Skip to main content

MicroRNA Expression Profiling, Target Identification, and Validation in Chondrocytes

  • Protocol
  • First Online:
Chondrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2245))

Abstract

MicroRNAs (miRNAs) are a class of noncoding small RNAs, which play a critical role in various biological processes including musculoskeletal formation and arthritis pathogenesis via regulating target gene expressions, raising the potentially substantial effects on gene expression networks. Over 2000 miRNAs are encoded in the human genome and a single miRNA potentially targets hundreds of genes. To examine the expression and function of miRNAs in chondrocytes and arthritis pathogenesis, we describe the protocols for the current miRNA related experiments including miRNA expression profiling by (1) Next Generation Sequencing and by TaqMan Array system, (2) miRNA target prediction by TargetScan, (3) miRNA target screening by cell-based reporter library assay, and (4) miRNA and its target interaction by HITS-CLIP (high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation) in cartilage and chondrocyte research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyaki S, Asahara H (2012) Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol 8:543–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Inui M, Mokuda S, Sato T et al (2018) Dissecting the roles of miR-140 and its host gene. Nat Cell Biol 20:516–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakasa T, Miyaki S, Okubo A et al (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58:1284–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miyaki S, Sato T, Inoue A et al (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24:1173–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miyaki S, Nakasa T, Otsuki S et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP (2018) Metazoan MicroRNAs. Cell 173:20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  8. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162

    Article  CAS  PubMed  Google Scholar 

  9. Creighton CJ, Reid JG, Gunaratne PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10:490–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morin RD, O’Connor MD, Griffith M et al (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiang HR, Schoenfeld LW, Ruby JG et al (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu Y, Lan W, Miller D (2017) Next-generation sequencing for MicroRNA expression profile. Methods Mol Biol 1617:169–177

    Article  CAS  PubMed  Google Scholar 

  13. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Mestdagh P, Feys T, Bernard N et al (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 36:e143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grigorenko EV, Ortenberg E, Hurley J et al (2011) miRNA profiling on high-throughput OpenArrayTM system. In: Wu W (ed) MicroRNA and cancer: methods and protocols. Humana Press, Totowa, NJ, pp 101–110

    Chapter  Google Scholar 

  16. Chen Y, Gelfond JAL, McManus LM, Shireman PK (2009) Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 10:407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hui ABY, Shi W, Boutros PC et al (2009) Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Investig 89:597–606

    Article  CAS  PubMed  Google Scholar 

  18. McAlinden A, Varghese N, Wirthlin L, Chang L-W (2013) Differentially expressed microRNAs in chondrocytes from distinct regions of developing human cartilage. PLoS One 8:e75012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ambros V, Bartel B, Bartel DP et al (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–D111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Enright AJ, John B, Gaul U et al (2003) MicroRNA targets in drosophila. Genome Biol 5:R1

    Article  PubMed  PubMed Central  Google Scholar 

  22. John B, Enright AJ, Aravin A et al (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  24. Grimson A, Farh KK-H, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sticht C, De La Torre C, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13:e0206239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bhattacharyya SN, Habermacher R, Martine U et al (2006) Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124

    Article  CAS  PubMed  Google Scholar 

  27. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meijer HA, Kong YW, Lu WT et al (2013) Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340:82–85

    Article  CAS  PubMed  Google Scholar 

  29. Lewis BP, Shih I-H, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  30. Wolter JM, Kotagama K, Pierre-Bez AC et al (2014) 3’LIFE: a functional assay to detect miRNA targets in high-throughput. Nucleic Acids Res 42:e132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wolter JM, Kotagama K, Babb CS, Mangone M (2015) Detection of miRNA targets in high-throughput using the 3’LIFE assay. J Vis Exp (99):e52647

    Google Scholar 

  32. Kotagama K, Babb CS, Wolter JM et al (2015) A human 3’UTR clone collection to study post-transcriptional gene regulation. BMC Genomics 16:1036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ito Y, Inoue A, Seers T et al (2017) Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc Natl Acad Sci U S A 114:3927–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moore MJ, Zhang C, Gantman EC et al (2014) Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat Protoc 9:263–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loeb GB, Khan AA, Canner D et al (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48:760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pal M, Ishigaki Y, Nagy E, Maquat LE (2001) Evidence that phosphorylation of human Upfl protein varies with intracellular location and is mediated by a wortmannin-sensitive and rapamycin-sensitive PI 3-kinase-related kinase signaling pathway. RNA 7:5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Usuki F, Yamashita A, Kashima I et al (2006) Specific inhibition of nonsense-mediated mRNA decay components, SMG-1 or Upf1, rescues the phenotype of Ullrich disease fibroblasts. Mol Ther 14:351–360

    Article  CAS  PubMed  Google Scholar 

  40. Frischmeyer PA, Dietz HC (1999) Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 8:1893–1900

    Article  CAS  PubMed  Google Scholar 

  41. Hug N, Longman D, Cáceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44:1483–1495

    Article  PubMed  PubMed Central  Google Scholar 

  42. Toma KG, Rebbapragada I, Durand S, Lykke-Andersen J (2015) Identification of elements in human long 3’ UTRs that inhibit nonsense-mediated decay. RNA 21:887–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eberle AB, Stalder L, Mathys H et al (2008) Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 6:e92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ruiz-Echevarría MJ, Peltz SW (2000) The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101:741–751

    Article  PubMed  Google Scholar 

  46. Hogg JR, Goff SP (2010) Upf1 senses 3’UTR length to potentiate mRNA decay. Cell 143:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang L, Lou C-H, Chan W et al (2011) RNA homeostasis governed by cell type-specific and branched feedback loops acting on NMD. Mol Cell 43:950–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hurt JA, Robertson AD, Burge CB (2013) Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 23:1636–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yepiskoposyan H, Aeschimann F, Nilsson D et al (2011) Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 17:2108–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Asahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chiba, T. et al. (2021). MicroRNA Expression Profiling, Target Identification, and Validation in Chondrocytes. In: Haqqi, T.M., Lefebvre, V. (eds) Chondrocytes. Methods in Molecular Biology, vol 2245. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1119-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1119-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1118-0

  • Online ISBN: 978-1-0716-1119-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics