Skip to main content

Abstract

Muscarinic acetylcholine receptors (muscarinic receptors) are prototypical G protein-coupled receptors (GPCRs) activated by the endogenous neurotransmitter acetylcholine and play key roles in regulating the activity of many vital functions of the central and peripheral nervous systems. Studies of muscarinic receptors as well as rhodopsin and β adrenergic receptors have revealed several characteristics of GPCRs, which are also true for other GPCRs. Here, we present an overview of the historical background and current studies of muscarinic receptors focusing on studies carried out in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

adenylyl cyclase

AKAP:

cAMP-dependent protein kinase anchoring protein

GAP:

GTPase-activating protein

GPCR:

G protein-coupled receptor

GRK:

G protein-coupled receptor kinase

i2:

second intracellular loop

i3:

third intracellular loop

IP3 :

inositol-1,4,5-trisphosphate

KO:

knockout

NMR:

nuclear magnetic resonance

PKA:

cAMP-dependent protein kinase

PKC:

protein kinase C

PLC:

phospholipase C

RGS:

regulators of G protein signaling

RH:

regulator of G protein signaling homology

TM:

transmembrane

TRPC6:

transient receptor potential-canonical subtype

WT:

wild-type

References

  • Altenbach C, Yang K, Farrens DL, Farahbakhsh ZT, Khorana HG, et al. 1996. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: A site-directed spin-labeling study. Biochemistry 35: 12470–12478.

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, et al. 2003. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6: 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JM. 1993. The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12: 1693–1703.

    PubMed  CAS  Google Scholar 

  • Baldwin JM. 1994. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 6: 180–190.

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, III, Beer B, Lippa AS. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–414.

    Article  PubMed  CAS  Google Scholar 

  • Baumgold J, Paek R, Yasumoto T. 1992. Agents that stimulate phosphoinositide turnover also elevate cAMP in SK-N-SH human neuroblastoma cells Life Sci 50: 1755–1759.

    Article  PubMed  CAS  Google Scholar 

  • Behr J, Haase W, Maul G, Vasudevan S, Reilander H. 1998. Effect of N-glycosylation on production of the rat m3 muscarinic acetylcholine receptor in baculovirus-infected insect cells. Biochem Soc Trans 26: 704–709.

    PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B. 1992. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12: 3591–3600.

    PubMed  CAS  Google Scholar 

  • Bernstein LS, Ramineni S, Hague C, Cladman W, Chidiac P, et al. 2004. RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11α signaling. J Biol Chem 279: 21248–21256.

    Article  PubMed  CAS  Google Scholar 

  • Berstein G, Blank JL, Jhon DY, Exton JH, Rhee SG, et al. 1992b. Phospholipase Cβ1 is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70: 411–418.

    Article  PubMed  CAS  Google Scholar 

  • Berstein G, Blank JL, Smrcka AV, Higashijima T, Sternweis PC, et al. 1992a. Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase β1. J Biol Chem 267: 8081–8088.

    PubMed  CAS  Google Scholar 

  • Bertin B, Freissmuth M, Jockers R, Strosberg AD, Marullo S. 1994. Cellular signaling by an agonist-activated receptor/Gsα fusion protein. Proc Natl Acad Sci USA 91: 8827–8831.

    Article  PubMed  CAS  Google Scholar 

  • Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, et al. 1999. Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: Functional studies. Mol Pharmacol 55: 778–786.

    PubMed  CAS  Google Scholar 

  • Blin N, Yun J, Wess J. 1995. Mapping of single amino acid residues required for selective activation of Gq/11 by the m3 muscarinic acetylcholine receptor. J Biol Chem 270: 17741–17748.

    Article  PubMed  CAS  Google Scholar 

  • Blüml K, Mutschler E, Wess J. 1994a. Functional role of a cytoplasmic aromatic amino acid in muscarinic receptor-mediated activation of phospholipase C. J Biol Chem 269: 11537–11541.

    PubMed  Google Scholar 

  • Blüml K, Mutschler E, Wess J. 1994b. Identification of an intracellular tyrosine residue critical for muscarinic receptor-mediated stimulation of phosphatidylinositol hydrolysis. J Biol Chem 269: 402–405.

    PubMed  Google Scholar 

  • Blüml K, Mutschler E, Wess J. 1994c. Insertion mutagenesis as a tool to predict the secondary structure of a muscarinic receptor domain determining specificity of G-protein coupling. Proc Natl Acad Sci USA 91: 7980–7984.

    Article  PubMed  Google Scholar 

  • Bolotina VM, Csutora P. 2005. CIF and other mysteries of the store-operated Ca2+ -entry pathway. Trends Biochem Sci 30: 378–387.

    Article  PubMed  CAS  Google Scholar 

  • Bonner TI, Buckley NJ, Young AC, Brann MR. 1987. Identification of a family of muscarinic acetylcholine receptor genes. Science 237: 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Bonner TI, Young AC, Brann MR, Buckley NJ. 1988. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Adams PR. 1980. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron. Nature 283: 673–676.

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Taylor P. 2001. Muscarinic receptor agonists and antagonists. Hardman JG, Limbird LE, Gilman AG, editors. The Pharmacological Basis of Therapeutics, 10th Ed. New York: McGraw-Hill; pp. 155–173.

    Google Scholar 

  • Buchli R, Ndoye A, Rodriguez JG, Zia S, Webber RJ, et al. 1999. Human skin fibroblasts express m2, m4, and m5 subtypes of muscarinic acetylcholine receptors. J Cell Biochem 74: 264–277.

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, McKinzie DL, Felder CC, Wess J. 2003. Use of M1–M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res 28: 437–442.

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, et al. 1992. Isozyme-selective stimulation of phospholipase Cβ2 by G protein βγ-subunits. Nature 360: 684–686.

    Article  PubMed  CAS  Google Scholar 

  • Canepa FG, Pauling P, Sorum H. 1966. Structure of acetylcholine and other substrates of cholinergic systems. Nature 210: 907–909.

    Article  PubMed  CAS  Google Scholar 

  • Carozzi A, Camps M, Gierschik P, Parker PJ. 1993. Activation of phosphatidylinositol lipid-specific phospholipase Cβ3 by G-protein βγ subunits. FEBS Lett 315: 340–342.

    Article  PubMed  CAS  Google Scholar 

  • Casy AF. 1975. Stereochemical aspects of parasympathomimetics and their antagonists: Recent developments. Prog Med Chem 11: 1–65.

    Article  PubMed  CAS  Google Scholar 

  • Casy AF, Hassan MM, Wu EC. 1971. Conformation of some acetylcholine analogs as solutes in deuterium oxide and other solvents. J Pharm Sci 60: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE. 1995a. Calcium signaling. Cell 80: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE. 1995b. Intracellular calcium. Replenishing the stores. Nature 375: 634–635.

    Article  PubMed  CAS  Google Scholar 

  • Costa P, Auger CB, Traver DJ, Costa LG. 1995. Identification of m3, m4 and m5 subtypes of muscarinic receptor mRNA in human blood mononuclear cells. J Neuroimmunol 60: 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, DeLong MR. 1983. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219: 1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Curtis CA, Wheatley M, Bansal S, Birdsall NJ, Eveleigh P, et al. 1989. Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem 264: 489–495.

    PubMed  CAS  Google Scholar 

  • Debburman SK, Kunapuli P, Benovic JL, Hosey MM. 1995. Agonist-dependent phosphorylation of human muscarinic receptors in Spodoptera frugiperda insect cell membranes by G protein-coupled receptor kinases Mol Pharmacol 47: 224–233.

    PubMed  CAS  Google Scholar 

  • DeLano WL. 2002. The PyMOL molecular graphics system. http://www.pymol.org.

  • Dhami GK, Dale LB, Anborgh PH, O’Connor-Halligan KE, Sterne-Marr R, et al. 2004. G protein-coupled receptor kinase 2 regulator of G protein signaling homology domain binds to both metabotropic glutamate receptor 1a and Gαq to attenuate signaling. J Biol Chem 279: 16614–16620.

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, et al. 1986. Cloning of the gene and cDNA for mammalian β adrenergic receptor and homology with rhodopsin. Nature 321: 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Dorje F, Levey AI, Brann MR. 1991. Immunological detection of muscarinic receptor subtype proteins (m1–m5) in rabbit peripheral tissues. Mol Pharmacol 40: 459–462.

    PubMed  CAS  Google Scholar 

  • Ebihara T, Guo F, Zhang L, Kim JY, Saffen D. 2006. Muscarinic acetylcholine receptors stimulate Ca2+ influx in PC12D cells predominantly via activation of Ca2+ store-operated channels. J Biochem (Tokyo) 139: 449–458.

    CAS  Google Scholar 

  • Elhusseiny A, Cohen Z, Olivier A, Stanimirovic DB, Hamel E. 1999. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: Identification and cellular localization. J Cereb Blood Flow Metab 19: 794–802.

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Seidenberg M, Brann MR. 1993. Use of chimeric muscarinic receptors to investigate epitopes involved in allosteric interactions. Mol Pharmacol 44: 583–588.

    PubMed  CAS  Google Scholar 

  • Farahbakhsh ZT, Ridge KD, Khorana HG, Hubbell WL. 1995. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: A site-directed spin labeling study. Biochemistry 34: 8812–8819.

    Article  PubMed  CAS  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. 1996. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274: 768–770.

    Article  PubMed  CAS  Google Scholar 

  • Florio VA, Sternweis PC. 1985. Reconstitution of resolved muscarinic cholinergic receptors with purified GTP-binding proteins. J Biol Chem 260: 3477–3483.

    PubMed  CAS  Google Scholar 

  • Forster GL, Yeomans JS, Takeuchi J, Blaha CD. 2002. M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci 22: RC190.

    PubMed  Google Scholar 

  • Fotiadis D, Liang Y, Filipek S, Saperstein DA, Engel A, et al. 2003. Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421: 127–128.

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Wang CD, Robinson DA, Gocayne JD, Venter JC. 1989. Site-directed mutagenesis of m1 muscarinic acetylcholine receptors: Conserved aspartic acids play important roles in receptor function. Mol Pharmacol 36: 840–847.

    PubMed  CAS  Google Scholar 

  • Furukawa H, Hamada T, Hayashi MK, Haga T, Muto Y, et al. 2002. Conformation of ligands bound to the muscarinic acetylcholine receptor. Mol Pharmacol 62: 778–787.

    Article  PubMed  CAS  Google Scholar 

  • Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, et al. 2001. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA 98: 15312–15317.

    Article  PubMed  CAS  Google Scholar 

  • Ghanouni P, Steenhuis JJ, Farrens DL, Kobilka BK. 2001. Agonist-induced conformational changes in the G-protein-coupling domain of the β2 adrenergic receptor. Proc Natl Acad Sci USA 98: 5997–6002.

    Article  PubMed  CAS  Google Scholar 

  • Gil DW, Krauss HA, Bogardus AM, WoldeMussie E. 1997. Muscarinic receptor subtypes in human iris-ciliary body measured by immunoprecipitation. Invest Ophthalmol Vis Sci 38: 1434–1442.

    PubMed  CAS  Google Scholar 

  • Gomeza J, Shannon H, Kostenis E, Felder C, Zhang L, et al. 1999a. Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96: 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, et al. 1999b. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96: 10483–10488.

    Article  PubMed  CAS  Google Scholar 

  • Gomperts BD, Kramer IJM, Tatham PER. 2003. Effector enzymes coupled to GTP-binding proteins: Adenylyl cyclase and phospholipase C. Gomperts BD, Kramer IM, Tatham PER., editors. Signal Transduction, 1st Ed. London: Elsevier Academic Press, pp. 107–119.

    Google Scholar 

  • Guo Z-D, Suga H, Okamura M, Takeda S, Haga T. 2001. Receptor-Gα fusion proteins as a tool for ligand screening. Life Sci 68: 2319–2327.

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Haga T. 1983. Affinity chromatography of the muscarinic acetylcholine receptor. J Biol Chem 258: 13575–13579.

    PubMed  CAS  Google Scholar 

  • Haga K, Haga T. 1985a. Purification of the muscarinic acetylcholine receptor from porcine brain. J Biol Chem 260: 7927–7935.

    PubMed  CAS  Google Scholar 

  • Haga K, Haga T. 1990b. Dual regulation by G proteins of agonist-dependent phosphorylation of muscarinic acetylcholine receptors. FEBS Lett 268: 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Haga T. 1992. Activation by G protein βγ subunits of agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 267: 2222–2227.

    PubMed  CAS  Google Scholar 

  • Haga K, Haga T, Ichiyama A. 1986. Reconstitution of the muscarinic acetylcholine receptor. Guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTP-binding proteins (Gi and Go). J Biol Chem 261: 10133–10140.

    PubMed  CAS  Google Scholar 

  • Haga K, Haga T, Ichiyama A. 1990a. Phosphorylation by protein kinase C of the muscarinic acetylcholine receptor. J Neurochem 54: 1639–1644.

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Haga T, Ichiyama A, Katada T, Kurose H, et al. 1985b. Functional reconstitution of purified muscarinic receptors and inhibitory guanine nucleotide regulatory protein. Nature 316: 731–733.

    Article  PubMed  CAS  Google Scholar 

  • Haga T, Haga K. 1989. Agonist-dependent phosphorylation of cerebral and atrial muscarinic receptors: Blockade of the phosphorylation by GTP-binding regulatory proteins and its reversal by guanine nucleotides. Biomed Res 10: 293–299.

    CAS  Google Scholar 

  • Haga T, Haga K, Berstein G, Nishiyama T, Uchiyama H, et al. 1988. Molecular properties of muscarinic receptors. Trends Pharmacol Sci Suppl: 12–18.

    Google Scholar 

  • Haga T, Haga K, Kameyama K. 1994a. G protein-coupled receptor kinases. J Neurochem 63: 400–412.

    PubMed  CAS  Google Scholar 

  • Haga K, Kameyama K, Haga T. 1994b. Synergistic activation of a G protein-coupled receptor kinase by G protein βγ subunits and mastoparan or related peptides. J Biol Chem 269: 12594–12599.

    PubMed  CAS  Google Scholar 

  • Haga T, Haga K, Kameyama K, Nakata H. 1993. Phosphorylation of muscarinic receptors: Regulation by G proteins. Life Sci 52: 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Haga T, Haga K, Kameyama K, Tsuga H, Yoshida N. 2002. Regulation of G protein-coupled receptor kinase 2. Colowick SP, Kaplan NO, editors. G Protein Pathways Part A: Receptors, Methods Enzymol., Vol. 343. San Diego, CA: Academic Press; pp. 559–577.

    Google Scholar 

  • Hamilton SE, Loose MD, Qi M, Levey AI, Hille B, et al. 1997. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci USA 94: 13311–13316.

    Article  PubMed  CAS  Google Scholar 

  • Hammer R, Berrie CP, Birdsall NJ, Burgen AS, Hulme EC. 1980. Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283: 90–92.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Morisawa K, Saito H, Jyojima E, Yoshida N, et al. 2006. Muscarinic M4 receptor recycling requires a motif in the third intracellular loop. Manuscript in preparation.

    Google Scholar 

  • Hayashi MK, Haga T. 1997. Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: Reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail. Arch Biochem Biophys 340: 376–382.

    Article  PubMed  CAS  Google Scholar 

  • Hepler JR. 2003. RGS protein and G protein interactions: A little help from their friends. Mol Pharmacol 64: 547–549.

    Article  PubMed  CAS  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, et al. 1996. Modulation of Ca2+ channels by G-protein βγ subunits. Nature 380: 258–262.

    Article  PubMed  CAS  Google Scholar 

  • Hill-Eubanks D, Burstein ES, Spalding TA, Brauner-Osborne H, Brann MR. 1996. Structure of a G-protein-coupling domain of a muscarinic receptor predicted by random saturation mutagenesis. J Biol Chem 271: 3058–3065.

    Article  PubMed  CAS  Google Scholar 

  • Högger P, Shockley MS, Lameh J, Sadée W. 1995. Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine Hm1 receptors. J Biol Chem 270: 7405–7410.

    Article  PubMed  Google Scholar 

  • Hoshi N, Langeberg LK, Scott JD. 2005. Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol 7: 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  • Ichiyama S, Nemoto R, Haga T. 2006b. Interaction of muscarinic M2 receptor with G protein Gαi1subunit in their fusion protein expressed in Escherichia coli: The effect of expression level. 12th International Conference on Retinal Proteins: Page 237. Manuscript in preparation.

    Google Scholar 

  • Ichiyama S, Oka Y, Haga K, Kojima S, Tateishi Y, et al. 2006a. The structure of the third intracellular loop of the muscarinic acetylcholine receptor M2 subtype. FEBS Lett 580: 23–26.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SR. 1996. Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya T, Nishiyama T, Haga K, Haga T, Ichiyama A, et al. 1990. Interaction of atrial muscarinic receptors with three kinds of GTP-binding proteins. J Mol Cell Cardiol 22: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI. 1997. Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27: 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Nagatomo K, Kubo Y, Saitoh O. 2006. Alternative splicing of RGS8 gene changes the binding property to the M1 muscarinic receptor to confer receptor type-specific Gq regulation. J Neurochem 99: 1505-1516.

    Google Scholar 

  • Jansson CC, Kukkonen J, Akerman KE. 1991. Muscarinic receptor-linked elevation of cAMP in SH-SY5Y neuroblastoma cells is mediated by Ca2+ and protein kinase C. Biochim Biophys Acta 1095: 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA. 2004. The ants go marching two by two: Oligomeric structure of G-protein-coupled receptors. Mol Pharmacol 66: 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  • Jensen AD, Guarnieri F, Rasmussen SG, Asmar F, Ballesteros JA, et al. 2001. Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the β2 adrenergic receptor mapped by site-selective fluorescent labeling. J Biol Chem 276: 9279–9290.

    Article  PubMed  CAS  Google Scholar 

  • Kameyama K, Haga K, Haga T, Kontani K, Katada T, et al. 1993. Activation by G protein βγ subunits of β adrenergic and muscarinic receptor kinase. J Biol Chem 268: 7753–7758.

    PubMed  CAS  Google Scholar 

  • Kameyama K, Haga K, Haga T, Moro O, Sadée W. 1994. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (β adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites. Eur J Biochem 226: 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Karasawa H, Taketo MM, Matsui M. 2003. Loss of anti-cataleptic effect of scopolamine in mice lacking muscarinic acetylcholine receptor subtype 4. Eur J Pharmacol 468: 15–19.

    Article  PubMed  CAS  Google Scholar 

  • Katz A, Wu D, Simon MI. 1992. Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 360: 686–689.

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Saffen D. 2005. Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280: 32035–32047.

    Article  PubMed  CAS  Google Scholar 

  • Kofuji P, Davidson N, Lester HA. 1995. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by Gβγ subunits and function as heteromultimers. Proc Natl Acad Sci USA 92: 6542–6546.

    Article  PubMed  CAS  Google Scholar 

  • Kostenis E, Conklin BR, Wess J. 1997. Molecular basis of receptor/G protein coupling selectivity studied by coexpression of wild type and mutant m2 muscarinic receptors with mutant Gαq subunits. Biochemistry 36: 1487–1495.

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567–580.

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, et al. 1986a. Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323: 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Maeda A, Sugimoto K, Akiba I, Mikami A, et al. 1986b. Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Lett 209: 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Kunapuli P, Onorato JJ, Hosey MM, Benovic JL. 1994. Expression, purification, and characterization of the G protein-coupled receptor kinase GRK5. J Biol Chem 269: 1099–1105.

    PubMed  CAS  Google Scholar 

  • Kunkel MT, Peralta EG. 1993. Charged amino acids required for signal transduction by the m3 muscarinic acetylcholine receptor. EMBO J 12: 3809–3815.

    PubMed  CAS  Google Scholar 

  • Kurtenbach E, Curtis CA, Pedder EK, Aitken A, Harris AC, et al. 1990. Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. J Biol Chem 265: 13702–13708.

    PubMed  CAS  Google Scholar 

  • Laduron PM, Ilien B. 1982. Solubilization of brain muscarinic, dopaminergic and serotonergic receptors: A critical analysis. Biochem Pharmacol 31: 2145–2151.

    Article  PubMed  CAS  Google Scholar 

  • Lechleiter J, Hellmiss R, Duerson K, Ennulat D, David N, et al. 1990. Distinct sequence elements control the specificity of G protein activation by muscarinic acetylcholine receptor subtypes. EMBO J 9: 4381–4390.

    PubMed  CAS  Google Scholar 

  • Lee NH, Geoghagen NS, Cheng E, Cline RT, Fraser CM. 1996. Alanine scanning mutagenesis of conserved arginine/lysine-arginine/lysine-X-X-arginine/lysine G protein-activating motifs on m1 muscarinic acetylcholine receptors. Mol Pharmacol 50: 140–148.

    PubMed  CAS  Google Scholar 

  • Leppik RA, Miller RC, Eck M, Paquet JL. 1994. Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the m2 muscarinic acetylcholine receptor. Mol Pharmacol 45: 983–990.

    PubMed  CAS  Google Scholar 

  • Levey AI. 1993. Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52: 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. 1991. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11: 3218–3226.

    PubMed  CAS  Google Scholar 

  • Li B, Nowak NM, Kim SK, Jacobson KA, Bagheri A, et al. 2005. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: Identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor. J Biol Chem 280: 5664–5675.

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Conklin BR, Blin N, Yun J, Wess J. 1995. Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. Proc Natl Acad Sci USA 92: 11642–11646.

    Article  PubMed  CAS  Google Scholar 

  • Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJG. 2003. Keeping G proteins at bay: A complex between G protein-coupled receptor kinase 2 and Gβγ. Science 300: 1256–1262.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. 1987. The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z-L, Hulme EC. 1999. The functional topography of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor, revealed by scanning mutagenesis. J Biol Chem 274: 7309–7315.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z-L, Hulme EC. 2000. A network of conserved intramolecular contacts defines the off-state of the transmembrane switch mechanism in a seven-transmembrane receptor. J Biol Chem 275: 5682–5686.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z-L, Saldanha JW, Hulme EC. 2001. Transmembrane domains 4 and 7 of the M1 muscarinic acetylcholine receptor are critical for ligand binding and the receptor activation switch. J Biol Chem 276: 34098–34104.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z-L, Saldanha JW, Hulme EC. 2002. Seven-transmembrane receptors: Crystals clarify. Trends Pharmacol Sci 23: 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Maggio R, Vogel Z, Wess J. 1993. Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular “cross-talk” between G-protein-linked receptors. Proc Natl Acad Sci USA 90: 3103–3107.

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Lazareno S, Birdsall NJ. 1995. Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. Mol Pharmacol 47: 88–98.

    PubMed  CAS  Google Scholar 

  • Matsui M, Motomura D, Fujikawa T, Jiang J, Takahashi S, et al. 2002. Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J Neurosci 22: 10627–10632.

    PubMed  CAS  Google Scholar 

  • Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, et al. 2000. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97: 9579–9584.

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, et al. 2004. Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75: 2971–2981.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G. 2002. Construction and analysis of function of G protein-coupled receptor-G protein fusion proteins. Methods Enzymol. Colowick SP, Kaplan NO, editors. San Diego, CA: Academic Press; pp. 260–273.

    Google Scholar 

  • Milligan G. 2004. G protein-coupled receptor dimerization: Function and ligand pharmacology. Mol Pharmacol 66: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J. 2001. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21: 5239–5250.

    PubMed  CAS  Google Scholar 

  • Moro O, Lameh J, Högger P, Sadée W. 1993. Hydrophobic amino acid in the i2 loop plays a key role in receptor-G protein coupling. J Biol Chem 268: 22273–22276.

    PubMed  CAS  Google Scholar 

  • Murthy KS, Coy DH, Makhlouf GM. 1996. Somatostatin receptor-mediated signaling in smooth muscle. Activation of phospholipase Cβ3 by Gβγ and inhibition of adenylyl cyclase by Gαi1 and Gαo. J Biol Chem271: 23458–23463.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura F, Kato M, Kameyama K, Nukada T, Haga T, et al. 1995. Characterization of Gq family G proteins GL1α (G14α), GL2α (G11α), and Gqα expressed in the baculovirus-insect cell system. J Biol Chem 270: 6246–6253.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, et al. 2004. M3 muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 558: 561–575.

    Article  PubMed  CAS  Google Scholar 

  • Nakata H, Kameyama K, Haga K, Haga T. 1994. Location of agonist-dependent-phosphorylation sites in the third intracellular loop of muscarinic acetylcholine receptors (m2 subtype). Eur J Biochem 220: 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Nakata H, Yoshioka K, Kamiya T. 2004. Purinergic-receptor oligomerization: Implications for neural functions in the central nervous system. Neurotox Res 6: 291–297.

    Article  PubMed  Google Scholar 

  • Nathans J, Hogness DS. 1983. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34: 807–814.

    Article  PubMed  CAS  Google Scholar 

  • Offermanns S, Wieland T, Homann D, Sandmann J, Bombien E, et al. 1994. Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11. Mol Pharmacol 45: 890–898.

    PubMed  CAS  Google Scholar 

  • Ohara K, Uchiyama H, Haga T, Ichiyama A. 1990. Interaction of deglycosylated muscarinic receptors with ligands and G proteins. Eur J Pharmacol 189: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Onali P. 1992. Properties of muscarinic-stimulated adenylate cyclase activity in rat olfactory bulb. J Neurochem 58: 1723–1729.

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Adem A, Karlsson E, Onali P. 1996. Rat striatal muscarinic receptors coupled to the inhibition of adenylyl cyclase activity: Potent block by the selective m4 ligand muscarinic toxin 3 (MT3). Br J Pharmacol 118: 283–288.

    PubMed  CAS  Google Scholar 

  • Onorato JJ, Palczewski K, Regan JW, Caron MG, Lefkowitz RJ et al. 1991. Role of acidic amino acids in peptide substrates of the β adrenergic receptor kinase and rhodopsin kinase. Biochemistry 30: 5118–5125.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, et al. 2000. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289: 739–745.

    Article  PubMed  CAS  Google Scholar 

  • Park D, Jhon DY, Lee CW, Lee KH, Rhee SG. 1993. Activation of phospholipase C isozymes by G protein βγ subunits. J Biol Chem 268: 4573–4576.

    PubMed  CAS  Google Scholar 

  • Parker EM, Kameyama K, Higashijima T, Ross EM. 1991. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J Biol Chem 266: 519–527.

    PubMed  CAS  Google Scholar 

  • Penn RB, Pronin AN, Benovic JL. 2000. Regulation of G protein-coupled receptor kinases. Trends Cardiovasc Med 10: 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Peralta EG, Winslow JW, Ashkenazi A, Smith DH, Ramachandran J, et al. 1988. Structural basis of muscarinic acetylcholine receptor subtype diversity. Trends Pharmacol Sci Suppl: 6–11.

    Google Scholar 

  • Phillips JK, Vidovic M, Hill CE. 1997. Variation in mRNA expression of α adrenergic, neurokinin and muscarinic receptors amongst four arteries of the rat. J Auton Nerv Syst 62: 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, et al. 1992. Role of βγ subunits of G proteins in targeting the β adrenergic receptor kinase to membrane-bound receptors. Science 257: 1264–1267.

    Article  PubMed  CAS  Google Scholar 

  • Portoghese PS. 1970. Relationships between stereostructure and pharmacological activities. Annu Rev Pharmacol 10: 51–76.

    Article  PubMed  CAS  Google Scholar 

  • Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. 2000. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther 295: 879–888.

    PubMed  CAS  Google Scholar 

  • Proska J, Tucek S. 1995. Competition between positive and negative allosteric effectors on muscarinic receptors. Mol Pharmacol 48: 696–702.

    PubMed  CAS  Google Scholar 

  • Richardson RM, Hosey MM. 1992. Agonist-induced phosphorylation and desensitization of human m2 muscarinic cholinergic receptors in Sf9 insect cells. J Biol Chem 267: 22249–22255.

    PubMed  CAS  Google Scholar 

  • Richardson RM, Kim C, Benovic JL, Hosey MM. 1993. Phosphorylation and desensitization of human m2 muscarinic cholinergic receptors by two isoforms of the β adrenergic receptor kinase. J Biol Chem 268: 13650–13656.

    PubMed  CAS  Google Scholar 

  • Roberts DJ, Waelbroeck M. 2004. G protein activation by G protein coupled receptors: Ternary complex formation or catalyzed reaction? Biochem Pharmacol 68: 799–806.

    Article  PubMed  CAS  Google Scholar 

  • Ross EM, Wilkie TM. 2000. GTPase-activating proteins for heterotrimeric G proteins: Regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69: 795–827.

    Article  PubMed  CAS  Google Scholar 

  • Salim K, Fenton T, Bacha J, Urien-Rodriguez H, Bonnert T, et al. 2002. Oligomerization of G-protein-coupled receptors shown by selective co-immunoprecipitation. J Biol Chem 277: 15482–15485.

    Article  PubMed  CAS  Google Scholar 

  • Savarese TM, Wang CD, Fraser CM. 1992. Site-directed mutagenesis of the rat m1 muscarinic acetylcholine receptor. Role of conserved cysteines in receptor function. J Biol Chem 267: 11439–11448.

    PubMed  CAS  Google Scholar 

  • Seifert R, Wenzel-Seifert K, Kobilka BK. 1999. GPCR-Gα fusion proteins: Molecular analysis of receptor-G-protein coupling. Trends Pharmacol Sci 20: 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Sheikh SP, Vilardarga JP, Baranski TJ, Lichtarge O, Iiri T, et al. 1999. Similar structures and shared switch mechanisms of the β2-adrenoceptor and the parathyroid hormone receptor. Zn(II) bridges between helices III and VI block activation. J Biol Chem 274: 17033–17041.

    Article  PubMed  CAS  Google Scholar 

  • Sheikh SP, Zvyaga TA, Lichtarge O, Sakmar TP, Bourne HR. 1996. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383: 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Shiozaki K, Haga T. 1992. Effects of magnesium ion on the interaction of atrial muscarinic acetylcholine receptors and GTP-binding regulatory proteins. Biochemistry 31: 10634–10642.

    Article  PubMed  CAS  Google Scholar 

  • Smrcka AV, Hepler JR, Brown KO, Sternweis PC. 1991. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251: 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Standaert DG, Young AB. (2001). Treatment of central nervous system degenerative disorders. The Pharmacological Basis of Therapeutics. Hardman JG, Limbird LE, Gilman AG, editors. New York: McGraw-Hill; pp. 549–568.

    Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML. 2000. M2 and M4 receptor knockout mice: Muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292: 877–885.

    PubMed  CAS  Google Scholar 

  • Suga H, Takeda S, Haga T, Okamura M, Takao K, et al. 2004. Stimulation of increases in intracellular calcium and prostaglandin E2 generation in Chinese hamster ovary cells expressing receptor-Gα16 fusion proteins. J Biochem (Tokyo) 135: 605–613.

    CAS  Google Scholar 

  • Taussig R, Gilman AG. 1995. Mammalian membrane-bound adenylyl cyclases. J Biol Chem 270: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Tayebati SK, Codini M, Gallai V, Mannino F, Parnetti L, et al. 1999. Radioligand binding assay of M1–M5 muscarinic cholinergic receptor subtypes in human peripheral blood lymphocytes. J Neuroimmunol 99: 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Taylor P, Insel PA. 1990. Molecular basis of pharmacologic selectivity. Principles of Drug Action: The Basis of Pharmacology. Pratt WB, Taylor P, editors. New York: Churchill Livingstone; pp. 1–74.

    Google Scholar 

  • Terry AV, Jr., Buccafusco JJ. 2003. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306: 821–827.

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJG, Berman DM, Gilman AG, Sprang SR. 1997. Structure of RGS4 bound to AlF4-activated Giα1: Stabilization of the transition state for GTP hydrolysis. Cell 89: 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJ. 2005. Snapshot of activated G proteins at the membrane: The Gαq-GRK2-Gβγ complex. Science 310: 1686–1690.

    Article  PubMed  CAS  Google Scholar 

  • Touhara K, Inglese J, Pitcher JA, Shaw G, Lefkowitz RJ. 1994. Binding of G protein βγ-subunits to pleckstrin homology domains. J Biol Chem 269: 10217–10220.

    PubMed  CAS  Google Scholar 

  • Tsuga H, Kameyama K, Haga T, Honma T, Lameh J, et al. 1998a. Internalization and down-regulation of human muscarinic acetylcholine receptor m2 subtypes. Role of third intracellular m2 loop and G protein-coupled receptor kinase 2. J Biol Chem273: 5323–5330.

    Article  PubMed  CAS  Google Scholar 

  • Tsuga H, Kameyama K, Haga T, Kurose H, Nagao T. 1994. Sequestration of muscarinic acetylcholine receptor m2 subtypes: Facilitation by G protein-coupled receptor kinase (GRK2) and attenuation by a dominant-negative mutant of GRK2. J Biol Chem 269: 32522–32527.

    PubMed  CAS  Google Scholar 

  • Tsuga H, Kameyama K, Haga T. 1998c. Desensitization of human muscarinic acetylcholine receptor m2 subtypes is caused by their sequestration/internalization. J Biochem (Tokyo) 124: 863–868.

    CAS  Google Scholar 

  • Tsuga H, Okuno E, Kameyama K, Haga T. 1998b. Sequestration of human muscarinic acetylcholine receptor hm1–hm5 subtypes: Effect of G protein-coupled receptor kinases GRK2, GRK4, GRK5 and GRK6. J Pharmacol Exp Ther 284: 1218–1226.

    PubMed  CAS  Google Scholar 

  • Tucek S, Proska J. 1995. Allosteric modulation of muscarinic acetylcholine receptors. Trends Pharmacol Sci 16: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama H, Ohara K, Haga K, Haga T, Ichiyama A. 1990. Location in muscarinic acetylcholine receptors of sites for [3H]propylbenzilylcholine mustard binding and for phosphorylation with protein kinase C. J Neurochem 54: 1870–1881.

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam CM, Jiang X, Oldfield T, Waldman M. 2003. LigandFit: A novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21: 289–307.

    Article  PubMed  CAS  Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G. 1990. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114: 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Wall SJ, Yasuda RP, Hory F, Flagg S, Martin BM, et al. 1991. Production of antisera selective for m1 muscarinic receptors using fusion proteins: Distribution of m1 receptors in rat brain. Mol Pharmacol 39: 643–649.

    PubMed  CAS  Google Scholar 

  • Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M-channel. Science 282: 1890–1893.

    Article  PubMed  CAS  Google Scholar 

  • Ward SD, Hamdan FF, Bloodworth LM, Wess J. 2002. Conformational changes that occur during M3 muscarinic acetylcholine receptor activation probed by the use of an in situ disulfide cross-linking strategy. J Biol Chem 277: 2247–2257.

    Article  PubMed  CAS  Google Scholar 

  • Watson S, Arkinstall S. (2002). Superfamily of seven transmembrane proteins. The G-protein linked receptor. London: Academic Press; pp. 7–18.

    Google Scholar 

  • Wei J, Walton EA, Milici A, Buccafusco JJ. 1994. m1–m5 muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. J Neurochem 63: 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR. 1990. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci USA 87: 7050–7054.

    Article  PubMed  CAS  Google Scholar 

  • Wess, J. 2004. Muscarinic acetylcholine receptor knockout mice: Novel phenotypes and clinical implications. Ann Rev Pharmacol Toxicol 44: 423–450.

    Article  CAS  Google Scholar 

  • Wess J, Blin N, Mutschler E, Blüml K. 1995. Muscarinic acetylcholine receptors: Structural basis of ligand binding and G protein coupling. Life Sci 56: 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Bonner TI, Dorje F, Brann MR. 1990. Delineation of muscarinic receptor domains conferring selectivity of coupling to guanine nucleotide-binding proteins and second messengers. Mol Pharmacol 38: 517–523.

    PubMed  CAS  Google Scholar 

  • Wess J, Brann MR, Bonner TI. 1989. Identification of a small intracellular region of the muscarinic m3 receptor as a determinant of selective coupling to PI turnover. FEBS Lett 258: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, et al. 2003. M1–M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Recept Channels 9: 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Gdula D, Brann MR. 1991. Site-directed mutagenesis of the m3 muscarinic receptor: Identification of a series of threonine and tyrosine residues involved in agonist but not antagonist binding. EMBO J 10: 3729–3734.

    PubMed  CAS  Google Scholar 

  • Wess J, Liu J, Blin N, Yun J, Lerche C, et al. 1997. Structural basis of receptor/G protein coupling selectivity studied with muscarinic receptors as model systems. Life Sci 60: 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Maggio R, Palmer JR, Vogel Z. 1992. Role of conserved threonine and tyrosine residues in acetylcholine binding and muscarinic receptor activation. A study with m3 muscarinic receptor point mutants. J Biol Chem267: 19313–19319.

    PubMed  CAS  Google Scholar 

  • Wess J, Nanavati S, Vogel Z, Maggio R. 1993. Functional role of proline and tryptophan residues highly conserved among G protein-coupled receptors studied by mutational analysis of the m3 muscarinic receptor. EMBO J 12: 331–338.

    PubMed  CAS  Google Scholar 

  • Wong SK, Parker EM, Ross EM. 1990. Chimeric muscarinic cholinergic: β adrenergic receptors that activate Gs in response to muscarinic agonists. J Biol Chem 265: 6219–6224.

    PubMed  CAS  Google Scholar 

  • Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, et al. 2001b. Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 98: 14096–14101.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, et al. 2001a. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 410: 207–212.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, et al. 1993. Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: Distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 43: 149–157.

    PubMed  CAS  Google Scholar 

  • Yeagle PL, Alderfer JL, Albert AD. 1995. Structure of the third cytoplasmic loop of bovine rhodopsin. Biochemistry 34: 14621–14625.

    Article  PubMed  CAS  Google Scholar 

  • Yeagle PL, Alderfer JL, Salloum AC, Ali L, Albert AD. 1997. The first and second cytoplasmic loops of the G-protein receptor, rhodopsin, independently form β-turns. Biochemistry 36: 3864–3869.

    Article  PubMed  CAS  Google Scholar 

  • Zeng FY, Soldner A, Schoneberg T, Wess J. 1999a. Conserved extracellular cysteine pair in the M3 muscarinic acetylcholine receptor is essential for proper receptor cell surface localization but not for G protein coupling. J Neurochem 72: 2404–2414.

    Article  PubMed  CAS  Google Scholar 

  • Zeng FY, Wess J. 1999b. Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 274: 19487–19497.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Saffen D. 2001. Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. Molecular structures and functional characterization. J Biol Chem 276: 13331–13339.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Okamura M, Guo Z-D, Niwa S, Haga T. 2004. Effects of partial agonists and Mg2+ ions on the interaction of M2 muscarinic acetylcholine receptor and G protein Gαi1 subunit in the M2-Gαi1 fusion protein. J Biochem (Tokyo) 135: 589–596.

    CAS  Google Scholar 

  • Zhu SZ, Wang SZ, Hu J, el-Fakahany EE. 1994. An arginine residue conserved in most G protein-coupled receptors is essential for the function of the m1 muscarinic receptor. Mol Pharmacol 45: 517–523.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Hiroyuki Nakamura (Gakushuin Univ.) for his support in performing the docking simulation of acetylcholine into the M3 receptor model.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ichiyama, S., Haga, T. (2009). Muscarinic Acetylcholine Receptor. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_23

Download citation

Publish with us

Policies and ethics