
Chapter 2
Foundations

The first section of this chapter introduces the complex plane, fixes notation, and
discusses some useful concepts from real analysis. Some readers may initially
choose to skim this section. The second section contains the definition and
elementary properties of the class of holomorphic functions—the basic object of
our study.

2.1 Introduction and Preliminaries

This section is a summary of basic notation, a description of some of the basic
algebraic and geometric properties of the complex number system, and a disjoint
collection of needed facts from real analysis (advanced calculus). We remind the
reader of some of the formalities behind the standard notation which we usually
approach quite informally. Not all concepts used as prerequisites are defined
(among these are neighborhood, connected, path-connected, arc-wise connected,
and compact sets); we assume that the reader has been exposed to them.1

We start with some standard notation:

Z>0 � Z � Q � R � C � bC:

HereZ represents the integers, Z>0 the positive integers,2 Q the rationals (the integer
n is included in the rationals as the equivalence class of the quotient n

1
), and R the

reals. Whether one views the reals as the completion of the rationals or identifies

1The reader may want to consult J. R. Munkres Topology (Second Edition), Dover, 2000, or J. L.
Kelley, General Topology, Springer-Verlag, 1975 as well as definitions in Chap. 4.
2In general Xcondition and fx 2 XI conditiong will describe the set of all x in X that satisfy the
indicated condition.
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16 2 Foundations

them with Dedekind cuts (we will not use these concepts explicitly), their most
important property from the perspective of complex variables is the least upper
bound property; that is, that every nonempty set of real numbers that has an upper
bound has a least upper bound.

The inclusion of R into the complex numbers C needs a bit more explanation. It
is specified as follows: for z in C, we write z D x C { y with x and y in R, where the
symbol { represents a square root of �1; that is, {2 D �1. With these conventions
we can define addition and multiplication of complex numbers using the usual rules
for these operations on the reals3: for all x; y; �; � 2 R,

.x C {y/ C .� C {�/ D .x C �/ C {.y C �/

and
.x C {y/.� C {�/ D .x� � y�/ C {.x� C y�/:

The real numbers, R, are identified with the subset of C consisting of those
numbers z D x C { y with y D 0; the imaginary numbers, {R, are those with
x D 0. For z D x C { y in C with x and y in R we write x D <z, the real part
of z, and y D =z, the imaginary part of z. Geometrically, R and {R represent the
real and imaginary axes of C, viewed as the complex plane and identified with the
cartesian product R2 D R � R (see Fig. 2.1).

The complex plane may be viewed as a subset of the complex sphere bC, which is
C compactified by adjoining a point, known as the point at infinity, so that bC D C[
f1g. The space bC is also called the extended complex plane or the Riemann sphere.
This last name comes from identifying the points on the unit sphere in R

3, with the
exception of the south pole, the point .0; 0; 1/, with the points in the complex plane
under what is known as stereographic projection; the point .0; 0; 1/ is identified with
1. See Exercise 3.20 for the details.

We now describe some basic algebraic and geometric properties of the complex
numbers.

For z D x C { y, with x and y real numbers, the complex number

z D x � { y

is called the complex conjugate of z. Note that then

<z D z C z

2
and =z D z � z

2{
:

One easily verifies the following basic

3With these operations .C; C; �/ is a field.
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Fig. 2.1 The complex plane; rectangular and polar representations, conjugation

2.1.1 Properties of Conjugation

Forz and w 2 C,

(a) z C w D z C w
(b) zw D z w
(c) z D z if and only if z 2 R

(d) z D z

There is a simple and useful geometric interpretation of conjugation: it is
represented by mirror reflection in the real axis; see Fig. 2.1.

From a slightly different point of view, conjugation may be seen as a self-map of
C, denoted by .

W C ! C:

Then its properties (a) through (d) may be restated as follows:

(a) preserves the sum of complex numbers.
(b) preserves the product of complex numbers.
(c) fixes precisely the real numbers.
(d) is an involution of C; that is, when composed with itself, it gives the identity

map on C.

It is not hard to show that any self-map of C satisfying these properties coincides
with complex conjugation; see Exercise 2.19.
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Another important map, z 7! jzj or

j j W C ! R�0

is defined by r D jzj D .z z/
1
2 D .x2 C y2/

1
2 , where z D x C { y. Note that

z z D x2 Cy2 is always a real nonnegative number; we use the usual convention that
unless otherwise specified the square root of a real nonnegative number is chosen to
be nonnegative. The nonnegative real number r is called the absolute value or norm
or modulus of the complex number z.

The following properties follow directly from the definition.

2.1.2 Properties of Absolute Value

For z and w 2 C,

(a) jzj � 0, and jzj D 0 if and only if z D 0

(b) jzwj D jzj jwj
(c) jzj D jzj
(d) j<zj � jzj, and <z D jzj if and only if z D x 2 R�0

(e) j=zj � jzj, and =z D jzj if and only if z D {y with y 2 R�0

2.1.3 Linear Representation of C

As a vector space over R, we can identify C with R
2. Vector addition agrees with

complex addition, and scalar multiplication by real numbers (R � C ! C) is the
restriction of complex multiplication (C � C ! C).

This identification provides a powerful geometric interpretation for many results
on complex numbers. One example is provided by conjugation, which can be viewed
as the R-linear map of R2 (with basis 1 D .1; 0/ and { D .0; 1/) that sends 1 to 1

and { to �{. Another instance is provided by the next geometric interpretation of the
following:

2.1.4 Additional Properties of Absolute Value

From the Pythagorean equality, r D jzj is the (Euclidean) distance in the plane from
z to the origin; see Fig. 2.1.

Furthermore, for z and w 2 C, the following properties hold.

(f) jz C wj2 C jz � wj2 D 2.jzj2 C jwj2/.
(g) jz C wj � jzj C jwj. Equality holds whenever either z or w is equal to 0. If z ¤ 0

and w ¤ 0, then equality holds if and only if w D az with a 2 R>0.
(h) jjzj � jwjj � jz � wj.



2.1 Introduction and Preliminaries 19

z

w

z−w

−w

z+w

0

Fig. 2.2 Vector sums

Equality (f) is sometimes called the parallelogram law: the sum of the squares
of the lengths of the diagonals in a parallelogram is equal to the sum of the squares
of the lengths of its sides, see Fig. 2.2. This equality can be proven directly from
the definition of absolute value and properties of the complex conjugation we have
already stated:

jz ˙ wj2 D .z ˙ w/.z ˙ w/ D jzj2 ˙ 2 <.z w/ C jwj2 : (2.1)

Inequality (g) is called the triangle inequality: the length of a side of a triangle is
at most equal to the sum of the lengths of the other two sides, with equality if and
only if the triangle is degenerate (z and w lie on the same ray); see Fig. 2.2.

The triangle inequality (or rather its squared version) follows from (2.1) and the
previous properties of the absolute value, by observing that <.z w/ � jz wj D jzj jwj
and using the conditions for equality given in property (d) for the absolute value.

Through the identification of R2 with C given above, we can use real or complex
notation to describe geometric shapes in the plane. As we show next, sometimes the
use of complex notation simplifies the description of the objects under study.

2.1.5 Lines, Circles, and Half Planes

Any line in the plane R2 with orthogonal coordinates xand y is given by an equation
of the form

a x C b y C c D 0; (2.2)

with a, b, and c real numbers, and a and b not both equal to zero.
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Similarly, any circle in the plane is given by an equation of the form

.x � d/2 C .y � f /2 � R2 D 0; (2.3)

with d , f , and R real numbers and R > 0. In this case, we can read off from the
equation that the center of the circle is at the point .d; f /, and its radius is R.

We will now see an advantage of using complex notation: both of the above
types of geometric figures may be described algebraically by a single equation, thus
implying that there is a certain relation between lines and circles on the plane (this
relation will be explained later: see Exercise 3.21).

Replacing x by
z C z

2
and y by

z � z

2 {
first in (2.2) and then in (2.3), we obtain

the following two equations:

B z C B z C c D 0 ; with B D a � { b

2
¤ 0; (2.4)

and
jzj2 C .�d C { f / z C .�d � { f / z C d 2 C f 2 � R2 D 0; (2.5)

or, equivalently,
jz � Ej D R with E D d C { f: (2.6)

We claim that both equations (2.4) and (2.5) are special cases of

A jzj2 C B z C B z C C D 0 ; (2.7)

with A and C real numbers, B complex, A � 0, and jBj2 > AC .
Indeed, if A D 0 then (2.7) becomes (2.4), which is equivalent to (2.2), whereas

if A > 0 then (2.7) becomes (2.5), which is equivalent to (2.3) with center E D �B

A

and radius R D
q

jBj2 � AC

A
.

We have thus shown that any circle or line in the plane is given by Equation (2.7),
depending on whether A > 0 or A D 0.

Similarly, half planes in C are given by equations of the form

<.B z/ > C or, equivalently, =.B z/ > C;

with B in C¤0 and C real.
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Fig. 2.3 Vector multiplication. (a) Sum of arguments smaller than 2� . (b) Sum of arguments
larger than 2�

2.1.6 Polar Coordinates

A nonzero vector in C can be described by polar coordinates .r; �/ as well as by the
rectangular coordinates .x; y/ we have been using. If z 2 C and z ¤ 0, then we can
write

z D x C { y D r .cos � C { sin �/ ;

where r D jzj and � D arg z (an argument of z) D arcsin
y

r
D arccos

x

r
.

Note that the last two identities are needed to define the argument and that arg z
is defined up to addition of an integral multiple of 2� . This is why we labeled � an
argument of z as opposed to the argument.4

If w D �Œcos ' C { sin '� is another nonzero complex number, then, using the
usual addition formulas for the sine and cosine functions, we have

zw D .r�/Œcos.� C '/ C { sin.� C '/�:

This polar form of the multiplication formula shows that the complex multiplication
of two (nonzero) complex numbers is equivalent to the real multiplication of their
moduli and the addition of their arguments, giving a geometric interpretation of how
the operation of multiplication acts on vectors represented in polar coordinates; see
Fig. 2.3. It also shows (again) that jz wj D jzj jwj. Polar coordinates also provide
another way to view Fig. 2.2.

In particular, it follows that if n 2 Z and z D r .cos � C { sin �/ is a nonzero
complex number, then

zn D rnŒcos n� C { sin n��I

4The number � will be defined rigorously in Definition 3.34. Trigonometric functions will be
introduced in the next chapter where some of their properties, including addition formulae, will be
developed. For the moment, polar coordinates should not be used in proofs.
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it also proves the famous de Moivre’s formula:

.cos � C { sin �/n D cos.n �/ C { sin.n �/

for n 2 Z and � 2 R.
Therefore, for each nonzero complex number z D r .cos � C { sin �/ and each n

in Z>0, there exist precisely n complex numbers w such that wn D z; they are the n

n-th roots of z, and are given by

r
1
n

�

cos

�

� C 2�k

n

�

C { sin

�

� C 2�k

n

��

;

with k D 0; 1; : : : ; n � 1.
Note that these n complex numbers are the vertices of a regular n-gon in the

plane.

2.1.7 Coordinates on C

We have already seen that we can use three sets of coordinates on C, as follows.

1. Rectangular .x; y/: Each equation x D constant (respectively y D constant)
yields a line parallel to the imaginary axis (respectively real axis), while the
equation x D y yields the line through the origin with slope equal to 1.

2. Complex .z; z/: Only one of these coordinates is needed to describe a point by
the equation z D constant (or z D constant), while the equation z D z yields the
real axis.

3. Polar .r; �/: The equation r D a with a > 0 is a circle of radius a centered at
the origin, whereas the equation � D constant is a ray emanating from (but not
including) the origin. The equation r D � denotes a type of spiral ending at (but
not passing through) the origin.

The choice of the appropriate one among the various possible coordinates on C

may simplify a problem. As an example we solve the following one.
Let n be a positive integer, and suppose we want to find the set of points z in C

that satisfy the equation
zn D zn: (2.8)

Using rectangular coordinates would lead us to solve

.x C { y/n D .x � { y/n;

which is doable but far from pleasant.
Instead, we first note that certainly z D 0 satisfies (2.8). For z ¤ 0, we may use

the polar coordinates: the equation we are trying to solve is then equivalent to
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rnŒcos n� C { sin n�� D rnŒcos n� � { sin n��;

which implies that n � D k � for some integer k. Thus we immediately see that the
complete solution to (2.8) is the set of 2n rays � D �o from the origin (including
the origin) with

�o 2
�

0 ;
�

n
;

2�

n
; : : : ;

.2n � 1/ �

n

�

:

2.2 More Preliminaries that Rely on Topology, Metrics,
and Sequences

We collect some facts on sets of complex numbers and functions defined on them,
that mostly follow from translating to the complex system the analogous results
from real analysis.

The formula d.z; w/ D jz � wj, for z and w 2 C, defines a metric on C. Thus
.C; d / is a metric space, with a metric that agrees with the Euclidean metric on R

2

(under the linear representation of the complex plane described earlier).

Definition 2.1. We say that a sequence (indexed by n 2 Z>0) fzng of complex
numbers converges to ˛ 2 C if given � > 0, there exists an N 2 Z>0 such that
jzn � ˛j < � for all n > N ; in this case we write

lim
n!1 zn D ˛:

A sequence fzng of complex numbers is called Cauchy if given � > 0, there exists
an N 2 Z>0 such that jzn � zmj < � for all n; m > N .

Theorem 2.2. If fzng and fwng are Cauchy sequences of complex numbers, then

(a) fzn C ˛ wng is Cauchy for all ˛ 2 C.
(b) fzng is Cauchy.
(c) f jznj g � R�0 is Cauchy.

Proof. (a) It suffices to assume that ˛ ¤ 0. Given � > 0, choose N1 such that
jzn � zmj < �

2
for all n; m > N1 and choose N2 such that jwn � wmj < �

2j˛j for
all n; m > N2. Choose N D max fN1; N2g. Then, for all n and m > N , we
have

j.zn C ˛ wn/ � .zm C ˛ wm/j � jzn � zmj C j˛j jwn � wmj < �:

(b) It follows directly from jzn � zmj D jzn � zmj D jzn � zmj.
(c) We know that for all z and w in C we have
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jjzj � jwjj � jz � wj :

Applying this inequality to zn and zm in the sequence, we obtain

jjznj � jzmjj � jzn � zmj ;

and the result follows.

ut
Remark 2.3. The above arguments mimic arguments in real analysis needed to
establish the corresponding results for real sequences. We will, in the sequel, leave
such routine arguments as exercises for the reader.

Corollary 2.4. fzng is a Cauchy sequence of complex numbers if and only if f<zng
and f=zng are Cauchy sequences of real numbers.

Corollary 2.5. .C; d / is a complete metric space; that is, every Cauchy sequence
of complex numbers converges to a complex number.

Proof. Observe that the metric on C restricts to the Euclidean metric on R, which
is complete, and applies the previous corollary. ut
Definition 2.6. Let A � C. We say that A is bounded if the set of nonnegative real
numbers f jzj I z 2 Ag is; that is, if there exists a positive real number M such that
jzj < M for all z in A.

Definition 2.7. Let c 2 C and � > 0. The �-ball about c, or the open disc with
center c and radius �, is the set

Uc.�/ D U.c; �/ D fz 2 CI jz � cj < �g;

that is, the interior of the circle with center c and radius �.

Proposition 2.8. A subset A of C is bounded if and only if there exist a complex
number c and a positive number R such that

A � U.c; R/:

Remark 2.9. A proof is omitted for one of three reasons (in addition to the reason
described in Remark 2.3): either it is trivial or it follows directly from results in real
analysis or it appears as an exercise at the end of the corresponding chapter.5 The
third possibility is always labeled as such; when standard results in real analysis are
needed, there is some indication of what they are or where to find them. For example,
the next two theorems are translations to C of standard metric results for R

2. It

5Exercises can be found at the end of each chapter and are numbered by chapter, so that
Exercise 2.7 is to be found at the end of Chap. 2.
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should be clear from the context when the first possibility occurs. It is recommended
that the reader ensures that he/she is able to supply an appropriate proof when none
is given.

Theorem 2.10 (Bolzano–Weierstrass). Every bounded infinite set S in C has at
least one limit point; that is, there exists at least one c 2 C such that, for each � > 0,
the ball U.c; �/ contains a point z 2 S with z ¤ c.

Theorem 2.11. A set K � C is compact if and only if it is closed and bounded.

We will certainly be using a number of consequences of compactness not
discussed in this chapter (e.g., in a compact metric space, every sequence has a
convergent subsequence) and also of connectedness, which we will not define here.

Definition 2.12. Let f be a function defined on a set S in C. We assume that f

is complex-valued, unless otherwise stated. Thus f may be viewed as either a map
from S into R

2 or into C and also as two real-valued functions defined on the set S .
Let c be a limit point of S and let ˛ be a complex number. We say that the limit

of f at c is ˛, and we write
lim
z!c

f .z/ D ˛

if for each � > 0 there exists a ı > 0 such that

jf .z/ � ˛j < � whenever z 2 S and 0 < jz � cj < ı:

Remark 2.13. The condition that c is a limit point of S ensures that there are points
z in S arbitrarily close to (but different from) c so that f .z/ is defined there. Note
that it is not required that f .c/ be defined.

The above definition is again a translation of language from R
2 to C. Thus we

will be able to adopt many results (the next three theorems, in particular) from real
analysis. In addition to the usual algebraic operations on pairs of functions f W S !
C and g W S ! C familiar from real analysis, such as f Ccg with c 2 C, fg, and

f

g
(provided g does not vanish on S ; that is, if g.z/ ¤ 0 for any z 2 S or, equivalently,
if no z 2 S is a zero of g), we will consider other functions constructed from a single
function f , that are usually not emphasized in real analysis. Among them are the
following:

.<f /.z/ D <f .z/; .=f /.z/ D =f .z/; f .z/ D f .z/; jf j .z/ D jf .z/j ;

also defined on S .

For instance, if f .z/ D z2 D x2�y2C2 { x y for z 2 C, we have .<f /.z/ D x2�
y2, .=f /.z/ D 2 x y, f .z/ D Nz2 D x2 � y2 � 2 { x y, and jf j .z/ D jzj2 D x2 C y2

for z 2 C.

Theorem 2.14. Let S be a subset of C and let f and g be functions defined on S .
If c is a limit point of S , then:
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(a) lim
z!c

.f C a g/.z/ D lim
z!c

f .z/ C a lim
z!c

g.z/ for all a 2 C

(b) lim
z!c

.fg/.z/ D lim
z!c

f .z/ lim
z!c

g.z/

(c) lim
z!c

jf j .z/ D
ˇ

ˇ

ˇ

ˇ

lim
z!c

f .z/

ˇ

ˇ

ˇ

ˇ

(d) lim
z!c

f .z/ D lim
z!c

f .z/

Remark 2.15. The usual interpretation of the above formulae is used here and in the
rest of the book: the LHS6 exists whenever the RHS exists, and then we have the
stated equality.

Corollary 2.16. Let S be a subset of C, let f be a function defined on S , and
˛ 2 C. Set u D <f and v D =f (so that f .z/ D u.z/ C { v.z/). If c is a limit point
of S , then

lim
z!c

f .z/ D ˛

if and only if
lim
z!c

u.z/ D <˛ and lim
z!c

v.z/ D =˛:

Definition 2.17. Let S be a subset of C, f W S ! C be a function defined on S ,
and c 2 S be a point in S . We say that:

(a) f is continuous at c if lim
z!c

f .z/ D f .c/.

(b) f is continuous on S if it is continuous at each c in S .
(c) f is uniformly continuous on S if for all � > 0, there is a ı > 0 such that

jf .z/ � f .w/j < � for all z and w in S with jz � wj < ı:

Remark 2.18. A function f is (uniformly) continuous on S if and only if both <f

and =f are.
Uniform continuity implies continuity, but the converse is not true in general.

Theorem 2.19. Let f and g be functions defined in appropriate sets, that is, sets
where the composition g ı f of these functions makes sense. Then the following
properties hold:

.a/ If f is continuous at c and f .c/ ¤ 0, then
1

f
is defined in a neighborhood of

c and is continuous at c.
.b/ If f is continuous at c and g is continuous at f .c/, then g ı f is continuous

at c.

Theorem 2.20. Let K � C be a compact set and f W K ! C be a continuous
function on K . Then f is uniformly continuous on K .

6LHS (RHS) are standard abbreviations for left (right) hand side and will be used throughout this
book.
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Proof. A continuous mapping from a compact metric space to a metric space is
uniformly continuous. ut
Definition 2.21. Given a sequence of functions ffng, all defined on the same set S

in C, we say that ffng converges uniformly to a function f on S if for all � > 0

there exists an N 2 Z>0 such that

jf .z/ � fn.z/j < � for all z 2 S and all n > N:

Remark 2.22. ffng converges uniformly on S (to some function f ) if and only if
for all � > 0 there exists an N 2 Z>0 such that

jfn.z/ � fm.z/j < � for all z 2 S and all n and m > N:

Note that in this case the limit function f is uniquely determined; it is the
pointwise limit f .z/ D lim

n!1 fn.z/, for all z 2 S .

Theorem 2.23. Let ffng be a sequence of functions defined on S � C. If:

.1/ ffng converges uniformly on S .

.2/ Each fn is continuous on S .

Then the function f defined by

f .z/ D lim
n!1 fn.z/; z 2 S

is continuous on S .

Proof. Start with two points z and c in S . Then for each natural number n we have

jf .z/ � f .c/j � jf .z/ � fn.z/j C jfn.z/ � fn.c/j C jfn.c/ � f .c/j :

Now fix � > 0. By (1), the first and third term on the right-hand side are less than
�

3
for n large. If we now fix c and n, it follows from (2) that the second term is less

than
�

3
as soon as z is close enough to c. Thus f is continuous at c. ut

Definition 2.24. A domain or region in C is a subset of C which is open and
connected.

Remark 2.25. Note that a domain in C could also be defined as an open arcwise
connected subset of C. (See also Exercise 2.20.) Also note that each point in a
domain D is a limit point of D, and therefore it makes sense to ask, at each point in
D, about the limit of any function defined on D.



28 2 Foundations

2.3 Differentiability and Holomorphic Mappings

Up to now, the complex numbers were used mainly to supply us with a convenient
alternative notation. This is about to change. The definition of the derivative of a
complex-valued function of a complex variable mimics that for the derivative of
a real-valued function of a real variable. However, we shall see shortly that the
properties of the two classes of functions are quite different.

Definition 2.26. Let f be a function defined in some disc about c 2 C. We say that
f is (complex) differentiable at c provided

lim
h!0

f .c C h/ � f .c/

h
(2.9)

exists. In this case the limit is denoted by

f 0.c/;
df

dz
.c/;

df

dz

ˇ

ˇ

ˇ

ˇ

zDc

; or .Df /.c/;

and is called the derivative of f at c.

Remark 2.27. (1) It is important that h be an arbitrary complex number (of small
nonzero modulus) in the above definition.

(2) Note that

lim
h!0

f .c C h/ � f .c/

h
D lim

z!c

f .z/ � f .c/

z � c
:

(3) If f is differentiable at c, then f is continuous at c: The converse is not true in
general; see Example 2.32.4.

(4) We consider two identities for a function f defined in a neighborhood of
c 2 C :

f .c C h/ D a0 C �.h/ with lim
h!0

�.h/ D 0;

and

f .c C h/ D a0 C a1h C h�.h/ with lim
h!0

�.h/ D 0:

As in real analysis, the first of these says that f is continuous at c if and only if
f .c/ D a0; the second says that f is differentiable at c if and only if f .c/ D a0

and f 0.c/ D a1. Whereas in the real case the second statement is sharp with
regard to smoothness, we shall see that in the complex case, under appropriate
conditions, it can be improved significantly.

Notation 2.28. If the function f is differentiable on a domain D (i.e., at each point
of D), then it defines a function f 0 W D ! C.

Thus for every n 2 Z�0 we can define inductively f .n/, the n-th derivative of f ,
as follows:
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f .0/ D f , and if f .n/ is defined for n � 0, then we set f .nC1/ D �

f .n/
	0

whenever
the appropriate limits exist.

It is customary to abbreviate f .2/ and f .3/ by f 00 and f 000, respectively. Of
course, f .1/ D f 0.

Definition 2.29. Let f be a function defined in a neighborhood of c 2 C. Then
f is holomorphic or analytic at c if it is differentiable in a neighborhood (perhaps
smaller) of c. A function defined on an open set U is holomorphic or analytic on
U if it is holomorphic (equivalently, differentiable) at each point of U . It should be
emphasized that holomorphicity is always defined on open sets.

A function f is called anti-holomorphic if Nf is holomorphic.

The usual rules of differentiation hold. Let f and g be functions defined in a
neighborhood of c 2 C, let F be a function defined in a neighborhood of f .c/, and
let a 2 C. Then (recall Remark 2.15):

(a) .f C ag/0.c/ D f 0.c/ C ag0.c/

(b) .fg/0.c/ D f .c/g0.c/ C f 0.c/g.c/

(c) .F ı f /0.c/ D F 0.f .c//f 0.c/ (the chain rule)

(d)

�

1

f

�0
.c/ D � f 0.c/

f .c/2
provided f .c/ ¤ 0

(e) if f .z/ D zn with n 2 Z (and z 2 C¤0 if n � 0), then
f 0.z/ D n zn�1

Remark 2.30. About the chain rule (c): If f .z/ D w is a differentiable function of
z and if F.w/ D 	 is a differentiable function of w, then we often write the chain
rule as

d	

dz
D d	

dw

dw

dz
:

A “proof” follows. Let z0 be arbitrary in the domain of f , and set w0 D f .z0/ and
	0 D F.w0/. Note that w D f .z/ ! w0 as z ! z0. Now

.F ı f /0.z0/ D d	

dz
.z0/ D lim

z!z0

	 � 	0

z � z0

D lim
z!z0

.	 � 	0/.w � w0/

.w � w0/.z � z0/
D lim

w!w0

	 � 	0

w � w0

lim
z!z0

w � w0

z � z0

D d	

dw
.w0/

dw

dz
.z0/ D F 0.w0/ f 0.z0/:

This “proof” has an error in it, what is it?

Definition 2.31. A function defined on the complex plane is called entire if it is
holomorphic on C, that is, if its derivative exists at each point of C.
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Example 2.32. We illustrate some of the concepts introduced with more or less
familiar examples.

1. Every polynomial (in one complex variable) is entire. These (apparently) simple
objects have fairly complicated behavior, that is studied, for example, as part of
complex dynamics.

2. A rational function is a function of the form R D P

Q
, where P and Q are

polynomials (in one complex variable), with Q not the zero polynomial. Note
that the polynomial Q has only finitely many zeros (the number of zeros,
properly counted, equals the degree of Q; see Exercise 3.19). The rational
function R is holomorphic on C � fzeros of Qg.

3. A special case of Example 2.32.2 is R.z/ D az C b

cz C d
with a, b, c, and d fixed

complex numbers satisfying ad � bc ¤ 0. These rational functions are called
fractional linear transformations or Möbius transformations and will be studied
in detail in Sect. 8.1. They are the building blocks for much that will follow in
this book—automorphisms of domains in the Riemann sphere, and Blaschke
products, and as important ingredients for much current research in areas of
complex analysis: Riemann surfaces, Fuchsian, and (the more general case of)
Kleinian groups.

4. In real analysis it takes work to construct a continuous function on R that is
nowhere differentiable. The situation with respect to complex differentiability is
much simpler. The functions z 7! z and z 7! jzj are both continuous on C, but
they are nowhere (complex) differentiable, since the corresponding limits (2.9)
do not exist at any c in C.

2.3.1 Convention

Whenever we write z D x C { y for variables and f D u C { v for functions, then
we automatically mean that x D <z, y D =z, u D <f , and v D =f . We also write
u D u.x; y/ and v D v.x; y/, as well as u D u.z/ and v D v.z/. We naturally use
subscripts to denote partial derivatives with respect a given variable, so that notation
such as ux, uy , vx, or vy has the obvious meaning.

2.3.2 The Cauchy-Riemann (CR) Equations

Theorem 2.33. If f D u C { v is differentiable at c D a C { b, then u and v
have partial derivatives with respect to x and y at c, and they satisfy the Cauchy–
Riemann equations:

ux.a; b/ D vy.a; b/; uy.a; b/ D �vx.a; b/: .CR/
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Furthermore,

f 0.c/ D ux.a; b/ C { vx.a; b/ D �{ uy.a; b/ C vy.a; b/:

Proof. First take h D ˛, with ˛ real, in the limit (2.9) appearing in the definition of
differentiability and compute

f 0.c/ D ux.a; b/ C { vx.a; b/:

Then take h D {ˇ, with ˇ real, and compute

f 0.c/ D �{ uy.a; b/ C vy.a; b/:

Comparing the two expressions we obtain the desired result. ut
Remark 2.34. Let f D u C { v be a function defined in a neighborhood of c, such
that the partial derivatives ux, vx , uy , and vy exist at c. Then we will use the obvious
notation:

fx D ux C { vx and fy D uy C { vy:

In this language the CR equations (CR) for the function f are written as follows:

fx.c/ D �{ fy.c/; (2.10)

and Theorem 2.33 may be stated as follows.
If f is differentiable at c, then f has partial derivatives with respect to x and y at
c, and they satisfy the Cauchy–Riemann equation (2.10). Furthermore,

f 0.c/ D fx.c/ D �{ fy.c/: (2.11)

Remark 2.35. The CR equations are not sufficient for differentiability. To see this,
define

f .z/ D
(

z5 jzj�4 for z ¤ 0;

0 for z D 0:

It is easy to verify that the function f is continuous on C. Furthermore, for ˛ real

and nonzero we have
f .˛/

˛
D 1, and for ˇ real and nonzero we have

f .{ˇ/

{ˇ
D 1.

Therefore fx.0/ D 1 and fy.0/ D {, and f satisfies the Cauchy–Riemann
equation (2.10) at z D 0. However, f is not differentiable at z D 0. Indeed, if it
were, we would conclude from (2.11) that f 0.0/ D 1. Now take h D .1 C {/


with 
 real and nonzero and observe that
f .h/

h
D �1 so that f 0.0/ would be equal

to �1.
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Remark 2.36. We may use the CR equations to try to manufacture an entire function
with a given real (or imaginary) part. Let us start with the real-valued function
u.x; y/ D x2Cy2. If this were to be the real part of some entire function f D uC{ v,
then the CR equations would help us to determine v. Since ux D 2x D vy and
uy D 2y D �vx must be satisfied, by integrating 2x D vy with respect to y we
obtain that v.x; y/ D 2 x y C h.x/, for some function h of x alone; by integrating
2y D �vx with respect to x we obtain that v.x; y/ D �2 y x C g.y/, for some
function g of y. It is quite obvious that these two expressions for v are incompatible,
and hence there is no such function f .

The situation changes dramatically for u.x; y/ D x2 � y2, where similar
calculations lead to v.x; y/ D 2 x y C h.x/ D 2 y x C g.y/, and we may choose
h.x/ D g.y/ D a, for any real value of a. We have thus obtained a family of entire
functions f with prescribed real part u; these are given by

f .z/ D u.x; y/ C { v.x; y/ D x2 � y2 C { .2xy C a/ D z2 C { a;

with a any real number.
We will determine later the class of real-valued functions u for which the

construction outlined above leads us to an entire function f .

Definition 2.37. For a complex-valued function f defined on a region in the
complex plane, such that both fx and fy exist in this region, set

fz D 1

2

�

fx � {fy

	

and

fz D 1

2

�

fx C {fy

	

:

Remark 2.38. The partial derivatives just defined are computed as if z and z were
independent variables. For instance, if f .z/ D z2 C5zz3, then it is easy to verify that
fz D 2z C 5z3 and fz D 15zz2.

These partials not only simplify the notation: for example, the two Cauchy–
Riemann equations (CR) are written as the single equation

fz D 0; .CR complex/

or, if f is differentiable at c, then

f 0.c/ D fz.c/;

but they also allow us to produce more concise arguments (and, as we shall see later,
prettier formulae), as illustrated in the proof of the lemma below.

We use the notation
@f

@z
(respectively

@f

@z
) interchangeably with fz (respec-

tively fz).
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Lemma 2.39. If f is a C1-complex-valued function defined in a neighborhood of
c 2 C, then

f .z/ � f .c/ D .z � c/ fz.c/ C .z � c/ fz.c/ C jz � cj ".z; c/; (2.12)

for all z 2 C with jz � cj small, where ".z; c/ is a complex-valued function of z and
c such that

lim
z!c

".z; c/ D 0:

Proof. As usual we write z D x C { y, c D a C { b, and f D u C { v and abbreviate
4u D u.z/ � u.c/, 4x D x � a, 4y D y � b, and 4z D z � c D 4x C { 4y. By
hypothesis, the real-valued function u has continuous first partial derivatives defined
in a neighborhood of c, and we can define "1 by

"1.z; c/ D 4u � ux.c/4x � uy.c/4y

j4zj
for z ¤ c, and "1.c; c/ D 0. Then it is clear that

u.z/ � u.c/ D .x � a/ux.a; b/ C .y � b/uy.a; b/ C jz � cj "1.z; c/:

We now show that

lim
z!c

"1.z; c/ D 0: (2.13)

If we rewrite 4u as

4u D Œu.x; y/ � u.x; b/� C Œu.x; b/ � u.a; b/� ;

it follows from the (real) mean value theorem applied to the two summands on the
RHS that

4u D uy.x; y0/4y C ux.x0; b/4x;

where y0 is between y and b and x0 is between x and a. Thus

"1.z; c/ D Œuy.x; y0/ � uy.a; b/�4y C Œux.x0; b/ � ux.a; b/�4x

j4zj ;

for z ¤ c. Hence we see that

j"1.z; c/j � ˇ

ˇuy.x; y0/ � uy.a; b/
ˇ

ˇ C jux.x0; b/ � ux.a; b/j ;

and the claim (2.13) follows.
Similarly,

v.z/ � v.c/ D .x � a/vx.a; b/ C .y � b/vy.a; b/ C jz � cj "2.z; c/;
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with
lim
z!c

"2.z; c/ D 0: (2.14)

With obvious notational conventions, we compute that

4f D 4u C { 4v

D Œux.a; b/ C { vx.a; b/� 4x C 


uy.a; b/ C { vy.a; b/
� 4y C j4zj ".z; c/

D 4z C 4z

2
fx.c/ C {

4z � 4z

2
fy.c/ C j4zj ".z; c/

D 4zfz.c/ C 4zfNz.c/ C j4zj ".z; c/;

with ".z; c/ D "1.z; c/ C { "2.z; c/. Now equalities (2.13) and (2.14) imply that

lim
z!c

".z; c/ D 0: ut

Theorem 2.40. If the function f has continuous first partial derivatives in a
neighborhood of c that satisfy the CR equations at c, then f is (complex)
differentiable at c.

Proof. The theorem is an immediate consequence of (2.12), since in this case
fNz.c/ D 0 and hence f 0.c/ D fz.c/. ut
Corollary 2.41. If the function f has continuous first partial derivatives in an open
neighborhood U of c 2 C and the CR equations hold at each point of U , then f is
holomorphic at c (in fact on U ).

Remark 2.42. The converse to this corollary is also true. It will take us some time
to prove it.

Theorem 2.43. If f is holomorphic and real-valued on a domain D, then f is
constant.

Proof. As usual we write f D u C { v; in this case v D 0. The CR equations say
ux D vy D 0 and uy D �vx D 0. Thus u is constant, since D is connected. ut
Theorem 2.44. If f is holomorphic and f 0 D 0 on a domain D, then f is constant.

Proof. As above f D u C { v and f 0 D ux C { vx D 0. The last equation together
with the CR equations say 0 D ux D vy and ; 0 D vx D �uy . Thus both u and v are
constant, since D is connected. ut

Exercises

2.1. (a) Let fzng be a sequence of complex numbers and assume

jzn � zmj <
1

1 C jn � mj ; for all n and m:
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Show that the sequence converges.
Do you have enough information to evaluate lim

n!1 zn?

What else can you say about this sequence?

(b) Let fzng be a sequence with lim
n!1 zn D 0 and let fwng be a bounded sequence.

Show that
lim

n!1 wnzn D 0:

2.2. (a) Let z and c denote two complex numbers. Show that

jc z � 1j2 � jz � cj2 D .1 � jzj2/ .1 � jcj2/:

(b) Use (a) to conclude that if c is any fixed complex number with jcj < 1, then

fz 2 CI jz � cj < jc z � 1j g D fz 2 CI jzj < 1g ;

fz 2 CI jz � cj D jc z � 1j g D fz 2 CI jzj D 1g and

fz 2 CI jz � cj > jc z � 1j g D fz 2 CI jzj > 1g:

2.3. Let a, b, and c be three distinct points on a straight line with b between a and
c. Show that

a � b

c � b
2 R<0:

2.4. (a) Given two points z1, z2 such that jz1j < 1 and jz2j < 1, show that for every
point z 6D 1 in the closed triangle with vertices z1, z2, and 1,

j1 � zj
1 � jzj � K;

where K is a constant that depends only on z1 and z2.

(b) Determine the smallest value of K for z1 D 1 C {

2
and z2 D 1 � {

2
.

2.5. Verify the Cauchy–Riemann equations for the function f .z/ D z3 by splitting
f into its real and imaginary parts.

2.6. Suppose z D x C { y. Define

f .z/ D xy2 .x C { y/

x2 C y4
;

for z ¤ 0 and f .0/ D 0. Show that

lim
f .z/ � f .0/

z
D 0
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as z ! 0 along any straight line. Show that as z ! 0 along the curve x D y2; the
limit of the difference quotient is 1

2
, thus showing that f 0.0/ does not exist.

2.7. Let x D r cos � and y D r sin � . Show that the Cauchy–Riemann equations in
polar coordinates for F D U C { V , where U D U.r; �/ and V D V.r; �/, are

r
@U

@r
D @V

@�
and r

@V

@r
D �@U

@�
;

or, in alternate notation,

rUr D V� and rVr D �U�:

2.8. Let f be a complex-valued function defined on a region in the complex plane,
and assume that both fx and fy exist in this region. Using the definitions of fz and
fz, show that for C1-functions f ,

f is holomorphic if and only if fz D 0

and that in this case fz D f 0.

2.9. Let R and ˚ be two real-valued C1-functions of a complex variable z. Show
that f D Re{˚ is holomorphic if and only if

Rz C {R˚z D 0:

2.10. Show that if f and g are C1-functions, then the (complex) chain rule is
expressed as follows (here w D f .z/ and g is viewed as a function of w).

.g ı f /z D gw fz C gw f z

and

.g ı f /z D gw fz C gw f z:

2.11. Let p be a complex-valued polynomial of two real variables:

p.z/ D
X

aij xi yj :

Write
p.z/ D

X

j �0

Pj .z/zj ;

where each Pj is of the form Pj .z/ D P

bij zi (a polynomial in z). Prove that p is
an entire function if and only if

0 � P1 � P2 � : : : :
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What can you conclude in this case for the matrix Œaij �?

2.12. Deduce the analogues of the CR equations for anti-holomorphic functions, in
rectangular, polar, and complex coordinates.

2.13. Let f W C ! C be a holomorphic function, and set g.z/ D f .z/ and
h.z/ D f .z/, for z in C. Show that g is holomorphic and h is anti-holomorphic
on C. Furthermore, h is holomorphic on C if and only if f is a constant function.

2.14. Let D be an arbitrary (nonempty) open connected set in C. Describe the class
of complex-valued functions on D that are both holomorphic and anti-holomorphic.

2.15. Does there exist a holomorphic function f on C whose real part is:

(a) u .x; y/ D ex? Or
(b) u .x; y/ D ex.x cos y � y sin y/?

Justify your answer; that is, if yes, exhibit the holomorphic function(s) and if not,
prove it.

2.16. Prove the fundamental theorem of algebra: If a0 ; : : : ; an�1 are complex
numbers (n � 1) and p.z/ D zn C an�1zn�1 C 	 	 	 C a0, then there exists a number
z0 2 C such that p.z0/ D 0.

Hint: A standard method of attack:

(a) Show that there are an M > 0 and an R > 0 such that for all jzj � R, jp.z/j �
M holds.

(b) Show next that there is a z0 2 C such that

jp.z0/j D min f jp.z/j I z 2 Cg:

(c) By the change of variable p.z C z0/ D g.z/, it suffices to show that g.0/ D 0.
(d) Write g.z/ D ˛Czm.ˇCc1zC	 	 	Ccn�mzn�m/ with ˇ ¤ 0. Choose 
 such that


m D �˛

ˇ
:

If ˛ ¤ 0, obtain the contradiction jg.
z/j < j˛j for some z.

Note. We will later have several simpler proofs of this theorem using results from
complex analysis, for instance, in Theorem 5.16 and Exercise 6.1. See also the
April 2006 issue of The American Mathematical Monthly for yet other proofs of
this fundamental result.

2.17. Conclude from the fundamental theorem of algebra that a nonconstant
complex polynomial of degree n has n complex roots, counted with multiplicities.

Use this result to show that a nonconstant real polynomial that cannot be factored
as a product of two nonconstant real polynomials of lower degree (i.e., a real
irreducible nonconstant polynomial) has degree one or two.
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2.18. Using the fundamental theorem of algebra stated in Exercise 2.16, prove the
Frobenius theorem: If F is a field containing the reals whose dimension as a real
vector space is finite, then either F is the reals or F is (isomorphic to) C.

Hint: An outline of possible steps follows.

(a) Assume dimR F D n > 1. Show that for � in F �R there exists a nonzero real
polynomial p with leading coefficient 1 and such that p.�/ D 0.

(b) Show that there exist real numbers ˇ and 
 such that

�2 � 2ˇ� C 
 D 0:

(c) Show that there exists a positive real number ı such that .� � ˇ/2 D �ı2, and
therefore

� D � � ˇ

ı

is an element of F satisfying �2 D �1.
(d) The field

G D R.�/ D fx C y� W x; y 2 Rg � F

is isomorphic to C, so without loss of generality assume � D { and G D C.
Conclude by showing that any element of F is the root of a complex

polynomial with leading coefficient 1 and is therefore a complex number.

2.19. Prove the following statements, where automorphism is a bijection preserving
sums and products.

(a) Every automorphism of the real field is the identity.
(b) Every automorphism of the complex field fixing the reals is either the identity

or conjugation.
(c) Every continuous automorphism of the complex field is either the identity or

conjugation.

2.20. A domain is defined to be an open connected set. It was remarked that it could
also be defined to be an open arcwise connected set. Can it be defined as an open
path connected set? Justify your answer.
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