Skip to main content

Early Developments, Current Systems, and Future Directions

  • Protocol
  • First Online:
Neurosurgical Robotics

Part of the book series: Neuromethods ((NM,volume 162))

Abstract

Advances in neurosurgery have relied upon and often paralleled technological innovation. One of the latest technological breakthroughs to enter the neurosurgical operating room is robotics as a surgical adjunct. Although numerous types of surgical robotic systems have been designed and developed for various purposes, only a few systems reached commercial or clinical use, and none of them have been applied widely all over the world yet. This, in part, reflects the tardiness of the pull from the community that has attained a seemingly comfortable zone with advanced imaging, surgical navigation, and microsurgical technique. As science and engineering continue to advance, they allow increased freedom to explore the realms of microscopy, imaging, emerging cellular acoustics, leading-edge sensory feedback, teleoperative haptics, and their incorporation into the artificial intelligence–machine learning paradigm to further improve existing robotic technologies, toward automation. This review presents, in perspective, early development of neurosurgical robotics and current successful systems that have reached clinical trials, together with a vision for future direction in the development of neurosurgical robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louw DF, Fielding T, McBeth PB, Gregoris D, Newhook P, Sutherland GR (2004) Surgical robotics: a review and neurosurgical prototype development. Neurosurgery 54(3):525–536; discussion 536–527

    Article  PubMed  Google Scholar 

  2. McBeth PB, Louw DF, Rizun PR, Sutherland GR (2004) Robotics in neurosurgery. Am J Surg 188(4A Suppl):68S–75S

    Article  PubMed  Google Scholar 

  3. Greer AD, Newhook PM, Sutherland GR (2008) Human-machine interface for robotic surgery and stereotaxy. IEEE/ASME Trans Mechatron 13(3):355–361

    Article  Google Scholar 

  4. Sutherland GR, Wolfsberger S, Lama S, Zarei-nia K (2013) The evolution of neuroArm. Neurosurgery 72(Suppl 1):27–32

    Article  PubMed  Google Scholar 

  5. Mattei TA, Rodriguez AH, Sambhara D, Mendel E (2014) Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev 37(3):357–366; discussion 366

    Article  PubMed  Google Scholar 

  6. Zamorano L, Li Q, Jain S, Kaur G (2004) Robotics in neurosurgery: state of the art and future technological challenges. Int J Med Robot 1(1):7–22

    Article  CAS  PubMed  Google Scholar 

  7. Herron DM, Marohn M (2008) A consensus document on robotic surgery. Surg Endosc 22(2):313–325; discussion 311–312

    Article  CAS  PubMed  Google Scholar 

  8. Engh JA, Minhas DS, Kondziolka D, Riviere CN (2010) Percutaneous intracerebral navigation by duty-cycled spinning of flexible bevel-tipped needles. Neurosurgery 67(4):1117–1122; discussion 1122–1113

    Article  PubMed  Google Scholar 

  9. Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD (2015) Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control 22(3):352–359

    Article  PubMed  Google Scholar 

  10. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH (2005) In touch with robotics: neurosurgery for the future. Neurosurgery 56(3):421–433; discussion 421–433

    Article  PubMed  Google Scholar 

  11. Marcus HJ, Seneci CA, Payne CJ, Nandi D, Darzi A, Yang GZ (2014) Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms. Neurosurgery 10(Suppl 1):84–95; discussion 95–86

    PubMed  Google Scholar 

  12. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35(2):153–160

    Article  CAS  PubMed  Google Scholar 

  13. Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29(1):27–33

    Article  CAS  PubMed  Google Scholar 

  14. Benabid AL, Cinquin P, Lavalle S, Le Bas JF, Demongeot J, de Rougemont J (1987) Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Technological design and preliminary results. Appl Neurophysiol 50(1–6):153–154

    CAS  PubMed  Google Scholar 

  15. Varma TR, Eldridge PR, Forster A et al (2003) Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotact Funct Neurosurg 80(1–4):132–135

    Article  CAS  PubMed  Google Scholar 

  16. von Langsdorff D, Paquis P, Fontaine D (2015) In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg 122(1):191–194

    Article  Google Scholar 

  17. Varma TR, Eldridge P (2006) Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot 2(2):107–113

    Article  CAS  PubMed  Google Scholar 

  18. Cardinale F, Cossu M, Castana L et al (2013) Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery 72(3):353–366; discussion 366

    Article  PubMed  Google Scholar 

  19. De Momi E, Caborni C, Cardinale F et al (2013) Automatic trajectory planner for StereoElectroEncephaloGraphy procedures: a retrospective study. IEEE Trans Biomed Eng 60(4):986–993

    Article  PubMed  Google Scholar 

  20. Abhinav K, Prakash S, Sandeman DR (2013) Use of robot-guided stereotactic placement of intracerebral electrodes for investigation of focal epilepsy: initial experience in the UK. Br J Neurosurg 27(5):704–705

    Article  PubMed  Google Scholar 

  21. Procaccini E, Dorfmuller G, Fohlen M, Bulteau C, Delalande O (2006) Surgical management of hypothalamic hamartomas with epilepsy: the stereoendoscopic approach. Neurosurgery 59(4 Suppl 2):ONS336–344; discussion ONS344–336

    PubMed  Google Scholar 

  22. Barua NU, Lowis SP, Woolley M, O’Sullivan S, Harrison R, Gill SS (2013) Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir 155(8):1459–1465

    Article  CAS  PubMed  Google Scholar 

  23. Haegelen C, Touzet G, Reyns N, Maurage CA, Ayachi M, Blond S (2010) Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie 56(5):363–367

    Article  CAS  PubMed  Google Scholar 

  24. Deacon G, Harwood A, Holdback J et al (2010) The Pathfinder image-guided surgical robot. Proc Inst Mech Eng H 224(5):691–713

    Article  CAS  PubMed  Google Scholar 

  25. Eljamel MS (2009) Robotic neurological surgery applications: accuracy and consistency or pure fantasy? Stereotact Funct Neurosurg 87(2):88–93

    Article  CAS  PubMed  Google Scholar 

  26. Eljamel MS (2006) Robotic application in epilepsy surgery. Int J Med Robot 2(3):233–237

    Article  CAS  PubMed  Google Scholar 

  27. Glauser D, Fankhauser H, Epitaux M, Hefti JL, Jaccottet A (1995) Neurosurgical robot Minerva: first results and current developments. J Image Guid Surg 1(5):266–272

    Article  CAS  PubMed  Google Scholar 

  28. Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69(1–4 Pt 2):124–128

    Article  PubMed  Google Scholar 

  29. Chang SD, Main W, Martin DP, Gibbs IC, Heilbrun MP (2003) An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52(1):140–146; discussion 146–147

    PubMed  Google Scholar 

  30. Yin FF, Zhu J, Yan H et al (2002) Dosimetric characteristics of Novalis shaped beam surgery unit. Med Phys 29(8):1729–1738

    Article  PubMed  Google Scholar 

  31. Lefranc M, Capel C, Pruvot-Occean AS et al (2015) Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg 122(2):342–352

    Article  PubMed  Google Scholar 

  32. Vadera S, Chan A, Lo T et al (2017) Frameless stereotactic robot-assisted subthalamic nucleus deep brain stimulation: case report. World Neurosurg 97:762.e11–762.e14

    Article  Google Scholar 

  33. Gonzalez-Martinez J, Bulacio J, Thompson S et al (2016) Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery 78(2):169–180

    Article  PubMed  Google Scholar 

  34. Lefranc M, Le Gars D (2012) Robotic implantation of deep brain stimulation leads, assisted by intra-operative, flat-panel CT. Acta Neurochir 154(11):2069–2074

    Article  CAS  PubMed  Google Scholar 

  35. Calisto A, Dorfmuller G, Fohlen M, Bulteau C, Conti A, Delalande O (2014) Endoscopic disconnection of hypothalamic hamartomas: safety and feasibility of robot-assisted, thulium laser-based procedures. J Neurosurg Pediatr 14(6):563–572

    Article  PubMed  Google Scholar 

  36. Chan AY, Tran DK, Gill AS, Hsu FP, Vadera S (2016) Stereotactic robot-assisted MRI-guided laser thermal ablation of radiation necrosis in the posterior cranial fossa: technical note. Neurosurg Focus 41(4):E5

    Article  PubMed  Google Scholar 

  37. Gonzalez-Martinez J, Vadera S, Mullin J et al (2014) Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery 10(Suppl 2):167–172; discussion 172–163

    PubMed  Google Scholar 

  38. Chenin L, Peltier J, Lefranc M (2016) Minimally invasive transforaminal lumbar interbody fusion with the ROSA(TM) Spine robot and intraoperative flat-panel CT guidance. Acta Neurochir 158(6):1125–1128

    Article  PubMed  Google Scholar 

  39. Lefranc M, Peltier J (2015) Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa(R) Spine robot with intraoperative flat-panel CT guidance—a cadaver study. J Robot Surg 9(4):331–338

    Article  CAS  PubMed  Google Scholar 

  40. Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J (2016) Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J 25(3):947–955

    Article  PubMed  Google Scholar 

  41. Lefranc M, Peltier J (2016) Evaluation of the ROSA Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices 13(10):899–906

    Article  CAS  PubMed  Google Scholar 

  42. Roessler K, Ungersboeck K, Aichholzer M et al (1998) Image-guided neurosurgery comparing a pointer device system with a navigating microscope: a retrospective analysis of 208 cases. Minim Invasive Neurosurg 41(2):53–57

    Article  CAS  PubMed  Google Scholar 

  43. Roessler K, Ungersboeck K, Aichholzer M et al (1998) Frameless stereotactic lesion contour-guided surgery using a computer-navigated microscope. Surg Neurol 49(3):282–288; discussion 288–289

    Article  CAS  PubMed  Google Scholar 

  44. Willems PW, Noordmans HJ, Ramos LM et al (2003) Clinical evaluation of stereotactic brain biopsies with an MKM-mounted instrument holder. Acta Neurochir 145(10):889–897; discussion 897

    Article  CAS  PubMed  Google Scholar 

  45. Kajiwara K, Nishizaki T, Ohmoto Y, Nomura S, Suzuki M (2003) Image-guided transsphenoidal surgery for pituitary lesions using Mehrkoordinaten manipulator (MKM) navigation system. Minim Invasive Neurosurg 46(2):78–81

    Article  CAS  PubMed  Google Scholar 

  46. Levesque MF, Parker F (1999) MKM-guided resection of diffuse brainstem neoplasms. Stereotact Funct Neurosurg 73(1–4):15–18

    Article  CAS  PubMed  Google Scholar 

  47. Pirotte B, Voordecker P, Joffroy F et al (2001) The Zeiss-MKM system for frameless image-guided approach in epidural motor cortex stimulation for central neuropathic pain. Neurosurg Focus 11(3):E3

    Article  CAS  PubMed  Google Scholar 

  48. Oppenlander ME, Chowdhry SA, Merkl B, Hattendorf GM, Nakaji P, Spetzler RF (2014) Robotic autopositioning of the operating microscope. Neurosurgery 10(Suppl 2):214–219; discussion 219

    PubMed  Google Scholar 

  49. Lollis SS, Roberts DW (2009) Robotic placement of a CNS ventricular reservoir for administration of chemotherapy. Br J Neurosurg 23(5):516–520

    Article  PubMed  Google Scholar 

  50. Bekelis K, Radwan TA, Desai A, Roberts DW (2012) Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg 116(5):1002–1006

    Article  PubMed  Google Scholar 

  51. Benabid AL, Hoffmann D, Seigneuret E, Chabardes S (2006) Robotics in neurosurgery: which tools for what? Acta Neurochir Suppl 98:43–50

    Article  CAS  PubMed  Google Scholar 

  52. Eisner W, Burtscher J, Bale R et al (2002) Use of neuronavigation and electrophysiology in surgery of subcortically located lesions in the sensorimotor strip. J Neurol Neurosurg Psychiatry 72(3):378–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lollis SS, Roberts DW (2008) Robotic catheter ventriculostomy: feasibility, efficacy, and implications. J Neurosurg 108(2):269–274

    Article  PubMed  Google Scholar 

  54. Spire WJ, Jobst BC, Thadani VM, Williamson PD, Darcey TM, Roberts DW (2008) Robotic image-guided depth electrode implantation in the evaluation of medically intractable epilepsy. Neurosurg Focus 25(3):E19

    Article  PubMed  Google Scholar 

  55. Bertelsen A, Melo J, Sanchez E, Borro D (2013) A review of surgical robots for spinal interventions. Int J Med Robot 9(4):407–422

    Article  PubMed  Google Scholar 

  56. Shweikeh F, Amadio JP, Arnell M et al (2014) Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus 36(3):E10

    Article  PubMed  Google Scholar 

  57. Barzilay Y, Liebergall M, Fridlander A, Knoller N (2006) Miniature robotic guidance for spine surgery—introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot 2(2):146–153

    Article  CAS  PubMed  Google Scholar 

  58. Dreval O, Rynkov I, Kasparova KA, Bruskin A, Aleksandrovskii V, Zil’Bernstein V (2014) Results of using spine assist mazor in surgical treatment of spine disorders. Interv Transpedicular Fixations 5(6):9–22

    Google Scholar 

  59. Hu X, Lieberman IH (2014) What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res 472(6):1839–1844

    Article  PubMed  Google Scholar 

  60. Hu X, Ohnmeiss DD, Lieberman IH (2013) Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J 22(3):661–666

    Article  PubMed  Google Scholar 

  61. Kuo KL, Su YF, Wu CH et al (2016) Assessing the intraoperative accuracy of pedicle screw placement by using a bone-mounted miniature robot system through secondary registration. PLoS One 11(4):e0153235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Macke JJ, Woo R, Varich L (2016) Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population. J Robot Surg 10(2):145–150

    Article  PubMed  Google Scholar 

  63. Pechlivanis I, Kiriyanthan G, Engelhardt M et al (2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976) 34(4):392–398

    Article  Google Scholar 

  64. Sukovich W, Brink-Danan S, Hardenbrook M (2006) Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot 2(2):114–122

    Article  CAS  PubMed  Google Scholar 

  65. Tsai TH, Wu DS, Su YF, Wu CH, Lin CL (2016) A retrospective study to validate an intraoperative robotic classification system for assessing the accuracy of Kirschner wire (K-wire) placements with postoperative computed tomography classification system for assessing the accuracy of pedicle screw placements. Medicine (Baltimore) 95(38):e4834

    Article  Google Scholar 

  66. van Dijk JD, van den Ende RP, Stramigioli S, Kochling M, Hoss N (2015) Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine (Phila Pa 1976) 40(17):E986–E991

    Article  Google Scholar 

  67. Devito DP, Kaplan L, Dietl R et al (2010) Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976) 35(24):2109–2115

    Article  Google Scholar 

  68. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868

    Article  PubMed  PubMed Central  Google Scholar 

  69. Keric N, Eum DJ, Afghanyar F et al (2016) Evaluation of surgical strategy of conventional vs. percutaneous robot-assisted spinal trans-pedicular instrumentation in spondylodiscitis. J Robot Surg 11(1):17–25

    Article  PubMed  Google Scholar 

  70. Onen MR, Simsek M, Naderi S (2014) Robotic spine surgery: a preliminary report. Turk Neurosurg 24(4):512–518

    PubMed  Google Scholar 

  71. Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E (2014) Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine 20(6):636–643

    Article  PubMed  Google Scholar 

  72. Hyun SJ, Kim KJ, Jahng TA, Kim HJ (2017) Minimally invasive, robotic-vs. open fluoroscopic-guided spinal instrumented fusions-a randomized, controlled trial. Spine (Phila Pa 1976) 42(6):353–358

    Article  Google Scholar 

  73. Kim HJ, Jung WI, Chang BS, Lee CK, Kang KT, Yeom JS (2016) A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot. https://doi.org/10.1002/rcs.1779

  74. Kim HJ, Lee SH, Chang BS et al (2015) Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine (Phila Pa 1976) 40(2):87–94

    Article  Google Scholar 

  75. Liu H, Chen W, Wang Z, Lin J, Meng B, Yang H (2016) Comparison of the accuracy between robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis. Int J Comput Assist Radiol Surg 11(12):2273–2281

    Article  PubMed  Google Scholar 

  76. Ringel F, Stuer C, Reinke A et al (2012) Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 37(8):E496–E501

    Article  Google Scholar 

  77. Roser F, Tatagiba M, Maier G (2013) Spinal robotics: current applications and future perspectives. Neurosurgery 72(Suppl 1):12–18

    Article  PubMed  Google Scholar 

  78. Schatlo B, Martinez R, Alaid A et al (2015) Unskilled unawareness and the learning curve in robotic spine surgery. Acta Neurochir 157(10):1819–1823; discussion 1823

    Article  PubMed  Google Scholar 

  79. Schizas C, Thein E, Kwiatkowski B, Kulik G (2012) Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg 78(2):240–245

    PubMed  Google Scholar 

  80. Grimm F, Naros G, Gutenberg A, Keric N, Giese A, Gharabaghi A (2015) Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot. J Neurosurg 123(3):737–742

    Article  PubMed  Google Scholar 

  81. Cleary K, Watson V, Lindisch D et al (2005) Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot 1(2):40–47

    Article  CAS  PubMed  Google Scholar 

  82. Melzer A, Gutmann B, Remmele T et al (2008) INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag 27(3):66–73

    Article  PubMed  Google Scholar 

  83. Dorfer C, Minchev G, Czech T et al (2016) A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg 126:1622–1628

    Article  PubMed  Google Scholar 

  84. Minchev G, Kronreif G, Martinez-Moreno M et al (2016) A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot. J Neurosurg 126:985–996

    Article  PubMed  Google Scholar 

  85. Marescaux J, Leroy J, Rubino F et al (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–492

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mendez I, Hill R, Clarke D, Kolyvas G, Walling S (2005) Robotic long-distance telementoring in neurosurgery. Neurosurgery 56(3):434–440; discussion 434–440

    Article  PubMed  Google Scholar 

  87. Meng C, Wang T, Chou W, Luan S, Zhang Y, Tian Z (2004) Remote surgery case: robot-assisted teleneurosurgery. Paper presented at Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference

    Google Scholar 

  88. Liu J, Zhang Y, Wang T, Xing H, Tian Z (2004) Neuromaster: a robot system for neurosurgery. Paper presented at Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International conference

    Google Scholar 

  89. Cai M, Tianmiao W, Wusheng C, Yuru Z (2006) A neurosurgical robotic system under image-guidance. Paper presented at 2006 4th IEEE International Conference on Industrial informatics

    Google Scholar 

  90. Gao X (2011) The anatomy of teleneurosurgery in China. Int J Telemed Appl 2011:353405

    PubMed  PubMed Central  Google Scholar 

  91. Tian Z, Lu W, Wang T, Ma B, Zhao Q, Zhang G (2008) Application of a robotic telemanipulation system in stereotactic surgery. Stereotact Funct Neurosurg 86(1):54–61

    Article  PubMed  Google Scholar 

  92. Tian Z-M, Lu W-S, Zhao Q-J, Yu X, Qi S-B, Wang R (2008) From frame to framless stereotactic operation―cinical application of 2011 cases. In: Medical imaging and informatics. Springer, New York, pp 18–24

    Chapter  Google Scholar 

  93. Wu Z, Zhao Q, Tian Z et al (2014) Efficacy and safety of a new robot-assisted stereotactic system for radiofrequency thermocoagulation in patients with temporal lobe epilepsy. Exp Ther Med 7(6):1728–1732

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mohammadi AM, Schroeder JL (2014) Laser interstitial thermal therapy in treatment of brain tumors—the NeuroBlate System. Expert Rev Med Devices 11(2):109–119

    Article  CAS  PubMed  Google Scholar 

  95. Sloan AE, Ahluwalia MS, Valerio-Pascua J et al (2013) Results of the NeuroBlate System first-in-humans phase I clinical trial for recurrent glioblastoma: clinical article. J Neurosurg 118(6):1202–1219

    Article  PubMed  Google Scholar 

  96. Hawasli AH, Bagade S, Shimony JS, Miller-Thomas M, Leuthardt EC (2013) Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery 73(6):1007–1017

    Article  PubMed  Google Scholar 

  97. Hawasli AH, Ray WZ, Murphy RK, Dacey RG Jr, Leuthardt EC (2012) Magnetic resonance imaging-guided focused laser interstitial thermal therapy for subinsular metastatic adenocarcinoma: technical case report. Neurosurgery 70(2 Suppl Operative):332–337; discussion 338

    PubMed  Google Scholar 

  98. Brandmeir NJ, McInerney J, Zacharia BE (2016) The use of custom 3D printed stereotactic frames for laser interstitial thermal ablation: technical note. Neurosurg Focus 41(4):E3

    Article  PubMed  Google Scholar 

  99. Rahmathulla G, Recinos PF, Valerio JE, Chao S, Barnett GH (2012) Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg 90(3):192–200

    Article  PubMed  Google Scholar 

  100. Habboub G, Sharma M, Barnett GH, Mohammadi AM (2017) A novel combination of two minimally invasive surgical techniques in the management of refractory radiation necrosis: technical note. J Clin Neurosci 35:117–121

    Article  PubMed  Google Scholar 

  101. Cunha-Cruz V, Follmann A, Popovic A et al (2010) Robot- and computer-assisted craniotomy (CRANIO): from active systems to synergistic man-machine interaction. Proc Inst Mech Eng H 224(3):441–452

    Article  CAS  PubMed  Google Scholar 

  102. Korb W, Engel D, Boesecke R et al (2003) Development and first patient trial of a surgical robot for complex trajectory milling. Comput Aided Surg 8(5):247–256

    Article  PubMed  Google Scholar 

  103. Eggers G, Wirtz C, Korb W et al (2005) Robot-assisted craniotomy. Minim Invasive Neurosurg 48(3):154–158

    Article  CAS  PubMed  Google Scholar 

  104. Follmann A, Korff A, Fuertjes T, Kunze SC, Schmieder K, Radermacher K (2012) A novel concept for smart trepanation. J Craniofac Surg 23(1):309–314

    Article  PubMed  Google Scholar 

  105. Kane G, Eggers G, Boesecke R et al (2009) System design of a hand-held mobile robot for craniotomy. Med Image Comput Comput Assist Interv 12(Pt 1):402–409

    PubMed  Google Scholar 

  106. Zimmermann M, Krishnan R, Raabe A, Seifert V (2002) Robot-assisted navigated neuroendoscopy. Neurosurgery 51(6):1446–1451; discussion 1451–1442

    Article  PubMed  Google Scholar 

  107. Nimsky C, Rachinger J, Iro H, Fahlbusch R (2004) Adaptation of a hexapod-based robotic system for extended endoscope-assisted transsphenoidal skull base surgery. Minim Invasive Neurosurg 47(1):41–46

    Article  PubMed  Google Scholar 

  108. Zimmermann M, Krishnan R, Raabe A, Seifert V (2004) Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir 146(7):697–704

    Article  CAS  PubMed  Google Scholar 

  109. Hongo K, Kobayashi S, Kakizawa Y et al (2002) NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery 51(4):985–988; discussion 988

    PubMed  Google Scholar 

  110. Goto T, Miyahara T, Toyoda K et al (2009) Telesurgery of microscopic micromanipulator system “NeuRobot” in neurosurgery: interhospital preliminary study. J Brain Dis 1:45–53

    PubMed  PubMed Central  Google Scholar 

  111. Takasuna H, Goto T, Kakizawa Y et al (2012) Use of a micromanipulator system (NeuRobot) in endoscopic neurosurgery. J Clin Neurosci 19(11):1553–1557

    Article  CAS  PubMed  Google Scholar 

  112. Goto T, Hongo K, Yako T et al (2013) The concept and feasibility of EXPERT: intelligent armrest using robotics technology. Neurosurgery 72(Suppl 1):39–42

    Article  PubMed  Google Scholar 

  113. Yang MS, Kim KN, Yoon DH, Pennant W, Ha Y (2011) Robot-assisted resection of paraspinal schwannoma. J Korean Med Sci 26(1):150–153

    Article  PubMed  Google Scholar 

  114. Perez-Cruet MJ, Welsh RJ, Hussain NS, Begun EM, Lin J, Park P (2012) Use of the da Vinci minimally invasive robotic system for resection of a complicated paraspinal schwannoma with thoracic extension: case report. Neurosurgery 71(1 Suppl Operative):209–214

    PubMed  Google Scholar 

  115. Moskowitz RM, Young JL, Box GN, Pare LS, Clayman RV (2009) Retroperitoneal transdiaphragmatic robotic-assisted laparoscopic resection of a left thoracolumbar neurofibroma. JSLS 13(1):64–68

    PubMed  PubMed Central  Google Scholar 

  116. Lee JY, Lega B, Bhowmick D et al (2010) Da Vinci robot-assisted transoral odontoidectomy for basilar invagination. ORL J Otorhinolaryngol Relat Spec 72(2):91–95

    Article  PubMed  Google Scholar 

  117. Beutler WJ, Peppelman WC Jr, DiMarco LA (2013) The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine (Phila Pa 1976) 38(4):356–363

    Article  Google Scholar 

  118. Lee JY, Bhowmick DA, Eun DD, Welch WC (2013) Minimally invasive, robot-assisted, anterior lumbar interbody fusion: a technical note. J Neurol Surg A Cent Eur Neurosurg 74(4):258–261

    Article  PubMed  Google Scholar 

  119. Marcus HJ, Hughes-Hallett A, Cundy TP, Yang GZ, Darzi A, Nandi D (2015) da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev 38(2):367–371; discussion 371

    Article  PubMed  Google Scholar 

  120. Hong WC, Tsai JC, Chang SD, Sorger JM (2013) Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study. Neurosurgery 72(Suppl 1):33–38

    Article  PubMed  Google Scholar 

  121. Arata J, Kenmotsu H, Takagi M et al (2013) Surgical bedside master console for neurosurgical robotic system. Int J Comput Assist Radiol Surg 8(1):75–86

    Article  PubMed  Google Scholar 

  122. Karamanoukian RL, Bui T, McConnell MP, Evans GR, Karamanoukian HL (2006) Transfer of training in robotic-assisted microvascular surgery. Ann Plast Surg 57(6):662–665

    Article  CAS  PubMed  Google Scholar 

  123. Le Roux PD, Das H, Esquenazi S, Kelly PJ (2001) Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery 48(3):584–589

    Article  PubMed  Google Scholar 

  124. Mitsuishi M, Morita A, Sugita N et al (2013) Master-slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot 9(2):180–189

    Article  PubMed  Google Scholar 

  125. Morita A, Sora S, Mitsuishi M et al (2005) Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg 103(2):320–327

    Article  PubMed  Google Scholar 

  126. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P (2008) An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62(2):286–292; discussion 292–283

    Article  PubMed  Google Scholar 

  127. Motkoski JW, Yang FW, Lwu SH, Sutherland GR (2013) Toward robot-assisted neurosurgical lasers. IEEE Trans Biomed Eng 60(4):892–898

    Article  PubMed  Google Scholar 

  128. Rizun P, Gunn D, Cox B, Sutherland G (2006) Mechatronic design of haptic forceps for robotic surgery. Int J Med Robot 2(4):341–349

    Article  CAS  PubMed  Google Scholar 

  129. Pandya S, Motkoski JW, Serrano-Almeida C, Greer AD, Latour I, Sutherland GR (2009) Advancing neurosurgery with image-guided robotics. J Neurosurg 111(6):1141–1149

    Article  PubMed  Google Scholar 

  130. Maddahi Y, Gan LS, Zareinia K, Lama S, Sepehri N, Sutherland GR (2016) Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery. Int J Med Robot 12(3):528–537

    Article  PubMed  Google Scholar 

  131. Maddahi Y, Zareinia K, Gan LS, Sutherland C, Lama S, Sutherland GR (2016) Treatment of glioma using neuroArm surgical system. Biomed Res Int 2016:1

    Article  Google Scholar 

  132. Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K (2013) Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg 118(3):521–529

    Article  PubMed  Google Scholar 

  133. Sutherland GR, Maddahi Y, Gan LS, Lama S, Zareinia K (2015) Robotics in the neurosurgical treatment of glioma. Surg Neurol Int 6(Suppl 1):S1–S8

    Article  PubMed  PubMed Central  Google Scholar 

  134. Schulman J, Gupta A, Venkatesan S, Tayson-Frederick M, Abbeel P (2013) A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario. Paper presented at 2013 IEEE/RSJ International Conference on Intelligent robots and systems

    Google Scholar 

  135. Leonard S, Wu KL, Kim Y, Krieger A, Kim PC (2014) Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng 61(4):1305–1317

    Article  PubMed  Google Scholar 

  136. Baghdadi A, Hussein AA, Ahmed Y, Cavuoto LA, Guru KA (2019) A computer vision technique for automated assessment of surgical performance using surgeons’ console-feed videos. Int J Comput Assist Radiol Surg 14(4):697–707

    Article  PubMed  Google Scholar 

  137. Sayburn A (2017) Will the machines take over surgery? Bull R Coll Surg Engl 99(3):88–90

    Article  Google Scholar 

  138. Saleh DB, Syed M, Kulendren D, Ramakrishnan V, Liverneaux PA (2015) Plastic and reconstructive robotic microsurgery—a review of current practices. Ann Chir Plast Esthet 60(4):305–312

    Article  CAS  PubMed  Google Scholar 

  139. Bergeles C, Yang GZ (2014) From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans Biomed Eng 61(5):1565–1576

    Article  PubMed  Google Scholar 

  140. Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31(6):1261–1280

    Article  Google Scholar 

  141. Vitiello V, Lee SL, Cundy TP, Yang GZ (2013) Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 6:111–126

    Article  PubMed  Google Scholar 

  142. Remacle M, Prasad VMN, Lawson G, Plisson L, Bachy V, Van der Vorst S (2015) Transoral robotic surgery (TORS) with the Medrobotics Flex System: first surgical application on humans. Eur Arch Otorhinolaryngol 272(6):1451–1455

    Article  CAS  PubMed  Google Scholar 

  143. Shang J, Noonan DP, Payne C et al (2011) An articulated universal joint based flexible access robot for minimally invasive surgery. Paper presented at Robotics and Automation (ICRA), 2011 IEEE International Conference

    Google Scholar 

  144. Piccigallo M, Scarfogliero U, Quaglia C et al (2010) Design of a novel bimanual robotic system for single-port laparoscopy. IEEE/ASME Trans Mechatron 15(6):871–878

    Google Scholar 

  145. De Momi E, Caborni C, Cardinale F et al (2014) Multi-trajectories automatic planner for StereoElectroEncephaloGraphy (SEEG). Int J Comput Assist Radiol Surg 9(6):1087–1097

    Article  PubMed  Google Scholar 

  146. Hannaford B, Rosen J, Friedman DW et al (2013) Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng 60(4):954–959

    Article  PubMed  Google Scholar 

  147. Lum MJH, Friedman DCW, Sankaranarayanan G et al (2009) The RAVEN: design and validation of a telesurgery system. Int J Robot Res 28(9):1183–1197

    Article  Google Scholar 

  148. Gan LS, Zareinia K, Lama S, Maddahi Y, Yang FW, Sutherland GR (2015) Quantification of forces during a neurosurgical procedure: a pilot study. World Neurosurg 84(2):537–548

    Article  PubMed  Google Scholar 

  149. Bekeny JR, Swaney PJ, Webster RJ III, Russell PT, Weaver KD (2013) Forces applied at the skull base during transnasal endoscopic transsphenoidal pituitary tumor excision. J Neurol Surg B Skull Base 74(6):337–341

    Article  PubMed  PubMed Central  Google Scholar 

  150. Burgner J, Swaney PJ, Lathrop RA, Weaver KD, Webster RJ (2013) Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans Biomed Eng 60(9):2567–2575

    Article  PubMed  Google Scholar 

  151. Godage IS, Remirez AA, Wirz R, Weaver KD, Burgner-Kahrs J, Webster RJ (2015) Robotic intracerebral hemorrhage evacuation: an in-scanner approach with concentric tube robots. Paper presented at Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference

    Google Scholar 

  152. Burgner J, Rucker DC, Gilbert HB et al (2014) A telerobotic system for transnasal surgery. IEEE/ASME Trans Mechatron 19(3):996–1006

    Article  Google Scholar 

  153. Swaney PJ, Gilbert HB, Webster RJ, Russell PT, Weaver KD (2015) Endonasal skull base tumor removal using concentric tube continuum robots: a phantom study. J Neurol Surg B Skull Base 76(02):145–149

    PubMed  Google Scholar 

  154. Li G, Su H, Cole GA et al (2015) Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans Biomed Eng 62(4):1077–1088

    Article  PubMed  PubMed Central  Google Scholar 

  155. Taylor R, Jensen P, Whitcomb L et al (1999) A steady-hand robotic system for microsurgical augmentation. Int J Robot Res 18(12):1201–1210

    Article  Google Scholar 

  156. Fleming I, Balicki M, Koo J et al (2008) Cooperative robot assistant for retinal microsurgery. Med Image Comput Comput Assist Interv 11(Pt 2):543–550

    PubMed  Google Scholar 

  157. Maclachlan RA, Becker BC, Tabares JC, Podnar GW, Lobes LA Jr, Riviere CN (2012) Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans Robot 28(1):195–212

    Article  PubMed  Google Scholar 

  158. Gilbertson MW, Anthony BW (2013) An ergonomic, instrumented ultrasound probe for 6-axis force/torque measurement. Conf Proc IEEE Eng Med Biol Soc 2013:140–143

    Google Scholar 

  159. Payne CJ, Yang GZ (2014) Hand-held medical robots. Ann Biomed Eng 42(8):1594–1605

    Article  PubMed  Google Scholar 

  160. Yao HY, Hayward V, Ellis RE (2005) A tactile enhancement instrument for minimally invasive surgery. Comput Aided Surg 10(4):233–239

    Article  PubMed  Google Scholar 

  161. Song C, Park DY, Gehlbach PL, Park SJ, Kang JU (2013) Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery. Biomed Opt Express 4(7):1045–1050

    Article  PubMed  PubMed Central  Google Scholar 

  162. Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

    Article  CAS  PubMed  Google Scholar 

  163. Ullrich F, Bergeles C, Pokki J et al (2013) Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci 54(4):2853–2863

    Article  PubMed  Google Scholar 

  164. Markelj P, Tomazevic D, Likar B, Pernus F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661

    Article  CAS  PubMed  Google Scholar 

  165. Liu JJ, Droller MJ, Liao JC (2012) New optical imaging technologies for bladder cancer: considerations and perspectives. J Urol 188(2):361–368

    Article  PubMed  PubMed Central  Google Scholar 

  166. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401

    Article  CAS  PubMed  Google Scholar 

  167. Martirosyan NL, Cavalcanti DD, Eschbacher JM et al (2011) Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. J Neurosurg 115(6):1131–1138

    Article  PubMed  Google Scholar 

  168. Marcus H, Nandi D, Darzi A, Yang GZ (2013) Surgical robotics through a keyhole: from today’s translational barriers to tomorrow’s “disappearing” robots. IEEE Trans Biomed Eng 60(3):674–681

    Article  PubMed  Google Scholar 

  169. Yang G-Z, Mylonas GP, Kwok K-W, Chung A (2008) Perceptual docking for robotic control. Paper presented at International Workshop on Medical imaging and virtual reality

    Google Scholar 

  170. Barbash GI, Glied SA (2010) New technology and health care costs—the case of robot-assisted surgery. N Engl J Med 363(8):701–704

    Article  CAS  PubMed  Google Scholar 

  171. Faria C, Erlhagen W, Rito M, De Momi E, Ferrigno G, Bicho E (2015) Review of robotic technology for stereotactic neurosurgery. IEEE Rev Biomed Eng 8:125–137

    Article  PubMed  Google Scholar 

  172. Smith JA, Jivraj J, Wong R, Yang V (2016) 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann Biomed Eng 44(4):836–846

    Article  PubMed  Google Scholar 

  173. Hu Y, Edwards BL, Brooks KD, Newhook TE, Slingluff CL Jr (2015) Recent trends in National Institutes of Health funding for surgery: 2003 to 2013. Am J Surg 209(6):1083–1089

    Article  PubMed  PubMed Central  Google Scholar 

  174. Keswani SG, Moles CM, Morowitz M et al (2017) The future of basic science in academic surgery: identifying barriers to success for surgeon-scientists. Ann Surg 265(6):1053–1059

    Article  PubMed  Google Scholar 

  175. Rangel SJ, Efron B, Moss RL (2002) Recent trends in National Institutes of Health funding of surgical research. Ann Surg 236(3):277–286; discussion 286–277

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Canada Foundation for Innovation, Western Economic Diversification and Alberta Advanced Education and Technology (Canada), and KANAE Foundation for the Promotion on Medical Science (Japan).

Conflicts of Interest Disclosure: Garnette R. Sutherland is listed on many of the founding patents of neuroArm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garnette R. Sutherland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sugiyama, T., Lama, S., Hoshyarmanesh, H., Baghdadi, A., Sutherland, G.R. (2021). Early Developments, Current Systems, and Future Directions. In: Marcus, H.J., Payne, C.J. (eds) Neurosurgical Robotics. Neuromethods, vol 162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0993-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0993-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0992-7

  • Online ISBN: 978-1-0716-0993-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics