Skip to main content

New Concepts in the Pathophysiology of Alzheimer’s Disease

  • Chapter
New Concepts in Alzheimer’s Disease
  • 6 Accesses

Abstract

It is generally accepted that intellectual functioning decreases slowly from the third decade of life to the sixth and more abruptly thereafter. General intelligence, as evaluated by environmental criteria, appears to be maintained over a much greater period of adult life and to decline at a much slower rate than does mental ability as assessed in certain types of intelligence tests. There are exceptional individuals who retain remarkable intellectual powers throughout their lives. Their brains are presumably free of gross pathology, indeed plaques and tangles are not invariably present in the brains of all elderly individuals. Thus it is not mandatory for ageing to be associated with cognitive loss accompanied by neuropathological changes. In the opinion of Wisniewski and Merz (1984) measurable and visible variation from normal brain structure function is, by definition, pathological. If by reason of their number and location, these pathological changes elicit a clinical expression, they are defined as disease. Although gerontologists seem to avoid discussion of illness, Wisniewski and Merz (1984) argue that ‘normal aging’ may simply be a stage of pathology without clinical expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. M., Hubbard, B. M., Coghill, G. R., and Slidders, W. (1983). The effect of advanced old age on the neurone content of the cerebral cortex — observations with an automatic image analyser point counting method. J. Neurol Sci., 58, 235–46.

    Article  CAS  PubMed  Google Scholar 

  • Anderton, B. H., Breinburg, D., Downes, M. J., Green, P. J., Tomlinson, B. E., Ulrich, J., Wood, J. N., and Kahn, J. (1982). Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature, 298, 84–6.

    Article  CAS  PubMed  Google Scholar 

  • Appel, S. H., (1981). A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism and Alzheimer’s disease. Ann. Neurol., 10, 499–505.

    Article  CAS  PubMed  Google Scholar 

  • Ball, M. J. (1977). Neuronal loss, neuro-fibrillary tangles and granulovascular degeneration in the hippocampus with ageing and dementia. Acta Neuropath. (Berl.), 37, 111–18.

    Article  CAS  Google Scholar 

  • Ball, M. J. (1982). Limbic predilection in Alzheimer dementia: Is reactivated herpesvirus involved?. Canad. J. Neurol. Sci., 9, 303–6.

    Article  CAS  PubMed  Google Scholar 

  • Barclay, L. L., Kheyfets, S., Zemcov, A., and McDowell, F. H. (1985). Genetic factors in Alzheimer’s disease. J. Neurol. (Suppl.), 232, 61.

    Google Scholar 

  • Bowen, D. M., and Davison, A. N. (1985). Importance of acetylcholine and tangle-bearing cortical neurones in Alzheimer’s disease. Proc. 5th Mtng Eur. Soc. Neurc, 17, 275–8.

    Google Scholar 

  • Brody, H. (1955). Organization of cerebral cortex: III. A study of aging in the human cerebral cortex. J. Comp. Neurol., 102, 511–56.

    Article  CAS  PubMed  Google Scholar 

  • Brun, A. (1983). An overview of light and electron microscopic changes. In Reisberg, B. (ed.), Alzheimer’s Disease. The Free Press, New York, pp. 37–47.

    Google Scholar 

  • Buell, S. J., and Coleman, P. D. (1979). Dendritic growth in the aged human brain and failure of growth in senile dementia. Science, 206, 854–5.

    Article  CAS  PubMed  Google Scholar 

  • Candy, J. M., Oakley, A. E., Klinowski, J., Carpenter, T. A., Perry, R. H., Atack, J. R., Perry, E. K., Blessedj G., Fairbairn, A., and Edwaidson, J. A. (1986). Aluminosilicates contribute to senile plaque formation in Alzheimer’s disease. Lancet (in press).

    Google Scholar 

  • Cotman, C. W., and Scheff, S. W. (1979). Compensatory synapse growth in aged animals after neuronal death. Mech. Aging and Devel., 9, 103–11.

    Article  CAS  Google Scholar 

  • Damasio, H., Eslinger, P., Damasio, A. R., Rizzo, M., Huang, H. K., and Demeter, S. (1983). Quantitative computed tomographic analysis in the diagnosis of dementia. Arch. Neurol., 40, 715–19.

    Article  CAS  PubMed  Google Scholar 

  • Dekaban, A. S. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Ann. Neurol., 4, 345–56.

    Article  CAS  PubMed  Google Scholar 

  • Fine, A., Dunnett, S. B., Bjorklund, A., and Iversen, S. D. (1985). Cholinergic ventral fore-brain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease. Proc. Nat. Acad. Sci. USA, 82, 5227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, N. L., Chase, T. N., Fedio, P., Patronas, N. J., Brooks, R. A., and Di Chiro, G. (1983). Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology, 33, 961–5.

    Article  CAS  PubMed  Google Scholar 

  • Francis, P. T., Palmer, A. M., Sims, N. R., Bowen, D. M., Davison, A. N., Esiri, M. M., Neary, D., Snowden, J. S., and Wilcock, G. K. (1985). Neurochemical studies of early-onset Alzheimer’s disease. Possible influence on treatment. New Eng. J., 313, 7–11.

    Article  CAS  Google Scholar 

  • Geinisman, Y., Bondareff, W., and Telser, A. (1977). Transport of [3H] fucose labelled glycoproteins in the septo-hippocampai pathway of young adult and senescent rats. Brain Res., 125, 182–6.

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre, J. T., Young, A. B., Penney, J. B., D’Amato, C. J., Hicks, S. P., and Shoulson, I. (1985). Alterations in L-glutamate binding in Alzheimer’s and Huntington’s diseases. Science, 227, 1496–9.

    Article  CAS  PubMed  Google Scholar 

  • Hachinski, V. C. (1983). Differential diagnosis of Alzheimer’s dementia: Multi-infarct dementia. In Reisberg, B. (ed), Alzheimer’s Disease. The Free Press, New York, 188–92.

    Google Scholar 

  • Harman, D. (1981). The aging process. Proc. Natl. Acad. Sci. USA, 78, 7124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson, G., Tomlinson, B. E., and Gibson, P. H. (1980). Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J. Neurol. Sci., 46, 113–36.

    Article  CAS  PubMed  Google Scholar 

  • Hubbard, B. M., and Anderson, J. M. (1981). A quantitative study of cerebral atrophy in old age and senile dementia. J. Neurol. Sci., 50, 135–45.

    Article  CAS  PubMed  Google Scholar 

  • Hubbard, B. M., and Anderson, J. M. (1986). Age-related variations in the neurone content of the cerebral cortex in senile dementia of Alzheimer type. Neuropath. & Appl. Neuro-biol. (in press).

    Google Scholar 

  • Ishii, T. (1966). Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathol. (Berl.), 6, 181–7.

    Article  CAS  Google Scholar 

  • Konigsmark, B. W., and Murphy, E. A. (1970). Neuronal populations in the human brain. Nature, 228, 1335–6.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. C., and Kaminskas, E. (1985). Deficient repair of DNA lesions in Alzheimer’s disease fibroblasts. Biochem & Biophys. Res. Comm., 129, 733–8.

    Article  CAS  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA work group under the auspices of dept. of health and human services task force on Alzheimer’s disease. Neurology, 34, 939–44.

    Article  CAS  PubMed  Google Scholar 

  • Mann, D. M. A., Neary, D., Yates, P. O., Lincoln, J., Snowden, J. S., and Stanworth, P. (1981). Alterations in protein synthetic capability of nerve cells in Alzheimer’s disease. J. Neurol Neurosurg. Psychiat., 44, 97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann, D. M. A., Yates, P. O., and Marcyniuk, B. (1984). Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to ageing and to the accumulation of lipofuscin pigment. Mechanisms Ageing and Develop., 25, 189–204.

    Article  CAS  Google Scholar 

  • Mann, D. M. A., Yates, P. O., and Marcyniuk, B. (1985). Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer type and Down’s syndrome in middle age. J. Neurol. Sci., 69, 139–59.

    Article  CAS  PubMed  Google Scholar 

  • Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., and Beyreuther, K. (1985a). Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO, J., 4 (in press).

    Google Scholar 

  • Masters, C. L., Simms, G., Weinman, N. A., Malthaup, G., McDonald, B. L., and Beyreuther, K. (1985b). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Nat. Acad. Sci. USA, 82, 4245–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monagle, R. D., and Brody, H. (1971). The effects of age upon the main nucleus of the inferior olive in the human. J. Comp. Neurol., 155, 61–6.

    Article  Google Scholar 

  • Mountjoy, C. Q., Roth, M., Evans, N. J. R., and Evans, H. M. (1983). Cortical neuronal counts in normal elderly controls and demented patients. Neurobiol. of Aging, 4, 1–11.

    Article  CAS  Google Scholar 

  • Nieto-Sampedro, M., Manthrope, M., Barbin, G., Varon, S., and Cotman, C. W. (1983). Injury-induced neuronotrophic activity in adult rat brain: correlation with survival of delayed implants in the wound cavity. J. Neurosci., 3, 2219–29.

    CAS  PubMed  Google Scholar 

  • Oldstone, M. B. A., Holmstoen, J., and Welsh, R. M. Jr. (1977). Alterations of acetylcholine enzymes in neuroblastoma cells persistently infected with lymphocytic choriomeningitis virus. J. Cellular Physiol., 91, 459–72.

    Article  CAS  Google Scholar 

  • Pearce, B. R., Palmer, A. M., Bowen, D. M., Wilcock, G. K., Esiri, M. M., and Davison, A. N. (1984). Neurotransmitter dysfunction and atrophy of the caudate nucleus in Alzheimer’s disease. Neurochem. Path., 2, 221–3.

    CAS  Google Scholar 

  • Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. S. (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc. Natl Acad. Sci. USA, 82, 1–4.

    Article  Google Scholar 

  • Pearson, R. C. A., Gatter, K. C., and Powell, T. P. S. (1983b). Retrograde cell degeneration in the basal nucleus in monkey and man. Brain Res., 261, 321–6.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, R. C. A., Sofroniew, M. V., Cuello, A. C., Powell, T. P. S., Eckenstein, F., Esiri, M. M., and Wilcock, G. K. (1983a). Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Res., 289, 375–9.

    Article  CAS  PubMed  Google Scholar 

  • Perry, E. K., Curtis, M., Dick, D. J., Candy, J. M., et al. (1985). Cholinergic correlates of cognitive impairment in Parkinson’s disease — comparisons with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiat., 48, 413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry, R. H. (1984). Neuropathology of Dementia. In Pearce, J. M. S. (ed.), Dementia: A Clinical Approach. Blackwells, London, pp. 89–116.

    Google Scholar 

  • Perry, R. H., Candy, J. M., Perry, E. K., Irving, D., Blessed, G., Fairbairn, A. F., and Tomlinson, B. E. (1982). Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease. Neurosci. Lett., 33, 311–15.

    Article  CAS  PubMed  Google Scholar 

  • Robison, S. H., Munzer, J. S., Tandan, R., Bradley, R. S., and Bradley, W. G. (1985). DNA repair replication of alkylated DNA is reduced in Alzheimer’s disease cells. J. Neurology (Suppl.), 232, 63.

    Google Scholar 

  • Rossor, M. N. (1981). Parkinson’s disease and Alzheimer’s disease as disorders of the iso-dendritic core. Brit. Med. J., 283, 1588–90.

    Article  CAS  Google Scholar 

  • Rubenstein, R., and Price, R. W. (1984). Early inhibition of acetylcholinesterase and choline acetyltransferase activity in herpes simplex virus type 1 infection of PC12 cells. J. Neurochem., 42, 142–50.

    Article  CAS  PubMed  Google Scholar 

  • Sajdel-Sulkowska, E. M., and Marotta, C. A. (1984). Alzheimer’s disease brain: alterations in RNA levels and in a ribonuclease-inhibitor complex. Science, 225, 947–9.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, H., Muramoto, O., Kanazawa, I., Arai, H., Kosaka, K., and Iizuka, R. (1985). Selective reduction of glutamate in the postmortem brains of Alzheimer’s disease. J. Neurology (Suppl to vol. 232), 232, 11.

    Google Scholar 

  • Schiebel, A. B., and Tomiyasu, U. (1978). Dendritic sprouting in Alzheimer’s pre-senile dementia. Exp. Neurol., 60, 1–8.

    Article  Google Scholar 

  • Schwab, M. E., Otten, U., Agid, Y., and Thoenen, H. (1979). Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res., 168, 473–83.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J., Abraham, C., and Rasool, C. G. (1985a). Molecular properties of paired helical filaments and senile plaque amyloid fibers in Alzheimer’s disease. 30th Oholobiological Conf., 25.

    Google Scholar 

  • Selkoe, D. J., Abraham, C., and Rasool, C. G. (1985b). Basic and Therapeutic Strategies in Alzheimer’s and other Age-related Neuropsychiatric Disorders. Edited and published by the Israel Institute for Biological Research.

    Google Scholar 

  • Sims, N. R., Bowen, D. M., Allen, S. J., Smith, C. C. T., Neary, D., Thomas, D. J., and Davison, A. N. (1983). Presynaptic cholinergic dysfunction in patients with dementia. J. Neurochem., 40, 503–9.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C. C. T., Bowen, D. M., Francis, P. T., Snowden, J. S., and Neary, D. (1985). Putative amino acid transmitters in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer’s dementia. J. Neurol. Neurosurg. Psychiat., 48, 469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew, M. V., Pearson, R. C. A., Eckenstein, F., Cuello, A. C., and Powell, T. P. S. (1983). Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res., 289, 370–4.

    Article  CAS  PubMed  Google Scholar 

  • Sourander, P., and Sjogren, H. (1970). The concept of Alzheimer’s disease and its clinical implications. In Wolstenholme, G. E. W. and O’Connor, M. E. (eds.) Alzheimer’s Disease and Related Conditions. Churchill, London, pp. 11–32.

    Google Scholar 

  • Terry, R. D., Peck, A., De Teresa, R., Schechter, R., and Horoupian, D. S. (1981). Some morphometric aspects of the brain in senile dementia of the Alzheimer’s type. Ann. Neurol., 10, 184–92.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, B. E. (1980). The structural and quantitative aspects of the dementias. In Roberts, P. J. (ed.), Biochemistry of Dementia. Wiley, Chichester, pp. 15–52.

    Google Scholar 

  • Tomlinson, A. H., and Esiri, M. M. (1983). Herpes simplex encephalitis: Immunohistological demonstration of spread of virus via olfactory pathways in mice. J. Neurol. Sci., 60, 473–84.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, B. E., Irving, D., and Blessed, G. (1981). Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. neurol. Sci., 49, 419–28.

    Article  CAS  PubMed  Google Scholar 

  • White, P., Hiley, C. R., Goodhardt, M. J., Carrasco, L., Keet, J. P., Williams, J. E. J., and Bowen, D. M. (1977). Neocortical cholinergic neurones in elderly people. Lancet, i, 668–70.

    Article  Google Scholar 

  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and Delong, M. R. (1982). Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science, 215, 1237–9.

    Article  CAS  PubMed  Google Scholar 

  • Winblad, B., Adolfsson, R., Gottfries, C. G., Oreland, L., and Roos, E. B. (1978). Brain monoamines, monoamine metabolites and enzymes in physiological ageing and senile dementia. In Frigerio, A. (ed.), Recent Developments in Mass Spectrometry in Biochemistry and Medicine. Plenum, New York, pp. 253–67.

    Chapter  Google Scholar 

  • Wisniewski, H. M., and Merz, G. S. (1984). Neuropathology of the aging brain and dementia of the Alzheimer type. In Gaitz, C., and Samorajski, T. (eds.), Aging 2000: Our Health Care Destiny.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editors and the Contributors

About this chapter

Cite this chapter

Davison, A.N. (1986). New Concepts in the Pathophysiology of Alzheimer’s Disease. In: Briley, M., Kato, A., Weber, M. (eds) New Concepts in Alzheimer’s Disease. Palgrave, London. https://doi.org/10.1007/978-1-349-08639-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-08639-9_1

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-08641-2

  • Online ISBN: 978-1-349-08639-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics