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Abstract: Peroxiredoxins compose a superfamily of peroxidases ubiquitously found throughout
evolution in prokaryotes, archaea and eukaryotes. These enzymes contain a conserved
catalytic peroxidatic cysteine (Cp) in the N-terminal region of the protein. The residues
surrounding Cp and the catalytic site appear also to be well conserved. Peroxiredoxins
can be classified either into three subfamilies according to their catalytic mechanism
or into five subfamilies according to sequence homology. Notably, the number of
peroxiredoxin genes increased during evolution. In eukaryotes, the higher number of
genes coding for peroxiredoxin family members is due to the existence of different
isoforms targeted to different subcellular compartments but is probably due also to
the acquisition of new functions. Indeed, it has been postulated that the antioxidant
protective role of peroxiredoxins, which is particularly critical in prokaryotes, in yeasts
and in parasitic eukaryotes, may have evolved to a modulatory role in hydrogen peroxide
signaling in plants and animals
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1. INTRODUCTION

The first characterized peroxiredoxin (Prx or, as imposed by International Nomen-
clature Committees, PRDX for human/bovine peroxiredoxins or Prdx for murine
counterparts) has been identified in the yeast Saccharomyces cerevisiae (Kim et al.,
1988). Subsequently, it appeared that this novel antioxidant enzyme, named at that
time TSA for thiol-specific antioxidant, was a member of an emerging superfamily
of proteins conserved throughout the evolution in all kingdoms of life (Prosperi
et al., 1993; Chae et al., 1994a). Indeed, numerous members of the Prx super-
family have been later identified and characterized in prokaryotes, archaea and
eukaryotes (see Table 1; Hofmann et al., 2002). It appeared afterwards that Prxs
are ancestral thiol-dependent selenium- and heme-free peroxidases highly expressed
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Table 1. Classification of Prxs from different kingdoms of life. Prxs are classified according to
their enzymatic mechanism (typical 2-Cys, atypical 2-Cys or 1-Cys) and sequence homology
(geometric forms in the table but see also phylogenetic tree of Fig. 2). Circles (PrxI/PRDX1
subfamily), triangles (PrxV/PRDXS5 subfamily), inversed triangles (BCP-PrxQ subfamily),
squares (Prx VI/PRDX6 subfamily) and hexagons (Tpx subfamily) represent the different clusters
based on sequence homology. The phylogenetic tree is shape-coded accordingly. E. coli:
Escherichia coli; A. pernix: Aeropyrum pernix; S. cerevisiae: Saccharomyces cerevisiae; P. falci-
parum: Plasmodium falciparum; A. thaliana: Arabidopsis thaliana; D. melanogaster: Drosophila
melanogaster; H. sapiens: Homo sapiens
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in virtually all living species including anaerobic organisms (Wood et al., 2003a;
Rhee et al., 2005). In Escherichia coli, Prxs are among the ten most expressed
proteins (Link ez al., 1997) and in mammalian cells they represent 0.1 to 0.8% of
soluble proteins (Seo et al., 2000). Moreover, it must be noted that Prxs are now
very often detected as major spots in proteomic analyses using two-dimensional gel
electrophoresis.

Interestingly, Prxs show no significant sequence homology with catalases, super-
oxide dismutases or other peroxidases such as selenocysteine-containing glutathione
peroxidases, although they may be structurally close to them (see below and Chapter
3). Prxs do not contain any redox cofactors such as heme, flavin or metal ions.
The presence of a conserved and catalytically essential cysteine residue in the
N-terminal domain of all Prxs, termed now the peroxidatic cysteine (Cp), was noted
earlier (Chae er al., 1994b). Not only the residues surrounding the Cp but also the
entire peroxidatic catalytic site appear to be well conserved among Prxs (Wood
et al., 2003a and see Chapter 3 and 4). The N-terminal Cp is the primary site of
enzyme oxidation (Figure 1 and see Chapter 3 and 4). Indeed, the Cp attacks the
peroxide and is subsequently oxidized to a cysteine sulfenic acid (Cp-SOH) (Wood
et al., 2003a and Chapter 4). The high reactivity of the conserved Cp in Prxs with
peroxides is due to its low pK, in its catalytic site. Indeed, the Cp environment
promotes ionization of the thiol group to the thiolate anion (Wood et al., 2003a and
Chapter 4). The reduction of the cysteine sulfenic acid is the second step of the
peroxidase reaction and differs according to the type of Prx (Figure 1 and Chapter 4)
but probably also depends on the availability of the electron-donor substrate for
certain Prxs. Based on the resolution mechanism and the existence or the lack of
a resolving cysteine (Cr) localized to the C-terminal region of the enzyme, Prxs
were divided into three subgroups referred to as typical 2-Cys, atypical 2-Cys
and 1-Cys Prxs (Seo et al., 2000). Finally, at the end of the catalytic cycle, the
enzyme is reduced by a thiol-containing reductant. Thus, the conservation and the
success of Prxs throughout evolution may be due to their apparently simple catalytic
mechanism that does not require heme, flavin or reactive heteroatoms. It could
also be due to their ability to use, depending on the type of Prx, different electron
donor substrates such as thioredoxins, tryparedoxin, glutathione or glutaredoxins
for their reduction. However, the drawback of this simple mechanism would be
their moderate catalytic efficiencies towards peroxides (~ 10°M~'s™!) compared
to selenocysteine-containing glutathione peroxidases (~108M~'s~!) or even heme-
containing catalases (~10°M~'s71),

Functionally, it has been proposed that certain Prxs (typical 2-Cys Prxs) have
evolved from antioxidant protective enzymes in bacteria or in parasites to regulators
of peroxide-mediated signaling cascades in organisms such as yeasts, plants and
mammals (Wood et al., 2003, see also Chapter 12). Indeed, many cell types
are known to produce hydrogen peroxide in response to extracellular stimuli
and the generated peroxide may affect the function of several proteins including
transcription factors or protein kinases and phosphatases (Rhee et al., 2005). In
mammals, typical 2-Cys Prxs have been shown to be more sensitive to inactivation
than prokaryotic Prxs by hydrogen peroxide through overoxidation of the Cp into
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Figure 1. Peroxidase reaction mechanisms of (a) typical 2-Cys Prxs; (b) atypical 2-Cys Prxs;
(c) 1-Cys Prxs (modified from Chae er al., 1994b; Kang et al., 1998; Seo et al., 2000). Hydrogen
peroxide (H,0,) or organic hydroperoxides (ROOH) are reduced by the Cp, which is oxidized in
sulfenic acid (-SOH). This later reacts immediately with a thiol group to form an intermolecular (typical
2-Cys Prxs) or an intramolecular (atypical 2-Cys Prxs) disulfide bond, which is subsequently reduced by
thiol-containing electron donors (RSH) that are thioredoxins for mammalian typical and atypical 2-Cys
Prxs and glutathione for mammalian 1-Cys Prx. Cp and Cr refer to peroxidatic and resolving cysteines
respectively. Closed circles correspond to the amino-terminus of each protein
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sulfinic (Cp-SO,H) or sulfonic (Cp-SO;H) acid forms. As such, Prxs would act as
a dam against peroxides. The ratio of active to inactive enzymes would determine
the signaling cascade and the oxidation of transcription factors or signaling effectors
by peroxides (Wood et al., 2003b; Rhee et al., 2005). Interestingly, this mechanism
is probably finely regulated as overoxidation of the Cp into sulfinic acid may be
reduced by sulfiredoxin in yeasts, plants and mammals (Biteau et al., 2003; Jeong
et al., 2006; Liu et al., 2006), and also by sestrins (Budanov et al., 2004). Moreover,
phosphorylation of mammalian typical 2-Cys Prxs by cyclin-dependent kinases
was also demonstrated to modulate their peroxidase activity, showing that other
post-translational mechanisms in addition to overoxidation may regulate peroxide
reduction by mammalian Prxs (Chang et al., 2002).

As a matter of fact, the number of Prx genes increased throughout evolution
depending also on the phyla and species. For example, there are three genes coding
for Prxs in the bacterium Escherichia coli, five in the yeast Saccharomyces cervisiae,
but six in Homo sapiens and even nine in the plant Arbidopsis thaliana (Table 1).
In eukaryotes, the higher number of genes coding for family members is partly
explained by the compartmentalization and the existence of mitochondrial, nuclear,
peroxisomal and chloroplast isoforms. However, Prx functions in metazoa could
be more complex than thought previously. Indeed, knocked-out mice for PrdxI
(Neumann et al., 2003), Prdx2 (Lee et al., 2003) and Prdx6 (Wang et al., 2003)
have revealed that mutants are more sensitive to certain oxidative stresses.

2. CLASSIFICATION OF PEROXIREDOXINS

As mentioned above, all Prxs exhibit a conserved Cp residue in their N-terminal
region that attacks peroxides but also peroxynitrite at least for some members of the
family (Bryk et al., 2000; Dubuisson et al., 2004, Jaeger et al., 2004). Originally
in mammals, Prxs were divided into two subfamilies (or subgroups), the 1-Cys and
the 2-Cys Prxs, based on the number of cysteine residues directly involved in the
enzymatic mechanism and the conservation of surrounding residues around catalytic
cysteines (Rhee et al., 2005). Later, a third subfamily emerged and now mammalian
Prxs are divided into three subfamilies referred to as typical 2-Cys, atypical 2-Cys
and 1-Cys Prxs (Rhee er al., 2005; Figure 1 and Table 1). This classification is
based on catalytic mechanisms and has been extended to all Prxs from all biological
kingdoms. In the typical 2-Cys subfamily, the resolving cysteine, corresponding
to the second redox-active cysteine, is localized to the C-terminal region of the
enzyme. During the peroxidase reaction, the cysteine sulfenic acid from one subunit
is attacked by the resolving cysteine of another subunit resulting in the formation
of a stable intersubunit disulfide bond which can then be reduced by thioredoxin in
mammalian Prxs. In atypical 2-Cys Prxs, the C-terminal resolving cysteine is located
within the same polypeptide chain and the reaction with the peroxidatic cysteine
results in the formation of an intramolecular disulfide bond. The mammalian atypical
2-Cys Prx uses thioredoxin to reduce the disulfide bond. Finally, in 1-Cys Prxs,
only the N-terminal peroxidatic cysteine is present and the resolving cysteine is
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missing. Nevertheless, in mammalian 1-Cys Prx, the peroxidatic cysteine sulfenic
acid formed upon reaction with peroxides is reduced by glutathione (Manevich
et al., 2004). Thus, it appears that this mechanistic classification may be extended
to all Prxs only when the enzymatic mechanism is clearly characterized for novel
Prx members first identified on homology criteria by alignment of their amino
acid sequences. Indeed, sequence alignment of Prxs from prokaryotes, archaea
and eukaryotes, and construction of phylogenetic trees (Verdoucq et al., 1999;
Hofmann et al., 2002; Figure 2) revealed clusters or subfamilies that may include
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Figure 2. Phylogenetic tree of the peroxiredoxin family. Protein alignment was performed with ClustalX
1.81 program (Higgins and Sharp, 1988). Tree drawing was achieved with the neighbor-joining method
(Saitou and Nei, 1987). The unrooted tree was drawn with Treeview, and has been divided into five
clusters (subfamilies) represented by the different shapes. Ec: Escherichia coli; Ap: Aeropyrum pernix;
Sc: Saccharomyces cerevisiae; Pf: Plasmodium falciparum; At: Arabidopsis thaliana; Dm: Drosophila
melanogaster; Hs: Homo sapiens. GenBank™ accession numbers of the peptide sequences are as
follows: Ec-AhpC (NP_415138); Ec-Tpx (NP_415840); Ec-BCP (NP_416975); Ap-Prx (NP_148509);
Sc-Tsalp (NP_013684); Sc-Tsa2p (NP_010741); Sc-Prx1p (NP_009489); Sc-Dot5p (NP_012255); Sc-
Ahplp (NP_013210); Pf~TPx1 (AAF67110); Pf~TPx2 (AAK20024); Pf-1-Cys-Prx (AAG14353); Pf-
AOP (1XIYA); At-PrxIIB (NP_176773); At-PrxIIC (NP_176772); At-PrxIID (NP_564763); At-PrxIIE
(NP_190864); At-PrxIIF (NP_566268); At-2-Cys PrxA (NP_187769); Ar-2-Cys PrxB (NP_568166); At-1-
Cys Prx (NP_175247); At-PrxQ (NP_189235); Dm-Prx4156 (NM_080263); Dm-Prx4783 (NM_167359);
Dm-Prx5037 (NM_079663); Dm-PrxV (NM_176513); Dm-Prx6005 (NM_078739); Dm-Prx2540
(NM_165769); Hs-PRDX1 (NM_002574); Hs-PRDX2 (NM_005809); Hs-PRDX3 (NM_006793); Hs-
PRDX4 (NM_006406); Hs-PRDX5 (NM_012094); Hs-PRDX6 (NM_004905)
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Prxs mechanistically classified as 1-Cys or 2-Cys Prxs (Figure 2 and Table 1).
For example, human PRDXS, which is the prototype of an atypical 2-Cys, belongs
to the phylogenetic cluster of S. cerevisiae Ahplp Prx, although this one is
mechanistically classified among typical 2-Cys Prxs (Park er al., 2000). Interest-
ingly, biochemical characterization of a novel Prx of Toxoplasma gondii has also
revealed that a Prx initially classified among 1-Cys Prxs may present mechanistic
features of a typical 2-Cys Prx (Deponte and Becker, 2005). As illustrated in
Figure 2 and based on sequence alignment of Prxs from all biological kingdoms
in agreement with Hofmann er al. (2002), five major clusters can be distinguished
among Prxs.

More recently, several authors have proposed a third type of Prx classifi-
cation based on primary sequence characteristics and structural data (Copley
et al., 2004; Sarma et al., 2005; Mizohata et al., 2005). Notably, according to
these classifications, Prxs could be separated into four (Copley et al., 2004) or
even up to seven subfamilies (Mizohata et al., 2005). However, more structural
data of Prxs from various species are needed to validate these classifications. It
appears also from these studies that in remote species, especially in archaea, Prxs
may evolve by elongating their C-terminal domain containing additional catalytic
cysteines (Mizohata et al., 2005).

3. PEROXIREDOXINS IN PROKARYOTES

Historically, before the eukaryotic peroxiredoxin TSA from Saccharomyces
cerevisiae was characterized (Kim et al., 1988), another antioxidant enzyme from
the prokaryotes Salmonella typhimurium and Escherichia coli had been identified
as a peroxidase of the alkyl hydroperoxide reductase system and was named
AhpC for alkyl hydroperoxide reductase subunit C (Jacobson et al., 1989). This
alkyl hydroperoxide reductase system was shown to be composed of the 21-kDa
AhpC and the 57-kDa flavoprotein AhpF. Moreover, mechanistically, the alkyl
hydroperoxide reductase system involved peroxide reduction by AhpC and subse-
quent reduction of AhpC for regeneration by AhpF, coupled to NAD(P)H oxidation
(Jacobson et al., 1989). Interestingly, homology between bacterial AhpC and
S. cerevisiae TSA became clear (Chae et al., 1994). Subsequently, two additional
Prxs, the thiol peroxidase (Tpx also known as p20 and scavengase) and the
thioredoxin-dependent bacterioferritin-comigratory protein (BCP), were identified
and characterized in bacteria including E. coli (Cha et al., 1995; Jeong et al.,
2000). Contrary to AhpC, Tpx and BCP use reducing equivalents from thiore-
doxin to reduce peroxides. In addition, it must be noted that novel hybrid Prx
proteins with a fused glutaredoxin domain were also found recently in pathogenic
and anaerobic bacteria (Vergauwen et al., 2001; Kim et al., 2003; Pauwels et al.,
2003). Functionally, prokaryotic Prxs appear to play an important role in antiox-
idant protection in non-pathogenic species but also in pathogenic species to defend
against peroxides and peroxynitrite produced by inflammatory cells (Seaver and
Imlay, 2001).
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4. PEROXIREDOXINS IN ARCHAEA

Genome sequencing projects as well as biochemical studies have identified Prxs
in aerobic and anaerobic archaea such as Aeropyrum pernix (Jeon and Ishikawa,
2003; Mizohata et al., 2005; see also Table 1 and Figure 2), Sulfolobus solfataricus
(Limauro et al., 2006) and Pyrococcus horikoshii (Kawakami et al., 2004). Inter-
estingly, as mentioned previously, data suggest also that in A. pernix, the new Prx
could define a novel structural subfamily of Prx (Mizohata et al., 2005). Indeed,
this archaeal Prx presents a primary sequence homologous to mammalian PRDX6
classified in 1-Cys Prxs (see Table 1) although with a longer C-terminal extension.
However, mechanistically, A. pernix Prx possesses at least two catalytically active
cysteines that classify it among classical 2-Cys Prxs (Mizohata et al., 2005). Also, the
expression of archaeal Prx is induced by exogenous exposure to hydrogen peroxide in
A. pernix and in S. solfataricus and by exogenous oxygen in anaerobic P. horikoshii,
suggesting that archaeal Prx may in vivo act indeed as protective antioxidant enzyme
(Jeon and Ishikawa, 2003; Kawakami e al., 2004; Limauro et al., 2006).

S. PEROXIREDOXINS IN EUKARYOTES

In eukaryotes, the number of genes coding for Prxs increased compared to the number
of genes identified in prokaryotes and archaea (Hofmann ef al., 2002; see Table 1).
The higher number of Prxs in eukaryotic species may be explained both by the subcel-
lular compartmentalization but also by the acquisition of new functions like that of
a modulator of hydrogen peroxide signaling. In eukaryotic cells, Prxs are located
in the cytosol, in mitochondria, in chloroplasts, in peroxisomes, and in some cases
they are secreted (Hofmann et al., 2002; Wood et al., 2003; Leyens et al., 2003).

5.1. Yeast (saccharomyces cerevisiae)

Referring to the introduction, TSA from S. cerevisiae was the first Prx to be charac-
terized (Kim et al., 1988). It appeared later that four additional Prxs are encoded by
distinct S. cerevisiae genes (Park et al., 2000). Interestingly, the characterization of
the five Prxs showed that depending on the isoform, they may be localized to the
cytoplasm, the mitochondria, the peroxisomes or the nucleus (Park er al., 2000).
S. cerevisiae Prxs are reduced during the catalytic cycle by electrons provided by
thioredoxins (Park er al., 2000). Functionally, S. cerevisiae Prx-deficient mutants
are viable but more sensitive to various oxidants and Prx-null yeast cells for the five
Prxs have been reported to show an increased rate of spontaneous nuclear DNA
mutations (Wong et al., 2004). Interestingly, a chaperone function has recently been
reported for yeast for Prxs (Jang et al., 2004).

5.2. Protozoa

In protozoa, Prxs have been extensively studied in Plasmodium falciparum, the
causative agent of malaria, but also in the pathogens of the genera Trypanosoma and
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Leishmania among others (Hofmann et al., 2002). These parasites are challenged
by reactive oxygen and nitrogen species during their life stages in humans and
consequently their redox systems, including Prxs, have been thought to be essential
for their pathogenicity. Interestingly, in P. falciparum, catalase and selenocysteine-
containing glutathione peroxidases are lacking (Rahfls ef al., 2002). Therefore, Prxs
appear as a major defense line against oxidative and nitrosative attacks in these
organisms, and also as potential targets for therapeutic strategies (Hofmann et al.,
2002; Sarma et al., 2005). In P. falciparum, four Prxs have been characterized
and classified mechanistically among typical 2-Cys and 1-Cys Prxs (Sarma et al.,
2005; see Table 1). Moreover, among the four characterized P. falciparum Prxs,
one is mitochondrial and three appear to be cytosolic (Sarma et al., 2005; Yano
et al., 2005).

5.3. Plants

In A. thaliana, the first higher plant whose genome has been completely sequenced,
phylogenetic and biochemical analyses have confirmed the existence of nine
expressed Prxs (Rouhier and Jacquot, 2005; Dietz et al., 2006). More recently,
the analysis of the genome of Oryza sativa (rice) has also shown the presence
of nine Prxs demonstrating that plants possess more members of the Prx family
compared to prokaryotes, archaea, yeasts, protozoa or animals (Dietz et al., 2006;
see below and Chapter 13). In higher plants, it appeared that Prxs evolved into four
distinct classes (Rouhier and Jacquot, 2005; Dietz et al., 2006) corresponding to
four subfamilies, as illustrated in Table 1 and Figure 2. These Prxs include typical
and atypical 2-Cys Prxs and one 1-Cys Prx. Interestingly, in A. thaliana, four Prxs
are localized to chloroplasts, three to the cytoplasm, one to mitochondria and one
to the nucleus/cytoplasm. Thus, A. thaliana Prxs are localized to different subcel-
lular compartments where they may act either as protective antioxidant enzymes,
as modulator of peroxide- or peroxynitrite-mediated signal transduction or as redox
sensors (Dietz et al., 2006; Rouhier and Jacquot, 2005).

54. Animals

In animals and especially in mammals, Prxs have been known under very different
names (Wood et al., 2003a; Leyens et al., 2003; see also Chapter 1) although their
homology with yeast and bacterial Prxs was noted more than a decade ago (Prosperi
et al., 1993; Chae et al., 1994). Functionally, the role of animal Prxs as protective
antioxidant enzymes has been questioned in view of the enzymatic efficiency with
peroxides of selenocysteine-containing glutathione peroxidases and catalase. These
latter are expressed in the same subcellular compartments of animal cells (Hofmann
et al., 2002). Indeed, at least some animal Prxs may be acting more specifically as
modulators of hydrogen peroxide-mediated signal transduction (Wood et al., 2003;
Rhee e al., 2005).
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54.1. Invertebrates

Relatively few data exist on invertebrate Prxs except for insects and certain parasitic
metazoa such as nematodes.

54.1.1. Nematodes 1In parasitic nematodes, Prxs have been studied because of
their possible implication in the protection of the parasites against oxidative attacks
by the host phagocytes (Henkle-Diihrsen and Kampkoétter, 2001). Interestingly,
parasitic nematodes are able to reduce peroxides but catalase or selenocysteine-
containing glutathione peroxidases are expressed at low levels in contrast to high
levels of Prxs, suggesting that Prxs could be essential antioxidant enzymes in these
animals (Chandrashekar et al., 2000). 2-Cys and 1-Cys Prxs have been identified in
nematodes such as Onchocerca volvulus, Onchocerca ochengi, Dirofilaria immitis
or Brugia malayi but more biochemical and structural characterizations are needed
(Henkle-Diihrsen and Kampkétter, 2001).

5.4.1.2. Insects In Drosophila melanogaster, six distinct Prxs encoded by six
distinct genes have been identified and characterized (Radyuk et al., 2001; Radyuk
et al., 2003; Peterson and Luckhart, 2006). Moreover, their orthologs have been
found also in the genome of Anopheles gambiae by in silico homology search
in databases (Peterson and Luckhart, 2006). D. melanogaster Prx members are
either classified among typical and atypical 2-Cys Prxs as well as 1-Cys Prxs
(Table 1 and Figure 2). Three D. melanogaster Prxs are localized to the cytosol,
two are targeted to the mitochondria and one was found to be secreted (Radyuk
et al., 2001; Peterson and Luckhart, 2006). Moreover, overexpression of insect Prxs
conferred increased resistance to toxicity induced by hydrogen peroxide, parquat or
peroxynitrite (Radyuk et al., 2001; Peterson and Luckhart, 2006).

5.4.2. Vertebrates

In vertebrates, orthologs of mammalian Prxs have been identified in databases of
fish, amphibian and bird species but so far, except of course for mammalian Prxs,
there are few biochemical and functional studies available in the literature.

5.4.2.1. Mammals Mammalian Prxs have been extensively studied (for review
see Hofmann et al., 2002; Wood et al., 2003a; Leyens et al., 2003; Rhee et al., 2005).
Six distinct genes encode six different Prxs in man, rat, mouse and cattle (Leyens
et al., 2003; Rhee et al., 2005). Mammalian Prxs have been classified mechanisti-
cally into three subfamilies. Indeed, in mammals, PRDX1 to PRDX4 are classical
2-Cys Prxs, PRDXS5 is an atypical 2-Cys Prx and PRDX6 is a 1-Cys Prx (Seo
et al., 2000). Prxs are expressed constitutively in virtually all mammalian tissues
although at different levels of expression (Seo et al., 2000; Leyens et al., 2003).
PRDX1, PRDX2 and PRDX6 are cytosolic enzymes (Rhee et al., 2005). PRDX3
is a mitochondrial Prx addressed to this organelle by an N-terminal mitochondrial
presequence and PRDX4 exhibits an N-terminal signal sequence for its secretion



Evolution of the peroxiredoxins 37

(Rhee et al., 2005). Finally, PRDXS presents a more complex subcellular distri-
bution, as it has an N-terminal mitochondrial presequence, a C-terminal peroxisomal
targeting sequence and it has been localized also to the cytosol and the nucleus
(Knoops et al., 1999; Banmeyer et al., 2004; Rhee et al., 2005). Human Prxs
reduce peroxides by the use of reducing equivalents derived from cytosolic thiore-
doxin for PRDX1, PRDX2 and cytosolic PRDXS, from mitochondrial thioredoxin
for PRDX3 and mitochondrial PRDXS5 and finally from glutathione for PRDX6
(Manevich et al., 2004; Rhee et al., 2005). As mentioned before, it has been shown
that the activity of certain mammalian Prxs can be modulated by posttranslational
modification such as phosphorylation of a threonine residue (Chang et al., 2002) or
reversible overoxidation of the Cp (Chang et al., 2004), suggesting that in mammals,
Prxs may serve as components of hydrogen peroxide-mediated signal transduction
(Wood et al., 2003; Rhee et al., 2005; see Chapter 15).
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