Skip to main content

Terrestrial ecosystem responses to climate changes in the Antarctic

  • Chapter
“Fingerprints” of Climate Change

Abstract

Parts of Antarctica, particularly the Antarctic Peninsula region and sub-Antarctic Islands, are experiencing rapid changes in climate, particularly temperature, precipitation/hydration and irradiation, although it is becoming clear that many of these are driven by regional rather than global processes. Terrestrial ecosystems of this remote region provide a “natural experiment” in which to identify biological responses (at scales between cell biochemistry and whole ecosystem) to changing climate variables, both in isolation and combination. The conclusions drawn may be applied to more complex lower latitude ecosystems, where change is perceived to have more direct relevance to Mankind. This paper gives an overview of recent and continuing studies of Antarctic terrestrial biology, assessing these in the context of existing predictive literature. The importance of flexibility (physiological and ecological) and resilience of existing taxa in the face of change are highlighted. In the longterm, large-scale changes in ecosystem structure, complexity and diversity are likely as a consequence of long-distance colonisation by exotic species. However, in the shorter term, geographical isolation will limit responses to those of existing terrestrial biota. In contrast with some earlier predictions of wide-ranging deleterious effects, these now appear likely to be subtle and multifactorial in origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson H., Whetton P. & Selkirk P.M., 1988, An analysis of air temperature records for Macquarie Island: decadal warming, ENSO cooling and Southern Hemisphere circulation patterns. Pap. Proc. R. Soc. Tasman. 122: 107–112.

    Google Scholar 

  • Addo-Bediako A., Chown S.L. & Gaston K.J., 2000, Thermal tolerance, climatic variability and latitude. Proc. R. Soc. Lond. B 267: 739–745.

    CAS  Google Scholar 

  • Allen D.J., Nogués S. & Baker N.R., 1998, Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J. Exp. Botany 49: 1775–1788.

    CAS  Google Scholar 

  • Arnold R.J. & Convey P., 1998, The life history of the world’s most southerly diving beetle, Lancetes angusticollis (Curtis) (Coleoptera: Dytiscidae), on sub-Antarctic South Georgia. Polar Biol. 20: 153–160.

    Google Scholar 

  • Bayley M. & Holmstrup M., 1999, Water vapour absorption in arthropods by accumulation of myoinositol and glucose. Science 285: 1909–1911.

    CAS  Google Scholar 

  • Bergstrom D.M. & Chown S.L., 1999, Life at the front: history, ecology and change on southern ocean islands. Trends Ecol. Evol. 14: 472–476.

    Google Scholar 

  • Block W., 1984, Terrestrial Microbiology, Invertebrates and Ecosystems. In: R.M. Laws (ed.) Antarctic Ecology. Academic Press, London.

    Google Scholar 

  • Block W., 1990, Cold tolerance of insects and other arthropods. Phil. Trans. Roy. Soc. Ser. B 326: 613–633.

    Google Scholar 

  • Block W., 1996, Cold or drought — the lesser of two evils for terrestrial arthropods? Eur. J. Entomol. 93: 325–339.

    Google Scholar 

  • Block W. & Convey P. Seasonal and long-term variation in body water content of an Antarctic springtail — a response to climate change? Polar Biol., in press.

    Google Scholar 

  • Block W. & Harrisson P.M., 1995, Collembolan water relations and environmental change in the maritime Antarctic. Global Change Biol. 1: 347–359.

    Google Scholar 

  • Block W., Burn A.J. & Richard K.J., 1984, An insect introduction to the maritime Antarctic. Biol. J. Linn. Soc. 23: 33–39.

    Google Scholar 

  • Bonner W.N. & Honey M.R., 1987, Agrotis ipsilon (Lepidoptera) at South Georgia. Br. Antarct. Surv. Bull. 77: 157–161.

    Google Scholar 

  • Budd W.F. & Simmonds I., 1991, The impact of global warming on the Antarctic mass balance and global sea level. In: G. Weiler, C.L. Wilson & B.A.B. Severin (eds.) Proceedings of the International Conference on the Role of Polar regions in Global Change.

    Google Scholar 

  • Cannon R.J.C. & Block W., 1988, Cold tolerance of microarthropods. Biol. Rev. 63: 23–77.

    Google Scholar 

  • Chapuis J.L., Bousses P. & Barnard G., 1994, Alien mammals, impact and management in the French subantarctic islands. Biol. Conserv. 67: 97–104.

    Google Scholar 

  • Chevrier M., Vernon P. & Frenot Y., 1997, Potential effects of two alien insects on a subAntarctic wingless fly in the Kerguelen Islands. In: B. Battaglia, J. Valencia & D.W.H. Walton (eds.) Antarctic Communities: Species Structure and Survival. Cambridge University Press, Cambridge.

    Google Scholar 

  • Chown S.L. & Avenant N., 1992, Status of Plutelia xylostella at Marion Island six years after its colonisation. S. Afr. J. Antarct. Res. 22: 37–40.

    Google Scholar 

  • Chown S. L. & Block W., 1997, Comparative nutritional ecology of grass-feeding in a subAntarctic beetle: the impact of introduced species on Hydromedion sparsutum from South Georgia. Oecologia 111: 216–224.

    Google Scholar 

  • Chown S.L. & Clarke A., 2000, Stress and the geographic distribution of marine and terrestrial animals. In: K.B. Storey & J. Storey (eds.) Environmental Stressors and Gene Responses. Elsevier, Amsterdam.

    Google Scholar 

  • Chown S.L. & Language K., 1994, Recently established Diptera and Lepidoptera on subAntarctic Marion Island. Afr. Entomol. 2: 57–76.

    Google Scholar 

  • Chown S.L. & Smith V.R., 1993, Climate change and the short-term impact of feral house mice at the sub-Antarctic Prince Edward Islands. Oecologia 96: 508–516.

    Google Scholar 

  • Clapperton C.M. & Sugden D.E., 1982, Late quaternary glacial history of George VI Sound area, West Antarctica. Quat. Res. 18: 243–267.

    Google Scholar 

  • Clapperton C.M. & Sugden D.E., 1988, Holocene glacier fluctuations in South America and Antarctica. Quat. Sci. Revs. 1: 185–198.

    Google Scholar 

  • Cockell C.S. & Knowland J., 1999, Ultraviolet radiation screening compounds. Biol. Rev. 74: 311–345.

    CAS  Google Scholar 

  • Convey P., 1992, Aspects of the biology of the midge, Eretmoptera murphyi Schaeffer, introduced to Signy Island, maritime Antarctic. Polar Biol. 12: 653–657.

    Google Scholar 

  • Convey P., 1994a, Modelling reproductive effort in sub-and maritime Antarctic mosses. Oecologia 100: 45–53.

    Google Scholar 

  • Convey P., 1994b, Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17: 91–107.

    Google Scholar 

  • Convey P., 1996a, Overwintering strategies of terrestrial invertebrates in Antarctica — the significance of flexibility in extremely seasonal environments. Eur. J. Entomol. 93: 489–505.

    Google Scholar 

  • Convey P., 1996b, The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol Rev. 71: 191–225.

    Google Scholar 

  • Convey P., 1996c, Reproduction of Antarctic flowering plants. Antarct. Sci. 8: 127–134.

    Google Scholar 

  • Convey P., 1997a, How are the life history strategies of Antarctic terrestrial invertebrates influenced by extreme environmental conditions? J. Thermal. Biol. 22: 429–440.

    Google Scholar 

  • Convey P., 1997b, Environmental change: possible consequences for life histories of Antarctic terrestrial biota. Kor. J. Polar Res. 8: 127–144.

    Google Scholar 

  • Convey P., 1998, Latitudinal variation in allocation to reproduction by the Antarctic oribatid mite, Alaskozetes antarcticus. Appl. Soil Ecol. 9: 93–99.

    Google Scholar 

  • Convey P., 2000, How does cold constrain life cycles of terrestrial plants and animals? CryoLett. 21: 73–82.

    Google Scholar 

  • Convey P., 2001, Antarctic Ecosystems. In: S.A. Levin (ed.) Encyclopedia of Biodiversity, vol. 1. Academic Press, San Diego.

    Google Scholar 

  • Convey P. & Block W., 1996, Antarctic Diptera: ecology, physiology and distribution. Eur. J. Entomol. 93: 1–13.

    Google Scholar 

  • Convey P. & Smith R.I.L., 1993, Investment in sexual reproduction by Antarctic mosses. Oikos 68: 293–302.

    Google Scholar 

  • Convey P., Greenslade P., Arnold R.J. & Block W., 1999, Collembola of sub-Antarctic South Georgia. Polar Biol. 22: 1–6.

    Google Scholar 

  • Convey P., Smith R.I.L., Hodgson D.A & Peat H.J., 2000a, The flora of the South Sandwich Islands, with particular reference to the influence of geothermal heating. J. Biogeogr. 27: 1279–1295.

    Google Scholar 

  • Convey P., Smith R.I.L., Peat H.J. & Pugh P.J.A., 2000b, The terrestrial biota of Charcot Island, eastern Bellingshausen Sea, Antarctica an example of extreme isolation. Antarct. Sci. 12: 406–413.

    Google Scholar 

  • Coulson S., Hodkinson I.D., Strathdee A., Bale J.S., Block W., Worland M.R. & Webb N.R. 1993. Simulated climate change: the interaction between vegetation type and microhabitat temperatures at Ny Ålesund, Svalbard. Polar Biol. 13: 67–70.

    Google Scholar 

  • Coulson S.J., Leinaas H.P. Ims R.A. & SØvik G., 2000, Experimental manipulation of the winter surface ice layer: the effects on a High Arctic soil microarthropod community. Ecography 23: 299–306.

    Google Scholar 

  • Crafford J.E., Scholtz C.H. & Chown S.L., 1986, The insects of sub-Antarctic Marion and Prince Edward Islands; with a bibliography of entomology of the Kerguelen biogeographical province. S. Afr. J. Antarct. Res. 16: 41–84.

    Google Scholar 

  • Cullather R.I., Bromwich D.H. & van Woert M.L., 1996, Inter-annual variations in Antarctic precipitation related to El Niño — Southern Oscillation. J. Geophys. Res. 101: 19109–19118.

    Google Scholar 

  • Danks H.V., 1999, Life cycles in polar arthropods — flexible or programmed? Eur. J. Entomol. 96: 83–102.

    Google Scholar 

  • Davey M.C., Pickup J. & Block W., 1992, Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic island. Antarct. Sci. 4: 383–388.

    Google Scholar 

  • Day T.A., Ruhland C.T., Grobe C.W. & Xiong F., 1999, Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119: 24–35.

    Google Scholar 

  • Deharveng L., 1981, Collemboles de les Iles Subantarctiques de l’Océan Indien mission J. Travé 1972–1973. CNFRA 48: 33–108.

    Google Scholar 

  • Doake C.S.M. & Vaughan D.G., 1991, Rapid disintegration of the Wordie Ice Shelf in response to atmospheric forcing. Nature 350: 328–330.

    Google Scholar 

  • During, H.J., 1997, Bryophyte diaspore banks. Adv. Bryol. 6: 103–134.

    Google Scholar 

  • During, H.J., 2001, New frontiers in bryology and lichenology: diaspore banks. Bryologist 104: 92–97.

    Google Scholar 

  • Edwards J.A., 1974, Studies in Colobanthus quitensis (Kunth) Bartl, and Deschampsia antarctica Desv.:VI.:Reproductive performance on Signy Island. Br. Antarct. Surv. Bull. 39: 67–86.

    Google Scholar 

  • Edwards J.A., 1980, An experimental introduction of vascular plants from South Georgia to the maritime Antarctic. Br. Antarct. Surv. Bull. 49: 73–80.

    Google Scholar 

  • Edwards J.A. & Greene D.M., 1973, The survival of Falklands Island transplants at South Georgia and Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 33 & 34: 33–45.

    Google Scholar 

  • Ernsting G., 1993, Observations on life cycle and feeding ecology of two recently-introduced predatory beetle species at South Georgia, sub-Antarctic. Polar Biol. 13: 423–428.

    Google Scholar 

  • Ernsting G., Block W., MacAlister H. & Todd C., 1995, The invasion of the carnivorous carabid beetle Trechisibus antarcticus on South Georgia (sub-Antarctic) and its effect on the endemic herbivorous beetle Hydromedion sparsutum. Oecologia 103: 34–42.

    Google Scholar 

  • Ernsting G., Brandjes G.J., Block W. & Isaaks J.A., 1999, Life-history consequences of prédation for a subantarctic beetle: evaluating the contribution of direct and indirect effects. J. Anim. Ecol. 68: 741–752.

    Google Scholar 

  • Farman J.C., Gardiner B.G. & Shanklin J.D., 1985, Large losses of total ozone in Antarctica reveal seasonal C10x/Nox interaction. Nature 315: 207–210.

    CAS  Google Scholar 

  • Fiscus E.L. & Booker F.L., 1995, Is increased UV-B a threat to crop photosynthesis and productivity? Photosynthesis Res. 43: 81–92

    CAS  Google Scholar 

  • Fowbert J.A. & Smith R.I.L. 1994. Rapid population increase in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arct. Alpine. Res. 26: 290–296.

    Google Scholar 

  • Fox A.J. & Cooper A.P.R., 1998, CUmate-change indicators from archival aerial photography of the Antarctic Peninsula. Ann. Glaciol 27: 636–642.

    Google Scholar 

  • Frahm J.P. & Klaus D., 2001, Bryophytes as indicators of recent climate fluctuations in Central Europe. Lindbergia 26: 97–104.

    Google Scholar 

  • Freckman D.W.& Virginia R.A., 1997, Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78: 363–369.

    Google Scholar 

  • Frenot Y., Gloaguen J-C & Trehen P., 1997, Climate change in Kerguelen Islands and colonization of recently deglaciated areas by Poa kerguelensis and P. annua. In: B. Battaglia, J. Valencia & D.W.H. Walton (eds.) Antarctic Communities: Species, Structure and Survival. Cambridge University Press, Cambridge.

    Google Scholar 

  • Friedmann E.I., 1982, Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045–1053.

    CAS  Google Scholar 

  • Friedmann E.I., 1993, Antarctic Microbiology. John Wiley & Sons, New York.

    Google Scholar 

  • Gehrke C., 1999, Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80: 1844–1851.

    Google Scholar 

  • George A.L., Murray A.W. & Montiéi P.O., Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation. FEMS Microbiol. Ecol., in press.

    Google Scholar 

  • Gordon J.E. & Timmis R.J., 1992, Glacier fluctuations on South Georgia during the 1970s and early 1980s. Antarct. Sci. 4: 215–226.

    Google Scholar 

  • Greenslade P.J.M., 1983, Adversity selection and the habitat templet. Amer. Nat. 122: 352–365.

    Google Scholar 

  • Greenslade P., 1990, Notes on the biogeography of the free-living terrestrial invertebrate fauna of Macquarie with an annotated checklist. Pap. Proc. R. Soc. Tasmania 124: 35–50.

    Google Scholar 

  • Greenslade P., Farrow R.A. & Smith J.M.B., 1999, Long distance migration of insects to a subantarctic island. J. Biogeogr. 26: 1161–1167.

    Google Scholar 

  • Gremmen N.J.M., 1997, Changes in the vegetation of sub-Antarctic Marion Island resulting from introduced vascular plants. In: B. Battaglia, J. Valencia & D.W.H. Walton (eds.) Antarctic Communities: Species, Structure and Survival. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gremmen N.J.M. & Smith V.R., 1999, New records of alien vascular plants from Marion and Prince Edward Islands, sub-Antarctic. Polar Biol. 21: 401–409.

    Google Scholar 

  • Grime J.P., 1988, The C-S-R model of primary plant strategies — origins, implications and tests. In: R.M. Anderson, B.D. Turner & L.R. Taylor (eds.) Population Dynamics. Blackwell, Oxford, pp. 123–139.

    Google Scholar 

  • Grobe C.W., Ruhland C.T. & Day T.A., 1997, A new population of Colobanthus quitensis near Arthur Harbor, Antarctica: correlating recruitment with warmer summer temperatures. Arct. Alpine Res. 29: 217–221.

    Google Scholar 

  • Henry G.H.R. (ed.) 1997, Global Change Biology 3 (suppl. 1).

    Google Scholar 

    Google Scholar 

  • Hodgson D.A. & Johnston N.M., 1997, Inferring seal populations from lake sediments. Nature 387: 30–31.

    CAS  Google Scholar 

  • Hodgson D.A., Johnston N.M., Caulkett A.P. & Jones V.J., 1998, Palaeolimnology of Antarctic fur seal Arctocephalus gazella populations and implications for Antarctic management. Biol. Conserv. 83: 145–154.

    Google Scholar 

  • Huiskes A., Lud D., Moerdijk-Poortvliet T. & Rozema J., 1999, Impact of UV-B radiation on Antarctic terrestrial vegetation. In: J. Rozema (ed.) Stratospheric Ozone Depletion: the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems. Backuys, Leiden.

    Google Scholar 

  • Kennedy A.L., 1993, Water as a limiting factor in the Antarctic terrestrial environment: a biogeographical synthesis. Arct. Alpine Res. 25: 308–315.

    Google Scholar 

  • Kennedy A.L., 1994, Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography 17: 131–140.

    Google Scholar 

  • Kennedy A.L., 1995a, Antarctic terrestrial ecosystem responses to global environmental change. Ann. Rev. Ecol. Syst. 26: 683–704.

    Google Scholar 

  • Kennedy A.L., 1995b, Temperature effects of passive greenhouse apparatus in high-latitude climate change experiments. Funct. Ecol. 9: 340–350.

    Google Scholar 

  • Kennedy A.L., 1995c, Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biol. 1: 29–42.

    Google Scholar 

  • Kennedy A.L., 1996, Antarctic fellfield response to climate change: a tripartite synthesis of experimental data. Oecologia 107: 141–150.

    Google Scholar 

  • King J.C., 1994, Recent climate variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol. 14: 357–369.

    Google Scholar 

  • King J.C. & Harangozo S.A., 1998, Climate change in the western Antarctic Peninsula since 1945: observations and possible causes. Ann. Glaciol. 27: 571–575.

    Google Scholar 

  • Komarkova V., Scott S. & Toi M., 1985, Summer die-back due to desiccation of Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl, on the largest Stepping Stone Island, Arthur Harbour, Anvers Island, Antarctic Peninsula. Bull. Ecol. Soc. Amer. 66: 211.

    Google Scholar 

  • Leader-Williams N., 1988, Reindeer on South Georgia, the Ecology of an Introduced Population. Cambridge University Press, Cambridge.

    Google Scholar 

  • Longton R.E., 1988, Biology of Polar Bryophytes and Lichens. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lorius C., Jouzel J., Ritz C., Merlivat L. & Barkov N.I., 1985, A 150,000-year climate record from Antarctic ice. Nature 316: 591–596.

    CAS  Google Scholar 

  • Lud D., Huiskes A.H.L., Moerdijk T.C.W. & Rozema J., The effects of altered levels of UV-B radiation on an Antarctic grass and lichen. Plant Ecol. in press.

    Google Scholar 

  • McGraw J.B. & Day T.A., 1997, Size and characteristics of a natural seed bank in Antarctica. Arct. Alpine Res. 29: 213–216.

    Google Scholar 

  • Marshall W.A., 1996, Biological particles over Antarctica. Nature 383: 680.

    CAS  Google Scholar 

  • Marshall W.A. & Convey P., 1997, Dispersal of moss propagules in the maritime Antarctic. Polar Biol. 18: 376–383.

    Google Scholar 

  • van der Merwe M., Chown S.L. & Smith V.R., 1997, Thermal tolerance limits in six weevil species (Coleoptera, Curculionidae) from sub-Antarctic Marion Island. Polar Biol. 18: 331–336.

    Google Scholar 

  • Montiel P., Smith A. & Keiller D., 1999, Photosynthetic responses of selected Antarctic plants to solar radiation in the southern maritime Antarctic. Polar Res. 18: 229–235.

    Google Scholar 

  • Müller R., Crutzen P.J., Grooß J.U., Brühl C., Russell J.M., Gernandt H., McKenna D.S. & Tuck A.F., 1997, Severe chemical ozone loss during the Arctic winter of 1995-96. Nature 389: 709–712

    Google Scholar 

  • Newsham K.K. Influence of stratospheric ozone depletion on the Antarctic moss Andreaea regularis. Submitted to Oecologia.

    Google Scholar 

  • Newsham K.K., Greenslade P.D., Kennedy V.H. & McLeod A.R., 1999, Elevated UV-B radiation incident on Quercus robur leaf canopies enhances decomposition of resulting leaf litter in sou. Global Change Biol. 5: 403–409.

    Google Scholar 

  • Newsham K.K., Hodgson D.A., Murray A.W.A., Peat H.J. & Smith R.I.L. Response of two Antarctic bryophytes to stratospheric ozone depletion. Submitted to Ecology.

    Google Scholar 

  • Norby R.J., Kobayashi K. & Kimball B.A., 2001, Rising CO2 — future ecosystems. New Phytol. 150: 215–221.

    Google Scholar 

  • Oechel W.C., Cook A.C., Hastings S.J. & Vourlitis G.L., 1997, Effects of CO2 and climate change on arctic ecosystems. In: S.J. Woodin & M. Marquiss (eds.) Ecology of Arctic Environments. Blackwell, Oxford.

    Google Scholar 

  • Paul N., 2001, Plant responses to UV-B: time to look beyond stratospheric ozone depletion? New Phytol. 150: 5–8.

    Google Scholar 

  • Post A., Adamson E. & Adamson H., 1990, Photoinhibition and recovery of photosynthesis in Antarctic bryophytes under field conditions. In: M. Baltcheffsky (ed.) Current Research in Photosynthesis (vol. IV). Kluwer, Dordrecht.

    Google Scholar 

  • Pudsey C.J. & Evans J., First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene ice shelf retreat. Geology, in press.

    Google Scholar 

  • Pugh P.J.A., 1994, Non-indige nous Acari of Antarctica and the sub-Antarctic islands. Zool J. Linn. Soc. 110: 207–217.

    Google Scholar 

  • Pugh P.J.A. & Davenport J., 1997, Colonisation vs. disturbance: the effects of sustained icescouring on intertidal communities. J. Exp. Mar. Biol. Ecol. 210: 1–21.

    Google Scholar 

  • Quesada A., Mouget J.L. & Vincent W.F., 1995, Growth of Antarctic cyanobacteria under ultraviolet radiation — UVA counteracts UVB inhibition. J. Phycol. 31: 242–248.

    Google Scholar 

  • Quesada A., Goff L. & Karentz D., 1998, Effects of natural UV radiation on Antarctic cyanobacterial mats. Proc. N1PR Symp. Polar Biol. 11: 98–111.

    Google Scholar 

  • Ring R.A. & Danks H.V., 1994, Desiccation and cryoprotection: overlapping adaptations. CryoLett. 15: 181–190.

    Google Scholar 

  • Roberts L., 1989, Does the ozone hole threaten antarctic life? Science 244: 288–289.

    CAS  Google Scholar 

  • Rozema J. (ed.) 1999, Stratospheric Ozone Depletion: the Effects of Enhanced UV-B Radiation on Terrestrial Ecosystems. Bacchus, Leiden.

    Google Scholar 

  • Ruhland C.T. & Day T.A., 2000, Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiol Plant 109: 244–251.

    CAS  Google Scholar 

  • Skvarca P., Rack W., Rott H. & Ibarzábal y Donángelo T., 1998, Evidence of recent climatic warming on the eastern Antarctic Peninsula. Ann. Glacio. 27: 628–632.

    Google Scholar 

  • Smith R.I.L., 1984, Terrestrial Plant Biology of the Sub-Antarctic and Antarctic. In: R.M. Laws (ed.) Antarctic Ecology. Academic Press, London.

    Google Scholar 

  • Smith R.I.L., 1987, The bryophyte propagule bank of Antarctic fellfield soils. Symp. Biol. Hungarica 35: 233–245.

    Google Scholar 

  • Smith R.I.L., 1988a, Recording bryophyte microclimate in remote and severe environments. In: J.M. Glime (ed.) Methods in Bryology. Hattori Botanical Laboratory, Nichinan.

    Google Scholar 

  • Smith R.I.L., 1988b, Destruction of Antarctic terrestrial ecosystems by a rapidly increasing fur seal population. Biol. Conserv. 45: 55–72.

    Google Scholar 

  • Smith R.I.L., 1990, Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: K.R. Kerry & G. Hempel (eds.) Antarctic Ecosystems, Ecological Change and Conservation. Springer-Verlag, Berlin.

    Google Scholar 

  • Smith R.I.L., 1991, Exotic sporomorpha as indicators of potential immigrant colonists in Antarctica. Grana 30: 313–324.

    Google Scholar 

  • Smith R.I.L., 1993, The role of bryophyte propagule banks in primary succession: case study of an Antarctic fellfield soil. In: J. Miles & D.W.H. Walton (eds.) Primary succession on land. Blackwell, Oxford.

    Google Scholar 

  • Smith R.I.L., 1994, Vascular plants as indicators of regional warming in Antarctica. Oecologia 99: 322–328.

    Google Scholar 

  • Smith R.I.L., 1996, Introduced plants in Antarctica: potential impacts and conservation issues. Biol. Conserv. 76: 135–146.

    Google Scholar 

  • Smith R.I.L. & Coupar A.M., 1986, The colonization potential of bryophyte propagules in Antarctic fellfield sous. CNFRA 58: 189–204.

    Google Scholar 

  • Smith V.R. & Steenkamp M., 1990, Climatic change and its ecological implications at a subAntarctic island. Oecologia 85: 14–24.

    Google Scholar 

  • Sømme L., 1995, Invertebrates in Hot and Cold Arid Environments. Springer-Verlag, Berlin.

    Google Scholar 

  • Southwood T.R.E., 1977, Habitat, the templet for ecological strategies. J. Anim. Ecol. 46: 337–365.

    Google Scholar 

  • Southwood T.R.E., 1988, Tactics, strategies and templets. Oikos 52: 3–18.

    Google Scholar 

  • Strathdee A.T., Bale J.S., Block W.C., Coulson S.J., Hodkinson I.D. & Webb N.R., 1993, Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen. Oecologia 96: 457–465.

    Google Scholar 

  • Strathdee A.T., Bale J.S., Strathdee F.C., Block W.C., Coulson S.J., Webb N.R. & Hodkinson I.D., 1995, Climatic seventy and the response to temperature elevation of Arctic aphids. Global Change Biol. 1: 23–28.

    Google Scholar 

  • Sugden D.E. & Clapperton C.M., 1977, The maximum ice extent on island groups in the Scotia Sea, Antarctica. Quat. Res. 7: 268–282.

    Google Scholar 

  • Turner J., Colwell S.R. & Harangozo S., 1997, Variability of precipitation over the coastal western Antarctic Peninsula from synoptic observations. J. Geophysical Res. 102: 13999–14007.

    Google Scholar 

  • Vaughan D.G. & Doake S.M., 1996, Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula. Nature 379: 328–331.

    CAS  Google Scholar 

  • Vincent W.F. & Quesada A., 1994, Ultraviolet effects on cyanobacteria: implications for Antarctic microbial ecosystems. Antarct. Res. Ser. 62: 111–124.

    Google Scholar 

  • Vogel M., Remmert H. & Smith R.I.L., 1984, Introduced reindeer and their effects on the vegetation and the epigeic invertebrate fauna of South Georgia (sub-Antarctic). Oecologia 62: 102–109.

    Google Scholar 

  • Voytek M.A., 1990, Addressing the biological effects of decreased ozone on the Antarctic environment. Ambio 19: 52–61.

    Google Scholar 

  • Walton D.W.H., 1982, The Signy Island terrestrial reference sites: XV. Microclimate monitoring, 1972-74. Br. Antarct. Surv. Bull. 55: 111–126.

    Google Scholar 

  • Walton D.W.H., 1984, The terrestrial environment. In: R.M. Laws (ed.) Antarctic Ecology. Academic Press, London.

    Google Scholar 

  • Walton D.W.H., Vincent W.F., Timperley M.H., Hawes I. & Howard-Williams C., 1997, Synthesis: polar deserts as indicators of change. In: W.B. Lyons, C. Howard-Williams & I. Hawes (eds.) Ecosystem Processes in Antarctic Ice-Free Landscapes. Balkema, Rotterdam.

    Google Scholar 

  • Webb N.R., Coulson S.J., Hodkinson I.D., Block W., Bale J.S. & Strathdee A.T., 1998, The effects of experimental temperature elevation on populations of cryptostigmatic mites in high Arctic soils. Pedobiologia 42: 298–308.

    Google Scholar 

  • Wharton D.A., 1995, Cold tolerance strategies in nematodes. Biol. Rev. 70: 161–185.

    CAS  Google Scholar 

  • Worland M.R., 1996, The relationship between body water content and cold tolerance in the Arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). Eur. J. Entomol. 93: 341–348.

    Google Scholar 

  • Worland M.R. & Convey P., Rapid cold hardening in Antarctic microarthropods. Funct. Ecol., in press.

    Google Scholar 

  • Worland M.R., Grubor-Lajsic G. & Montiéi P.O., 1998, Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the Arctic collembolan Onychiurus arcticus (Tullberg). J. Insect Physiol. 44: 211–219.

    CAS  Google Scholar 

  • Wynn-Williams D.D., 1992, Plastic cloches for manipulating natural terrestrial environments. In: D.D. Wynn-Williams (ed.) BIOTAS Manual of Methods for Antarctic Terrestrial and Freshwater Research. Scientific Committee on Antarctic Research, Cambridge.

    Google Scholar 

  • Wynn-Williams D.D., 1993, Microbial processes and the initial stabilisation of fellfield soil. In: J. Miles & D.W.H. Walton (eds.) Primary Succession on Land. Blackwell, Oxford.

    Google Scholar 

  • Wynn-Williams D.D., 1994, Potential effects of ultraviolet radiation on Antarctic primary terrestrial colonizers: cyanobacteria, algae, and cryptogams. Antarct. Res. Ser. 62: 243–257.

    Google Scholar 

  • Wynn-Williams D.D., 1996a, Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers. Conserv. 5: 1271–1293.

    Google Scholar 

  • Wynn-Williams D.D., 1996b, Response of pioneer soil microalgal colonists to environmental change in Antarctica. Microb. Ecol. 31: 177–188.

    Google Scholar 

  • Xiong F.S. & Day T.A., 2001, Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol. 125: 738–751.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Convey, P. (2001). Terrestrial ecosystem responses to climate changes in the Antarctic. In: Walther, GR., Burga, C.A., Edwards, P.J. (eds) “Fingerprints” of Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8692-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8692-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4667-8

  • Online ISBN: 978-1-4419-8692-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics