Skip to main content

Cholinergic Receptors in Human Brain Arteries and Microvessels

Alterations in Alzheimer’s Disease

  • Chapter
The Human Brain Circulation

Part of the book series: Vascular Biomedicine ((VB))

Abstract

Cholinergic mechanisms have long been known to be implicated in the regulation of cerebral blood flow (CBF). The parasympathetic control of brain superficial vessels and the intracerebral cholinergic regulation of cerebral cortex microvasculature are well described. In vivo administration of acetylcholine (ACh) or cholinomimetics, as well as stimulation of specific neuronal structures, result in CBF increasesensitive to muscarinic and/or nicotinic blockade. In vitro administration of ACh to human isolated brain arteries results almost exclusively in an endothelium-dependent relaxation.This prominent dilatory effect contrasts with the dual vasomotor response (dilatation followed by constriction at higher doses of ACh) observed in such species as the dog and cat. At the level of the intraparenchymal microvessels, ACh induces vasodilatationand could mediate functions such as the fine tuning of local CBFand possibly blood—brain barrier permeability. Recent evidence indicates that ACh is not a direct smooth muscle vasodilatory agent, but rather interacts with specific cholinergic receptors strategically located on nerve terminals and/or endothelial cells to modulate the synthesis and release of a relaxing factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arneric, S. P., Iadecola, C., Underwood, M. D., and Reis, D. J. (1987) Brain Res. 411,212–225.

    Article  PubMed  CAS  Google Scholar 

  2. Scremin, O. U., Allen, K., Torres, C., and Scremin A. M. E. (1988) Neuropsychopharmacology 1,297–303.

    PubMed  CAS  Google Scholar 

  3. Lacombe, P., Sercombe, R., Verrecchia, C., Philipson, V., MacKenzie, E. T., and Seylaz, J. (1989) Brain Res. 491,1–14.

    Article  PubMed  CAS  Google Scholar 

  4. Biesold, D., Inanami, O., Sato, A., and Sato, Y. (1989) Neurosci. Lett. 98,39–44.

    Article  PubMed  CAS  Google Scholar 

  5. Dauphin, F., Lacombe, P., Sercombe, R., Hamel, E. and Seylaz, J. (1991) Brain Res. 553,75–83.

    Article  PubMed  CAS  Google Scholar 

  6. Arneric, S. P. (1989) J. Cereb. Blood Flow Metab. 9(Suppl. 1),S502.

    Google Scholar 

  7. Tsukahara, T., Usui, H., Taniguchi, T., Shimohama, S., Fujiwara, M., and Handa, H. (1986) Stroke 17,300–305.

    Article  PubMed  CAS  Google Scholar 

  8. Tsukahara, T., Kassell, N. F., Hongo, K., Vollmer, D. G., and Ogawa, H. (1989) J. Cereb. Blood Flow Metab. 9,748–753.

    Article  PubMed  CAS  Google Scholar 

  9. Edvinsson, L., Falck, B., and Owman, C. (1977) J. Pharmacol. Exp. Ther. 200,117–126.

    PubMed  CAS  Google Scholar 

  10. Dacey, R. G., Jr. and Bassett, J. E. (1987) Am. J. Physiol. 253,H1253–H1260.

    CAS  Google Scholar 

  11. Tucker, V. L. and Huxley, V. H. (1990) Circ. Res. 66,517–524.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, T. J. F. (1980) Eur. J. Pharmacol. 68,393–394.

    Article  PubMed  CAS  Google Scholar 

  13. Moncada, S. (1990) Blood Vessels 27,208–217.

    PubMed  CAS  Google Scholar 

  14. Toda, N. and Okamura, T. (1990) Am. J. Physiol. 259,H1511–H1517.

    PubMed  CAS  Google Scholar 

  15. Toda, N. Ayajiki, K. (1990) Am. J. Physiol. 258,H983–H986.

    PubMed  CAS  Google Scholar 

  16. Duckles, S. P. and Kennedy, C. D. (1982) J. Pharmacol. Exp. Ther. 222,562–565.

    PubMed  CAS  Google Scholar 

  17. Ferrer, M., Galván, R., Marín, J., and Balfagón, G. (1992) NaunynSchmiedeberg’s Arch. Pharmacol. 345,619–626.

    Article  CAS  Google Scholar 

  18. Bonner, T. I. (1989) TIPS (Suppl.),11–15.

    Google Scholar 

  19. Buckley, N. J., Bonner, T. I., Buckley, C. M., and Brann, M. R. (1989) Mol. Pharmacol. 35,469–476.

    PubMed  CAS  Google Scholar 

  20. Dörje, F., Wess, J., Lambrecht, G., Tacke, R., Mutschier, E., and Brann, M. R. (1991) J. Pharmacol. Exp. Ther. 256,727–733.

    PubMed  Google Scholar 

  21. Garcia-Villalon, A. L., Krause, D. N., Ehlert, F. J., and Duckles, S. P. (1991) J. Pharmacol. Exp. Ther. 258, 304–310.

    PubMed  CAS  Google Scholar 

  22. Dauphin, F. and Hamel, E. (1992) J. Pharmacol. Exp. Ther. 260,660–667.

    PubMed  CAS  Google Scholar 

  23. Seylaz, J., Hara, H., Pinard, E., Mraovitch, S., MacKenzie, E. T., and Edvinsson, L. (1988) J. Cereb. Blood Flow Metab. 8,875–878.

    Article  PubMed  CAS  Google Scholar 

  24. Goadsby, P. J. (1990) Brain Res. 506,145–148.

    Article  PubMed  CAS  Google Scholar 

  25. Whitehouse, P. L., Struble, R. G., Hedreen, J. C., Clark, A. W., and Price, D. L. (1985) Crit. Rev. Clin. Neurobiol. 1,319–339.

    CAS  Google Scholar 

  26. Zamar, N., Robitaille, Y., Kravitz, E., and Hamel, E. (1992) Cholinergic Neurotransmission: Function and Dysfunction meeting, Montreal, July 26–30.

    Google Scholar 

  27. Linville, D. G. and Hamel, E. (1992) Neuroscience Absracts 18(Part 1), 117.1.

    Google Scholar 

  28. Estrada, C., Hamel, E., and Krause, D. N. (1983) Brain Res. 266,261–270.

    Article  PubMed  CAS  Google Scholar 

  29. Lowry, O. H., Rosebrough, N. J.,Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193,265–275.

    PubMed  CAS  Google Scholar 

  30. Dauphin, F., Ting, V., Payette, P., Dennis, M., and Hamel, E. (1991) Eur. J. Pharmacol. Mol. Pharmacol. Sec. 207,319–327.

    Article  CAS  Google Scholar 

  31. Payette, P., Gossard, F., Whiteway, M., and Dennis, M. (1990) FEBS Lett. 266, 21–25.

    Article  PubMed  CAS  Google Scholar 

  32. Fonnum, F. (1975) J. Neurochem. 24,407–409.

    Article  PubMed  CAS  Google Scholar 

  33. Lasbennes, F., Verrecchia, C., Philipson, V., and Seylaz, J. (1992) J. Neurochem. 58,2230–2235.

    Article  PubMed  CAS  Google Scholar 

  34. White, F. P., Dutton, G. R., and Norenberg, M. D. (1981) J. Neurochem. 36,328–332.

    Article  PubMed  CAS  Google Scholar 

  35. Palmer, R. M. J., Ashton, D. S., and Moncada, S. (1988) Nature 333, 664–666.

    Article  PubMed  CAS  Google Scholar 

  36. Vincent, S. R. and Hope, B. T. (1992) TINS 15,108–113.

    PubMed  CAS  Google Scholar 

  37. Dauphin, F. and Hamel, E. (1990) Eur. J. Pharmacol. 178,203–213.

    CAS  Google Scholar 

  38. Armstead, W. M., Mirro, R., Leffler, C. W., and Busija, D. W. (1988) J. Pharmacol. Exp. Ther. 247,926–933.

    PubMed  CAS  Google Scholar 

  39. Tracey, W. R. and Peach, M. J. (1992) Circ. Res. 70,234–240.

    Article  PubMed  CAS  Google Scholar 

  40. Toda, N. and Okamura, T. (1991) J. Pharmacol. Exp. Ther. 258,1027–1032. 41 González, C. and Estrada, C. (1991) J. Cereb. Blood Flow Metab. 11,366–370.

    Article  Google Scholar 

  41. Kano, M., Moskowitz, M. A., and Yokota, M. (1991) J. Cereb. Blood Flow Metab. 11, 628–637.

    Article  PubMed  CAS  Google Scholar 

  42. Raszkiewicz, J. L., Linville, D. G., Kerwin, J. F., Jr., Wagenaar, F., and Arneric, S. P. (1992) J. Neurosci. Res. 33,129–135.

    Article  PubMed  CAS  Google Scholar 

  43. Ferrari-Dileo, G., Davis, E. B., and Anderson, D. R. (1991) Blood Vessels 28,542–546.

    PubMed  CAS  Google Scholar 

  44. Ishizaki, Y., Ma, L., Morita, I., and Murota, S. (1991) Neurosci. Lett. 125, 29–30.

    Article  PubMed  CAS  Google Scholar 

  45. Prado, R., Watson, B. D., Kuluz, J., and Dietrich, W. D. (1992) Stroke 23, 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  46. Rapoport, S. I. (1991) Cerebrovasc. Brain Metab. Rev. 3, 297–335.

    PubMed  CAS  Google Scholar 

  47. Rabey, M., Shenkman, L., and Gilad, G. M. (1986) Ann. Neurol. 20,628–631.

    CAS  Google Scholar 

  48. Hörngvist, R., Henriksson, R., Bäck, G., Buchot, G., and Winblad, B. (1987) Gerontology 33, 374–379.

    Article  PubMed  Google Scholar 

  49. Lamb, K., Bradshaw, C. M., and Szabadi, E. (1983) Eur. J. Clin. Pharmacol. 24,55–62.

    Article  CAS  Google Scholar 

  50. Linville, D. G. and Arneric, S. P. (1991) J. Cereb. Blood Flow Metab. 11(Suppl. 2), S25.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamel, E., Dauphin, F., Linville, D., Ting, V., Zamar, N. (1994). Cholinergic Receptors in Human Brain Arteries and Microvessels. In: Bevan, R.D., Bevan, J.A. (eds) The Human Brain Circulation. Vascular Biomedicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0303-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0303-2_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6700-3

  • Online ISBN: 978-1-4612-0303-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics