Skip to main content

Identification of Allosteric Effects in Proteins by Elastic Network Models

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2253))

Abstract

Allostery is a fundamental regulatory mechanism in the majority of biological processes of molecular machines. Allostery is well-known as a dynamic-driven process, and thus, the molecular mechanism of allosteric signal transmission needs to be established. Elastic network models (ENMs) provide efficient methods for investigating the intrinsic dynamics and allosteric communication pathways in proteins. In this chapter, two ENM methods including Gaussian network model (GNM) coupled with Markovian stochastic model, as well as the anisotropic network model (ANM), were introduced to identify allosteric effects in hemoglobins. Techniques on model parameters, scripting and calculation, analysis, and visualization are shown step by step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lorimer GH, Horovitz A, McLeish T (2018) Allostery and molecular machines. Philos Trans R Soc Lond Ser B Biol Sci 373(1749):20170173

    Article  CAS  Google Scholar 

  2. Nussinov R (2016) Introduction to protein ensembles and allostery. Chem Rev 116(11):6263–6266

    Article  PubMed  CAS  Google Scholar 

  3. Ribeiro AA, Ortiz V (2016) A chemical perspective on allostery. Chem Rev 116(11):6488–6502

    Article  CAS  PubMed  Google Scholar 

  4. Wagner JR et al (2016) Emerging computational methods for the rational discovery of allosteric drugs. Chem Rev 116(11):6370–6390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pauling L (1935) The oxygen equilibrium of hemoglobin and its structural interpretation. Proc Natl Acad Sci U S A 21(4):186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Nussinov R (2016) Allostery: an overview of its history, concepts, methods, and applications. PLoS Comput Biol 12(6):e1004966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Collier G, Ortiz V (2013) Emerging computational approaches for the study of protein allostery. Arch Biochem Biophys 538(1):6–15

    Article  CAS  PubMed  Google Scholar 

  8. Feher VA et al (2014) Computational approaches to mapping allosteric pathways. Curr Opin Struct Biol 25:98–103

    Article  CAS  PubMed  Google Scholar 

  9. Verkhivker GM (2018) Computational modeling of the Hsp90 interactions with cochaperones and small-molecule inhibitors. Methods Mol Biol 1709:253–273

    Article  CAS  PubMed  Google Scholar 

  10. Greener JG, Sternberg MJ (2017) Structure-based prediction of protein allostery. Curr Opin Struct Biol 50:1–8

    Article  PubMed  CAS  Google Scholar 

  11. Schueler-Furman O, Wodak SJ (2016) Computational approaches to investigating allostery. Curr Opin Struct Biol 41:159–171

    Article  CAS  PubMed  Google Scholar 

  12. Suel GM et al (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 10(1):59–69

    Article  PubMed  CAS  Google Scholar 

  13. Di Paola L, Giuliani A (2015) Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol 31:43–48

    Article  PubMed  CAS  Google Scholar 

  14. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57(3):433–443

    Article  CAS  PubMed  Google Scholar 

  15. Blacklock K, Verkhivker GM (2014) Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling. PLoS One 9(1):e86547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Verkhivker GM (2017) Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms. Mol BioSyst 13(11):2235–2253

    Article  CAS  PubMed  Google Scholar 

  17. Stetz G, Verkhivker GM (2017) Computational analysis of residue interaction networks and coevolutionary relationships in the Hsp70 chaperones: a community-hopping model of allosteric regulation and communication. PLoS Comput Biol 13(1):e1005299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhou R et al (2015) Molecular mechanism underlying PRMT1 dimerization for SAM binding and methylase activity. J Chem Inf Model 55(12):2623–2632

    Article  CAS  PubMed  Google Scholar 

  19. Stetz G, Tse A, Verkhivker GM (2017) Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: differentiating kinase clients of the Hsp90-Cdc37 chaperone. PLoS One 12(11):e0186089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Stetz G, Tse A, Verkhivker GM (2018) Dissecting structure-encoded determinants of allosteric cross-talk between post-translational modification sites in the Hsp90 chaperones. Sci Rep 8(1):6899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Verkhivker GM (2018) Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis. Biochim Biophys Acta 1866(8):899–912

    Article  CAS  Google Scholar 

  22. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77(9):1905–1908

    Article  CAS  PubMed  Google Scholar 

  23. Li H et al (2016) iGNM 2.0: the Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Res 44(D1):D415–D422

    Article  CAS  PubMed  Google Scholar 

  24. Eyal E, Lum G, Bahar I (2015) The anisotropic network model web server at 2015 (ANM 2.0). Bioinformatics 31(9):1487–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ming D, Wall ME (2005) Quantifying allosteric effects in proteins. Proteins 59(4):697–707

    Article  CAS  PubMed  Google Scholar 

  26. Atilgan C, Atilgan AR (2009) Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein. PLoS Comput Biol 5(10):e1000544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zheng W, Brooks BR, Thirumalai D (2009) Allosteric transitions in biological nanomachines are described by robust normal modes of elastic networks. Curr Protein Pept Sci 10(2):128–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erman B (2013) A fast approximate method of identifying paths of allosteric communication in proteins. Proteins 81(7):1097–1101

    Article  CAS  PubMed  Google Scholar 

  29. Su JG et al (2014) Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method. Phys Rev E Stat Nonlinear Soft Matter Phys 90(2):022719

    Article  CAS  Google Scholar 

  30. Hu G et al (2017) Comparative study of elastic network model and protein contact network for protein complexes: the hemoglobin case. Biomed Res Int 2017:2483264

    Article  PubMed  PubMed Central  Google Scholar 

  31. Raimondi F et al (2013) A mixed protein structure network and elastic network model approach to predict the structural communication in biomolecular systems: the PDZ2 domain from tyrosine phosphatase 1E as a case study. J Chem Theory Comput 9(5):2504–2518

    Article  CAS  PubMed  Google Scholar 

  32. Yao XQ, Skjaerven L, Grant BJ (2016) Rapid characterization of allosteric networks with ensemble normal mode analysis. J Phys Chem B 120(33):8276–8288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guzel P, Kurkcuoglu O (2017) Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models. Biochim Biophys Acta 1861(12):3131–3141

    Article  CAS  Google Scholar 

  34. Chennubhotla C, Bahar I (2006) Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES. Mol Syst Biol 2:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chennubhotla C, Bahar I (2007) Signal propagation in proteins and relation to equilibrium fluctuations. PLoS Comput Biol 3(9):1716–1726

    Article  CAS  PubMed  Google Scholar 

  36. Chennubhotla C, Yang Z, Bahar I (2008) Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. Mol BioSyst 4(4):287–292

    Article  CAS  PubMed  Google Scholar 

  37. Dutta A, Bahar I (2010) Metal-binding sites are designed to achieve optimal mechanical and signaling properties. Structure 18(9):1140–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang Z et al (2018) Deciphering the role of dimer interface in intrinsic dynamics and allosteric pathways underlying the functional transformation of DNMT3A. Biochim Biophys Acta 1862(7):1667–1679

    Article  CAS  Google Scholar 

  39. Park SY et al (2006) 1.25 A resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms. J Mol Biol 360(3):690–701

    Article  CAS  PubMed  Google Scholar 

  40. Bakan A, Meireles LM, Bahar I (2011) ProDy: protein dynamics inferred from theory and experiments. Bioinformatics 27(11):1575–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2(3):173–181

    Article  CAS  PubMed  Google Scholar 

  42. Sumbul F, Acuner-Ozbabacan SE, Haliloglu T (2015) Allosteric dynamic control of binding. Biophys J 109(6):1190–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodgers TL et al (2013) Modulation of global low-frequency motions underlies allosteric regulation: demonstration in CRP/FNR family transcription factors. PLoS Biol 11(9):e1001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Atilgan AR et al (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80(1):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hub JS, Kubitzki MB, de Groot BL (2010) Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation. PLoS Comput Biol 6(5):e1000774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Panjkovich A, Daura X (2012) Exploiting protein flexibility to predict the location of allosteric sites. BMC Bioinformatics 13:273

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goncearenco A et al (2013) SPACER: Server for predicting allosteric communication and effects of regulation. Nucleic Acids Res 41(Web Server issue):W266–W272

    Article  PubMed  PubMed Central  Google Scholar 

  48. Greener JG, Sternberg MJ (2015) AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis. BMC Bioinformatics 16:335

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li H et al (2017) DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Res 45(W1):W374–W380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31872723) and a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

The author thanks Prof. Ivet Bahar for giving the opportunity to study Elastic network models and ProDy in her lab. The author also thanks Drs. Hongchun Li and Chakra Chennubhotla for providing programming codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hu, G. (2021). Identification of Allosteric Effects in Proteins by Elastic Network Models. In: Di Paola, L., Giuliani, A. (eds) Allostery. Methods in Molecular Biology, vol 2253. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1154-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1154-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1153-1

  • Online ISBN: 978-1-0716-1154-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics