Skip to main content

MicroRNAs and Regulation of Autophagy in Chondrocytes

  • Protocol
  • First Online:
Chondrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2245))

Abstract

Chondrocytes are the main cells responsible for the maintenance of cartilage homeostasis and integrity. During development, extracellular matrix (ECM) macromolecules are produced and deposited by chondrocyte precursors. Autophagy, a highly dynamic process aimed at degradation of dysfunctional or pathogenic proteins, organelles, and intracellular microbes that can damage tissues, is one of the key processes required for sustained cartilage homeostasis. In different cell types it has been shown that, among others, autophagy is regulated by epigenetic mechanisms such as small noncoding RNAs (miRNAs, ~22 base pairs). Increasing evidence suggests that miRNAs are also involved in the regulation of autophagy in chondrocytes. Based on our previous research of gene and miRNA expression in articular cartilage, in this chapter we provide a summary of the tools models to direct in vitro and in vivo studies aimed at gaining a better understanding of the regulatory roles of miRNAs in chondrocyte autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKee TJ, Perlman G, Morris M, Komarova SV (2019) Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci Rep 9(1):10542

    Article  Google Scholar 

  2. Ramos YF, Meulenbelt I (2017) The role of epigenetics in osteoarthritis: current perspective. Curr Opin Rheumatol 29(1):119–129

    Article  CAS  Google Scholar 

  3. Coutinho de Almeida R, Ramos YFM, Meulenbelt I (2017) Involvement of epigenetics in osteoarthritis. Best Pract Res Clin Rheumatol 31(5):634–648

    Article  Google Scholar 

  4. Kalamegam G, Memic A, Budd E, Abbas M, Mobasheri A (2018) A comprehensive review of stem cells for cartilage regeneration in osteoarthritis. Adv Exp Med Biol 1089:23–36

    Article  CAS  Google Scholar 

  5. Swingler TE, Niu L, Smith P, Paddy P, Le L, Barter MJ, Young DA, Clark IM (2019) The function of microRNAs in cartilage and osteoarthritis. Clin Exp Rheumatol 37 Suppl 120(5):40–47

    PubMed  Google Scholar 

  6. Haseeb A, Makki MS, Khan NM, Ahmad I, Haqqi TM (2017) Deep sequencing and analyses of miRNAs, isomiRs and miRNA induced silencing complex (miRISC)-associated miRNome in primary human chondrocytes. Sci Rep 7(1):15178

    Article  Google Scholar 

  7. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, Merkenschlager M, Kronenberg HM (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A 105(6):1949–1954

    Article  CAS  Google Scholar 

  8. Kobayashi T, Papaioannou G, Mirzamohammadi F, Kozhemyakina E, Zhang M, Blelloch R, Chong MW (2015) Early postnatal ablation of the microRNA-processing enzyme, Drosha, causes chondrocyte death and impairs the structural integrity of the articular cartilage. Osteoarthr Cartil 23(7):1214–1220

    Article  CAS  Google Scholar 

  9. Vinatier C, Dominguez E, Guicheux J, Carames B (2018) Role of the inflammation-autophagy-senescence integrative network in osteoarthritis. Front Physiol 9:706

    Article  Google Scholar 

  10. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42

    Article  CAS  Google Scholar 

  11. Rockel JS, Kapoor M (2016) Autophagy: controlling cell fate in rheumatic diseases. Nat Rev Rheumatol 12(9):517–531

    Article  CAS  Google Scholar 

  12. Lotz MK, Carames B (2011) Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat Rev Rheumatol 7(10):579–587

    Article  CAS  Google Scholar 

  13. Mobasheri A, Rayman MP, Gualillo O, Sellam J, van der Kraan P, Fearon U (2017) The role of metabolism in the pathogenesis of osteoarthritis. Nat Rev Rheumatol 13(5):302–311

    Article  CAS  Google Scholar 

  14. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300

    Article  Google Scholar 

  15. Fernandez AF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC, Marciano DK, Schiattarella GG, Bhagat G, Moe OW, Hu MC, Levine B (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558(7708):136–140

    Article  CAS  Google Scholar 

  16. Zhang Y, Vasheghani F, Li YH, Blati M, Simeone K, Fahmi H, Lussier B, Roughley P, Lagares D, Pelletier JP, Martel-Pelletier J, Kapoor M (2015) Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis 74(7):1432–1440

    Article  CAS  Google Scholar 

  17. Song J, Ahn C, Chun CH, Jin EJ (2014) A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res 32(12):1628–1635

    Article  CAS  Google Scholar 

  18. Wang WJ, Yang W, Ouyang ZH, Xue JB, Li XL, Zhang J, He WS, Chen WK, Yan YG, Wang C (2018) MiR-21 promotes ECM degradation through inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human degenerated NP cells. Biomed Pharmacother 99:725–734

    Article  CAS  Google Scholar 

  19. Wu J, Kuang L, Chen C, Yang J, Zeng WN, Li T, Chen H, Huang S, Fu Z, Li J, Liu R, Ni Z, Chen L, Yang L (2019) miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials 206:87–100

    Article  CAS  Google Scholar 

  20. Cai C, Min S, Yan B, Liu W, Yang X, Li L, Wang T, Jin A (2019) MiR-27a promotes the autophagy and apoptosis of IL-1beta treated-articular chondrocytes in osteoarthritis through PI3K/AKT/mTOR signaling. Aging (Albany NY) 11(16):6371–6384

    Article  CAS  Google Scholar 

  21. Endisha H, Rockel J, Jurisica I, Kapoor M (2018) The complex landscape of microRNAs in articular cartilage: biology, pathology, and therapeutic targets. JCI Insight 3(17):e121630

    Article  Google Scholar 

  22. Deng Q, Hu H, Yu X, Liu S, Wang L, Chen W, Zhang C, Zeng Z, Cao Y, Xu-Monette ZY, Li L, Zhang M, Rosenfeld S, Bao S, Hsi E, Young KH, Lu Z, Li Y (2019) Tissue-specific microRNA expression alters cancer susceptibility conferred by a TP53 noncoding variant. Nat Commun 10(1):5061

    Article  Google Scholar 

  23. Zhou Y, Wang X, Song M, He Z, Cui G, Peng G, Dieterich C, Antebi A, Jing N, Shen Y (2019) A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nat Commun 10(1):4827

    Article  Google Scholar 

  24. Coutinho de Almeida R, Ramos YFM, Mahfouz A, den Hollander W, Lakenberg N, Houtman E, van Hoolwerff M, Suchiman HED, Rodriguez Ruiz A, Slagboom PE, Mei H, Kielbasa SM, Nelissen R, Reinders M, Meulenbelt I (2019) RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis 78(2):270–277

    Article  Google Scholar 

  25. Ramos YF, den Hollander W, Bovee JV, Bomer N, van der Breggen R, Lakenberg N, Keurentjes JC, Goeman JJ, Slagboom PE, Nelissen RG, Bos SD, Meulenbelt I (2014) Genes involved in the osteoarthritis process identified through genome wide expression analysis in articular cartilage; the RAAK study. PLoS One 9(7):e103056

    Article  Google Scholar 

  26. D'Adamo S, Alvarez-Garcia O, Muramatsu Y, Flamigni F, Lotz MK (2016) MicroRNA-155 suppresses autophagy in chondrocytes by modulating expression of autophagy proteins. Osteoarthr Cartil 24(6):1082–1091

    Article  CAS  Google Scholar 

  27. Bomer N, den Hollander W, Suchiman H, Houtman E, Slieker RC, Heijmans BT, Slagboom PE, Nelissen RG, Ramos YF, Meulenbelt I (2016) Neo-cartilage engineered from primary chondrocytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. Osteoarthr Cartil 24(8):1423–1430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

YFMR acknowledges the Foundation for Research in Rheumatology (FOREUM), BBMRI-NL Complementation project (CP2013-83), Ana Fonds (O2015-27), and Dutch Scientific Research Council NWO/ZonMW VICI scheme (nr 91816631/528) for financially supporting our work. The Leiden University Medical Center supports the RAAK study. We thank all study participants of the RAAK study. We are also grateful to all members of the Meulenbelt lab at the LUMC for valuable discussion, especially Dr. Coutinho de Almeida for expert suggestions with respect to Next Generation Sequencing analysis. AM wishes to acknowledge financial support from The European Commission Seventh Framework Programme (EU FP7; HEALTH.2012.2.4.5-2, project number 305815 and Novel Diagnostics and Biomarkers for Early Identification of Chronic Inflammatory Joint Diseases). Details of the D-BOARD FP7 Consortium are available at: http://www.d-board.eu. The Innovative Medicines Initiative Joint Undertaking under grant agreement No. 115770, resources of which are composed of financial contribution from the European Union’s Seventh Framework programme (FP7/2007-2013), EFPIA companies’ in-kind contribution. Details of the APPROACH IMI Consortium are available at: https://www.approachproject.eu. Marie Curie Intra-European Fellowship for Career Development grant (project number 625746; acronym: CHONDRION; FP7-PEOPLE-2013-IEF). The European Structural and Social Funds through the Research Council of Lithuania (Lietuvos Mokslo Taryba) according to the activity “Improvement of researchers’ qualification by implementing world-class R&D projects” of Measure No. 09.3.3-LMT-K-712 (grant application code: 09.3.3-LMT-K-712-01-0157, agreement No. DOTSUT-215). The European Structural and Social Funds through the Research Council of Lithuania (Lietuvos Mokslo Taryba) according to the Programme “Attracting Foreign Researchers for Research Implementation,” Grant No 0.2.2-LMTK-718-02-0022.

Author disclosures: YFMR has nothing to disclose. AM has consulted for the following companies in the last 3 years: Abbvie, Aché Laboratórios Farmacêuticos S.A., Galapagos, Kolon TissueGene, Pfizer Consumer Health (PCH), Servier, Bioiberica S.A., and Artialis S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolande F. M. Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramos, Y.F.M., Mobasheri, A. (2021). MicroRNAs and Regulation of Autophagy in Chondrocytes. In: Haqqi, T.M., Lefebvre, V. (eds) Chondrocytes. Methods in Molecular Biology, vol 2245. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1119-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1119-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1118-0

  • Online ISBN: 978-1-0716-1119-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics