Skip to main content

Structure, Gating, and Clinical Implications of the Potassium Channel

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

Abstract

Potassium ions are of paramount importance in living organisms. They play an essential role in cell metabolism, particularly in the synthesis of protein and glycogen, and in many enzymatic reactions, such as: (1) the hydrolysis of ATP, which supplies energy necessary for the active transport of ions and other substances; (2) the synthesis of acetyl-CoA, which is involved in the tricarboxylic acid cycle; and (3) the activity of pyruvic Phosphokinase, which is necessary for the transfer of phosphate from phosphopyruvate to ADP. In addition, potassium ions maintain resting potentials across cell membranes, and thus control nerve and muscle tissue excitability. Although several factors may influence the redistribution of potassium between the intra- and the extracellular compartment, an exhaustive discussion is beyond the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feldman SA. Effect of changes in electrolytes, hydration and pH upon the reactions to muscle relaxants. Br J Anaesth 1963; 35:546–551.

    Article  PubMed  CAS  Google Scholar 

  2. Miller RD, Roderick LL. Pancuronium induced neuromuscular blockade. Anesthesiology 1977; 46:333–335.

    Article  PubMed  CAS  Google Scholar 

  3. Miller RD, Roderick LL. Diuretic induced hypokaelemia, pancuronium neuromuscular blockade and its antagonism by neostigmine. Br J Anaesth 1978; 50:541–544.

    Article  PubMed  CAS  Google Scholar 

  4. Waud BE, Mookerjee A, Waud DR. Chronic potassium depletion and sensitivity to tubocurarine. Anesthesiology 1982; 57:111–115.

    Article  PubMed  CAS  Google Scholar 

  5. Waud BE, Waud DR. Interaction of calcium and potassium with neuromuscular blocking agents. Br J Anaesth 1980; 52:863–866.

    Article  PubMed  CAS  Google Scholar 

  6. Horn B. Magnesium deficiency causing persistent hypokalemia. Anesthesiology 1977; 46:310.

    CAS  Google Scholar 

  7. Cook NS. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sei 1988; 9:21–28.

    Article  CAS  Google Scholar 

  8. Hamill OP, Marty A, Neher E, Sackmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch 1981; 391:85–100.

    Article  CAS  Google Scholar 

  9. Kirber MT, Ordway RW, Clapp LH, Sims SM, Walsh JV Jr, Singer JJ. Voltage, ligand and mechanically gated channels in freshly dissociated single smooth muscle cells. In: Colatsky TJ, ed. Potassium Channels. New York: Wiley-Liss; 1990:123–143.

    Google Scholar 

  10. Osterrieder W, Waterfall JF. Therapeutic potential of K+ channel modulation in heart. In: Cook NS, ed. Potassium Channels. Chicester, England: Ellis Horwood; 1990:337–347.

    Google Scholar 

  11. Montal M. Reconstitution of channel proteins from excitable cells in planar lipid bilayer membranes. J Membr Biol 1987; 98:101–115.

    Article  PubMed  CAS  Google Scholar 

  12. Prestipino G, Valdivia HH, Lievano A, Darszon A, Ramirez AN, Possani LD. Purification and reconstitution of potassium channel from squid axon membranes. FEBS Lett 1989; 250:570–574.

    Article  PubMed  CAS  Google Scholar 

  13. Rehm H, Pelzer S, Cochet C, Chembaz E, Tempel BL, Trautwain W, Pelzer D, Lazdunski M. Dendrotoxin-binding brain membrane protein displays a K+ channel activity that is stimulated by both cAMP-dependent and endogenous phosphorilations. Biochemistry 1989; 28:6455–6460.

    Article  PubMed  CAS  Google Scholar 

  14. Carbone E, Prestipino G, Spadavecchia L, Franciolini F, Possani LD. Blocking of the squid giant axon K+ channel by noxiustoxin: A toxin from the venom of the scorpion Centruroides noxius. Pfluegers Arch 1987; 408: 423–431.

    Article  CAS  Google Scholar 

  15. Halliwell JV, Othman IB, Pelchen-Matthews A, Dolly J. Central action of dendrotoxin: Selective reduction of a transient K+ conductance in hippocampus and binding to localized acceptors. Proc Natl Acad Sei USA 1986; 83:493–497.

    Article  CAS  Google Scholar 

  16. Castle NA, Haylett DG, Jenkinson DH. Toxins in the characterization of potassium channels. Trends Neurosci 1989; 12:59–65.

    Article  PubMed  CAS  Google Scholar 

  17. Dreyer F. Peptide toxins and potassium channel. Rev Physiol Biochem Pharmacol 1990; 115:93–136.

    Article  PubMed  CAS  Google Scholar 

  18. Neher E, Sakmann B. Single channel currents recorded from membrane at denervated frog muscle membrane. Nature 1976;260:799–802.

    Article  PubMed  CAS  Google Scholar 

  19. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 1987; 237:770–775.

    Article  PubMed  CAS  Google Scholar 

  20. Frech GC, VanDongen AM J, Schuster G, Brown AM, Joho RH. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 1989; 340:642–645.

    Article  PubMed  CAS  Google Scholar 

  21. Roberds S, Tomkins MM. Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sei USA 1991; 88:1798–1802.

    Article  CAS  Google Scholar 

  22. Eisenman G, Dani JA. An introduction to molecular architecture and permeability of ion channels. Ann Rev Biophys Chem 1987; 16:205–226.

    Article  CAS  Google Scholar 

  23. Latorre R, Miller C. Conduction and selectivity in potassium channels. J Membr Biol 1983; 71:11–30.

    Article  PubMed  CAS  Google Scholar 

  24. Miller C. Bis-Quaternary ammonium blockers as structual probes of the sarcoplasmic reticulum K+ channel. J Gen Physiol 1982; 79:869–891.

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong CM. Ionic pores, gates, and gating currents. Quart Rev Biophysics 1975; 7:179–210.

    Article  Google Scholar 

  26. Hille B. Gating mechanisms. In: Hille B. ed. Ionic Channels of Excitable Membranes. Sunderland, Mass.: Sinauer; 1984:329–353.

    Google Scholar 

  27. Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol (Lond) 1952a; 116:449–472.

    CAS  Google Scholar 

  28. Neher E. Two fast transient current components during voltage clamp on snail neurons. J Gen Physiol 1971; 58:36–53.

    Article  PubMed  CAS  Google Scholar 

  29. Hagiwara S, Takahashi K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol 1974; 18:61–80.

    Article  PubMed  CAS  Google Scholar 

  30. Stimmer W, Conti F, Stocker M, Pongs O, Heinemann SH. Gating currents of inactivating and non-inactivating potassium channels expressed in Xenopus oocytes. Pfluegers Arch 1991; 418:423–429.

    Article  Google Scholar 

  31. Kurachi Y, Nakajima T, Sugimoto T. On the mechanisms of activation of muscarinic K+ channel by adenosine in isolated atrial cells: Involvement of GTP-binding proteins. Pfluegers Arch 1986b; 407:264–274.

    Article  CAS  Google Scholar 

  32. Ambrosini A, Barnard EA, Prestipino G. AMP A and kainate-operated channels reconstituted in artificial bilayers. FEBS Lett 1991; 281:27–29.

    Article  PubMed  CAS  Google Scholar 

  33. Woodhull AM. Ionic blockage of sodium channel in nerve. J Gen Physiol 1973; 61:687–708.

    Article  PubMed  CAS  Google Scholar 

  34. Miller C, Latorre R, Reisin I. Coupling of voltage-dependent gating and Ba++ block in the high-conductance, Ca++-activated K+ channel. J Gen Physiol 1987; 90:427–499.

    Article  PubMed  CAS  Google Scholar 

  35. Schawrz TL, Tempel BL, Papazian DM, Jan YN, Jan LY. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 1988; 331:137–142.

    Article  Google Scholar 

  36. MacKinnon R, Yellen G. Mutations affecting TEA+ blockade and ion permeation in voltage-activated K+ channels. Science 1990; 250:276–279.

    Article  PubMed  CAS  Google Scholar 

  37. Guy HR, Conti F. Pursuing the structure and function of voltage-gated channels. TINS 1990; 13:201–206.

    PubMed  CAS  Google Scholar 

  38. Rudy B. Diversity and ubiquity of K+ channels. Neuroscience 1988; 25: 729–749.

    Article  PubMed  CAS  Google Scholar 

  39. Kolb HA. Potassium channels in excitable and non-excitable cells. Rev Physiol Biochem Pharmacol 1990; 115:51–91.

    Article  PubMed  CAS  Google Scholar 

  40. Cook NS, Quast U. Potassium channel pharmacology. In: Cook NS, ed. Potassium Channels. Chicester, England: Ellis Horwood; 1990:181–231.

    Google Scholar 

  41. Hoshi T, Aldrich RW. Voltage-dependent K+ currents and underlying single K+ channels in phochromocytoma cells. J Gen Physiol 1988; 91:73–106.

    Article  PubMed  CAS  Google Scholar 

  42. Magnelli V, Nobile M, Maestrone E. K+ channels in PC12 are affected by propofol. Pfluegers Arch 1992; 420:393–398.

    Article  CAS  Google Scholar 

  43. Taylor PS. Selectivity and patch measurements of A-current in Helix aspersa neurons. J Physiol (Lond) 1987; 388:437–447.

    CAS  Google Scholar 

  44. Ohmori H, Yoshida S, Hagiwara S. Single K+ channel currents of anomalous rectification in cultured rat myotubes. Proc Natl Acad Sei USA 1981; 78:4960–4964.

    Article  CAS  Google Scholar 

  45. Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron. Nature 1980; 283:673–676.

    Article  PubMed  CAS  Google Scholar 

  46. Kandel ER, Schwartz JH. Molecular biology of learning: Modulation of transmitter release. Science 1982; 218:433–443.

    Article  PubMed  CAS  Google Scholar 

  47. Volterra A, Siegelbaum SA. Role of two different guanine nucleotide-binding proteins in the antagonistic modulation of the S-type K+ channels by cAMP and arachidonic acid metabolites in Aplysia sensory neuron. Proc Natl Acad Sei USA 1988; 85:7810–7814.

    Article  CAS  Google Scholar 

  48. Quast U, Cook NS. Moving together: K+ channel openers and ATP-sensitive channels. Trends Pharmacol Sei 1989; 10:431–435.

    Article  CAS  Google Scholar 

  49. Edwards G, Weston AH. Structure activity relationship of K+ channel openers. Trends Pharmacol Sei 1990; 11:417–422.

    Article  CAS  Google Scholar 

  50. Quast U, Cook NS. “In vitro” and “In vivo” comparison of two K+ channel openers, diazoxide and cromakalim and their inhibition by glibenclamide. J Pharmacol Exp Ther 1989; 250:261–271.

    PubMed  CAS  Google Scholar 

  51. Lebrun P, Devreux U, Herman M, Herculez A. Similarities between the effects of pinacidil and diazoxide on ionic and secretory events in rat pancreatic islets. J Pharmacol Exp Ther 1989; 250:1011–1018.

    PubMed  CAS  Google Scholar 

  52. Lebrun P, Antoine MH, Devreux U, Hermann M, Herculez A. Paradoxical inhibitory effect of cromakalim on 86Rb+ outflow from pancreatic islet cells. J Pharmacol Exp Ther 1990; 255:948–954.

    PubMed  CAS  Google Scholar 

  53. Lodge NJ, Cohen RB, Havens CN, Colatsky TJ. The effects of the putative potassium channel activator WAY 120,491 on 86Rb+ efflux from rabbit aorta. J Pharmacol Exp Ther 1991; 256:639–644.

    PubMed  CAS  Google Scholar 

  54. Meisheri KD, Swirtz MA, Purhoit SS, Cipkus-Dubray LA, Khan SA, Oleynek JJ. Characterization of K+ channel-dependent as well as independent components of pinacidil-induced vasodilatation. J Pharmacol Exp Ther 1991; 256:492–499.

    PubMed  CAS  Google Scholar 

  55. Kajioka S, Oike M, Kitamura K. Nicorandil opens a calcium-dependent potassium channel in smooth muscle cells of the rat portal vein. J Pharmacol Exp Ther 1990; 254:905–913.

    PubMed  CAS  Google Scholar 

  56. Giudicelli JF, Richer C, Berdeux A. Les activateurs des canaux potassiques. Perspectives dans le traitment de l’hypertension arterielle. La Presse Medicale 1991; 20:75–90.

    PubMed  CAS  Google Scholar 

  57. Giudicelli JF, Drieu La Rochelle C, Berdeux A. Effects of cromakalim and pinacidil on large epicardial and small coronary arteries in conscious dogs. J Pharmacol Exp Ther 1990; 255:836–842.

    PubMed  CAS  Google Scholar 

  58. Grover GJ, McCullough JR, Henry DE, Conder ML, Sleph PG. Anti ischemic effects of potassium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 1989; 251:98–104.

    PubMed  CAS  Google Scholar 

  59. Sakamoto S, Liang CL, Stone CK, Wood WB Jr. Effects of pinacidil on myocardial blood flow and infarct size after acute left anterior descending coronary artery occlusion and reperfusion in awake dogs with and without coexisting left circumflex coronary artery stenosis. J Cardiovasc Pharmacol 1989; 14:747–756.

    Article  PubMed  CAS  Google Scholar 

  60. Masuzawa K, Asano M, Matsuda T, Imaizumi Y, Watanabe M. Possible involvement of ATP sensitive K+ channels in the relaxant response of dog middle cerebral artery to cromakalim. J Pharmacol Exp Ther 1990; 255:818–825.

    PubMed  CAS  Google Scholar 

  61. Bril A, Man R. Effects of the potassium channel activator BRL 34915 on the action potential characteristics of canine cardiac Purkinje fibers. J Pharmacol Exp Ther 1990; 253:1090–1096.

    PubMed  CAS  Google Scholar 

  62. Ripoll C, Lederer WJ, Nichols CG. Modulation of ATP sensitive K+ channel activity and contractile behaviour in mammalian ventricle by the potassium channel openers cromakalim and RP49356. J Pharmacol Exp Ther 1990; 255:429–435.

    PubMed  CAS  Google Scholar 

  63. Hiraoka M, Fan Z. Activation of ATP sensitive outward K+ current by nicorandil (2-nicotinamidoethyl nitrate) in isolated ventricular myocytes. J Pharmacol Exp Ther 1989; 250:278–285.

    PubMed  CAS  Google Scholar 

  64. Kantor PF, Coetzee WA, Carmeliet EE. Reduction of ischemic K+ loss and arrhytmias in rat hearts: Effects of glibenclamide, a solphonylurea. Circ Res 1990; 66:478–483.

    PubMed  CAS  Google Scholar 

  65. Miller JA, Velayo NL, Dage RC, Rampe D, Lazdunski M. High affinity (3H)glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics. J Pharmacol Exp Ther 1991; 256:358–364.

    PubMed  CAS  Google Scholar 

  66. Amoroso S, Schmid-Antonmarchi H, Fosset M. Glucose solphonylureas and neurotransmitters release: Role of ATP sensitive K+ channels. Science 1990; 247:852–859.

    Article  PubMed  CAS  Google Scholar 

  67. Vaughan-Williams EM. Classification of antidysrhythmic drugs. Pharmacol Ther 1975; 1:115–138.

    CAS  Google Scholar 

  68. IJzerman AP, Soudijn W. The antiarrhythmic properties of adrenoceptor antagonists. Trends Pharmacol Sei 1989; 10:31–35.

    Article  CAS  Google Scholar 

  69. Dukes ID, Cleeman L, Morand J. Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharmacol Exp Ther 1990; 254:560–569.

    PubMed  CAS  Google Scholar 

  70. Furukawa T, Tsujimura Y, Kitamura K, Tanaka H, Habuchi Y. Time and voltage dependent block of the delayed K+ current by quinidine in rabbit sinoatrial and atrioventricular nodes. J Pharmacol Exp Ther 1989; 251:756–763.

    PubMed  CAS  Google Scholar 

  71. Laurenza A, McHugh-Sutkowski E, Seamon KB. Forskolin: A specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sei 1989; 10:442–443.

    Article  CAS  Google Scholar 

  72. Bowman WC. Pharmacology of Neuromuscular Function. London: Wright; 1990:29–32.

    Google Scholar 

  73. Jones TR, Charette L, Garcia ML, Kaczorowski J. Selective inhibition of relaxation of guinea pig trachea by charybdotoxin, a potent Ca++ activated K+ channel inhibitor. J Pharmacol Exp Ther 1990; 255:697–706.

    PubMed  CAS  Google Scholar 

  74. Ravens U, Wang XL, Wettwer E. Adrenoceptor stimulation reduces outward currents in rat ventricular myocytes. J Pharmacol Exp Ther 1989; 250:364–370.

    PubMed  CAS  Google Scholar 

  75. Stojanov E, Vulchev P, Shtrubova M, Marinova M. Clinical electro-myomechanographic and electromyographic studies in decurarization with pymadine. Anaesth Resus Inten Ther 1976; 4:139–143.

    Google Scholar 

  76. Miller RD, Booij LHDJ, Agoston S, Crul JF. 4-aminopyridine potentiates neostigmine and pyridostigmine in man. Anesthesiology 1979; 50:416–420.

    Article  PubMed  CAS  Google Scholar 

  77. Agoston S, Salt PJ, Erdmann W, Hilkemeijer T, Bencini A, Langrehr D. Antagonism of ketamine-diazepam anaesthesia by 4-aminopyridine in human volunteers. Br J Anaesth 1980; 52:367–370.

    Article  PubMed  CAS  Google Scholar 

  78. Agoston S, Maestrone E, van Ezik EJ, Ket JM, Houwertjes MC, Uges DRA. Effective treatment of verapamil intoxication with 4-aminopyridine in the cat. J Clin Invest 1984; 73:1291–1295.

    Article  PubMed  CAS  Google Scholar 

  79. Supan F, Buljubasic N, Eskinder H, Kampine JP, Bosnjak ZJ. Effects of halothane, isoflurane and enflurane on K+ current in canine cardiac Purkinje cells. Anesth Analg 1991; 72:S286.

    Google Scholar 

  80. Haydon DA, Requena J, Simon AJB. The potassium conductance of the resting squid axon and its blockage by clinical concentrations of general anaesthetics. J Physiol 1988; 402:362–374.

    Google Scholar 

  81. Haydon DA, Simon AJB. Excitation of the squid giant axon by general anaesthetics. J Physiol 1988; 402:375–379.

    PubMed  CAS  Google Scholar 

  82. Maclver MB, Tanellian DL. Volatile anesthetics excite mammalian nociceptor afferents recorded “in vitro”. Anesthesiology 1990; 72:1022–1030.

    Article  CAS  Google Scholar 

  83. Fiorica-Howells E, Gambale F, Horn R, Osses L, Spector S. Phencyclidine blocks voltage-dependent potassium currents in murine thymocytes. J Pharmacol Exp Ther 1990; 252:610–615.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Prestipino, G., Nobile, M., Maestrone, E. (1994). Structure, Gating, and Clinical Implications of the Potassium Channel. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics