Skip to main content

Template-Based Modeling of Protein Complexes Using the PPI3D Web Server

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2165))

Abstract

There is a large gap between the numbers of known protein–protein interactions and the corresponding experimentally solved structures of protein complexes. Fortunately, this gap can be in part bridged by computational structure modeling methods. Currently, template-based modeling is the most accurate means to predict both individual protein structures and protein complexes. One of the major issues in template-based modeling is to identify homologous structures that could be utilized as templates. To simplify this task, we have developed the PPI3D web server. The server is not only able to search for homologous protein complexes, but also provides means to analyze identified interactions and to model protein complexes. In recent CASP and CAPRI experiments, PPI3D proved to be a useful tool for homology modeling of multimeric proteins. In this chapter, we provide a brief description of the PPI3D web server capabilities and how to use the server for modeling of protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  2. Orchard S, Kerrien S, Abbani S et al (2012) Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nat Methods 9:345–350. https://doi.org/10.1038/nmeth.1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwede T (2013) Protein modeling: what happened to the “protein structure gap”? Structure 21:1531–1540. https://doi.org/10.1016/j.str.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  4. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10:47–53. https://doi.org/10.1038/nmeth.2289

    Article  CAS  PubMed  Google Scholar 

  5. Kryshtafovych A, Monastyrskyy B, Fidelis K et al (2018) Evaluation of the template-based modeling in CASP12. Proteins 86(Suppl 1):321–334. https://doi.org/10.1002/prot.25425

    Article  CAS  PubMed  Google Scholar 

  6. Lam SD, Das S, Sillitoe I, Orengo C (2017) An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystallogr D Struct Biol 73:628–640. https://doi.org/10.1107/S2059798317008920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Szilagyi A, Zhang Y (2014) Template-based structure modeling of protein–protein interactions. Curr Opin Struct Biol 24:10–23. https://doi.org/10.1016/j.sbi.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  8. Lafita A, Bliven S, Kryshtafovych A et al (2018) Assessment of protein assembly prediction in CASP12. Proteins 86(Suppl 1):247–256. https://doi.org/10.1002/prot.25408

    Article  CAS  PubMed  Google Scholar 

  9. Kawabata T (2016) HOMCOS: an updated server to search and model complex 3D structures. J Struct Funct Genom 17:83–99. https://doi.org/10.1007/s10969-016-9208-y

  10. Baek M, Park T, Heo L et al (2017) GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res 45:W320–W324. https://doi.org/10.1093/nar/gkx246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park H, Kim DE, Ovchinnikov S et al (2018) Automatic structure prediction of oligomeric assemblies using Robetta in CASP12. Proteins 86(Suppl 1):283–291. https://doi.org/10.1002/prot.25387

    Article  CAS  Google Scholar 

  12. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dapkūnas J, Timinskas A, Olechnovič K et al (2017) The PPI3D web server for searching, analyzing and modeling protein-protein interactions in the context of 3D structures. Bioinformatics 33:935–937. https://doi.org/10.1093/bioinformatics/btw756

    Article  CAS  PubMed  Google Scholar 

  14. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

  15. Hamp T, Rost B (2012) Alternative protein-protein interfaces are frequent exceptions. PLoS Comput Biol 8:e1002623. https://doi.org/10.1371/journal.pcbi.1002623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moult J, Fidelis K, Kryshtafovych A et al (2018) Critical assessment of methods of protein structure prediction (CASP)-round XII. Proteins 86(Suppl 1):7–15. https://doi.org/10.1002/prot.25415

    Article  CAS  PubMed  Google Scholar 

  17. Lensink MF, Velankar S, Wodak SJ (2017) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85:359–377. https://doi.org/10.1002/prot.25215

    Article  CAS  PubMed  Google Scholar 

  18. Dapkūnas J, Olechnovič K, Venclovas Č (2018) Modeling of protein complexes in CAPRI round 37 using template-based approach combined with model selection. Proteins 86(Suppl 1):292–301. https://doi.org/10.1002/prot.25378

    Article  CAS  PubMed  Google Scholar 

  19. Yu J, Andreani J, Ochsenbein F, Guerois R (2017) Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI rounds 28–35. Proteins 85:378–390. https://doi.org/10.1002/prot.25180

    Article  CAS  PubMed  Google Scholar 

  20. Olechnovič K, Venclovas Č (2014) Voronota: a fast and reliable tool for computing the vertices of the Voronoi diagram of atomic balls. J Comput Chem 35:672–681. https://doi.org/10.1002/jcc.23538

    Article  CAS  PubMed  Google Scholar 

  21. Li W, Godzik A (2006) CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

    Article  CAS  Google Scholar 

  22. Olechnovič K, Kulberkytė E, Venclovas Č (2013) CAD-score: a new contact area difference-based function for evaluation of protein structural models. Proteins 81:149–162. https://doi.org/10.1002/prot.24172

    Article  CAS  PubMed  Google Scholar 

  23. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

  24. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fox NK, Brenner SE, Chandonia J-M (2014) SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42:D304–D309. https://doi.org/10.1093/nar/gkt1240

    Article  CAS  PubMed  Google Scholar 

  26. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  PubMed  Google Scholar 

  27. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  28. Xu Q, Canutescu AA, Wang G et al (2008) Statistical analysis of interface similarity in crystals of homologous proteins. J Mol Biol 381:487–507. https://doi.org/10.1016/j.jmb.2008.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grötzinger SW, Karan R, Strillinger E et al (2018) Identification and experimental characterization of an extremophilic brine pool alcohol dehydrogenase from single amplified genomes. ACS Chem Biol 13:161–170. https://doi.org/10.1021/acschembio.7b00792

    Article  CAS  PubMed  Google Scholar 

  30. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797. https://doi.org/10.1016/j.jmb.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  31. Bule P, Alves VD, Israeli-Ruimy V et al (2017) Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes. Sci Rep 7:759. https://doi.org/10.1038/s41598-017-00919-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nash MA, Smith SP, Fontes CM, Bayer EA (2016) Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Curr Opin Struct Biol 40:89–96. https://doi.org/10.1016/j.sbi.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  33. Yan R, Xu D, Yang J et al (2013) A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep 3:2619. https://doi.org/10.1038/srep02619

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Liang Y, Zhang Y (2011) Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure 19:1784–1795. https://doi.org/10.1016/j.str.2011.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heo L, Lee H, Seok C (2016) GalaxyRefineComplex: refinement of protein-protein complex model structures driven by interface repacking. Sci Rep 6:32153. https://doi.org/10.1038/srep32153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moal IH, Torchala M, Bates PA, Fernández-Recio J (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics 14:286. https://doi.org/10.1186/1471-2105-14-286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barradas-Bautista D, Moal IH, Fernández-Recio J (2017) A systematic analysis of scoring functions in rigid-body protein docking: the delicate balance between the predictive rate improvement and the risk of overtraining. Proteins 85:1287–1297. https://doi.org/10.1002/prot.25289

    Article  CAS  PubMed  Google Scholar 

  38. Olechnovič K, Venclovas Č (2017) VoroMQA: assessment of protein structure quality using interatomic contact areas. Proteins 85:1131–1145. https://doi.org/10.1002/prot.25278

    Article  CAS  PubMed  Google Scholar 

  39. Porter KA, Desta I, Kozakov D, Vajda S (2019) What method to use for protein-protein docking? Curr Opin Struct Biol 55:1–7. https://doi.org/10.1016/j.sbi.2018.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Lithuania [S-MIP-17-60].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Česlovas Venclovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dapkūnas, J., Venclovas, Č. (2020). Template-Based Modeling of Protein Complexes Using the PPI3D Web Server. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 2165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0708-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0708-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0707-7

  • Online ISBN: 978-1-0716-0708-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics