Skip to main content

Calcium Signals in Cell Proliferation, Differentiation, and Death

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

Abstract

Ca2+, the calcium ion, binding to surface sensor/receptors on the cell membrane, flowing through channels in the cell membrane, and/or surging from internal storage vesicles, “kick starts” and then drives cell cycles, triggers terminal differentiation, and ultimately kills senescent mature cells. This discussion will be divided into four parts: (1) the Ca2+ and associated signals, especially the cyclic AMP (cAMP) pulses, that start and then at several key points drive the proliferation of cells in the regenerating rat liver, a physiologically relevant wound-response model; (2) the dramatic liberation from Ca2+ control when liver cells start making Ca2+-binding/activated signal proteins in excess and secreting self-stimulating (autocrine) growth factors while on the way to malignancy; (3) the roles of Ca2+ and other signals that drive the proliferation, trigger terminal differentiation and finally the death of skin keratinocytes; and the factors that upset the normal delicate balance between Ca2+-driven proliferation, Ca2+-triggered differentiation, and Ca2+-induced death during skin carcinogenesis; and (4) the role of Ca2+ in the proliferation, differentiation, and death of colon cells and the possibility that the failure of a Ca2+-sensing mechanism might be the first step on the road to polyps and colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitfield JF. Calcium and cancer. Crit Rev Oncogenesis 1992; 3:55–90.

    PubMed  CAS  Google Scholar 

  2. Whitfield JF. Calcium, Cell Cycles, and Cancer. Boca Raton, Fla.: CRC Press; 1990:263.

    Google Scholar 

  3. Rhee SG. Inositol phospholipid-specific phospholipase C: Interaction of the gamma1 isoform with tyrosine kinase. Trends Biochem Sei 1991; 16:297–301.

    Article  CAS  Google Scholar 

  4. Brown AM. A cellular logic for G-protein-coupled ion channel pathways. FASEB J 1991; 5:2175–2179.

    PubMed  CAS  Google Scholar 

  5. Desser-Wiest L, Desser H. The proliferation, activity of the rat thymocytes after partial hepatectomy. Exp Path 1990; 18:167–169.

    Google Scholar 

  6. Matsumoto K, Nakamura T. Hepatocyte growth factor: Molecular structure, roles in liver regeneration, and other biological functions. Crit Rev Oncogenesis 1992; 3:27–54.

    PubMed  CAS  Google Scholar 

  7. Giss BJ, Walker AM. Mammotroph autoregulation: Intracellular fate of internalized prolaction. Mol Cell Endocrinol 1985; 42:259–267.

    Article  PubMed  CAS  Google Scholar 

  8. Fesus L, Tomazy V. Searching for the function of tissue transglutaminase: Its possible involvement in the biochemical pathway of programmed cell death. Adv Exp Med Biol 1988; 231:119–134.

    PubMed  CAS  Google Scholar 

  9. Fesus L, Tomazy V, Autouri F, Taresa E, Piacentini M. Apoptotic hepato-cytes become insoluble in detergents and chaotropic agents as a result of transglutaminase actin. FEBS Lett 1989; 245:150–154.

    Article  PubMed  CAS  Google Scholar 

  10. Fesus L, Tomazy V, Falus A. Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 1987; 224:104–108.

    Article  PubMed  CAS  Google Scholar 

  11. Martin TFJ. Receptor regulation of phosphoinositidase C. Pharmacol Ther 1991; 49:329–345.

    Article  PubMed  CAS  Google Scholar 

  12. Taylor CW, Richardon A. Structure and function of inositol triphosphate receptors. Pharmacol Ther 1991; 51:97–137.

    Article  PubMed  CAS  Google Scholar 

  13. Roony TA, Thomas AP. Organizations of intracellular calcium signals generated by inositol lipid-dependent hormones. Pharmacol Ther 1991; 49:223–237.

    Article  Google Scholar 

  14. Heizmann CW, Schäfer BW. International calcium-binding proteins. Seminars Cell Biol 1990; 1:277–282.

    CAS  Google Scholar 

  15. Ben-Ze’ev A. Animal cell shape changes and gene expression. Bic Essays 1991; 13:207–212.

    Google Scholar 

  16. Morley SJ, Thomas G. Intracellular messengers and the control of protein synthesis. Pharmacol Ther 1991; 50:291–319.

    Article  PubMed  CAS  Google Scholar 

  17. Shalloway D, Shenoy S. Oncoprotein kinases in mitosis. Adv Cancer Res 1991; 57:185–225.

    Article  PubMed  CAS  Google Scholar 

  18. Petrovic AG, Oudet CL, Stutzmann JL. Temporal organization of rat and human skeletal cells. In: Edmunds LN, ed. Cell Cycle Clocks. New York: Marcel Dekker; 1984:325–347.

    Google Scholar 

  19. Sheffield LG. Oligonucleotides antisense to catalytic subunit of cyclic AMP-dependent protein kinase inhibit mouse mammary epithelial cell DNA synthesis. Exp Cell Res 1991; 192:307–310.

    Article  PubMed  CAS  Google Scholar 

  20. Cho-Chung YS, Clair T, Tortora G, Yokonaki H. Role of site-selective cAMP analogs in the control and reversal of malignancy. Pharmacol Ther 1991; 50:1–33.

    Article  PubMed  CAS  Google Scholar 

  21. Scott JD. Cyclic nucleotide-dependent protein kinases. Pharmacol Ther 1991; 50:123–145.

    Article  PubMed  CAS  Google Scholar 

  22. Montminy MR, Gonzalez GA, Yamamoto KK. Characteristics of the cAMP response unit. Recent Progr Hormone Res 1990; 46:21–230.

    Google Scholar 

  23. Benbrook DM, Jones NC. Heterodimerformation between CREB and JUN proteins. Oncogene 1990; 5:295–302.

    PubMed  CAS  Google Scholar 

  24. Macgregor PF, Abate C, Curran T. Direct cloning of leucine zipper proteins: Jun binds cooperatively to the CRE with CRE-BP1. Oncogene 1990; 5:451–458.

    PubMed  CAS  Google Scholar 

  25. Takeda J, Mackawa T, Sudo T, Seino Y, Imura H, Naoaki S, Tanaka C, Ishii S. Expression of the CRE-BP1 transcriptional regulator binding to the cyclic AMP response element in central nervous system, regenerating liver, and human tumors. Oncogene 1991; 6:1009–1014.

    PubMed  CAS  Google Scholar 

  26. Bookstein R, Lee WH. Molecular genetics of the retinoblastoma suppressor gene. Crit Rev Oncogenesis 1991; 2:211–227.

    PubMed  CAS  Google Scholar 

  27. Kim SJ, Lee HD, Robbins PD, Busam K, Sporn MB, Roberts AB. Regulation of transforming growth factor Bl gene expression by the product of the retinoblastoma-susceptibility gene. Proc Natl Acad Sei USA 1991; 88: 3052–3056.

    Article  CAS  Google Scholar 

  28. Mittnacht S, Weinberg RA. Gl/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 1991; 65:381–393.

    Article  PubMed  CAS  Google Scholar 

  29. Krek W, Nigg EA. Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J 1991; 10:305–316.

    PubMed  CAS  Google Scholar 

  30. Tournier S, Raynaud F, Gerbaud P, Lohmann SM, Dorée M, Evain-Brion D. Association of type II cAMP-dependent protein kinase with p34cdc2 protein kinase in human fibroblasts. J Biol Chem 1991; 266:19018–19022.

    PubMed  CAS  Google Scholar 

  31. Lin BT-Y, Gruenwald S, Moria AO, Lee W-H, Wang JYJ. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J 1991; 10:857–864.

    PubMed  CAS  Google Scholar 

  32. Bandara LR, Adamczewski JP, Hunt T, Sassone-Corsi P. Cyclin A and the retinoblastoma gene product complex with a common transcription factor. Nature 1991; 352:249–251.

    Article  PubMed  CAS  Google Scholar 

  33. Foulkes NS, Laoide BM, Schlotter F, et al. Transcriptional antagonist cAMP-responsive element modulator (CREM) down-regulates c-fos cAMP-induced expression. Proc Natl Acad Sei USA 1991; 88:5448–5452.

    Article  CAS  Google Scholar 

  34. Foulkes NS, Borrelli E, Sassone-Corsi P. CREM gene: Use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 1991; 64:739–749.

    Article  PubMed  CAS  Google Scholar 

  35. Levine AJ, Momand J, Finlay CA. The p53 tumor suppressor gene. Nature 1991; 351:453–456.

    Article  PubMed  CAS  Google Scholar 

  36. Miller M, Park MK, Hanover JA. Nuclear pore complex: Structure, function, and regulation. Physiol Rev 1991; 71:909–949.

    PubMed  CAS  Google Scholar 

  37. Raper SE, Buswen SJ, Basker ME, Jones AL. Translocation of epidermal growth factor to the hepatocyte nucleus during rat liver regeneration. Gastroenterology 1987; 92:1243–1260.

    PubMed  CAS  Google Scholar 

  38. Calabretta B, Gewirtz AM. Functional requirements of c-myb during normal and leukemic hematopoiesis. Crit Rev Oncogenesis 1991; 2:187–194.

    PubMed  CAS  Google Scholar 

  39. Vilgrain I, Baird A. Phosphorylation of basic fibroblast growth factor by a protein kinase associated with the outer surface of a target cell. Mol Endocrinol 1991; 5:1003–1012.

    Article  PubMed  CAS  Google Scholar 

  40. Means AR, Van Berkum MFA, Bagchi I, Lu KP, Rasmussen CD. Regulatory functions of calmodulin. Pharmacol Ther 1991; 50:255–270.

    Article  PubMed  CAS  Google Scholar 

  41. Ramsdell JS. Voltage-dependent calcium channels regulate GH4 pituitory cell proliferation at two stages of the cell cycle. J Cell Physiol 1991; 146: 197–206.

    Article  PubMed  CAS  Google Scholar 

  42. Reddy GPV. Allosteric interactions between the enzymes of DNA biosynthesis in mammalian. In: Campisi J, Cunningham DD, Inouye M, Riley M, eds. Pespectives on Cellular Regulation: From bacteria to Cancer. New York: Wiley; 1991:315–329.

    Google Scholar 

  43. Roberts JM, d’Urso G. An origin unwinding activity regulates initiation of DNA replication during mammalian cell cycle. Science 1988; 241:1486–1489.

    Article  PubMed  CAS  Google Scholar 

  44. McVey D, Brizuela L, Mohr I, Marshak DR, Gluzman Y, Beach D. Phosphorylation of large tumour antigen by cdc 2 stimulates SV40 DNA replication. Nature 1989; 341:503–507.

    Article  PubMed  CAS  Google Scholar 

  45. Nishitani H, Ohtsubo M, Yamashita K, Iida H, Pines J, Yasudo H, Shibata Y, Hunter T, Nishimoto T. Loss of RCC1, a nuclear DNA-binding protein, uncouples the completion of DNA replication from the activation of cdc2 protein kinase and mitosis. EMBO J 1991; 10:1555–1564.

    PubMed  CAS  Google Scholar 

  46. Bischoff FR, Ponstingl H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 1991; 354:80–82.

    Article  PubMed  CAS  Google Scholar 

  47. Watson PA. Function follows form: Generation of intracellular signals by cell deformation. FASEB J 1991; 5:2013–2019.

    PubMed  CAS  Google Scholar 

  48. Fernandez A, Lamb N. Mitotic control in mammalian cells, positive and negative regulation by protein phosphorylation. Berlin: Springer-Verlag; 1991:397–409.

    Google Scholar 

  49. Lamb NJC, Cavadore J-C, Labbe J-C, Maurer RA, Fernandez A. Inhibition of cAMP-dependent protein kinase plays a key role in the induction of mitosis and nuclear envelope breakdown in mammalian cells. EMBO J 1991:1523–1533.

    Google Scholar 

  50. Murray A, Hunt T. The Cell Cycle. New York: WH Freeman and Company; 1993:251.

    Google Scholar 

  51. Meijer L, Azzi L, Wang JYJ. Cyclin B targets p34cdc2 for tyrosine phosphorylation. EMBO J 1991; 10:1545–1554.

    PubMed  CAS  Google Scholar 

  52. Parker LL, Atherton-Fessler S, Lee MS. Cyclin promotes the tyrosine phosphorylation of p34cdc2 in a wee 1+ dependent manner. EMBO J 1991; 10:1255–1263.

    PubMed  CAS  Google Scholar 

  53. Shenolikar S, Nairn AC. Protein phosphatases: Recent progress. Adv Second Messenger Phosphoprot Res 1991; 23:1–121.

    CAS  Google Scholar 

  54. Sakai H, Ohta K. Centrosome signalling at mitosis. Cell Signal 1991; 3:267–272.

    Article  PubMed  CAS  Google Scholar 

  55. Pavelka M. Functional morphology of the Golgi apparatus. Adv Anal Embryol Cell Biol 1987; 106:1–94.

    CAS  Google Scholar 

  56. Goldbeter A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc kinase. Proc Natl Acad Sei USA 1991; 88:9107–9111.

    Article  CAS  Google Scholar 

  57. Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 1991; 349:132–138.

    Article  PubMed  CAS  Google Scholar 

  58. Fischer B, Fischer ER. Experimental studies of factors influencing hepatic metastases. III. Effect of surgical trauma with special reference to liver injury. Ann Surg 1959; 150:731–744.

    Google Scholar 

  59. van Dale P, Galand P. Effect of partial hepatectomy on experimental liver invasion by intraportally injected colon carcinoma cells in rats. Invasion Metastasis 1988; 8:217–227.

    PubMed  Google Scholar 

  60. Pietenpol JA, Holt JT, Stein RW, Moses HL. Transforming growth factor Bl suppression of c-myc gene transcription: Role in inhibition of keratino-cyte proliferation. Proc Natl Acad Sei USA 1990; 87:3758–3762.

    Article  CAS  Google Scholar 

  61. Arends MJ, Wyllie AH. Apoptosis: Mechanism and roles in pathology. Int Rev Exp Pathol 1991; 32:223–254.

    PubMed  CAS  Google Scholar 

  62. Goldstein P, Ojcius DM, Young DE. Cell death mechanisms and the immune system. Immunol Revs 1991; 121:30–65.

    Google Scholar 

  63. Walker GJ, Hayward NK, Falvey S, Cooksley WGE. Loss of somatic heterozygosity in hepatocellular carcinoma. Cancer Res 1991; 51:4367–4370.

    PubMed  CAS  Google Scholar 

  64. Arbuthnot P, Kew M, Fitschen W. c-fos and c-myc oncoprotein expression in human hepatocellular carcinomas. Anticancer Res 1991; 11:921–924.

    PubMed  CAS  Google Scholar 

  65. Hayward NK, Walker GJ, Graham W, Cooksley WGE. Hepatocellular carcinoma mutation. Nature 1991; 352:764.

    Article  PubMed  CAS  Google Scholar 

  66. Hsu IC, Metealf RA, Sun T, Welsh JA, Wang NJ, Harris CC. Mutational hotspot in p53 gene in human hepatocellular carcinomas. Nature 1991; 350:427–428.

    Article  PubMed  CAS  Google Scholar 

  67. Bressac B, Kew M, Wands J, et al. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature 1991; 350:429–431.

    Article  PubMed  CAS  Google Scholar 

  68. Behrens J, Weidner KM, Frixen UH, Schipper JH, Sachs M, Arakaki N, Daikura Y, Birchmeier W. The role of E-cadherin and scatter factor in tumor invasion and cell motility. In: Goldberg ID, ed. Cell Motility Factors. Basel: Birkhäuser; 1991:109–126.

    Google Scholar 

  69. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991; 251:1451–1454.

    Article  PubMed  CAS  Google Scholar 

  70. Shimoyama Y, Hirohashi S. Cadherin intercellular adhesion molecule in hepatocellular carcinomas: Loss of E-cadherin expression in an undifferentiated carcinoma. Cancer Letters 1991; 57:131–135.

    Article  PubMed  CAS  Google Scholar 

  71. Watt FM, Jordan PW, O’Neill CH. Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sei USA 1988; 85:5576–5580.

    Article  CAS  Google Scholar 

  72. Ruoslahti E. Integrins. J Clin Invest 1991; 87:1–5.

    Article  CAS  Google Scholar 

  73. Manciant ML, Su MJ, Pillai S, Bikle BB. Calcium regulation of involucrin expression in human keratinocytes. J Invest Dermatol 1991; 96:Abstract 392.

    Article  Google Scholar 

  74. Cook PW, Pittelkow MR, Shipley GD. Growth factor-independent proliferation of normal human neonatal keratinocytes: Production of autocrine-and paracrine-acting mitogenic factors. J Cell Physiol 1991; 146:277–289.

    Article  PubMed  CAS  Google Scholar 

  75. Watt FM, Boukamp P, Hornung J. Effect of growth environment on spatial expression of involucrin by human epidermal keratinocytes. Arch Dermatol Res 1987; 279:335–340.

    Article  PubMed  CAS  Google Scholar 

  76. Hayman JA, Danks JA, Ebeling PR, Moseley JM, Kemp BE, Martin TJ. Expression of parathyroid hormone related protein in normal skin and in tumors of skin and skin appendages. J Pathol 1989; 158:293–296.

    Article  PubMed  CAS  Google Scholar 

  77. Martin TJ, Moseley JM, Gillespie MT. Parathyroid hormone-related protein: Biochemistry and molecular biology. Crit Rev Biochem Mol Biol 1991; 26:377–395.

    Article  PubMed  CAS  Google Scholar 

  78. Pietenpol JA, Holt JT, Stein RW, Moses HL. Transforming growth factor ßl suppression of c-myc gene transcription: Role in inhibition of keratinocyte proliferation. Proc Natl Acad Sei USA 1990; 87:3758–3762.

    Article  CAS  Google Scholar 

  79. Pietenpol J, Stein RW, Moran E, Yaciuk R, Schlegel R, Lyons RM, Pittelkow MR, Münger K, Howley PM, Moses HL. TGF-ßl inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 1990; 61:777–785.

    Article  PubMed  CAS  Google Scholar 

  80. Mallette LE. The parathyroid poly hormones: New concepts in the spectrum of peptide hormone action. Endocrine Revs 1991; 12:110–117.

    Article  CAS  Google Scholar 

  81. Dotto GP, El-Fouly MH, Nelson C, Trosko JE. Similar and synergistic inhibition of gap-junctional communication by ras transformation and tumor promoter treatment of mouse primary keratinocytes. Oncogene 1989; 4: 637–641.

    PubMed  CAS  Google Scholar 

  82. Ando Y, Imamura S, Murachi T, Kennagi R. Calpain activates two transglutaminases from porcine skin. Arch Dermatol Res 1988; 280:380–384.

    Article  PubMed  CAS  Google Scholar 

  83. Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol Rev 1991; 71:813–847.

    PubMed  CAS  Google Scholar 

  84. Wyatt GP, Steele VE, Elmore E. Differential growth response to exogenous calcium in normal and carcinogen-exposed primary human keratinocyte cell cultures. In: Kelloff G, Steele VE, Stoner GD, eds. Proceedings of workshop on cellular and molecular targets for chemoprevention. National Cancer Institute, Chemoprevention Branch, Bethesda, 1991. p. 35.

    Google Scholar 

  85. Suemori S, Ciacci C, Podolsky DK. Regulation of transforming growth factor expression in rat intestinal epithelial cell lines. J Clin Invest 1991; 87:2216–2221.

    Article  PubMed  CAS  Google Scholar 

  86. Torelli G, Venturelli D, Colo A, et al. Expression of c-myb protooncogene and other cell cycle-related genes in normal and neoplastic human colonic mucosa. Cancer Res 1987; 47:5266–5269.

    PubMed  CAS  Google Scholar 

  87. Pienta KJ, Getzenberg RH, Coffey S. Cell structure and DNA organization. Crit Rev Eukaryotic Gene Expression 1991; 1:355–385.

    CAS  Google Scholar 

  88. Pignatelli M, Bodmer WF. Genetics and biochemistry of collagen binding-triggered glandular differentiation in a human colon carcinoma cell line. Proc Natl Acad Sei USA 1988; 85:5561–5565.

    Article  CAS  Google Scholar 

  89. Pignatelli M, Bodmer WF. Integrin-receptor-mediated differentiation and growth inhibition are enhanced by transforming growth factor-ß in colorectal tumour cells grown in collagen gel. Int J Cancer 1989; 44:518–523.

    Article  PubMed  CAS  Google Scholar 

  90. Richman PJ, Bodmer WF. Control of differentiation in human colorectal carcinoma cell lines: Epithelial-mesenchymal interactions. J Pathol 1988; 156:197–211.

    Article  PubMed  CAS  Google Scholar 

  91. Iyengar V, Albaugh GP, Lohani A, et al. Human stools as a source of viable colonic epithelial cells. FASEB J 1991; 5:2856–2859.

    PubMed  CAS  Google Scholar 

  92. Gross ME, Zorbas MA, Danels YJ, et al. Cellular growth response to epidermal growth factor in colon carcinoma cells with an amplified epidermal growth factor receptor derived from a familial adenomatous polyposis patient. Cancer Res 1991; 51:1452–1459.

    PubMed  CAS  Google Scholar 

  93. Yu D, Seitz PK, Rajaraman S, et al. Stimulation of intracellular cAMP and ornithine decarboxylase activity in a human colonic cell line by parathyroid hormone-related protein. J Bone Min Res 1991; 6:S116.

    Google Scholar 

  94. Bishop DT, Thomas HJW. The genetics of colon cancer. Cancer Surveys 1990; 9:585–604.

    PubMed  CAS  Google Scholar 

  95. Cross HS, Huber C, Peterlik M. Antiproliferative effect of 1,25-dihydroxyvitamin D3 and its analogs on human colon adenocarcinoma cells (CACO-2): Influence of extracellular calcium. Biochem Biophys Res Commun 1991; 179:57–62.

    Article  PubMed  CAS  Google Scholar 

  96. Edelstein PS, Thompson SM, Davies, RJ. Altered intracellular calcium regulation in human colorectal cancers and in “normal” adjacent mucosa. Cancer Res 1991; 51:4492–4494.

    PubMed  CAS  Google Scholar 

  97. Whitfield JF. Calcium switches, cell cycles, differentiation, and death. In: Lipkin M, Newmark HL, Kelloff G, eds. Calcium, Vitamin D, and Prevention of Colon Cancer. Boca Raton, Fla.: CRC Press; 1991:31–77.

    Google Scholar 

  98. Phan SC, Morotomi M, Guillem JG, et al. Decreased levels of 1,2-sn-diacylglycerol in human colon tumors. Cancer Res 1991; 51:1571–1573.

    PubMed  CAS  Google Scholar 

  99. Sauter G, Nerlick A, Spengler U, et al. Low diacylglycerol values in colonic adenomas and colorectal cancer. Gut 1990; 31:1041–1045.

    Article  PubMed  CAS  Google Scholar 

  100. Lee H, Winawer S, Friedman E. Signal-transduction through pp63 tyrosine phosphorylation in human colon carcinoma cell lines. Proc Amer Assoc Cancer Res 1991; 51: Abstract 450.

    Google Scholar 

  101. Bradbury AW, Miller WR, Clair T, et al. Overexpressed type I regulatory subunit (RI) of cAMP-dependent protein kinase (PKA) as tumor marker in colorectal cancer. Proc Amer Assoc Cancer Res 1990; 31:172.

    Google Scholar 

  102. Clair T, Yokozaki H, Tortora G, et al. An antisense oligodeoxynucleotide targeted against the type I regulatory subunit (Ria) mRNA of cAMP-dependent protein kinase (PKA) inhibits the growth of LS-147T human colon carcinoma in athymic nude mice. Proc Amer Assoc Cancer Res 1991; 51: Abstract 1645.

    Google Scholar 

  103. Lior X, Jacoby RF, Teng BB, et al. K-ras mutations in 1,2-dimethylhydrazine-colonic tumors: Effects of supplemental dietary calcium and vitamin D deficiency. Cancer Res 1991; 51:4305–4309.

    Google Scholar 

  104. Rodrigues NR, Rowan A, Smith MEF, et al. p53 mutations in colorectal cancer. Proc Natl Acad Sei USA 1990; 87:7555–7559.

    Article  CAS  Google Scholar 

  105. Campo F, Calle-Martin O, Miquel R, et al. Loss of heterozygosity of p53 gene and p53 protein expression in human colorectal carcinomas. Cancer Res 1991; 51:4436–4442.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Whitfield, J.F. (1994). Calcium Signals in Cell Proliferation, Differentiation, and Death. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics