Skip to main content

Potassium Channels in Skeletal Muscle

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 139 Accesses

Abstract

Several different potassium-selective channels have been described1,2 since 1902, when Julius Bernstein postulated the existence of a selective potassium permeability in excitable cell membranes.3 This diversity results from the expression of different or related genes, from the alternative splicing of a primary transcript, or from posttranslational modifications. In addition, the assembling of different channel proteins into heteromultimeric species and tissue-specific expression of different channel types have been proposed.4,5 Potassium channels can be found in almost all eukaryotic cells. Various types of potassium channels may be present in the same cell, while different cells may contain similar types. The functional role of all types of potassium channels is to lower the excitability of the cell1 and, although different channels play different roles in stabilizing the cell membrane, the individual contribution of a specific channel type to the total ionic current is often difficult to determine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hille B. Ionic Channels of Excitable Membranes. Sunderland, Mass.: Sinauer; 1984.

    Google Scholar 

  2. Rudy B. Diversity and ubiquity of K channels. Neurosci 1988; 25:729–749.

    CAS  Google Scholar 

  3. Bernstein J. Untersuchungen zur Thermodynamik der bioelektrischen Ströme: Erster Theil. Pfluegers Arch 1902; 92:521–562.

    CAS  Google Scholar 

  4. Beckh S, Pongs O. Members of the RCK potassium channel family are differentially expressed in the rat nervous system. EMBO J 1990; 9:777–782.

    PubMed  CAS  Google Scholar 

  5. Luneau CJ, Williams JB, Marshall J, Levitan ES, Oliva C, Smith JS, Antanavage J, Folander K, Stein RB, Swanson R, Kaczmarek LK, Buhrow SA. Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proc Natl Acad Sei USA 1991; 88:3932–3936.

    CAS  Google Scholar 

  6. Adrian RH, Chandler WK, Hodgkin AL. Voltage clamp experiments in striated muscle fibres. J Physiol 1970; 208:607–644.

    PubMed  CAS  Google Scholar 

  7. Ildefonse M, Rougier O. Voltage-clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J Physiol 1972; 222:373–395.

    PubMed  CAS  Google Scholar 

  8. Hille B, Campbell DT. An improved vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol 1976; 67:265–293.

    PubMed  CAS  Google Scholar 

  9. Frankenhaeuser B, Lindley BD, Smith RS. Potentiometrie measurement of membrane action potentials in frog muscle fibres. J Physiol 1966; 183:152–166.

    PubMed  CAS  Google Scholar 

  10. Almers W, Roberts WM, Ruff RL. Voltage clamp of rat and human skeletal muscle: Measurements with an improved loose-patch technique. J Physiol 1984; 347:751–768.

    PubMed  CAS  Google Scholar 

  11. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976; 260:799–802.

    PubMed  CAS  Google Scholar 

  12. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 1981; 392:85–100.

    Google Scholar 

  13. Sakmann B, Neher E. Single-Channel Recording. New York: Plenum; 1983.

    Google Scholar 

  14. Miller C. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady-state electrical properties. J Membr Biol 1978; 40:1–23.

    PubMed  CAS  Google Scholar 

  15. Miller C, Bell JE, Garcia AM. The potassium channel of sarcoplasmic reticulum. Curr Top Membr Transp 1984; 21:99–132.

    CAS  Google Scholar 

  16. Tank DW, Miller C. Patch-clamped liposomes. In: Sakmann B, Neher E, eds. Single-Channel Recording. New York: Plenum; 1983:91–105.

    Google Scholar 

  17. Pallotta BS, Magleby KL, Barrett JN. Single-channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 1981; 293:471–474.

    PubMed  CAS  Google Scholar 

  18. Latorre R, Vergara C, Hidalgo C. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sei USA 1982; 79:805–809.

    CAS  Google Scholar 

  19. Standen NB, Stanfield PR, Ward TA. Properties of single potassium channels in vesicles formed from the sarcolemma of frog skeletal muscle. J Physiol 1985; 364:339–358.

    PubMed  CAS  Google Scholar 

  20. Burton F, Dörstelmann U, Hutter OF. Single-channel activity in sarcolemmal vesicles from human and other mammalian muscles. Muscle Nerve 1988; 11:1029–1038.

    PubMed  CAS  Google Scholar 

  21. Weik R, Neumcke B. ATP-sensitive potassium channels in adult mouse skeletal muscle: Characterization of the ATP-binding site. J Membr Biol 1989; 110:217–226.

    PubMed  CAS  Google Scholar 

  22. Standen NB, Stanfield PR, Ward TA, Wilson SW. A new preparation for recording single-channel currents from skeletal muscle. Proc R Soc Lond 1984; B221:455–464.

    Google Scholar 

  23. Blatz AL, Magleby KL. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 1986; 323:718–720.

    PubMed  CAS  Google Scholar 

  24. Hugues M, Schmid H, Romey G, Duval D, Frelin C, Lazdunski M. The Ca2+-dependent slow K+ conductance in cultured rat muscle cells: Characterization with apamin. EMBO J 1982; 1:1039–1042.

    PubMed  CAS  Google Scholar 

  25. Romey G, Lazdunski M. The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological and different physiological functions. Biochem Biophys Res Commun 1984; 118:669–674.

    PubMed  CAS  Google Scholar 

  26. Trimmer JS, Cooperman SS, Tomiko SA, Zhou J, Crean SM, Boyle MB, Kallen RG, Sheng Z, Barchi RL, Sigworth FJ, Goodman RH, Agnew WS, Mandel G. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 1989; 3:33–49.

    PubMed  CAS  Google Scholar 

  27. Catterall WA. Excitation-contraction coupling in vertebrate skeletal muscle: A tale of two calcium channels. Cell 1991; 64:871–874.

    PubMed  CAS  Google Scholar 

  28. Franciolini F, Petris A. Chloride channels of biological membranes. Biochim Biophys Acta 1990; 1031:247–259.

    PubMed  CAS  Google Scholar 

  29. Bretag AH. Muscle chloride channels. Physiol Rev 1987; 67:618–724.

    PubMed  CAS  Google Scholar 

  30. Spruce AE, Standen NB, Stanfield PR. Studies of the unitary properties of adenosine-5’-triphosphate-regulated potassium channels of frog skeletal muscle. J Physiol 1987; 382:213–236.

    PubMed  CAS  Google Scholar 

  31. Davies NW, Standen NB, Stanfield PR. ATP-dependent potassium channels of muscle cells: Their properties, regulation, and possible functions. J Bioenergetics and Biomembranes 1991; 23:509–535.

    CAS  Google Scholar 

  32. Fink R, Lüttgau HC. An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. J Physiol 1976; 263:215–238.

    PubMed  CAS  Google Scholar 

  33. Fink R, Hase S, Lüttgau HCh, Wettwer E. The effect of cellular energy reserves and internal calcium ions on the potassium conductance in skeletal muscle of the frog. J Physiol 1983; 336:211–228.

    PubMed  CAS  Google Scholar 

  34. Castle NA, Haylett DG. Effect of channel blockers on potassium efflux from metabolically exhausted frog skeletal muscle. J Physiol 1987; 383:31–43.

    PubMed  CAS  Google Scholar 

  35. Sauviat M-P, Ecault E, Faivre J-F, Findlay I. Activation of ATP-sensitive K channels by a K channel opener (SR 44866) and the effect upon electrical and mechanical activity of frog skeletal muscle. Pfluegers Arch 1991; 418:261–265.

    CAS  Google Scholar 

  36. Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 1984; 7:691–699.

    PubMed  CAS  Google Scholar 

  37. Paterson DJ, Robbins PA, Conway J. Changes in arterial plasma potassium and ventilation during exercise in man. Resp Physiol 1989; 79:323–330.

    Google Scholar 

  38. Paterson DJ, Friedland JS, Bascom DA, Clament ID, Cunningham DA, Painter R, Robbins PA. Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. J Physiol 1990; 429:339–348.

    PubMed  CAS  Google Scholar 

  39. Ball-Burnett M, Green HJ, Houston ME. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J Physiol 1991; 437:257–267.

    PubMed  CAS  Google Scholar 

  40. Lewis SF, Haller RG, Cook JD, Nunnally RL. Muscle fatigue in McArdle’s disease studied by 31P-NMR: Effect of glucose infusion. J Applied Physiol 1985; 59:1991–1994.

    CAS  Google Scholar 

  41. Dawson MJ, Gadian DG, Wilkie DR. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature 1978; 274:861–866.

    PubMed  CAS  Google Scholar 

  42. Dawson MJ, Gadian DG, Wilkie DR. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance. J Physiol 1980; 299:465–484.

    PubMed  CAS  Google Scholar 

  43. Neumcke B, Weik R. Vanadate as an activator of ATP-sensitive potassium channels in mouse skeletal muscle. Eur Biophys J 1991; 19:119–123.

    PubMed  CAS  Google Scholar 

  44. Kakei M, Kelly RP, Ashcroft SJH, Ashcroft FM. The ATP-sensitivity of K+ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett 1986; 208:63–66.

    PubMed  CAS  Google Scholar 

  45. Misler S, Falke LC, Gillis K, McDaniel ML. A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sei USA 1986; 83:7119–7123.

    CAS  Google Scholar 

  46. Davies NW. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 1990; 343:375–377.

    PubMed  CAS  Google Scholar 

  47. Parent L, Coronado R. Reconstitution of the ATP-sensitive potassium channel of skeletal muscle. J Gen Physiol 1989; 94:445–463.

    PubMed  CAS  Google Scholar 

  48. Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 1984; 311:271–273.

    PubMed  CAS  Google Scholar 

  49. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983; 305:147–148.

    PubMed  CAS  Google Scholar 

  50. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989; 245:177–180.

    PubMed  CAS  Google Scholar 

  51. Ashcroft SJH, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cellular Signalling 1990; 2:197–214.

    PubMed  CAS  Google Scholar 

  52. Ashcroft FM. Adenosine 5,-triphosphate-sensitive potassium channels. Ann Rev Neurosci 1988; 11:97–118.

    PubMed  CAS  Google Scholar 

  53. de Weille JR, Lazdunski M. Regulation of the ATP-sensitive potassium channel. In: Narahashi T, ed. Ion Channels, Volume 2. New York: Plenum; 1990:205–222.

    Google Scholar 

  54. Petersen OH. Control of potassium channels in insulin-secreting cells. ISI Atlas of Science: Biochemistry 1988; 1:144–149.

    CAS  Google Scholar 

  55. Trübe G, Rorsman P, Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic ß-cells. Pfluegers Arch 1986; 407:493–499.

    Google Scholar 

  56. Sturgess NC, Ashford MLJ, Cook DL, Hales CN. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 1985; 8453: 474–475.

    Google Scholar 

  57. Woll KH, Lönnendonker U, Neumcke B. ATP-sensitive potassium channels in adult mouse skeletal muscle: Different modes of blockage by internal cations, ATP and tolbutamide. Pfluegers Arch 1989; 414:622–638.

    CAS  Google Scholar 

  58. Belles B, Hescheler J, Trübe G. Changes of membrane current in cardiac cells induced by long whole-cell recordings and tolbutamide. Pfluegers Arch 1987; 409:582–588.

    CAS  Google Scholar 

  59. Hamilton TC, Weir SW, Weston AH. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol 1986; 88:103–111.

    PubMed  CAS  Google Scholar 

  60. Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 1990; 344:770–773.

    PubMed  CAS  Google Scholar 

  61. Cook NS. The pharmacology of potassium channels and their therapeutical potential. Trends Pharmacol Sei 1988; 9:21–28.

    CAS  Google Scholar 

  62. Hamilton TC, Weston AH. Cromakalim, nicorandil and pinacidil: Novel drugs which open potassium channels in smooth muscle. Gen Pharmac 1989; 20:1–9.

    CAS  Google Scholar 

  63. Quast U, Cook NS. Moving together: K+ channel openers and ATP-sensitive K+ channels. Trends Pharmacol Sei 1989; 10:431–435.

    CAS  Google Scholar 

  64. Weston AH. Smooth muscle K+ channel openers: Their pharmacology and clinical potential. Pfluegers Arch 1989; 414(suppl 1):S99–S105.

    Google Scholar 

  65. Duty S, Weston AH. Potassium channel openers: Pharmacological effects and future uses. Drugs 1990; 40:785–791.

    PubMed  CAS  Google Scholar 

  66. Edwards G, Weston AH. Structure-activity relationships of K+ channel openers. Trends Pharmacol Sei 1990; 11:417–422.

    CAS  Google Scholar 

  67. Weik R, Neumcke B. Effects of potassium channel openers on single potassium channels in mouse skeletal muscle. Naunyn-Schmiedeberg’s Arch Pharmacol 1990; 342:258–263.

    CAS  Google Scholar 

  68. Quasthoff S, Franke C, Hatt H, Richter-Turtur M. Two different types of potassium channels in human skeletal muscle activated by potassium channel openers. Neurosci Lett 1990; 119:191–194.

    PubMed  CAS  Google Scholar 

  69. Spuler A, Lehmann-Horn F, Gräfe P. Cromakalim (BRL 34915) restores in vitro the membrane potential of depolarized human skeletal fibres. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 339:327–331.

    CAS  Google Scholar 

  70. Quasthoff S, Spuler A, Spittelmeister W, Lehmann-Horn F, Gräfe P. K+ channel openers suppress myotonic activity of human skeletal muscle in vitro. Eur J Pharmacol 1990; 186:125–128.

    PubMed  CAS  Google Scholar 

  71. Gräfe P, Quasthoff S, Strupp M, Lehmann-Horn F. Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis. Muscle Nerve 1990; 13:451–457.

    PubMed  Google Scholar 

  72. McManus OB. Calcium-activated potassium channels: Regulation by calcium. J Bioenergetics and Biomembranes 1991; 23:537–560.

    CAS  Google Scholar 

  73. Behrens MI, Vergara C, Latorre R. Calcium-activated potassium channels of large unitary conductance. Brazilian J Med Biol Res 1988; 21:1101–1117.

    CAS  Google Scholar 

  74. Latorre R, Oberhauser A, Labarca P, Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol 1989; 51:385–399.

    PubMed  CAS  Google Scholar 

  75. Gardos G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 1958; 30:653–654.

    PubMed  CAS  Google Scholar 

  76. Marty A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 1981; 291:497–500.

    PubMed  CAS  Google Scholar 

  77. Marty A. Ca2+-dependent K+ channels with large unitary conductance. Trends Neurosci 1983; 6:262–265.

    CAS  Google Scholar 

  78. Latorre R, Miller C. Conductance and selectivity in potassium channels. J Membr Biol 1983; 71:11–30.

    PubMed  CAS  Google Scholar 

  79. Barrett JN, Magleby KL, Pallotta BS. Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol 1982; 331:211–230.

    PubMed  CAS  Google Scholar 

  80. Miller C, Moczydlowski E, Latorre R, Phillips M. Charybdotoxin, a protein inhibitor of single Ca2+-ativated K+ channels from mammalian skeletal muscle. Nature 1985; 313:316–318.

    PubMed  CAS  Google Scholar 

  81. Sands SB, Lewis RS, Cahalan MD. Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J Gen Physiol 1989; 93:1061–1074.

    PubMed  CAS  Google Scholar 

  82. Hermann A, Erxleben C. Charybdotoxin selectively blocks small Ca-activated K channels in Aplsyia neurons. J Gen Physiol 1987; 90:27–47.

    PubMed  CAS  Google Scholar 

  83. Castle NA, Strong PN. Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel. FEBS Lett 1986; 209:117–121.

    PubMed  CAS  Google Scholar 

  84. Schweitz H, Stansfeld CE, Bidard J-N, Fagni L, Maes P, Lazdunski M. Charybdotoxin blocks dendrotoxin-sensitive voltage-activated K+ channels. FEBS Lett 1989; 250:519–522.

    PubMed  CAS  Google Scholar 

  85. Schneider MJ, Rogowski RS, Krueger BK, Blaustein MP. Charybdotoxin blocks both Ca-activated K channels and Ca-independent voltage-gated K channels in rat brain synaptosomes. FEBS Lett 1989; 250:433–436.

    PubMed  CAS  Google Scholar 

  86. MacKinnon R, Reinhart PH, White MM. Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channels share common structural features. Neuron 1988; 1:997–1001.

    PubMed  CAS  Google Scholar 

  87. MacKinnon R, Miller C. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science 1989; 245:1382–1385.

    PubMed  CAS  Google Scholar 

  88. Massefski W Jr, Redfield AG, Hare DR, Miller C. Molecular structure of charybdotoxin, a pore-directed inhibitor of potassium channels. Science 1990; 249:521–524.

    PubMed  CAS  Google Scholar 

  89. Galvez A, Gimenez-Gallego G, Reuben JP, Roy-Contancin L, Feigenbaum P, Kaczorowski GJ, Garcia ML. Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem 1990; 265:11083–11090.

    PubMed  CAS  Google Scholar 

  90. Garcia ML, Galvez A, Garcia-Calvo M, King VF, Vazquez J, Kaczorowski GJ. Use of toxins to study potassium channels. J Bioenergetics and Biomembranes 1991; 23:615–646.

    CAS  Google Scholar 

  91. Blatz AL, Magleby KL. Calcium-activated potassium channels. Trends Neurosci 1987; 10:463–467.

    CAS  Google Scholar 

  92. Atkinson NS, Robertson GA, Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 1991; 253:551–555.

    PubMed  CAS  Google Scholar 

  93. Villarroel A, Alvarez O, Oberhauser A, Latorre R. Probing a Ca2+-activated K+ channel with quaternary ammonium ions. Pfluegers Arch 1988; 413:118–126.

    CAS  Google Scholar 

  94. Blatz AL, Magleby KL. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J Gen Physiol 1984; 84:1–23.

    PubMed  CAS  Google Scholar 

  95. Moczydlowski E, Lucchesi K, Ravindran A. An emerging pharmacology of peptide toxins targeted against potassium channels J Membr Biol 1988; 105:95–111.

    CAS  Google Scholar 

  96. Castle NA, Haylkett DG, Jenkinson DH. Toxins in the characterization of potassium channels. Trends Neurosci 1989; 12:59–65.

    PubMed  CAS  Google Scholar 

  97. Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: Voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sei USA 1982; 79:1308–1312.

    CAS  Google Scholar 

  98. Leveque C, Marqueze B, Couraud F, Seagar M. Polypeptide components of the apamin receptor associated with a calcium activated potassium channel. FEBS Lett 1990; 275:185–189.

    PubMed  CAS  Google Scholar 

  99. Barrett JN, Barrett EF, Dribin LB. Calcium-dependent slow potassium conductance in rat skeletal myotubes. Develop Biol 1981; 82:258–266.

    PubMed  CAS  Google Scholar 

  100. Renaud J-F, Desnuelle C, Schmid-Antomarchi H, Hugues M, Serratrice G, Lazdunski M. Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature 1986; 319:678–680.

    PubMed  CAS  Google Scholar 

  101. Thesleff S, Ward MR. Studies on the mechanism of fibrillation potentials in denerved muscle. J Physiol 1975; 244:313–323.

    PubMed  CAS  Google Scholar 

  102. Schmid-Antomarchi H, Renaud J-F, Romey G, Hugues M, Schmid A, Lazdunski M. The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle. Proc Natl Acad Sei USA 1985; 82:2188–2191.

    CAS  Google Scholar 

  103. Fosset M, Schmid-Antomarchi H, Hugues M, Romey G, Lazdunski M. The presence in pig brain of an endogenous equivalent of apamin, the bee venom peptide that specifically blocks Ca2+-dependent K+ channels. Proc Natl Acad Sei USA 1984; 81:7228–7232.

    CAS  Google Scholar 

  104. Suarez-Isla BA, Cosgrove JW, Thompson JM, Rapoport SI. A soluble factor (<4000Da) from chick spinal cord blocks slow hyperpolarizing afterpotentials in cultured rat muscle ceils. Develop Brain Res 1986; 30:274–277.

    CAS  Google Scholar 

  105. Lombet A, Kazazoglou T, Delpont E, Renaud J-F, Lazdunski M. Ontogenic appearance of Na+ channels characterized as high affinity binding sites for tetrodotoxin during development of the rat nervous and skeletal muscle system. Biochem Biophys Res Commun 1983; 110:894–901.

    PubMed  CAS  Google Scholar 

  106. Kazazoglou T, Schmid A, Renaud J-F, Lazdunski M. Ontogenic appearance of Ca2+ channels characterized as binding sites for nitrendipine during development of nervous, skeletal and cardiac muscle systems in the rat. FEBS Lett 1983; 164:75–79.

    PubMed  CAS  Google Scholar 

  107. Adrian RH, Chandler WK, Hodgkin AL. Slow changes in potassium permeability in skeletal muscle. J Physiol 1970; 208:645–668.

    PubMed  CAS  Google Scholar 

  108. Duval A, Leoty C. Ionic currents in mammalian fast skeletal muscle. J Physiol 1978; 278:403–423.

    PubMed  CAS  Google Scholar 

  109. Duval A, Leoty C. Ionic currents in slow twitch skeletal muscle. J Physiol 1980; 307:23–41.

    PubMed  CAS  Google Scholar 

  110. Duval A, Leoty C. Comparison between the delayed outward current in slow and fast twitch skeletal muscle in the rat. J Physiol 1980; 307:43–57.

    PubMed  CAS  Google Scholar 

  111. Duval A, Leoty C. Changes in the ionic currents sensitivity to inhibitors in twitch rat skeletal muscles following denervation. Pfluegers Arch 1985; 403:407–414.

    CAS  Google Scholar 

  112. Trautmann A, Delaporte C, Marty A. Voltage-dependent channels of human muscle cultures. Pfluegers Arch 1986; 406:163–172.

    CAS  Google Scholar 

  113. Spruce AE, Standen NB, Stanfield PR. Rubidium ions and the gating of delayed rectifier potassium channels of frog skeletal muscle. J Physiol 1989; 411:597–610.

    PubMed  CAS  Google Scholar 

  114. Koren G, Liman ER, Logothetis DE, Nadal-Ginard B, Hess P. Gating mechanism of a cloned potassium channel expressed in frog oocytes and mammalian cells. Neuron 1990; 2:39–51.

    Google Scholar 

  115. Matsubara H, Liman ER, Hess P, Koren G. Pretranslational mechanisms determine the type of potassium channels expressed in the rat skeletal and cardiac muscles. J Biol Chem 1991; 266:13324–13328.

    PubMed  CAS  Google Scholar 

  116. Katz B. Les constantes electriques de la membrane du muscle. Arch Sei Physiol 1949; 3:285–300.

    CAS  Google Scholar 

  117. Adrian RH. Rectification in muscle membrane. Prog Biophys Mol Biol 1969; 19:340–369.

    Google Scholar 

  118. Almers W. Potassium conductance changes in skeletal muscle and the potassium concentration in the transverse tubules. J Physiol 1972; 225:33–56.

    PubMed  CAS  Google Scholar 

  119. Almers W. The decline of potassium permeability during extreme hyperpolarization in frog skeletal muscle. J Physiol 1972; 225:57–83.

    PubMed  CAS  Google Scholar 

  120. Matsuda H, Stanfield PR. Single inwardly rectifying potassium channels in cultured muscle cells from rat and mouse. J Physiol 1989; 414:111–124.

    PubMed  CAS  Google Scholar 

  121. Standen NB, Stanfield PR. Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle. J Physiol 1979; 294:497–520.

    PubMed  CAS  Google Scholar 

  122. Gonoi T, Hasegawa S. Postnatal induction and neural regulation of inward rectifiers in mouse skeletal muscle. Pfluegers Arch 1991; 418:601–607.

    CAS  Google Scholar 

  123. Ohmori H, Yoshida S, Hagiwara S. Single K+ channel currents of anomalous rectification in cultured rat myotubes. Proc Natl Acad Sei USA 1981; 78:4960–4964.

    CAS  Google Scholar 

  124. Hodgkin AL, Horowicz P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 1959; 148: 127–160.

    PubMed  CAS  Google Scholar 

  125. Abramcheck CW, Best PM. Physiological role and selectivity of the in situ potassium channel of the sarcoplamic reticulum in skinned frog skeletal muscle fibers. J Gen Physiol 1989; 93:1–21.

    PubMed  CAS  Google Scholar 

  126. Miller C, Racker E. Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J Membr Biol 1976; 30:283–300.

    PubMed  CAS  Google Scholar 

  127. McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sei 1951; 10:13–33.

    CAS  Google Scholar 

  128. Lewis SF, Haller RG. The pathophysiology of McArdle’s disease: Clues to regulation in exercise and fatigue. J Applied Physiol 1986; 61:391–401.

    CAS  Google Scholar 

  129. Fontaine B, Khurana TS, Hoffman EP, Bruns GA, Haines JL, Trofatter JA, Hanson MP, Rich J, McFarlane H, Yasek DMcK, Romano D, Gusella JF, Brown RH Jr. Hyperkalemic periodic paralysis and the adult muscle sodium channel a-subunit gene. Science 1990; 250:1000–1002.

    CAS  Google Scholar 

  130. Rudel R, Lehmann-Horn F. Membrane changes in cells from myotonia patients. Physiol Rev 1985; 65:310–356.

    PubMed  CAS  Google Scholar 

  131. Lehmann-Horn F, Küther G, Ricker K, Gräfe P, Ballanyi K, Rudel R. Adynamia episodica hereditaria with myotonia: A non-inactivating sodium current and the effect of extracellular pH. Muscle Nerve 1987; 10:363–374.

    PubMed  CAS  Google Scholar 

  132. Cannon SC, Brown RH Jr, Corey DP. A sodium channel defect in hyperkalemic periodic paralysis: Potassium-induced failure of inactivation. Neuron 1991; 6:619–626.

    PubMed  CAS  Google Scholar 

  133. Lehamann-Horn F, Iaizzo PA, Hatt H, Franke Ch. Altered gating and conductance of Na+ channels in hyperkalemic periodic paralysis. Pfluegers Arch 1991;418:297–299.

    Google Scholar 

  134. Ptacek LJ, Trimmer JS, Agnew WS, Roberts JR, Petajan JH, Leppert M. Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium channel locus. Neurology 1991; 41:1163.

    Google Scholar 

  135. Rudel R, Lehmann-Horn F, Ricker K, Küther G. Hypokalemic periodic paralysis: In vitro investigation of muscle fiber membrane parameters. Muscle Nerve 1984; 7:110–120.

    PubMed  CAS  Google Scholar 

  136. Kao I, Gordon AM. Mechanism of insulin-induced paralysis of muscles from potassium-depleted rats. Science 1975; 188:740–741.

    PubMed  CAS  Google Scholar 

  137. Otsuka M, Ohtsuki I. Mechanism of muscular paralysis by insulin with special reference to periodic paralysis. Am J Physiol 1970; 219:1178–1182.

    PubMed  CAS  Google Scholar 

  138. Flatman A, Clausen T. Combined effects of adrenaline and insulin on active electrogenic Na+-K+ transport in rat soleus muscle. Nature 1979; 281:580–581.

    PubMed  CAS  Google Scholar 

  139. Merickel M, Gray R, Chauvin P, Appel S. Cultured muscle from myotonic muscular dystrophy patients: Altered membrane electrical properties. Proc Natl Acad Sei USA 1981; 78:648–652.

    CAS  Google Scholar 

  140. Desnuelle C, Lombert A, Serratrice G, Lazdunski M. Sodium channel and sodium pump in normal and pathological muscles from patients with myotonic muscular dystrophy and lower motor neuron impairment. J Clin Invest 1982; 69:358–367.

    PubMed  CAS  Google Scholar 

  141. Moxley RT, Corbett AJ, Minaker KL, Rowe JW. Whole body insulin resistance in myotonic dystrophy. Ann Neurol 1984; 15:157–162.

    PubMed  CAS  Google Scholar 

  142. Franke Ch, Hatt H, Iaizzo PA, Lehmann-Horn F. Characteristics of Na+ channels and CI− conductance in resealed muscle fibre segments from patients with myotonic dystrophy. J Physiol 1990; 425:391–405.

    PubMed  CAS  Google Scholar 

  143. Spittelmeister W, Quasthoff S, Gräfe P, Lehmann-Horn F. Hypokalemic periodic paralysis: In vitro and clinical data about the K+ channel openers pinacidil. J Neurol Sei 1990; 98(suppl):370.

    Google Scholar 

  144. Miller C. Genetic manipulation of ion channels: A new approach to structure and mechanism. Neuron 1989; 2:1195–1205.

    PubMed  CAS  Google Scholar 

  145. Catterall WA. Structure and function of voltage-sensitive ion channels. Science 1988; 242:50–61.

    PubMed  CAS  Google Scholar 

  146. Miller C. 1990: Annus mirabilis of potassium channels. Science 1991; 252:1092–1096.

    CAS  Google Scholar 

  147. Baumann A, Grupe A, Ackermann A, Pongs O. Structure of the voltage-dependent potassium channel is highly conserved from Drosophila to vertebrate central nervous system. EMBO J 1988; 7:2457–2463.

    PubMed  CAS  Google Scholar 

  148. Stimmer W, Stocker M, Sakmann B, Seeburg P, Baumann A, Grup A, Pongs O. Potassium channels expressed from rat brain cDNA have delayed rectifier properties. FEBS Lett 1988; 242:199–206.

    Google Scholar 

  149. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 1989; 8:3235–3244.

    PubMed  Google Scholar 

  150. Christie MJ, Adelman JP, Douglass J, North RA. Expression of a cloned rat brain potassium channel in Xenopus oocytes. Science 1989; 244:221–224.

    PubMed  CAS  Google Scholar 

  151. Schröter K-H, Ruppersberg JP, Wunder F, Rettig J, Stocker M, Pongs O. Cloning and functional expression of a TEA-sensitive A-type potassium channel from rat brain. FEBS Lett 1991; 278:211–216.

    PubMed  Google Scholar 

  152. Philipson LH, Schaefer K, LaMendola J, Bell IG, Steiner DF. Sequence of a human fetal skeletal muscle potassium channel cDNA related to RCK4. Nucleic Acids Res 1990; 18:7160.

    PubMed  CAS  Google Scholar 

  153. MacKinnon R, Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 1990; 250:276–279.

    PubMed  CAS  Google Scholar 

  154. Papazian DM, Timpe LC, Jan YN, Jan LY. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 1991; 349:305–310.

    PubMed  CAS  Google Scholar 

  155. Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 1990; 250:533–538.

    PubMed  CAS  Google Scholar 

  156. Yool AJ, Schwarz TL. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature 1991; 349:700–704.

    PubMed  CAS  Google Scholar 

  157. Hartmann HA, Kirsch GE, Drewe JA, Taglialatela M, Joho RH, Brown AM. Exchange of conduction pathways between two related K+ channels. Science 1991; 251:942–944.

    PubMed  CAS  Google Scholar 

  158. Yellen G, Jurman ME, Abramson T, MacKinnon R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 1991; 251:939–942.

    PubMed  CAS  Google Scholar 

  159. Isacoff EY, Jan YN, Jan LY. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature 1990; 345:530–534.

    PubMed  CAS  Google Scholar 

  160. Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Sewing S, Pongs O. Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature 1990; 345:535–537.

    PubMed  CAS  Google Scholar 

  161. MacLennan DH. Molecular tools to elucidate problems in excitation-contraction coupling. Biophysic J 1990; 58:1355–1365.

    CAS  Google Scholar 

  162. Acsadi G, Dickson G, Love DR, Jani A, Walsh FS, Gurusinghe A, Wolff JA, Davies KE. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 1991; 352:815–818.

    PubMed  CAS  Google Scholar 

  163. Spruce AE, Standen NB, Stanfield PR. Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membrane. Nature 1985; 316:736–738.

    PubMed  CAS  Google Scholar 

  164. Davies NW, Spruce AE, Standen NB, Stanfield PR. Multiple blocking mechanisms of ATP-sensitive potassium channels of frog skeletal muscle by tetraethylammonium ions. J Physiol 1989; 413:31–48.

    PubMed  CAS  Google Scholar 

  165. Quayle JM, Standen NB, Stanfield PR. The voltage-dependent block of ATP-sensitive potassium channels of frog skeletal muscle by caesium and barium ions. J Physiol 1988; 405:677–697.

    PubMed  CAS  Google Scholar 

  166. Davies NW, Pettit AI, Agarwal R, Standen NB. The flickery block of ATP-dependent potassium channels of skeletal muscle by internal 4-aminopyridine. Pfluegers Arch 1991; 419:25–31.

    CAS  Google Scholar 

  167. Stein P, Palade P. Patch clamp of sarcolemmal spheres from stretched skeletal muscle fibers. Am J Physiol 1989; 256:C434–C440.

    PubMed  CAS  Google Scholar 

  168. Weik R, Lönnendonker U. Polymyxin B as a highly effective gating modifier of high-conductance Ca2+-activated K+ channels in mouse skeletal muscle. Pfluegers Arch 1990; 415:671–677.

    CAS  Google Scholar 

  169. Oberhauser A, Alvarez O, Latorre R. Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane. J Gen Physiol 1988; 92:67–86.

    PubMed  CAS  Google Scholar 

  170. Pallotta BS. N-Bromoacetamide removes a calcium-dependent component of channel opening from calcium-activated potassium channels in rat skeletal muscle. J Gen Physiol 1985; 86:601–611.

    PubMed  CAS  Google Scholar 

  171. MacKinnon R, Latorre R, Miller C. Functional modification of a Ca2+-activated K+ channel by trimethyloxonium. Biochemistry 1989; 28:8087–8092.

    PubMed  CAS  Google Scholar 

  172. MacKinnon R, Latorre R, Miller C. Role of surface electrostatics in the operation of a high-conductance Ca2+-activated K+ channel. Biochemistry 1989; 28:8092–8099.

    PubMed  CAS  Google Scholar 

  173. Vergara C, Latorre R. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. J Gen Physiol 1983; 82:543–568.

    PubMed  CAS  Google Scholar 

  174. Miller C, Latorre R, Reisin I. Coupling of voltage-dependent gating and Ba++ block in the high conductance, Ca++-activated K+ channel. J Gen Physiol 1987; 90:427–449.

    PubMed  CAS  Google Scholar 

  175. Neyton J, Miller C. Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 1988; 92:549–567.

    PubMed  CAS  Google Scholar 

  176. Neyton J, Miller C. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J Gen Physiol 1988; 92:569–586.

    PubMed  CAS  Google Scholar 

  177. Miller C. Competition for block of a Ca2+-activated K+ channel by charybdotoxin and tetraethylammonium. Neuron 1988; 1:1003–1006.

    PubMed  CAS  Google Scholar 

  178. Lucchesi KJ, Moczydlowski E. On the interaction of bovine pancreatic trypsin inhibitor with maxi Ca2+-activated K+ channels. J Gen Physiol 1991; 97:1295–1319.

    PubMed  CAS  Google Scholar 

  179. Lucchesi KJ, Moczydlowski E. Subconductance behavior in a maxi Ca2+-activated K+ channel induced by dendrotoxin-I. Neuron 1990; 2:141–148.

    Google Scholar 

  180. Ferguson WB. Competitive Mg+ block of a large-conductance, Ca2+-activated K+ channel in rat skeletal muscle. J Gen Physiol 1991; 98:163–181.

    PubMed  CAS  Google Scholar 

  181. Burton FL, Hutter OF. Sensitivity to flow of intrinsic gating in inwardly rectifying potassium channel from mannalian skeletal muscle. J Physiol 1990; 424:253–261.

    PubMed  CAS  Google Scholar 

  182. Coronado R, Rosenberg RL, Miller C. Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum. J Gen Physiol 1980; 76:425–446.

    PubMed  CAS  Google Scholar 

  183. Coronado R, Miller C. Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum. Nature 1979; 280:807–810.

    CAS  Google Scholar 

  184. Garcia AM, Miller C. Channel-mediated monovalent cation fluxes in isolated sarcoplasmic reticulum vesicles. J Gen Physiol 1984; 83:819–839.

    PubMed  CAS  Google Scholar 

  185. Coronado R, Miller C. Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum. Nature 1980; 288:495–497.

    PubMed  CAS  Google Scholar 

  186. Miller C, Rosenberg RL. A voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum. Effects of transition metal ions. Biochemistry 1979; 18:1138–1145.

    CAS  Google Scholar 

  187. Coronado R, Miller C. Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers. J Gen Physiol 1982; 79:529–547.

    PubMed  CAS  Google Scholar 

  188. Labarca PP, Miller C. A K+-selective, three-state channel from fragmented sarcoplasmic reticulum of frog leg muscle. J Membr Biol 1981; 61:31–38.

    PubMed  CAS  Google Scholar 

  189. Franke CH, Iaizzo PA, Hatt H, Spittelmeister W, Ricker K, Lehmann-Horn F. Altered Na+ channel activity and reduced Cl conductance cause hyperexcitability in recessive generalized myotonia (Becker). Muscle Nerve 1991; 14:762–770.

    PubMed  CAS  Google Scholar 

  190. Rudel R, Ricker K, Lehmann-Horn F. Transient weakness and altered membrane characteristic in recessive generalized myotonia (Becker). Muscle Nerve 1988; 11:202–211.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Weik, R. (1994). Potassium Channels in Skeletal Muscle. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics