Skip to main content

A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics

  • Conference paper
Fluid-Structure Interaction

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 53))

Abstract

We investigate a new method of solving the problem of fluid-structure interaction of an incompressible elastic object in laminar incompressible viscous flow. Our proposed method is based on a fully implicit, monolithic formulation of the problem in the arbitrary Lagrangian-Eulerian framework. High order FEM is used to obtain the discrete approximation of the problem. In order to solve the resulting systems a quasi-Newton method is applied with the linearized systems being approximated by the divided differences approach. The linear problems of saddle-point type are solved by a standard geometric multigrid with local multilevel pressure Schur complement smoothers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paulsen, K.D., Miga, M.I., Kennedy, F.E., Hoopes, P.J., Hartov, A., Roberts, D.W.: A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Transactions on Biomedical Engineering 46(2) (1999) 213–225

    Article  Google Scholar 

  2. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Computational Phys. 25(3) (1977) 220–252

    Article  MATH  MathSciNet  Google Scholar 

  3. Peskin, C.S.: The fluid dynamics of heart valves: experimental, theoretical, and computational methods. In: Annual review of fluid mechanics, Vol. 14. Annual Reviews, Palo Alto, Calif. (1982) 235–259

    MathSciNet  Google Scholar 

  4. Peskin, C.S., McQueen, D.M.: Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. J. Comput. Phys. 37(1) (1980) 113–132

    Article  MATH  MathSciNet  Google Scholar 

  5. Peskin, C.S., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2) (1989) 372–405

    Article  MATH  MathSciNet  Google Scholar 

  6. Costa, K.D., Hunter, P.J., M., R.J., Guccione, J.M., Waldman, L.K., McCulloch, A.D.: A three-dimensional finite element method for large elastic deformations of ventricular myocardum: I - Cylindrical and spherical polar coordinates. Trans. ASME J. Biomech. Eng. 118(4) (1996) 452–463

    Google Scholar 

  7. Costa, K.D., Hunter, P.J., Wayne, J.S., Waldman, L.K., Guccione, J.M., Mc- Culloch, A.D.: A three-dimensional finite element method for large elastic deformations of ventricular myocardum: II – Prolate spheroidal coordinates. Trans. ASME J. Biomech. Eng. 118(4) (1996) 464–472

    Google Scholar 

  8. Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: Problems, models and methods. Computing and Visualization in Science 2(4) (2000) 163–197

    Article  MATH  Google Scholar 

  9. Quarteroni, A.: Modeling the cardiovascular system: a mathematical challenge. In Engquist, B., Schmid, W., eds.: Mathematics Unlimited - 2001 and Beyond. Springer-Verlag (2001) 961–972

    Google Scholar 

  10. Heil, M.: Stokes flow in collapsible tubes: Computation and experiment. J. Fluid Mech. 353 (1997) 285–312

    Article  MATH  Google Scholar 

  11. Heil, M.: Stokes flow in an elastic tube - a large-displacement fluid-structure interaction problem. Int. J. Num. Meth. Fluids 28(2) (1998) 243–265

    Article  MATH  Google Scholar 

  12. Le Tallec, P., Mani, S.: Numerical analysis of a linearised fluid-structure interaction problem. Num. Math. 87(2) (2000) 317–354

    Article  MATH  MathSciNet  Google Scholar 

  13. Rumpf, M.: On equilibria in the interaction of fluids and elastic solids. In: Theory of the Navier-Stokes equations. World Sci. Publishing, River Edge, NJ (1998) 136–158

    Google Scholar 

  14. Sackinger, P.A., Schunk, P.R., Rao, R.R.: A Newton-Raphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation. J. Comput. Phys. 125(1) (1996) 83–103

    Article  MATH  MathSciNet  Google Scholar 

  15. Farhat, C., Lesoinne, M., Maman, N.: Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Int. J. Numer. Methods Fluids 21(10) (1995) 807–835 Finite element methods in large-scale computational fluid dynamics (Tokyo, 1994).

    Article  MATH  MathSciNet  Google Scholar 

  16. Koobus, B., Farhat, C.: Second-order time-accurate and geometrically conservative implicit schemes for flow computations on unstructured dynamic meshes. Comput. Methods Appl. Mech. Engrg. 170(1–2) (1999) 103–129

    Article  MATH  MathSciNet  Google Scholar 

  17. Davis, T.A., Du., I.S.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Software 25(1) (1999) 1–19

    Article  MATH  MathSciNet  Google Scholar 

  18. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the solution of linear systems: Building blocks for iterative methods. Second edn. SIAM, Philadelphia, PA (1994)

    Google Scholar 

  19. Bramley, R., Wang, X.: SPLIB: A library of iterative methods for sparse linear systems. Department of Computer Science, Indiana University, Bloomington, IN. (1997) http://www.cs.indiana.edu/ftp/bramley/splib.tar.gz.

    Google Scholar 

  20. Vanka, S.: Implicit multigrid solutions of Navier-Stokes equations in primitive variables. J. of Comp. Phys. (65) (1985) 138–158

    Article  MathSciNet  Google Scholar 

  21. Turek, S.: Efficient solvers for incompressible flow problems: An algorithmic and computational approach. Springer (1999)

    Google Scholar 

  22. Turek, S., Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In Bungartz, H.J., Schäfer, M., eds.: Fluid-Structure Interaction: Modelling, Simulation, Optimisation. LNCSE. Springer (2006)

    Google Scholar 

  23. Maurel, W., Wu, Y., Magnenat Thalmann, N., Thalmann, D.: Biomechanical models for soft tissue simulation. ESPRIT basic research series. Springer- Verlag, Berlin (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Hron, J., Turek, S. (2006). A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics. In: Bungartz, HJ., Schäfer, M. (eds) Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-34596-5_7

Download citation

Publish with us

Policies and ethics