Skip to main content

Evolution of the Peroxiredoxins

Taxonomy, homology and characterization

  • Chapter
Peroxiredoxin Systems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 44))

Abstract

Peroxiredoxins compose a superfamily of peroxidases ubiquitously found throughout evolution in prokaryotes, archaea and eukaryotes. These enzymes contain a conserved catalytic peroxidatic cysteine (Cp) in the N-terminal region of the protein. The residues surrounding Cp and the catalytic site appear also to be well conserved. Peroxiredoxins can be classified either into three subfamilies according to their catalytic mechanism or into five subfamilies according to sequence homology. Notably, the number of peroxiredoxin genes increased during evolution. In eukaryotes, the higher number of genes coding for peroxiredoxin family members is due to the existence of different isoforms targeted to different subcellular compartments but is probably due also to the acquisition of new functions. Indeed, it has been postulated that the antioxidant protective role of peroxiredoxins, which is particularly critical in prokaryotes, in yeasts and in parasitic eukaryotes, may have evolved to a modulatory role in hydrogen peroxide signaling in plants and animals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banmeyer, I., Marchand, C., Verhaeghe, C., Vucic, B., Rees, J.F. and Knoops, B., 2004, Overexpression of human peroxiredoxin 5 in subcellular compartments of Chinese Hamster Ovary cells: effects on cytotoxicity and DNA damage caused by peroxides. Free Radic. Biol. Med., 36: 65–77.

    Article  CAS  PubMed  Google Scholar 

  • Biteau, B., Labarre, J. and Toledano, M.B., 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin., Nature, 425: 980–984.

    Article  CAS  PubMed  Google Scholar 

  • Bryk, R., Griffin, P. and Nathan, C., 2000, Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature, 407:211–215.

    Article  CAS  PubMed  Google Scholar 

  • Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V. and Chumakov, P.M., 2004, Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science, 304: 596–600.

    Article  CAS  PubMed  Google Scholar 

  • Cha, M.K., Kim, H.K. and Kim, I.H., 1995, Thioredoxin-linked “thiol peroxidase” from periplasmic space of Escherichia coli. J. Biol. Chem., 270: 28635–28641.

    Article  CAS  PubMed  Google Scholar 

  • Chae, H.Z., Robison, K., Poole, L.B., Church, G., Storz, G. and Rhee, S.G., 1994a, Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA, 91: 7017–7021.

    Article  CAS  Google Scholar 

  • Chae, H.Z., Uhm, T.B. and Rhee, S.G., 1994b, Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc. Natl. Acad. Sci. USA, 91: 7022–7026.

    Article  CAS  Google Scholar 

  • Chandrashekar, R., Tsuji, N., Morales, T.H., Carmody, A.B., Ozols, V.O., Welton, J. and Tang, L., 2000. Removal of hydrogen peroxide by a 1-Cysteine peroxiredoxin enzyme of the filarial parasite Dirofilaria immitis. Parasitol. Res., 86: 200–206.

    Article  CAS  Google Scholar 

  • Chang, T.S., Jeong, W., Choi, S.Y., Yu, S., Kang, S.W. and Rhee, S.G., 2002, Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem., 277: 25370–25376.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S. and Rhee, S.G., 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem., 279: 50994–51001.

    Article  CAS  PubMed  Google Scholar 

  • Copley, S.D., Novak, W.R. and Babbit, P.C., 2004, Divergence of function in the thioredoxin fold superfamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry, 43: 13981–13995.

    Article  CAS  PubMed  Google Scholar 

  • Deponte, M. and Becker, K., 2005, Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx. Mol. Biochem. Parasitol., 140: 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Dietz, K.J., Jacob, S., Oelze, M.L., Laxa, M., Tognetti, V., de Miranda, S.M., Baier. and Finkemeier, I., 2006, The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot., 57:1697–1709.

    Article  CAS  PubMed  Google Scholar 

  • Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R., Koppenol, W.H., Rees, J.F. and Knoops, B., 2004, Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett., 571:161–165.

    Article  CAS  PubMed  Google Scholar 

  • Henkle-Dührsen, K. and Kampkötter, A., 2001. Antioxidant enzyme families in parasitic nematodes. Mol. Biochem. Parasitol., 114: 129–142.

    Article  PubMed  Google Scholar 

  • Higgins and Sharp, 1988, CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 73: 237–244.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, B., Hecht H.H. and Flohé, L., 2002. Peroxiredoxins. Biol. Chem., 383: 347–364.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger, T., Budde, H., Flohé, L., Menge, U., Singh, M., Trujillo, M. and Radi, R., 2004, Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis, Arch. Biochem. Biophys}. 423: 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson, F.S., Morgan, R.W., Christman, M.F. and Ames, B.N., 1989, An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J. Biol. Chem., 264: 1488–1496.

    CAS  PubMed  Google Scholar 

  • Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., Choi, Y.O., Kim W.Y., Kang J.S., Cheong G.W., Yun D.J., Rhee S.G., Cho M.J. and Lee SY. 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell, 117: 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, S.J. and Ishikawa, K., 2003, Characterization of novel hexadecameric thioredoxin peroxidase from Aeropyrum pernix K1. J. Biol. Chem., 278: 24174–24180.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, W., Cha, M.K. and Kim, I.H., 2000, Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem., 275: 2924–2930.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, W., Park, S.J., Chang, T.S., Lee, D.Y. and Rhee, S.G., 2006, Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J. Biol. Chem., 281: 14400–14407.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S. W., Baines, I.C. and Rhee, S.G., 1998, Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem., 273: 6303–6311.

    Article  CAS  PubMed  Google Scholar 

  • Kawakami, R., Sakuraba, H., Kamohara, S., Goda, S., Kawarabayasi, Y. and Oshima, T., 2004, Oxidative stress response in an anaerobic hyperthermophilic archaeon: presence of a functional peroxiredoxin in Pyrococcus horikoshii. J. Biochem., 136: 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.; Kim, I.; Lee, K.Y.; Rhee, S.G. and Stadtman, E.R., 1988, The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by thiol/Fe(III)/O2 mixed-function oxidation system. J. Biol. Chem., 263: 4704–4711.

    CAS  PubMed  Google Scholar 

  • Kim S.J., Woo J.R., Hwang Y.S., Jeong D.G., Shin D.H., Kim K. and Ryu S.E., 2003, The tetrameric structure of Haemophilus influenza hybrid Prx5 reveals interactions between electron donor and acceptor proteins. J. Biol. Chem. 278: 10790–10798.

    Article  CAS  PubMed  Google Scholar 

  • Knoops, B., Clippe, A., Bogard, C., Arsalane, K., Wattiez, R., Hermans, C., Duconseille, E., Falmagne, P. and Bernard, A., 1999, Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J. Biol. Chem. 274: 30451–30458.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T. H., Kim, S.U., Yu, S. L., Kim, S. H., Park do, S., Moon, H. B., Dho, S. H., Kwon, K. S., Kwon, H. J., Han, Y. H., Jeong, S., Kang, S. W., Shin, H. S., Lee, K. K., Rhee, S. G. and Yu. D.Y., 2003, Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood, 101: 5033–5038.

    Article  CAS  PubMed  Google Scholar 

  • Leyens, G., Donnay, I. and Knoops, B., 2003, Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comp. Biochem. Physiol. PartB., 136: 943–955.

    Article  Google Scholar 

  • Limauro, D., Pedone, E., Pirone, L. and Bartolucci, S., 2006, Identification and characterization of 1-Cys peroxiredoxin from Sulfolobus solfataricus and its involvement in the response to oxidative stress. FEBS J., 273: 721–731.

    Article  CAS  PubMed  Google Scholar 

  • Link, A.J., Robison, K. and Church, G.M., 1997, Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. Electrophoresis, 18: 1259–1313.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X.P., Liu, X.Y., Zhang, J., Xia, Z.L., Liu, X., Qin, H.J. and Wang, D.W., 2006, Molecular and functional characterization of sulfiredoxin homologs from higher plants. Cell Res., 16: 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Manevich Y., Feinstein S.I. and Fisher A.B., 2004, Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc. Natl. Acad. Sci. USA., 101: 3780–3785.

    Article  CAS  PubMed  Google Scholar 

  • Mizohata, E., Sakai, H., Fusatomi, E., Terada, T., Murayama, K., Shirouzu, M. and Yokohaya, S., 2005, Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1. J. Mol. Biol., 354: 317–329.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, C.A., Krause, D.S., Carman, C.V., Das, S., Dubey, D.P., Abraham, J.L., Bronson, R.T., Fujiwara, Y., Orkin, S.H. and Van Etten, R.A., 2003, Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature, 424: 561–565.

    Article  CAS  PubMed  Google Scholar 

  • Park, S.G., Cha, M.K., Jeong, W. and Kim, I.H., 2000, Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem., 275: 5723–5732.

    Article  CAS  PubMed  Google Scholar 

  • Pauwels, F., Vergauwen, B., Vanrobaeys, F., Devreese, B. and Van Beeumen, J.J., 2003, Purification and characterization of a chimeric enzyme from Haemophilus influenzae Rd that exhibits glutathione-dependent peroxidase activity. J. Biol. Chem., 278: 16658–16666.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, T.M. and Luckhart, S., 2006, A mosquito 2-Cys peroxiredoxin protects against nitrosative and oxidative stresses associated with malaria parasite infection. Free Radic. Biol. Med., 40: 1067–1082.

    Article  CAS  PubMed  Google Scholar 

  • Prosperi, M.T., Ferbus, D., Karczinski, I. and Goubin, G., 1993, A human cDNA corresponding to a gene overexpressed during cell proliferation encodes a product sharing homology with amoebic and bacterial proteins. J. Biol. Chem., 268: 11050–11056.

    CAS  PubMed  Google Scholar 

  • Radyuk, S.N, Sohal, R.S. and Orr, W.C., 2003, Thioredoxin peroxidases can foster cytoprotection or cell death in response to different stressors: over-and under-expression of thioredoxin peroxidase in Drosophila cells. Biochem. J., 371: 743–752.

    Article  CAS  PubMed  Google Scholar 

  • Radyuk, S.N., Klichko, V.I., Spinola, B., Sohal, R.S. and Orr, W.C., 2001, The peroxiredoxin gene family in Drosophila melanogaster. Free Radic. Biol. Med., 31: 1090–1100.

    Article  CAS  PubMed  Google Scholar 

  • Rahlfs, S., Schirmer, R.H. and Becker, K., 2002, The thioredoxin system of Plasmodium falciparum and other parasites. Cell. Mol. Life Sci., 59: 1024–1041.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, S.G., Chae, H.Z. and Kim, K., 2005, Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med., 38: 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S. and Woo, H.A., 2005, Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol., 17: 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Rouhier, N. and Jacquot, J.P., 2005, The plant multigenic family of thiol peroxidases. Free Radic. Biol. Med., 38: 1413–1421.

    Article  CAS  PubMed  Google Scholar 

  • Sarma, G.N., Nickel, C., Rahlfs, S., Fischer, M., Becker, K. and Karplus, P.A., 2005, Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J. Mol. Biol., 346: 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M., 1987, The neighbor-joining method: a new method for reconstructing phylogenetic trees., Mol. Biol. Evol., 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Seaver, L.C. and Imlay, J.A., 2001, Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli., J. Bacteriol., 183: 7173–7181.

    Article  CAS  PubMed  Google Scholar 

  • Seo, M.S., Kang, S.W., Kim, K., Baines, I.C., Lee, T.H. and Rhee, S.G., 2000, Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem., 275: 20346–20354.

    Article  CAS  PubMed  Google Scholar 

  • Verdoucq, L., Vignols, F., Jacquot, J.P., Chartier, Y. and Meyer, Y., 1999, In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J. Biol. Chem., 274: 19714–19722.

    Article  CAS  PubMed  Google Scholar 

  • Vergauwen, B., Pauwels, F., Jacquemotte, F., Meyer, T.E., Cusanovich, M.A., Bartsch, R.G. and Van Beeumen, J.J., 2001, Characterization of glutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J. Biol. Chem., 276: 20890–20897.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Phelan, S.A., Forsman-Semb K., Taylor, E.F., Petros, C., Brown, A., Lerner, C.P. and Paigen, B., 2003, Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J. Biol. Chem., 278: 25179–25190.

    Article  CAS  PubMed  Google Scholar 

  • Wong, C.M., Siu, K.L. and Jin, D.Y., 2004, Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem., 279: 23207–23213.

    Article  CAS  PubMed  Google Scholar 

  • Wood, Z.S., Schröder, E., Robbin Harris, J. and Poole, L.B., 2003a, Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32–40.

    Article  CAS  Google Scholar 

  • Wood, Z.A., Poole, L.B. and Karplus, P.A., 2003b, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science, 300: 650–653.

    Article  CAS  Google Scholar 

  • Yano, K., Komaki-Yasuda, K., Kobayashi, T., Takemae, H., Kita, K., Kano, S. and Kawazu, S., 2005, Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocytic stage. Parasitol. Int., 54: 35–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Knoops, B., Loumaye, E., Van Der Eecken, V. (2007). Evolution of the Peroxiredoxins. In: Flohé, L., Harris, J.R. (eds) Peroxiredoxin Systems. Subcellular Biochemistry, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6051-9_2

Download citation

Publish with us

Policies and ethics