Skip to main content

Mechanism of Photoanodes for Dye-Sensitized and Perovskite Solar Cells

  • Chapter
  • First Online:
Alternative Energy Resources

Abstract

The demand for fossil fuel consumption is continuously increasing due to the growth of the world’s population. Carbon dioxide (CO2) gas emission from conventional energy sources eventually will amplify the Earth’s natural “greenhouse” effect and hence will result in global warming. Therefore, to reduce the risk of climate change, photovoltaic solar cell (PV) devices have been developed. Surprisingly, PV system has capability to conduct useful electricity from natural sunlight source, which provides clean, sustainable, and renewable energy instead of combusted conventional fossil fuel sources. Nowadays, both dye-sensitized cells (DSSCs) and perovskite solar cells (PSCs) were investigated more intensively than the first- and second-generation solar cell systems due to their flexibility, transparency, and lighter weight materials. In fact, photoanode elements played an essential role in determining the strength of light-harvesting absorption and generating excited electron charge carriers’ mobility between dye/perovskite and respective transparent conductive oxide (TCO) glasses. Apart from that, binary/ternary transition metal oxide material selection (TiO2, ZnO, SnO2, MgO, WO3, etc.) of photoanode in DSSCs and PSCs is also a crucial factor for photogenerated electrons. However, still metal oxide materials have some drawbacks such as high recombination rate which resulted in losses of overall photoenergy conversion efficiency (PCE) performance. In fact, the PCE of existing either DSSC or PSC devices still have rooms to improve compared to first- and second-generation solar cells. This chapter briefly discussed the operational principle, material selection, key problems, and also the insight to commercialization of organic PV devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (2001) Law dome atmospheric CO2 data. D Contri Seri 83

    Google Scholar 

  2. Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res Atmos 2:4115–4128

    Article  Google Scholar 

  3. Lemon ER (2019) CO2 and plants: the response of plants to rising levels of atmospheric carbon dioxide. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Webb RS, Overpeck JT, Anderson DM, Bauer BA, England MK, Gross WS, Meyers EA, Worobec MM (1993) World data center-a for paleoclimatology at the NOAA paleoclimatology program, boulder, CO. J Paleolimnol 1:69–75

    Article  Google Scholar 

  5. Mutalikdesai A, Ramasesha SK (2017) Emerging solar technologies: perovskite solar cell. Resonance 11:1061–1083

    Article  Google Scholar 

  6. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 6107:643–647

    Article  Google Scholar 

  7. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 11:6595–6663

    Article  Google Scholar 

  8. Low FW, Lai CW (2019) Reduced graphene oxide decorated TiO2 for improving dye-sensitized solar cells (DSSCs). Curr Nanosci 6:631–636

    Article  Google Scholar 

  9. Low FW, Lai CW, Hamid S, Bee A (2017) Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. J Mater Sci Mater Electron 4:3819–3836

    Article  Google Scholar 

  10. Shin SS, Lee SJ, Seok SI (2019) Exploring wide bandgap metal oxides for perovskite solar cells. APL Mater 2:022401

    Article  Google Scholar 

  11. Granqvist CG (2008) Oxide electrochromics: why, how, and whither. Solar Energy Mater Solar Cells 2:203–208

    Article  Google Scholar 

  12. Zhao Y, Zhu K (2016) Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev 3:655–689

    Article  Google Scholar 

  13. Han GS, Chung HS, Kim BJ, Kim DH, Lee JW, Swain BS, Mahmood K, Yoo JS, Park NG, Lee JH (2015) Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. J Mater Chem A 17:9160–9164

    Article  Google Scholar 

  14. Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ (2015) Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett 3:432–437

    Article  Google Scholar 

  15. Dong J, Shi J, Li D, Luo Y, Meng Q (2015) Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Appl Phys Lett 7:073507

    Article  Google Scholar 

  16. Dong X, Fang X, Lv M, Lin B, Zhang S, Ding J, Yuan N (2015) Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J Mater Chem A 10:5360–5367

    Article  Google Scholar 

  17. Kaltenbrunner M, Adam G, Głowacki ED, Drack M, Schwödiauer R, Leonat L, Apaydin DH, Groiss H, Scharber MC, White MS (2015) Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat Mater 10:1032

    Article  Google Scholar 

  18. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591

    Article  Google Scholar 

  19. Tiwana P, Docampo P, Johnston MB, Snaith HJ, Herz LM (2011) Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 6:5158–5166

    Article  Google Scholar 

  20. Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH (2017) Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 6345:1376–1379

    Article  Google Scholar 

  21. Mahmood K, Sarwar S, Mehran MT (2017) Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv 28:17044–17062

    Article  Google Scholar 

  22. Cao J, Wu B, Chen R, Wu Y, Hui Y, Mao BW, Zheng N (2018) Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv Mater 11:1705596

    Article  Google Scholar 

  23. Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J (2017) Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater 46:1703852

    Article  Google Scholar 

  24. Shin SS, Yang WS, Noh JH, Suk JH, Jeon NJ, Park JH, Kim JS, Seong WM, Seok S (2015) High-performance flexible perovskite solar cells exploiting Zn2 SnO4 prepared in solution below 100°C. Nat Commun 6:7410

    Article  Google Scholar 

  25. Shin SS, Yeom EJ, Yang WS, Hur S, Kim MG, Im J, Seo J, Noh JH, Seok S (2017) Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 6334:167–171

    Article  Google Scholar 

  26. Lindström H, Rensmo H, Södergren S, Solbrand A, Lindquist SE (1996) Electron transport properties in dye-sensitized Nanoporous−Nanocrystalline TiO2 films. J Phys Chem 8:3084–3088

    Article  Google Scholar 

  27. Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 4–6:567–574

    Article  Google Scholar 

  28. Pierson HO (1999) Handbook of chemical vapor deposition: principles, technology and applications. William Andrew

    Google Scholar 

  29. Kamins TI, Mandurah MM, Saraswat KC (1978) Structure and stability of low pressure chemically vapor-deposited silicon films. J Electrochem Soc 6:927–932

    Article  Google Scholar 

  30. Aoyagi Y, Masuda S, Namba S (1985) Laser enhanced metal organic chemical vapor deposition crystal growth in Ga As. Appl Phys Lett 2:95–96

    Article  Google Scholar 

  31. Malygin AA, Drozd VE, Malkov AA, Smirnov VM (2015) From VB aleskovskii’s “framework” hypothesis to the method of molecular layering/atomic layer deposition. Chem Vap Deposit 12:216–240

    Article  Google Scholar 

  32. Huff H, Gilmer D (2006) High dielectric constant materials: VLSI MOSFET applications. Springer, Berlin

    Google Scholar 

  33. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chem Int Ed Eng 12:1026–1040

    Article  Google Scholar 

  34. Somiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 6:453–460

    Article  Google Scholar 

  35. Pollet BG (2012) Power ultrasound in electrochemistry. Wiley, Hoboken

    Book  Google Scholar 

  36. Suslick KS, Crum LA, Crocker MJ (1998) Sonochemistry and sonoluminescence. Wiley, New York

    Google Scholar 

  37. Livage J, Sanchez C, Henry M, Doeuff S (1989) The chemistry of the sol-gel process. Solid State Ionics 32:633–638

    Article  Google Scholar 

  38. Powell CF (1966) Vapor deposition. J Electrochem Soc 10:266–269

    Article  Google Scholar 

  39. Howatt GN, Breckenridge RG, Brownlow JM (1947) Fabrication of thin ceramic sheets for capacitors. J Am Ceram Soc 8:237–242

    Article  Google Scholar 

  40. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorgan Chem 20:6841–6851

    Article  Google Scholar 

Download references

Acknowledgment

This research work was financially supported by the BOLD2025 Grant (No. 10436494/B/2019008), fundamental research grant scheme (No. 20190111FRGS), and BOLD2025 publication (No. RJO10436494) under Universiti Tenaga Nasional Sdn. Bhd., Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foo Wah Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Low, F.W. et al. (2020). Mechanism of Photoanodes for Dye-Sensitized and Perovskite Solar Cells. In: Pathak, P., Srivastava, R.R. (eds) Alternative Energy Resources. The Handbook of Environmental Chemistry, vol 99. Springer, Cham. https://doi.org/10.1007/698_2020_633

Download citation

Publish with us

Policies and ethics