, Murray NMF. Plasma exchange and immunosuppressive drug treatment in the Lambert-Eaton myasthenic syndrome. Neurology 1984; 34:480.

    PubMed  CAS  Google Scholar 

  31. Sher E, Gotti C, Canal N, Scopetta C, Piccolo G, Evoli A, Clementi F. Specificity of calcium channel auto-antibodies in Lambert-Eaton myasthenic syndrome. Lancet 1989; 2:640.

    PubMed  CAS  Google Scholar 

  32. Lennon VA, Lambert EH. Autoantibodies bind solubilized calcium channel-cö-Conotoxin complexes from small cell lung carcinoma: a diagnostic aid for Lambert-Eaton myasthenic syndrome. Mayo Clinic Proc 1989; 64:1498.

    CAS  Google Scholar 

  33. Conti-Tronconi BM, Raftery MA. The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties. Annu Rev Biochem 1982; 51:491.

    PubMed  CAS  Google Scholar 

  34. Stroud MB, McCarthy MP, Shuster M. Nicotinic acetylcholine receptor superfamily of ligand-gated ion channels. Biochemistry 1990; 29(50): 11009.

    PubMed  CAS  Google Scholar 

  35. Claudio T. Molecular genetics of acetylcholine receptor channels. In: Glover DM, Harnes BD, eds. Frontiers in Molecular Biology: Molecular Neurobiology Volume. Oxford: IRL Press; 1989:63–142.

    Google Scholar 

  36. Chang CE, Lee CY. Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch Int Pharmodyn Ther 1962; 44:241.

    Google Scholar 

  37. Conti-Tronconi BM, Gotti CM, Hunkapiller MW, Raftery MA. Mammalian muscle acetylcholine receptor: A supramolecular structure formed by four related proteins. Science 1982; 218:1227.

    PubMed  CAS  Google Scholar 

  38. Raftery MA, Hunkapiller HW, Strader CD, Hood LE. Acetylcholine receptor: Complex of homologous subunits. Science 1980; 208:1454.

    PubMed  CAS  Google Scholar 

  39. Anand R, Conroy WG, Schoepfer R, Whiting P, Lindstrom J. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 1991; 266(17): 11192.

    PubMed  CAS  Google Scholar 

  40. Conti-Tronconi BM, Tang F, Diethelm BM, Spencer SR, Reinhardt-Maelicke S, Maelicke A. Mapping of a cholinergic site by means of synthetic peptides, monoclonal antibodies and a-Bungarotoxin. Biochemistry 1990; 29(26):6221.

    PubMed  CAS  Google Scholar 

  41. McLane KE, Wu XD, Diethelm B, Conti-Tronconi BM. Structure determinants of a-Bungarotoxin binding to the sequence segment 181–200 of the muscle nicotinic acetylcholine receptor a subunit: Effects of cysteine/ cysteine modification and species-specific amino acid substitutions. Biochemistry 1991; 30(20):4925.

    PubMed  CAS  Google Scholar 

  42. Mishina M, Takai T, Imoto K, Nöda M, Takahashi H, Numa S. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 1986; 321:406.

    PubMed  CAS  Google Scholar 

  43. Gu Y, Hall Z. Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron 1988; 1:117.

    PubMed  CAS  Google Scholar 

  44. Trautman A. Curare can open and block ionic channels associated with cholinergic receptors. Nature 1982; 298:272.

    Google Scholar 

  45. Nöda MY, Furutani Y, Takahashi H, Toyosato M, Tanabe T, Shimizu S, Kikyotani S, Yanano T, Hirose T, Inayama S, Numa A. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor. Nature (London) 1983; 305:818.

    PubMed  Google Scholar 

  46. Hartman DS, Claudio T. Coexpression of two distinct muscle acetylcholine receptor a subunits during development. Nature (London) 1990; 343:372.

    PubMed  CAS  Google Scholar 

  47. Goldman D, Tanai K. Coordinate regulation of RNAs encoding two isoforms of rat muscle nicotinic acetylcholine receptor ß-subunit. Nucleic Acids Res 1989; 25:3049.

    Google Scholar 

  48. Sher E, Clementi F. co-conotoxin-sensitive voltage-operated calcium channels in vertebrate cells. Neuroscience 1991; 42:301.

    PubMed  CAS  Google Scholar 

  49. Sher E, Biancardi E, Polio A, Carbone E, Li G, Wollheim CB, Clementi F. co-Conotoxin sensitive, voltage-operated calcium channel in insulin-secreting cells. Eur J Pharmacol 1992; 216:407.

    PubMed  CAS  Google Scholar 

  50. Sher E, Pandiella A, Clementi F. Voltage operated calcium channels in small cell lung carcinoma cell lines: Pharmacological, functional and immunological properties. Cancer Res 1990; 50:3892.

    PubMed  CAS  Google Scholar 

  51. Torri-Tarelli F, Passafaro M, Sher E, Clementi F. Immunolocalization of co-Conotoxin binding sites at the frog neuromuscular junction. J Cell Biol 1990; 111:60a.

    Google Scholar 

  52. Miller RJ. Multiple calcium channels and neuronal functions. Science 1987; 235:46.

    PubMed  CAS  Google Scholar 

  53. Yamaguchi T, Saisu H, Mitsui H, Abe T. Solubilization of the co-Conotoxin receptor associated with voltage-sensitive calcium channels from bovine brain. J Biol Chem 1988; 263:9491.

    PubMed  CAS  Google Scholar 

  54. Barhanin J, Schmid A, Lazdunski M. Properties of structure and interaction of the receptor for co-Conotoxin, a polypeptide active on calcium channels. Biochem biophys Res Commun 1988; 150:1051.

    PubMed  CAS  Google Scholar 

  55. Ahlijanian MK, Striessnig J, Catterall WA. Phosphorylation of an al-like subunit of an co-Conotoxin-sensitive brain calcium channel by cAMP-dependent protein kinase and protein kinase C. J Biol Chem 1991; 266:20192.

    PubMed  CAS  Google Scholar 

  56. McEnery MW, Snowman AM, Sharp AH, Adams ME, Snyder SH. Purified co-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. Proc Natl Acad Sei USA 1991; 88:11095–11099.

    CAS  Google Scholar 

  57. Sakamoto J, Campbell KP. A monoclonal antibody to the ß subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain co-conotoxin GVIA receptor. J Biol Chem 1991; 266:18914.

    PubMed  CAS  Google Scholar 

  58. Berti F, Clementi F, Conti-Tronconi B, Folco G. A cholinoreceptor antiserum: Its pharmacological properties. Br J Pharmac 1976; 57:17–22.

    CAS  Google Scholar 

  59. Richman DP, Gomez MC, Berman PW, Burres SA, Fitch FW, Arnason BGW. Monoclonal anti-acetylcholine receptor antibodies can cause experimental myasthenia. Nature (London) 1980; 286:738.

    PubMed  CAS  Google Scholar 

  60. Lennon VA, Lambert EH. Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature 1980; 285:238.

    PubMed  CAS  Google Scholar 

  61. Tzartos S, Hochschwender S, Vasquez P, Lindstrom J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol 1987; 15:185.

    PubMed  CAS  Google Scholar 

  62. Engel AG, Sahashi K, Fumagalli G. The immunopathology of acquired Myasthenia Gravis. Ann NY Acad Sei 1981; 377:258.

    Google Scholar 

  63. Engel AG, Santa T. Histometric analysis of the ultrastructure of the neuromuscular junction in myasthenia gravis and in the myasthenic syndrome. Ann NY Acad Sei 1971; 183:46.

    CAS  Google Scholar 

  64. Sahash K, Engel AG, Lambert EH, Howard FN Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. Neuropathol Exp Neurol 1980; 39:160.

    Google Scholar 

  65. Killen JA, Hochschwender SM, Lindstrom JM. The main immunogenic region of acetylcholine receptors does not provoke the formation of antibodies of a predominant idiotype. J Neuroimmunol 1985; 9:229.

    PubMed  CAS  Google Scholar 

  66. Dwyer DS, Bradley RJ, Oh SJ, Kearney JF. Idiotypes in myasthenia gravis. In: Dwyer DS, ed. Idiotypes in Biology and Medicine. New York: Academic Press; 1984.

    Google Scholar 

  67. Roses AD, Olanow CW, McAdams MW, Lane RJM. No direct correlation between serum antiacetylcholine receptor antibody levels and clinical state of individual patients with myasthenia gravis. Neurology 1981; 31:220.

    PubMed  CAS  Google Scholar 

  68. Besinger UA, Toyka KV, Homberg M, Heininger K, Hohlfeld R, Fateh-Moghadam A. Myasthenia gravis: Long-term correlation of binding and bungarotoxin blocking antibodies against acetylcholine receptors with changes in disease severity. Neurology 1983; 33:1316.

    PubMed  CAS  Google Scholar 

  69. Conti-Tronconi BM, Tzartos S, Lindstrom J. Monoclonal antibodies as a probe of acetylcholine receptor structure. 2. Binding to native receptor. Biochemistry 1981; 20:2181.

    PubMed  CAS  Google Scholar 

  70. Mossman T. Myasthenia Gravis without acetylcholine receptor antibody: A distinct disease entity. Lancet 1986; 1:116.

    PubMed  CAS  Google Scholar 

  71. Evoli A, Bartoccioni E, Barocchi AP, Scuderi F, Tonali P. Anti-AChR-negative myasthenia gravis: Clinical and immunological features. Clin Invest Med 1989; 12(2):104.

    PubMed  CAS  Google Scholar 

  72. Lang B, Newsom-Davis J, Wray D, Vincent A, Murray N. Autoimmune etiology for myasthenic (Lambert-Eaton) syndrome. Lancet 1981; 2:224.

    PubMed  CAS  Google Scholar 

  73. Kim YI. Passive transfer of the Lambert-Eaton myasthenic syndrome: Neuromuscular transmission in mice injected with plasma. Muscle Nerv 1985; 8:162.

    CAS  Google Scholar 

  74. Fukunaga H, Engel AG, Osame M, Lambert EH. Paucity and disorganization of presynaptic membrane active zones in the Lambert-Eaton myasthenic syndrome. Muscle Nerv 1982; 5:686.

    Google Scholar 

  75. Kim YI, Neher E. IgG from patients with Lambert-Eaton myasthenic syndrome block voltage dependent calcium channels. Science 1988; 239:405.

    PubMed  CAS  Google Scholar 

  76. Kim YI, Sanders DB, Johns TR, Philips LH, Smith RE. Lambert-Eaton myasthenic syndrome: The lack of short-term in vitro effects of serum factors on neuromuscular transmission. J Neurol Sei 1988; 87:1.

    CAS  Google Scholar 

  77. Prior C, Lang B, Wray D, Newsom-Davis J. Action of Lambert-Eaton myasthenic syndrome IgG at mouse motor nerve terminals. Ann Neurol 1985; 17:587.

    PubMed  CAS  Google Scholar 

  78. Nagel A, Engel AG, Lang B, Newsom-Davis J, Fukuoka T. Lambert-Eaton myasthenic syndrome IgG depletes presynaptic membrane active zone particles by antigenic modulation. Ann Neurol 1988; 24:552.

    PubMed  CAS  Google Scholar 

  79. Lang B, Newsom-Davis J, Peers C, Wray DW. The action of myasthenic syndrome antibody fragments on neurotransmitter release in the mouse. J Physiol 1987; 390:173P.

    Google Scholar 

  80. Tzartos SJ, Lindstrom J. Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sei USA 1980; 77:755.

    CAS  Google Scholar 

  81. Tzartos SJ, Seybold M, Lindstrom J. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc Natl Acad Sei USA 1982; 79:188.

    CAS  Google Scholar 

  82. Tzartos SJ, Sophianos D, Efthimiadis G. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. A Fab monoclonal antibody protects against antigenic modulation by human sera. J Immunol 1985; 134:2343.

    CAS  Google Scholar 

  83. Lennon VA, Griesman GE. Evidence against acetylcholine receptor having a main immunogenic region as a target for autoantibodies in myasthenia gravis. Neurology 1989; 39:1069.

    PubMed  CAS  Google Scholar 

  84. Tzartos S, Kokla A, Walgrave S, Conti-Tronconi BM. The main immunogenic region of human muscle acetylcholine receptor is localized within residues 67–76 of the a subunit. Proc Natl Acad Sei USA 1988; 85:2899.

    CAS  Google Scholar 

  85. Barkas T, Gabriel J-M, Mauron A, Hughes GJ, Roth B, Alliod C, Tzartos SJ. Ballivet M. Monoclonal antibodies to the main immunogenic region of the nicotinic acetylcholine receptor bind to residues 61–76 of the a subunit. J Biol Chem 1988; 263:5916.

    PubMed  CAS  Google Scholar 

  86. Bellone M, Tang F, Milius R, Conti-Tronconi BM. The main immunogenic region of the nicotinic acetylcholine receptor: Identification of amino acid residues interacting with different antibodies. J Immunol 1989; 143:256.

    Google Scholar 

  87. Tzartos SJ, Loutrari HV, Tang F, Kokla A, Walgrave SL, Milius RP, Conti-Tronconi BM. Main immunogenic region of Torpedo electroplax and human muscle acetylcholine receptor: Localization and microhetero-geneity revealed by the use of synthetic peptides. J Neurochem 1990; 54(1): 51.

    PubMed  CAS  Google Scholar 

  88. Das MK, Lindstrom J. The main immunogenic region of the nicotinic acetylcholine receptor: Interaction of monoclonal antibodies with synthetic peptides. Biochem Biophys Res Commun 1989; 165:865.

    PubMed  CAS  Google Scholar 

  89. Saedi MS, Anand R, Conroy WG, Lindstrom J. Determination of amino acid critical to the main immunogenic region in intact acetylcholine receptors by in vitro mutagenesis. FEBS Lett 1990; 267:55.

    PubMed  CAS  Google Scholar 

  90. Papadouli I, Potamianos S, Hadjidakis I, Bairaktari K, Tsikaris V, Sakarellos C, Cung MT, Marraud M, Tzartos SJ. Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor. Biochem J 1990; 269:239.

    PubMed  CAS  Google Scholar 

  91. Davies DR, Sheriff S, Padlan EA. Antibody-antigen complexes. J Biol Chem 1988; 262:10641.

    Google Scholar 

  92. Baldwin TJ, Yoshihara CM, Blackmer K, Kintner CR, Burden SJ. Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis. J Cell Biol 1988; 106:469.

    PubMed  CAS  Google Scholar 

  93. Hohlfeld R, Toyka KV, Heininger K, Grosse-Wilde H, Kalies I. Autiommune human T-lymphocytes specific for acetylcholine receptor. Nature 1984; 310:244.

    PubMed  CAS  Google Scholar 

  94. Hohlfeld R, Kalies I, Kohleisen B, Heininger K, Conti-Tronconi BM, Toyka KV. Myasthenia gravis: Stimulation of antireceptor autoantibodies by autoreactive T-cell lines. Neurology 1986; 36:618.

    PubMed  CAS  Google Scholar 

  95. Waldor MK, Sriram S, McDevitt HO, Steinman L. In vivo therapy with monoclonal anti-I-A antibody suppresses immune responses to acetylcholine receptor. Proc Natl Acad Sei USA 1983; 80:2713.

    CAS  Google Scholar 

  96. Christados P, Dauphinee MJ. Immunotherapy for myasthenia gravis: A murine model. J Immunol 1988; 7:2437.

    Google Scholar 

  97. Morgutti M, Conti-Tronconi BM, Sghirlanzoni A, Clementi F. Cellular immune response to acetylcholine receptor in myasthenia gravis: II. Thymectomy and corticosteroids. Neurology 1979; 29:734.

    CAS  Google Scholar 

  98. Hohlfeld R, Toyka KV, Tzartos SJ, Carson W, Conti-Tronconi BM. Human T helper lymphocytes in myasthenia gravis recognize the nicotinic receptor a subunit. Proc Natl Acad Sei USA 1987; 84:5379.

    CAS  Google Scholar 

  99. Melms A, Schalke BCG, Kirchner T, Muller-Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis. Isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 1988; 81:902.

    CAS  Google Scholar 

  100. Harcourt GC, Sommer N, Rothbard J, Wilcox HNA, Newson-Davis J. A juxta-membrane epitope on the human acetylcholine receptor recognized by T cells in Myasthenia Gravis. J Clin Invest 1988; 82:1295.

    PubMed  CAS  Google Scholar 

  101. Protti MP, Manfredi AA, Straub C, Wu XD, Howard JF Jr, Conti-Tronconi BM. Use of synthetic peptides to establish anti-human acetylcholine receptor CD4+ cell lines from Myasthenia Gravis patients. J Immunol 1990; 144:1711.

    PubMed  CAS  Google Scholar 

  102. Protti MP, Manfredi AA, Straub C, Howard JF Jr, Conti-Tronconi BM. Immunodominant regions for T helper sensitization on the human nicotinic receptor a subunit in myasthenia gravis. Proc Natl Acad Sei USA 1990; 87:7792.

    CAS  Google Scholar 

  103. Protti MP, Manfredi AA, Wu XD, Moiola L, Howad JF Jr, Conti-Tronconi BM. Myasthenia Gravis: T epitopes of the 8 subunit of human muscle acetylcholine receptor. J Immunol 1991; 146:2253.

    PubMed  CAS  Google Scholar 

  104. Protti MP, Manfredi AA, Howard JF Jr, Conti-Tronconi BM. T cells in Myasthenia Gravis specific for embryonic acetylcholine receptor. Neurology 1991; 41:1809.

    CAS  Google Scholar 

  105. Manfredi AA, Protti MP, Wu XD, Howard JF Jr, Conti-Tronconi BM. CD4+ T epitope repertoire on the human acetylcholine receptor a subunit in severe myasthenia gravis. A study with synthetic peptides. Neurology 1992; 42:1092–1100.

    CAS  Google Scholar 

  106. Hohlfeld R, Conti-Tronconi BM, Kalies I, Bertrams J, Toyka KV. Genetic restriction of autoreactive acetylcholine receptor-specific T lymphocytes in Myasthenia Gravis. J Immunol 1985; 135:2393.

    PubMed  CAS  Google Scholar 

  107. Davis MM, Bjorkman PJ. T cell antigen receptor genes and T cell recognition. Nature 1988; 334:395.

    PubMed  CAS  Google Scholar 

  108. Ashwell JD, Schwartz RH. T cell recognition of antigen and the la molecule as a ternary complex. Nature 1986; 320:176.

    PubMed  CAS  Google Scholar 

  109. Protti MP, Manfredi AA, Straub C, Howard JF Jr, Conti-Tronconi BM. CD4+ T cell response is the human acetylcholine receptor a subunit in Myasthenia Gravis: A study with synthetic peptides. J Immunol 1990; 144:1276.

    PubMed  CAS  Google Scholar 

  110. Melms A, Chrestel S, Schalke BCG, Wekerle H, Mauron A, Ballivet M, Barkas T. Autoimmune T lymphocytes in myasthenia gravis: Determination of target epitopes using T lines and recombinant products of the mouse nicotinic acetylcholine receptor gene. J Clin Invest 1989; 83:285.

    Google Scholar 

  111. McQuillen DP, Koethe SM, McQuillen MP. Cellular response to human acetylcholine receptor in patients with myasthenia gravis. J Neuroimmunol 1983; 5:59.

    PubMed  CAS  Google Scholar 

  112. Brocke S, Brautbar C, Steinman T, Abramsky O, Rothbard J, Neumann D, Fuchs S, Moses E. In vitro proliferative responses and antibody titres specific to human acetylcholine receptor synthetic peptides in patients with Myasthenia Gravis and relation to HLA class II genes. J Clin Invest 1989; 82:1894.

    Google Scholar 

  113. Oshima M, Ashizawa T, Pollack MS, Atassi MZ. Autoimmune T cell recognition of human acetylcholine receptor: The sites of T cell recognition in Myasthenia Gravis on the extracellular part of the a subunit. Eur J Immunol 1990; 20:2563.

    PubMed  CAS  Google Scholar 

  114. Manfredi AA, Protti MP, Dalton MW, Howard JF Jr, Conti-Tronconi BM. T helper cell recognition of muscle acetylcholine receptor in myasthenia gravis. Epitopes on the y and 5 subunits. J Clin Invest 1993; in press.

    Google Scholar 

  115. Hohlfeld R, Toyka KY, Miner LL, Walgrave SL, Conti-Tronconi BM. Amphipathic segment of the nicotinic receptor a subunit contains epitopes recognized by T lymphocytes in Myasthenia Gravis. J Clin Invest 1988; 81:657.

    PubMed  CAS  Google Scholar 

  116. Protti MP, Manfredi AA, Wu XD, Moiola L, Dalton MW, Howard JF Jr, Conti-Tronconi BM. Myasthenia Gravis. CD4+T epitopes on the embryonic y subunit of human muscle acetylcholine receptor. J Clin Invest 1992; 90:1558.

    PubMed  CAS  Google Scholar 

  117. Sakai K, Sinha AA, Mitchell DJ, Zamvill SS, Rothbard JB, McDevitt HO, Steinman L. Involvement of distinct murine T-cell receptors in the autoimmune encephalitogenic response to inbred epitopes of myelin basic protein. Proc Natl Acad Sei USA 1988; 85:8608.

    CAS  Google Scholar 

  118. Braciale TJ, Sweetser MT, Morrison LA, Kittlesen DJ, Braciale UL. Class I major hystocompatibility complex-restricted cytotoxic T lymphocytes recognize a limited number of sites on the influenza hemagglutinin. Proc Natl Acad Sei USA 1989; 86:277.

    CAS  Google Scholar 

  119. Good MF, Ponibo D, Quakyi KA, Riley EM, Houghten RA, Menon A, Ailing DW, Berzofsky JA, Miller LH. Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum: Immunodominant T-cell domains map to the polymorphic regions of the molecule. Proc Natl Acad Sei USA 1988; 85:1199.

    CAS  Google Scholar 

  120. Clerici M, Stocks NI, Zajac RA, Boswell RN, Bernstein DC, Mann DL, Shearer GM, Berzofsky JA. Interleukin-2 production used to detect antigenic peptide recognition by T-helper lymphocytes from asymptomatic HIV-seropositive individuals. Nature (London) 1989; 339:383.

    PubMed  CAS  Google Scholar 

  121. O’Sullivan P, Sidney J, Appella E, Uacker L, Phillips L, Colon SM, Miles C, Chesnut RW, Sette A. Characterization of the specificity of peptide binding to four DR haplotypes. J Immunol 1990; 145:1799.

    PubMed  Google Scholar 

  122. Newsom-Davis J, Hartcourt G, Sommer N, Beeson D, Willcox N, Rothbard JB. T cell reactivity in Myasthenia Gravis. J Autoimmun 1989; 2:201.

    Google Scholar 

  123. Kartik R, Jaraquemada D, Flerlage M, et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 1990; 145: 540.

    Google Scholar 

  124. Pette M, Fujita K, Kitze B, et al. Myelin basic protein-specific T lymphocytes from MS patients and healthy individuals. Neurology 1990; 40:1770.

    PubMed  CAS  Google Scholar 

  125. Sommer N, Harcourt GC, Willcox N, Beeson D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology 1991; 41:1270.

    PubMed  CAS  Google Scholar 

  126. Conti-Tronconi BM, Morgutti M, Sghirlanzoni A, Clementi F. Cellular immune response against acetylcholine receptor in myasthenia gravis: I. Relevance to clinical course and pathogenesis. Neurology 1979; 29:496.

    CAS  Google Scholar 

  127. Zhang Y, Schleup M, Frutiger S, Hughes GJ, Jaenner M, Steek A, Barkas T. Immunological heterogeneity of autoreactive T lymphocytes against the nicotinic acetylcholine receptor in myasthenic patients. Eur J Immunol 1990; 20:2577.

    PubMed  CAS  Google Scholar 

  128. Gammon G, Sercarz EE. Does the presence of self-reactive T cells indicate the breakdown of tolerance? Clin Immunol Immunopathol 1990; 56:287.

    PubMed  CAS  Google Scholar 

  129. Bellone M, Ostlie N, Lei S, Conti-Tronconi BM. Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the a subunits of Torpedo californica and murine acetylcholine receptors. Eur J Immunol 1991; 21:2203.

    Google Scholar 

  130. Granato DA, Fulpius BW, Moody JF. Experimental myasthenia in Balb/c mice immunized with rat acetylcholine receptor from rat denervated muscle. Proc Natl Acad Sei USA 1986; 73:2872.

    Google Scholar 

  131. Gammon G, Sercarz EE. How some T-cells escape tolerance induction. Nature (London) 1989; 342:183.

    PubMed  CAS  Google Scholar 

  132. Berman PW, Patrick J. Linkage between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental myasthenia gravis. J Exp Med 1980; 152:507.

    PubMed  CAS  Google Scholar 

  133. Cristadoss P, Lennon VA, Krco CJ, Lambert EG, David CS. Genetic control of autoimmunity to acetylcholine receptors: Role of la molecules. Ann NY Acad Sei 1981; 377:258.

    Google Scholar 

  134. Cristadoss P, Lindstrom JM, Melvold RW, Tahal N. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. J Immunogenet 1985; 21:33.

    Google Scholar 

  135. Morgutti M, Conti-Tronconi BM, Sghirlanzoni A, Clementi F. Cellular immune response to acetylcholine receptor in myasthenia gravis: II. Thymectomy and corticoids. Neurology 1979; 29:734.

    CAS  Google Scholar 

  136. Bellone M, Ostlie N, Lei S, Manfredi AA, Conti-Tronconi BM. T helper function of CD4+ cells specific for defined epitopes on the acetylcholine receptor in congenic mice strains. J Autoimmun 1992; 5:27–46.

    PubMed  CAS  Google Scholar 

  137. Roy S, Scherer MT, Briner TJ, Smith JA, Gefter ML. Murine MHC polymorphism and T cell specificities. Science 1989; 244:572.

    PubMed  CAS  Google Scholar 

  138. Yokoi T, Mulac-Jericevic B, Kurisaki JL, Atassi MZ. T lymphocytes recognition of acetylcholine receptor: Localization of the full T cell receptor recognition profile on the extracellular part of the a chain of Torpedo californica acetylcholine receptor. Eur J Immol 1987; 17:1697.

    CAS  Google Scholar 

  139. Gao XM, Liew FY, Tite JP. Identification and characterization of T helper epitopes in the nucleoprotein of influenza A virus. Immunol 1989; 143:3007.

    CAS  Google Scholar 

  140. Brett SA, Cease KB, Ouyang CS, Berzofsky JA. Fine specificity of T cell recognition of the same peptide in association with different I-A molecules. J Immol 1989; 143:771.

    CAS  Google Scholar 

  141. Margalit H, Spouge JL, Cornette JC, Cease KB, DeLisi C, Berzofsky JA. Prediction of immunodominant helper T cell antigenic sites from the primary sequence. J Immunol 1987; 138:2213.

    PubMed  CAS  Google Scholar 

  142. Bellone M, Bertazzon A, Milius R, Conti-Tronconi BM. Recognition of different structural motifs by H-2b and H-2d class II molecules in murine experimental myasthenia gravis. Biophysic J 1991; 59:301A.

    Google Scholar 

  143. Fujii Y, Lindstrom J. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and syntheic peptides. J Immunol 1988; 140:1830.

    CAS  Google Scholar 

  144. Christadoss P, Lennon VA, Krco CJ, David CS. Genetic control of experimental autoimmune myasthenia gravis in mice. III. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors. J Immunol 1982; 128:1141.

    CAS  Google Scholar 

  145. Valdor MK, Sriram S, McDevitt HO, Steinman L. In vivo theraphy with monoclonal anti-I-A antibody suppress immune responses to acetylcholine receptor. Proc Natl Acad Sei USA 1983; 80:2713.

    Google Scholar 

  146. Melvold RW, Kohn HI. Eight new histocompatibility mutations associated with the H-2 complex. J Immunogenet 1976; 3:185.

    Google Scholar 

  147. McKenzie IFC, Morgan G, Sandrin M, Michaelides MM, Melvold RW, Kohn HI. B6 C-H-2bm12: A new mutation in the I region in the mouse. J Exp Med 1979; 150:1323.

    PubMed  CAS  Google Scholar 

  148. Mengle-Gaw L, Conner S, McDevitt HO, Fathman CG. Gene conversion between class II major hystocompatibility complex loci functional and molecular evidence from the bml2 mutant. J Exp Med 1984; 160:1184.

    PubMed  CAS  Google Scholar 

  149. Michaelides MM, Sandrin M, Morgan G, McKenzie IFC, Ashman R, Melvold RW. Ir gene function in an I-A subregion mutant B6 C-H-2.bm12 J Exp Med 1981; 153:464.

    PubMed  CAS  Google Scholar 

  150. Lin CS, Rosenthal AS, Blake JT, Passmore HC, Hansen TH. Selective deletion of an antigen specific Ir gene function in the I-A mutant B6 C-H-2bm12 is an antigen presenting cells defect. Proc Natl Acad Sei USA 1983; 78:6404.

    Google Scholar 

  151. Krco CJ, Kazim DL, Atassi MZ, Melvold R, David CS. Genetic control of immune response to hemoglobin. III. VaRIPAntA (bml2) but not A, la polypeptide alters immune reactivity towards the a subunit of human hemoglobin. J Immunogenet 1981; 8:471.

    PubMed  CAS  Google Scholar 

  152. Chang BL, Bearer E, Ansari A, Dorshkind K, Gershwin ME. The bml2 mutation and autoantibodies to dsDNA in NZB-H-2bm12 mice. J Immunol 1990; 145:94.

    Google Scholar 

  153. Bellone M, Ostlie N, Lei S, Wu XD, Conti-Tronconi BM. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J Immunol 1991; 147:1484.

    PubMed  CAS  Google Scholar 

  154. Infante JA, Thompson PA, Krolick KA, Wall KA. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bml2 mutation on T cell recognition of acetylcholine receptor epitopes. J Immunol 1991; 146:2977.

    PubMed  CAS  Google Scholar 

  155. Oldstone MBA. Molecular mimicry and autoimmune disease. Cell 1987; 50:819.

    PubMed  CAS  Google Scholar 

  156. Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MBA. Molecular mimicry and Myasthenia Gravis: An autoantigenic site of the acetylcholine receptor a-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989; 84:1174.

    PubMed  CAS  Google Scholar 

  157. Manfredi AA, Bellone M, Protti MP, Conti-Tronconi BM. Molecular mimicry among human autoantigens. Immunol Today 1991; 12:46.

    PubMed  CAS  Google Scholar 

  158. Kabsch W, Sanders C. On the use of sequence homologies to predict protein structure: Identical pentapeptides can have completely different conformation. Proc Natl Acad Sei USA 1984; 81:1075.

    CAS  Google Scholar 

  159. Lennon VA, Howard FM. Serologie diagnosis of myasthenia gravis. In: Nakamura RM, O’Sullivan MB, eds. Clinical Laboratory and Molecular Analyses. New York: Grune and Stratton; 1985:29–44.

    Google Scholar 

  160. Chan MK, Britton M. Comparative features in patients with myasthenia gravis with systemic lupus erythematosus. J Rheumatol 1990; 7:838.

    Google Scholar 

  161. Maul GG, Jimenez SA, Riggs E, Ziemuicka-Dotula D. Determination of an epitope of the diffuse systemic sclerosis marker antigen DNA topoisomerase I: Sequence similarity with retroviral p30gag protein suggests a possible cause for autoimmunity in systemic sclerosis. Proc Natl Acad Sei USA 1989; 86:8492.

    CAS  Google Scholar 

  162. Jacobson S, Raine CS, Mingioli ES, McFarlin DE. Amplification and molecular cloning of HTLV-I sequences from DNA of multiple sclerosis patients. Nature (London) 1988; 331:580.

    Google Scholar 

  163. Reddy EP, Sanberg-Wollheim M, Mettus RU, Ray PE, DeFreitas E, Kopowski H. Isolation of an HTLV-1 like retrovirus from patients with tropical spastic paraparesis. Science 1989; 243:529.

    PubMed  CAS  Google Scholar 

  164. Ohno S. Many peptide fragments of alien antigens are homologous with host proteins, thus canalizing T-cell responses. Proc Natl Acad Sei USA 1991; 88:3065.

    CAS  Google Scholar 

  165. Ohno S. To be or not to be a responder in T-cell responses: Ubiquitous oligopeptides in all proteins. Immunogenet 1991; 34:215.

    CAS  Google Scholar 

  166. Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989; 337:651.

    PubMed  CAS  Google Scholar 

  167. Van Bleek GM, Nathenson SG. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. Nature 1990; 348:213.

    PubMed  Google Scholar 

  168. Rudensky AY, Preston-Hurlburt P, Hong SC, Barlow A, Janeway CA Jr. Sequence analysis of peptides bound to MHC class II molecules. Nature 1991; 353:622.

    PubMed  CAS  Google Scholar 

  169. Jardetzky TS, Lane WS, Robinson RA, Madden RA, Wiley DC. Identification of self peptides bound to purified HLA-B27. Nature 1991; 353:326.

    PubMed  CAS  Google Scholar 

  170. Vacchio MS, Berzofsky JA, Krzych U, Smith JA, Hodes RJ, Finnegan A. Sequences outside a minimal immunodominant site exert negative effects on recognition by staphylococcal nuclease-specific T cell clones. J Immunol 1989; 143:2814.

    PubMed  CAS  Google Scholar 

  171. Bhayani H, Carbone FR, Paterson Y. The activation of pigeon cytochrome c-specific T cell hybridomas by antigenic peptides is influenced by non-native sequences at the amino terminus of the determinant. J Immunol 1988; 141:377.

    PubMed  CAS  Google Scholar 

  172. Eng H, Lefvert AK, Mellstedt H, Osterborg A. Human monoclonal immunoglobulins that bind the human acetylcholine receptor. Eur J Immunol 1987; 17:1867.

    PubMed  CAS  Google Scholar 

  173. Davidson HW, Watts C. Epitope directed processing of specific antigen by B lymphocytes. J Cell Biol 1989; 109:85.

    PubMed  CAS  Google Scholar 

  174. Manca F, Fenoglio D, Li Pira G, Kunkl A, Celada F. Effect of antigen/ antibody ratio on macrophage uptake, processing and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med 1991; 173:37.

    PubMed  CAS  Google Scholar 

  175. Ozaki S, Berzofsky JA. Antibody conjugates mimic specific B cell presentation of antigen: relationship between T and B cell specificity. J Immunol 1987; 138:4133.

    PubMed  CAS  Google Scholar 

  176. Manca F, Fenoglio D, Kunkl A, Cambiaggi C, Sasso M, Celada F. Differential activation of T cell clones stimulated by macrophages exposed to antigens complexed with monoclonal antibodies: A possible influence of paratope specificity on the mode of antigen processing. J Immunol 1988; 140:2893.

    PubMed  CAS  Google Scholar 

  177. Weinberg CB, Hall JW. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc Natl Acad Sei USA 1979; 76:504.

    CAS  Google Scholar 

  178. Schuetze SM, Vicini S, Hall ZW. Myasthenic serum selectively blocks acetylcholine receptors with long channel open times at developing rat endplates. Proc Natl Acad Sei USA 1985; 82:2533.

    CAS  Google Scholar 

  179. Castleman B, Norris EH. The pathology of the thymus in myasthenia gravis. Ann NY Acad Sei 1966; 135:469.

    Google Scholar 

  180. Kumura J, Van Allen MW. Post-thymectomy myasthenia gravis: Report a case of ocular myasthenia gravis after total removal of a thymoma and review of the literature. Neurology 1967; 17:413.

    Google Scholar 

  181. Cuenoud S, Feitkamp TEW, Fulpius BW, Oosterhuis JGH. Antibodies to acetylcholine receptors in patients with thymoma but without myasthenia gravis. Neurology 1980; 30:301.

    Google Scholar 

  182. Kamo I, Furukawa S, Tada A, Mano Y, Iwasaki Y, Furuse T, Ho N, Hayaski K, Satoyoshi E. Monoclonal antibody to acetylcholine receptor: Cell line established from thymus of patient with myasthenia gravis. Science 1982; 215:995.

    PubMed  CAS  Google Scholar 

  183. Fujii Y, Monden Y, Nakahara K, Hashimoto J, Kawashima Y. Antibody to acetylcholine receptor in myasthenia gravis: production by lymphocytes from thymus or thymoma. Neurology 1984; 34:1182.

    PubMed  CAS  Google Scholar 

  184. Lisak RP, Levinson AI, Zweiman B, Kornestein MJ. Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes. J Immunol 1986; 137:1221.

    PubMed  CAS  Google Scholar 

  185. Heidenreich F, Vincent A, Willcox N, Newsom-Davis J. Anti-acetylcholine receptor antibody specificity in serum and in thymic cell culture supernatants from myasthenia gravis patients. Neurology 1988; 38:1784.

    PubMed  CAS  Google Scholar 

  186. Wekerle H, Hohlfeld R, Ketelsen U-P, Kalden J, Kalies I. Thymic myogenesis, T lymphocytes and the pathogenesis of myasthenia gravis. Ann NY Acad Sei USA 1981; 377:455.

    CAS  Google Scholar 

  187. Aharonov A, Tarrab-Hazdai R, Abramsky O, Fuchs S. Immunological relationship between acetylcholine receptor and thymus: A possible significance in myasthenia gravis. Proc Natl Acad Sei USA 1975; 72:1456–1459.

    CAS  Google Scholar 

  188. Ueno S, Wada K, Takahashi M, Tarui S. Acetylcholine receptor in rabbit thymus: Antigenic similarity between acetylcholine receptors of muscle and thymus. Clin Exp Immunol 1980; 42:463.

    PubMed  CAS  Google Scholar 

  189. Schleup M, Willcox N, Vincent A, Dhoot GK, Newsom-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann Neurol 1987; 22:212.

    Google Scholar 

  190. Kirchner T, Tzartos S, Hoppe F, Schalke B, Wekerle H, Muller-Hermelink HK. Pathogenesis of myasthenia gravis: Acetylcholine receptor-related antigenic determinant in tumor-free thymuses and thymic epithelial tumors. Am J Pathol 1988; 130:268.

    PubMed  CAS  Google Scholar 

  191. Engel WK, Trotter JL, McFarlin DE, Mcintosh CL. Thymic epithelial cell contains acetylcholine receptor. Lancet 1977; 1:1310.

    PubMed  CAS  Google Scholar 

  192. Kao I, Drachman DB. Thymus muscle cells bear acetylcholine receptors: Possible relation to myasthenia gravis. Science 1977; 195:74.

    PubMed  CAS  Google Scholar 

  193. Kawanami S, Conti-Tronconi BM, Raes J, Raftery MA. Isolation and characterization of nicotinic acetylcholine receptor-like protein from fetal calf thymus. J Neurol Sei 1988; 87:195.

    CAS  Google Scholar 

  194. Feitkamp-Vroom T. Myoid cells in human thymus. Lancet 1966; 1:1320.

    Google Scholar 

  195. Van de Velde RKL, Friedman NB. The thymic “Myoidzellen” and myasthenia gravis. JAMA 1966; 198:287.

    PubMed  Google Scholar 

  196. Wekerle H, Paterson B, Ketelsen U-P, Feldman M. Striated muscle fibers differentiate in monolayer cultures of adult thymus reticulum. Nature (London) 1975; 256:493.

    PubMed  CAS  Google Scholar 

  197. Nelson S, Conti-Tronconi BM. Adult thymus expresses an embryonic nicotinic acetylcholine receptor-like protein. J Neuroimmunol 1990; 29:81.

    PubMed  CAS  Google Scholar 

  198. Marx A, O’Connor R, Tzartos S, Kalies I, Kirchner T, Muller-Hermelink H-K. Acetylcholine receptor epitope in proteins of myasthenia gravis-associated thymomas and non-thymic tissues. Thymus 1989; 14:171–178.

    PubMed  CAS  Google Scholar 

  199. Alpert LI, Papatestas A, Kark A, Osserman RS, Osserman K. An histologic reappraisal of the thymus in myasthenia gravis: A correlative study thymic pathology and response to thymectomy. Arch Pathol 1971; 91:55.

    PubMed  CAS  Google Scholar 

  200. Durelli L, Maggi G, Casadio C, Ferri R, Rendine S, Berganini L. Actuarial analysis of the occurrence of remissions following thymectomy for myastenia gravis in 400 patients. J Neurol Neurosurg Psychiatry 1991; 54:406.

    PubMed  CAS  Google Scholar 

  201. Hertel G, Mertens HG, Reuther P, Ricker K. The treatment of myasthenia gravis with azathioprine. In: Dau PC, ed. Plasmapheresis and Immunobiology of Myasthenia Gravis, Vol. 27. Boston: Houghton-Mifflin; 1979:315.

    Google Scholar 

  202. Blackhaus BA, Nash AA. Immunological memory to herpes simplex virus type I glycoproteins B and D in mice. J Gen Virol 1990; 4:863.

    Google Scholar 

  203. Daroff RB. Ocular myasthenia: Diagnosis and therapy. In: Glaser J, ed. Neuroophthalmology. St Louis: CV Mosby; 1980:62.

    Google Scholar 

  204. Kaminski HJ, Maas E, Spiegel P, Ruff RL. Why are eye muscles frequently involved in myasthenia gravis? Neurology 1990; 40:1663.

    PubMed  CAS  Google Scholar 

  205. Horton RM, Manfredi AA, Conti-Tronconi BM. The “embryonic” hamma subunit of the nicotinic acetylcholine receoptor is expressed in adult extraocular muscle. Neurology 1993; 43:983.

    PubMed  CAS  Google Scholar 

  206. Chalk CH, Murray NMF, Newsom-Davis J, O’Neill JH, Spiro SG. Response of the Lambert-Eaton myasthenic syndrome to treatment of associated small-cell lung carcinoma. Neurology 1990; 40:1552.

    PubMed  CAS  Google Scholar 

  207. Teeling ME, Carney DN. Biochemical markers of lung cancer. In: Rosen ST, Mulshine JL, Cuttitta F, Abrams PG, eds. Biology of Lung Cancer: Diagnosis and Treatment. New York: Marcel Dekker; 1988:34–58.

    Google Scholar 

  208. De Aizpurua HJ, Lambert E, Griesmann GE, Olivera BM, Lennon VA. Antagonism of voltage gated calcium channels in small cell carcinoma of patients with and without Lambert-Eaton myasthenic syndrome by autoantibodies, co-Conotoxin and adenosine. Cancer Res 1988; 48:4719.

    PubMed  Google Scholar 

  209. Lang B, Vincent A, Murray NMF, Newsom Davis J. Lambert-Eaton myasthenic syndrome: Immunoglobulin G inhibition of calcium flux in tumor cells correlates with disease severity. Ann Neurol 1989; 25:265.

    CAS  Google Scholar 

  210. Geddes DM. The natural history of lung cancer: a review based on rates of tumor growth. Br J Dis Chest 1979; 73:1.

    PubMed  CAS  Google Scholar 

  211. Sher E, Comola M, Nemni R, Canal N, Clementi F. Calcium channel autoantibody and non-small-cells lung cancer in patients with Lambert-Eaton syndrome. Lancet 1990; 335:413.

    PubMed  CAS  Google Scholar 

  212. Taphoorn MJB, Van Duijn H, Wolters ECH. A neuromuscular transmission disorder: Combined myasthenia gravis and Lambert-Eaton syndrome in one patient. J Neurol Neurosurg Psychiatry 1988; 51:880.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Manfredi, A.A., Protti, M.P., Bellone, M., Moiola, L., Conti-Tronconi, B.M. (1994). Autoimmunity Against the Nicotinic Acetylcholine Receptor and the Presynaptic Calcium Channel at the Neuromuscular Junction. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics