Skip to main content

How difficult is it to solve a thue equation?

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1122))

Included in the following conference series:

Abstract

Here we present an analysis of the difficulty of solving a Thue equation. This is given as a complexity estimate in terms of the size of the initial input data and also in terms of an invariant of the equation which could effect the practical solution process in a significant way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Baker. Contributions to the theory of diophantine equations I and II. Phil. Trans. Roy. Soc. London Ser A., 263, 173–208, (1968).

    Google Scholar 

  2. A. Baker and G. Wűstholz. Logarithmic forms and group varieties. J. Reine Angew. Math., 442, 19–62, (1993).

    Google Scholar 

  3. J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres, Paris (1988–1989), 28–41.

    Google Scholar 

  4. H. Cohen. A Course In Computational Algebraic Number Theory. Springer-Verlag, Berlin, (1993).

    Google Scholar 

  5. A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261, 515–534, (1982).

    Google Scholar 

  6. K. Mahler. An inequality for the discriminant of a polynomial. Mich. Math. Journ., 11, 257–262, (1964).

    Google Scholar 

  7. M. Mignotte. Some inequalities about univariate polynomials. SYMSAC, 195–199, (1981).

    Google Scholar 

  8. A. Pethő and B.M.M. de Weger. Products of prime powers in binary recurrence sequences I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation. Math. Comp., 47, 713–727, (1986).

    Google Scholar 

  9. M. Pohst and H. Zassenhaus. Algorithmic Algebraic Number Theory. Cambridge University Press, (1989).

    Google Scholar 

  10. T. Shorey and R. Tijdeman. Exponential Diophantine Equations. Cambridge University Press, (1986).

    Google Scholar 

  11. R.J. Stroeker and B.M.M. de Weger. On elliptic diophantine equations that defy Thue-The case of the Ochoa curve. Exp. Math., 3, 209–220, (1994).

    Google Scholar 

  12. A. Thue. Űber annáherungswerte algebraischer Zahlen. J. Reine Angew Math, 135, 284–305, (1909).

    Google Scholar 

  13. N. Tzanakis and B.M.M. de Weger. On the practical solution of the Thue equation. J. Number Theory, 31, 99–132, (1989).

    Google Scholar 

  14. N. Tzanakis and B.M.M. de Weger. How to explicitly solve a Thue-Mahler equation. Comp. Math., 84, 223–288, (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Henri Cohen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smart, N.P. (1996). How difficult is it to solve a thue equation?. In: Cohen, H. (eds) Algorithmic Number Theory. ANTS 1996. Lecture Notes in Computer Science, vol 1122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61581-4_67

Download citation

  • DOI: https://doi.org/10.1007/3-540-61581-4_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61581-1

  • Online ISBN: 978-3-540-70632-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics