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Sequential constructions of random partitions

This chapter introduces a basic sequential construction of random partitions,
motivated at first by consideration of uniform random permutations of [n] which
are consistent in a certain sense as n varies. This leads to consideration of a
particular two-parameter family of exchangeable random partition structures,
which can be characterized in various ways, and which is closely related to
gamma and stable subordinators.

3.1. The Chinese restaurant process This process defines a sequence of
random permutations σn of the set [n] := {1, . . . , n} such that the random
partitions Πn generated by cycles of σn are consistent as n varies. The
most general exchangeable random partition of positive integers can be
obtained this way.

3.2. The two-parameter model This section treats a particularly tractable
family of random partitions of N, parameterized by a pair of real num-
bers (α, θ) subject to appropriate constraints. The distribution Pα,θ of an
(α, θ) partition is characterized by the product form of its partition prob-
abilities, and by the induced distribution of its frequencies in size-biased
random order. This distribution is known in the literature as GEM(α, θ),
after Griffiths-Engen-McCloskey, while the corresponding distribution of
ranked frequencies is known as the Poisson-Dirichlet distribution pd(α, θ).
These distributions and associated random partitions arise in numerous
contexts, such as population genetics, number theory, Bayesian nonpara-
metric statistics, and the theory of excursions of Brownian motion and
Bessel processes.

3.3. Asymptotics This section treats various asymptotic properties of par-
titions of N, with special emphasis on the two-parameter family, whose
asymptotic properties are radically different according to whether α is
positive, negative, or zero. In particular, the number Kn of blocks of Πn

is bounded if α < 0, grows like θ log n if α = 0 < θ, and grows like a ran-
dom multiple of nα if 0 < α < 1, where the distribution of the multiplier
depends on θ. For fixed α ∈ (0, 1) the probability laws of (α, θ) partitions
turn out to be mutually absolutely continuous as θ varies with θ > −α,
and the Radon-Nikodym density is described.
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3.4. A branching process construction of the two-parameter model
This section offers a construction of the two-parameter model in terms of
a branching process in continuous time.

3.1. The Chinese restaurant process

Consistent random permutations Consider a sequence of random permu-
tations (σn, n = 1, 2, · · ·) such that

(i) σn is a uniformly distributed random permutation of [n] for each n;
(ii) for each n, if σn is written as a product of cycles, then σn−1 is derived

from σn by deletion of element n from its cycle.
For example, using standard cycle notation for permutations,

if σ5 = (134)(25) then σ4 = (134)(2);
if σ5 = (134)(2)(5) then σ4 = (134)(2).

It is easily seen that these requirements determine a unique distribution for
the sequence (σn), which can be described as follows.

An initially empty restaurant has an unlimited number of circular tables
numbered 1, 2, . . ., each capable of seating an unlimited number of customers.
Customers numbered 1, 2, · · · arrive one by one and are seated at the tables
according to the following:

Simple random seating plan Person 1 sits at table 1. For n ≥ 1 suppose
that n customers have already entered the restaurant, and are seated in some
arrangement, with at least one customer at each of the tables j for 1 ≤ j ≤ k
say, where k is the number of tables occupied by the first n customers to arrive.
Let customer n + 1 choose with equal probability to sit at any of the following
n + 1 places: to the left of customer j for some 1 ≤ j ≤ n, or alone at table
k + 1. Define σn : [n] → [n] as follows. If after n customers have entered the
restaurant, customers i and j are seated at the same table, with i to the left of
j, then σn(i) = j, and if customer i is seated alone at some table then σn(i) = i.
The sequence (σn) then has features (i) and (ii) above by a simple induction.

Many asymptotic properties of uniform random permutations can be read
immediately from this construction. For instance, the number of occupied tables
after n customers have been seated is

Kn = #{ cycles of σn} = Z1 + · · · + Zn (3.1)

where the Zj is the indicator of the event that the jth customer is seated at
a new table. By construction, the Zj are independent Bernoulli(1/j) variables,
hence,

Kn

log n
→ 1 almost surely,

Kn − log n

(log n)1/2

d→ B1 (3.2)

where B1 is a standard Gaussian variable. This and other results about random
permutations now recalled are well known.

Let Πn be the partition of [n] generated by the cycles of σn. Then Πn is an
exchangeable random partition of [n], and the Πn are consistent as n varies. Thus
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the sequence Π∞ := (Πn) is an exchangeable random partition of N. Let Xn be
the indicator of the event that the (n + 1)th customer sits at table 1. Then the
sequence (Xn)n≥1 is an exchangeable sequence which evolves by the dynamics
of Pólya’s urn scheme (2.15) with a = b = 1. Hence Sn := X1 + · · · + Xn has
uniform distribution on {0, 1, . . . , n}. Equivalently, the size Sn + 1 of the cycle
of σn+1 containing 1 has uniform distribution on {1, . . . , n+1}. The asymptotic
frequency of the class of Π∞ containing 1 is the almost sure limit of Sn/n, which
evidently has uniform distribution on [0, 1].

The limit frequencies Let (Nn,1, . . . , Nn,Kn
) denote the sizes of blocks of

Πn, in order of least elements. In terms of the restaurant construction, Nn,i is the
number of customers seated at table i after n customers have been seated. From
above, Nn,1 has uniform distribution on [n]. Similarly, given Nn,1 = n1 < n,
Nn,2 has uniform distribution on [n − n1]. And so on. Asymptotic behavior of
this discrete uniform stick-breaking scheme is quite obvious: as n → ∞, the
relative frequencies (Nn,i/n, i ≥ 1) of the sizes of cycles of σn, which are in a
size-biased random order, converge in distribution to the continuous uniform
stick-breaking sequence

(P̃1, P̃2, . . .) = (U1, U1U2, U1U2U3, . . .)

where the Ui are independent uniform[0, 1] variables, and Ū := 1 − U . By an
obvious combinatorial argument, the corresponding infinite exchangeable parti-
tion probability function (EPPF), which gives for each n the probability that
Πn equals any particular partition of [n] with ni elements in the ith cycle, for
some arbitrary ordering of cycles, is

p0,1(n1, . . . , nk) :=
1
n!

k∏
i=1

(ni − 1)!. (3.3)

Compare with (2.19) to see that this continuous uniform stick-breaking sequence
(P̃1, P̃2, . . .) has the same distribution as a size-biased permutation of the jumps
of the Dirichlet process with exchangeable increments

(Γu/Γ1, 0 ≤ u ≤ 1)

where (Γu, u ≥ 0) is a gamma process. Since the limiting ranked frequencies
P ↓

i are recovered from the (P̃j) by ranking, it follows that if Γ1 is a standard
exponential variable independent of the limiting ranked frequencies P ↓

i defined
by the Chinese restaurant construction of random permutations, then

Γ1P
↓
1 > Γ1P

↓
2 > Γ1P

↓
3 > · · · > 0

are the ranked points of a Poisson point process whose intensity measure
x−1e−xdx on (0,∞) is the Lévy measure of the gamma process. This allows
calculation of moments of the P ↓

i . For instance

E#{i : Γ1P
↓
i > y} = E1(y) :=

∫ ∞

y

x−1e−xdx.
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So as n → ∞ the asymptotic mean fraction of elements in the longest cycle of
a uniform random permutation of [n] is

E(P ↓
1 ) = E(Γ1)E(P ↓

1 ) = E(Γ1P
↓
1 ) =

∫ ∞

0

(1 − e−E1(x))dx.

This technique of random scaling to simplify the probabilistic structure of ran-
dom partitions has many other applications. See for instance [85, 372, 374, 24].
The distribution of (P ↓

1 , P ↓
2 , . . .), constructed here from random permutations

using the Chinese restaurant process, is known as the Poisson-Dirichlet distri-
bution with parameter 1. Some references: Shepp-Lloyd [400], Vershik-Shmidt
[422, 423], Flajolet-Odlyzko [156], Arratia-Barbour-Tavaré [27].

Generalization The Chinese restaurant construction is easily generalized to
allow construction of a sequence of random permutations σn of [n] such that
the associated sequence of random partitions Π∞ := (Πn) is the most gen-
eral possible exchangeable random partition of integers, as discussed in Section
2.2. Recall that the corresponding exchangeable partition probability function
(EPPF) p(n1, . . . , nk) gives for each (n1, . . . , nk) the the probability that Πn

equals any specific partition of [n] into sets of sizes (n1, . . . , nk). In terms of
the Chinese restaurant, the permutation σn is thought of as a configuration
of n customers seated at Kn tables, where Kn is the number of cycles of σn.
For present purposes, we only care about the random partition Πn induced by
the cycles of σn. So for 1 ≤ i ≤ Kn the statement “customer n + 1 is placed
at occupied table i” means Πn+1 is the partition of [n + 1] whose restriction
to [n] is Πn, with n + 1 belonging to the ith class of Πn. Similarly “customer
n + 1 is placed at a new table” means Πn+1 is the partition of [n + 1] whose
restriction to [n] is Πn, with {n + 1} a singleton block. Given an infinite EPPF
p(n1, . . . , nk), a corresponding exchangeable random partition of N (Πn) can
thus be constructed as follows.

Random seating plan for an exchangeable partition The first customer
is seated at the first table, that is Π1 = {1}. For n ≥ 1, given the partition
Πn, regarded as a placement of the first n customers at tables of the Chinese
restaurant, with k occupied tables, the next customer n + 1 is

• placed at occupied table j with probability p(. . . , nj + 1, . . .)/p(n1, . . . , nk)
• placed at new table with probability p(n1, . . . , nk, 1)/p(n1, . . . , nk)
In particular, it is clear that a simple product form for the EPPF will cor-

respond to a simple prescription of these conditional probabilities. But before
discussing specific examples, it is worth making some more general observa-
tions. Any sequential seating plan for the Chinese restaurant, corresponding to
a prediction rule for the conditional distribution of Πn+1 given Πn for each n,
whereby n + 1 is either assigned to one of the existing blocks of Πn or declared
to be a singleton block of Πn+1, can be used to construct a random partition
Π∞ := (Πn) of the positive integers. Most seating plans will fail to produce a
Π∞ that is exchangeable. But it is instructive to experiment with simple plans
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to see which ones do generate exchangeable partitions. According to Kingman’s
theory of exchangeable random partitions described in Section 2.2, a necessary
condition for Π∞ to be exchangeable is that for each i there exists an almost
sure limiting frequency P̃i of customers seated at table i. More formally, this
is the limit frequency of the ith block of Π∞ when blocks are put in order of
appearance. The simplest way to achieve this is to consider the following:

Random seating plan for a partially exchangeable partition Let (Pi, i =
1, 2, . . .) be an arbitrary sequence of random variables with Pi ≥ 0 and

∑
i Pi ≤

1. Given the entire sequence (Pi, i = 1, 2, . . .) let the first customer be seated at
the first table, and for n ≥ 1, given the partition Πn, regarded as a placement
of the first n customers at tables of the Chinese restaurant, with k occupied
tables, let the next customer n + 1 be

• placed at occupied table j with probability Pj

• placed at new table with probability 1 −
∑k

i=1 Pi

P1

1st table

P2

2nd table

Pk

kth table

j = 1
Σ Pj

k

1 −

new table

Figure 3.1: Chinese Restaurant Process with random seating plan.

By construction and the law of large numbers, for each i the limiting fre-
quency of customers seated at table i exists and equals Pi. Moreover, by con-
ditioning on the entire sequence Pi, the probability that Πn equals any specific
partition of [n] into sets of sizes (n1, . . . , nk), in order of least elements, is given
by the formula

p(n1, · · · , nk) = E




k∏
i=1

Pni−1
i

k−1∏
i=1


1 −

i∑
j=1

Pj




 (3.4)

Such a random partition of [n] is called partially exchangeable [347]. These con-
siderations lead to the following variation of Kingman’s representation:

Theorem 3.1. [347] Let (Pi) be a sequence of random variables with Pi ≥ 0
and

∑
i Pi ≤ 1, and let p(n1, . . . , nk) be defined by in formula (3.4).

(i) There exists an exchangeable random partition Π∞ of N whose block fre-
quencies in order of appearance (P̃i) are distributed like (Pi) if and only if the
function p(n1, . . . , nk) is a symmetric function of (n1, . . . , nk) for each k.
(ii) If Π∞ is such an exchangeable random partition of N with block frequencies
(P̃i), then the EPPF of Π∞ is p(n1, . . . , nk) defined by (3.4) for Pi = P̃i, and
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the conditional law of Π∞ given (P̃i) is governed by the random seating plan for
a partially exchangeable partition, described above.

Proof. The “if” part of (i) is read from the preceding argument. See [347] for
the “only if” part of (i). Granted that, part (ii) follows easily. �

Exercises

3.1.1. Let Π∞ := (Πn) be an infinite exchangeable (or partially exchangeable)
random partition, with Ñn,i the number of elements of [n] in the ith class of
Π∞ to appear, and P̃i := limn Ñn,i/n. The conditional distribution of Ñn,1 − 1
given P̃1 is binomial(n− 1, P̃1), hence the distribution of Ñn,1 is determined by
that of P̃1 via

P(Ñn,1 = j) =
(

n − 1
j − 1

)
E

[
P̃ j−1

1 (1 − P̃1)n−j
]

(1 ≤ j ≤ n).

Use a similar description of the law of (Ñn,1, . . . , Ñn,k) given (P̃1, . . . , P̃k) to
show that for each n, k ≥ 1 the law of (Ñn,1, . . . , Ñn,k) is determined by that of
(P̃1, . . . , P̃k).

Notes and comments

Basic references on random permutations are Feller [148] and Goncharov [177]
from the 1940’s. There is a nice bijection between the structure of records and
cycles. For this and more see papers by Ignatov [207, 206], Rényi, Goldie [175],
Stam [403, 405]. The fact that the cycle structure of uniform random permu-
tations is consistent as n varies was pointed out by Greenwood [179]. Lester
Dubins and I devised the Chinese Restaurant Process in the early 1980’s as
a way of constructing consistent random permutations and random partitions.
The notion first appears in print in [14, (11.19)]. See also Joyce and Tavaré [224],
and Arratia, Barbour and Tavaré [27] for many further results and references.
The Chinese Restaurant Process and associated computations with random par-
titions have found applications in Bayesian statistics [109, 287, 210, 212], and
in the theory of representations of the infinite symmetric group [243].

3.2. The two-parameter model

The EPPF’s calculated in (2.17) and (2.19) suggest the following seating plan for
the Chinese restaurant construction of a random partition of N, say Π∞ := (Πn),
starting from Π1 := {1}.
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(α, θ) seating plan [347] Given at stage n there are k occupied tables, with
ni customers at the ith table, let the next customer be • placed at occupied
table i with probability (ni − α)/(n + θ),

• placed at new table with probability (θ + kα)/(n + θ).

n  1 − α
n  + θ

1st table

n  − α
n  + θ
2

2nd table

n  − α
n  + θ
k

kth table

θ + k α
n  + θ

new table

Figure 3.2: Chinese Restaurant Process with (α, θ) seating plan.

To satisfy the rules of probability it is necessary to suppose that

• either α = −κ < 0 and θ = mκ for some m = 1, 2, . . .
• or 0 ≤ α ≤ 1 and θ > −α.

(3.5)

Case (α = −κ < 0 and θ = mκ, for some m = 1, 2, . . .) Compare the (α, θ)
seating plan with Exercise 2.2.5 to see that in this case Π∞ is distributed as if
by sampling from a symmetric Dirichlet distribution with m parameters equal
to κ. This can also be seen by comparison of (2.17) and (3.6) below.

Case (α = 0 and θ > 0) This is the weak limit of the previous case as κ → 0
and mκ → θ. By consideration of this weak limit, or by the Blackwell-MacQueen
urn scheme (2.18), such a Π∞ is distributed as if by sampling from a Dirichlet
process with parameter θ.

Case (α = 0 and θ = 1) This instance of the previous case corresponds
to Π∞ generated by the cycles of a consistent sequence of uniform random
permutations, as in the previous section.

Case (0 < α < 1 and θ > −α) This case turns out to be related to the stable
subordinator of index α, as will be explained in detail in Section 4.2.

Theorem 3.2. [347] For each pair of parameters (α, θ) subject to the con-
straints above, the Chinese restaurant with the (α, θ) seating plan generates an
exchangeable random partition Π∞ of N. The corresponding EPPF is

pα,θ(n1, . . . , nk) =
(θ + α)k−1↑α

∏k
i=1(1 − α)ni−1↑1

(θ + 1)n−1↑1
(3.6)
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where

(x)n↑α :=
n−1∏
i=0

(x + iα). (3.7)

The corresponding limit frequencies of classes, in size-biased order of least ele-
ments, can be represented as

(P̃1, P̃2, . . .) = (W1, W 1W2, W 1W 2W3, . . .) (3.8)

where the Wi are independent, Wi has beta(1 − α, θ + iα) distribution, and
W i := 1 − Wi.

Proof. By construction, the probability that Πn equals a specific partition
of [n] is found to depend only on the sizes (n1, . . . , nk) of the blocks of the
partition, as indicated by pα,θ(n1, . . . , nk). Since this function is symmetric in
(n1, . . . , nk), each Πn is exchangeable, and by construction the sequence (Πn)
is consistent. So Π := (Πn) is an exchangeable random partition of N. The
joint law of the Wi can be identified either using formula (3.4), or by repeated
application of the beta-binomial relation described around (2.15) . �

Definition 3.3. (GEM and PD distributions) For (α, θ) subject to the
constraints (3.5), call the distribution of size-biased frequencies (P̃j), defined
by the residual allocation model (3.8), the Griffiths-Engen-McCloskey distrib-
ution with parameters (α, θ), abbreviated GEM(α, θ). Call the corresponding
distribution on P↓

[0,1] of ranked frequencies (P ↓
i ) of an (α, θ) partition, obtained

by ranking (P̃j) with GEM(α, θ) distribution, the Poisson-Dirichlet distribution
with parameters (α, θ), abbreviated pd(α, θ).

Explicit but complicated formulae are known for the joint density of the first
j coordinates of a pd(α, θ) distributed sequence [371], but these formulae are of
somewhat limited use.

Characterizations of the two-parameter scheme. The closure of the two-
parameter family of models consists of the original two-parameter family subject
to the constraints on (α, θ) discussed above, plus the following models:
• the degenerate case with Πn the partition of singletons for all n; this arises
for α = 1 and as the weak limit of (α, θ) partitions as θ → ∞ for any fixed
α ∈ [0, 1).
• for each m = 1, 2, . . . the coupon collectors partition (2.16) defined by m
frequencies identically equal to 1/m; this is the weak limit of (−κ,mκ) partitions
as κ → ∞ for fixed m.
• for each 0 ≤ p ≤ 1 the mixture with weights p and 1 − p of the one block
partition and the partition into singletons. As observed by Kerov [240, (1.10)],
this limit is obtained as α → 1 and θ → −1 with (1−α)/(1+ θ) → p. The cases
p = 0 and p = 1 arise also as indicated just above.
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Theorem 3.4. [240, 349] Suppose that an exchangeable random partition Π∞
of N has block frequencies P̃j (in order of least elements) such that 0 < P̃1 < 1
almost surely, and either
(i) The restriction Πn of Π∞ to [n] is a Gibbs[n](v•, w•) partition, meaning its
EPPF is of the product form (1.48), for some pair of non-negative sequences
v• and w•, or
(ii) the frequencies P̃j are of the product form (3.8) for some independent random
variables Wi.
Then the distribution of Π∞ is either that determined by (α, θ) model for some
(α, θ), or that of a coupon collectors partition, for some m = 2, 3, . . ..

Proof. Assuming (i), the form of the EPPF is forced by elementary arguments
using addition rules of an EPPF [240]. Assuming (ii), the form of the distribution
of the Wi is forced by symmetry of the EPPF and the formula (3.4). See [349]
for details. �

See also Zabell [441] for closely related characterizations by the simple form of
the prediction rule for (Πn) defined by the (α, θ) seating plan. Note in particular
the following consequence of the previous theorem:

Corollary 3.5. McCloskey [302]. An exchangeable random partition Π∞ of N

has block frequencies P̃j (in order of least elements) of the product form (3.8) for
some sequence of independent and identically distributed random variables Wi

with 0 < Wi < 1 if and only if the common distribution of the Wi is beta(1, θ)
for some θ > 0, in which case Π∞ is generated by the (0, θ) model.

This result of McCloskey is easily transformed into another characterization
of the (0, θ) model due to Kingman. The following formulation is adapted from
Aldous [14, p. 89].

Corollary 3.6. Let Π∞ be an exchangeable random partition of N. The distri-
bution of Π∞ is governed by the (0, θ) model iff for each pair of integers i and j,
the probability that i and j belong to the same component of Π∞ is 1/(1+θ), and
Π∞ has the following further property: for each pair of non-empty disjoint finite
sets of positive integers A and B, the event that A is a block of the restriction
of Π∞ to A ∪ B is independent of the restriction of Π∞ to B.

Proof. That the (0, θ) model satisfies the independence condition is evident
from the form of its EPPF. Conversely, in terms of the general Chinese restau-
rant construction, the exchangeability of Π∞ plus the independence condition
means that the process of seating customers at tables 2, 3, . . ., watched only
when customers are placed at one of these tables, can be regarded in an obvious
way as a copy of the original process of seating customers at tables 1, 2, 3, . . .,
and that this copy of the original process is independent of the sequence of times
at which customers are seated at table 1. It follows that if the block frequencies
(P̃j) of Π∞ are represented in the product form (3.8), then the asymptotic fre-
quency P̃1 = W1 of customers arriving at table 1 is independent of the sequence
(W2,W3, . . .) governing the relative frequencies of arrivals at tables 2, 3, . . ., and
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that (W2,W3, . . .)
d= (W1,W2, . . .). So the Wi are i.i.d. and the conclusion fol-

lows from Corollary 3.5. �

Problem 3.7. Suppose an exchangeable random partition Π∞ has block fre-
quencies (P̃i) such that 0 < P̃i < 1 and P̃1 is independent of the sequence
(P̃i/(1 − P̃1), i ≥ 2). Is Π∞ necessarily some (α, θ) partition?

Exercises

3.2.1. (Deletion of Classes.) Given a random partition Π∞ of N with infi-
nitely many classes, for each k = 0, 1, · · · let Π∞(k) be the partition of N derived
from Π∞ by deletion of the first k classes. That is, first let Π′

∞(k) be the re-
striction of Π∞ to Hk := N − G1 − · · · − Gk where G1, · · ·Gk are the first k
classes of Π∞ in order of appearance, then derive Π∞(k) on N from Π′

∞(k) by
renumbering the points of Hk in increasing order. The following are equivalent:

(i) for each k, Π∞(k) is independent of the frequencies (P̃1, · · · , P̃k) of the
first k classes of Π∞;

(ii) Π∞ is an (α, θ)-partition for some 0 ≤ α < 1 and θ > −α, in which case
Π∞(k) is an (α, θ + kα)-partition.

3.2.2. (Urn scheme for a (1
2 , 0) partition) Let an urn initially contain two

balls of different colors. Draw 1 is a simple draw from the urn with replacement.
Thereafter, balls are drawn from the urn, with replacement of the ball drawn,
and addition of two more balls as follows. If the ball drawn is of a color never
drawn before, it is replaced together with two additional balls of two distinct
new colors, different to the colors of balls already in the urn. Whereas if the ball
drawn is of a color that has been drawn before, it is replaced together with two
balls of its own color. Let Πn be the partition of [n] generated by the colors of
the first n draws from the urn. Then Π∞ := (Πn) is a (1

2 , 0) partition.

3.2.3. (Number of blocks) Let Pα,θ govern Π∞ = (Πn) as an (α, θ) partition,
for some (α, θ) subject to the constraints (3.5). Let Kn be the number of blocks
of Πn:

Kn := |Πn| =
n∑

j=1

|Πn|j =
n∑

i=1

Xi

where |Πn|j is the number of blocks of Πn of size j, and Xi is the indicator
of the event that i is the least element of some block of Π∞ (customer i sits
at an unoccupied table). Under Pα,θ the sequence (Kn)n≥1 is a Markov chain,
starting at K1 = 1, with increments in {0, 1}, and inhomogeneous transition
probabilities

Pα,θ(Kn+1 = k + 1 |K1, . . . ,Kn = k) =
kα + θ

n + θ
(3.9)

Pα,θ(Kn+1 = k |K1, . . . ,Kn = k) =
n − kα

n + θ
. (3.10)
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The distribution of Kn is given by

Pα,θ(Kn = k) =
(θ + α)k−1↑α

(θ + 1)n−1↑
Sα(n, k) (3.11)

where
Sα(n, k) := Bn,k((1 − α)•−1↑) = S−1,−α

n,k (3.12)

is a generalized Stirling number of the first kind, as in (1.20). The expected
value of Kn is

Eα,θ(Kn) =
n∑

i=1

(θ + α)i−1↑
(θ + 1)i−1↑

=




n∑
i=1

θ

θ + i − 1
if α = 0

(θ + α)n↑
α(θ + 1)n−1↑

− θ

α
if α 	= 0.

(3.13)

3.2.4. (Serban Nacu [318]) (Independent indicators of new blocks) Com-
pare with Exercise 2.1.4 and Exercise 4.3.4 . Let Xi be the indicator of the
event that i is the least element of some block of an exchangeable random par-
tition Πn of [n]. Show that the Xi, 1 ≤ i ≤ n are independent if and only if Πn

is a (0, θ) partition of [n] for some θ ∈ [0,∞], with the obvious definition by
continuity in the two endpoint cases.

3.2.5. (Equilibrium of a coagulation/fragmentation chain)[301, 110, 361,
169] Let P↓

1 be the space of real partitions of 1. Define a Markov kernel Q on
P↓

1 as follows. For p = (pi) ∈ P↓
1 , let I and J be independent and identically

distributed according to p. If I = J then replace pI by two parts pIU and
pI(1−U) where U is uniform(0, 1) independent of I, J , and rerank, but if I 	= J
then replace the two parts pI and pJ by a single part pI + pJ , and rerank.

• (a) Show that pd(0, 1) is a Q-invariant measure.
• (b) [110] (hard). Show pd(0, 1) is the unique Q-invariant measure.
• (c) Modify the transition rule so that pd(0, θ) is an invariant measure.
• (d)(Open problem) Show that pd(0, θ) is the unique invariant measure for

the modified rule.
• (d)(Open problem) Define some kind of coagulation/fragmentation kernel

for which pd(α, θ) is an invariant measure.

3.2.6. The probabilities qα,θ(n, k) := Pα,θ(Kn = k) can be computed recur-
sively from the forwards equations

qα,θ(n+1, k) =
n − kα

n + θ
qα,θ(n, k)+

θ + (k − 1)α
n + θ

qα,θ(n, k−1), 1 ≤ k ≤ n. (3.14)

and the boundary cases

qα,θ(n, 1) =
(1 − α)n−1↑
(θ + 1)n−1↑

; qα,θ(n, n) =
(θ + α)n−1↑α

(θ + 1)n−1↑α
(3.15)
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For instance, the distribution of K3 is as shown in the following table:

k 1 2 3

Pα,θ(K3 = k)
(1 − α)(2 − α)
(θ + 1)(θ + 2)

3(1 − α)(θ + α)
(θ + 1)(θ + 2)

(θ + α)(θ + 2α)
(θ + 1)(θ + 2)

3.2.7. Take θ = 0 and use (3.11) to obtain a recursion for the Sα(n, k):

Sα(n, 1) = (1 − α)n−1↑; Sα(n, n) = 1 (3.16)
Sα(n + 1, k) = (n − kα)Sα(n, k) + Sα(n, k − 1). (3.17)

Toscano [415] used this recursion as his primary definition of these numbers,
and obtained from it the formula

Sα(n, k) =
1
k!

∆k
α,x(x)n↑

∣∣∣∣
x=0

(3.18)

where ∆k
α,x is the kth iterate of the operator ∆α,x, defined by ∆0,x = d

dx
(Jordan[222]) and for α 	= 0,

(∆α,xf)(x) =
f(x) − f(x − α)

α
.

Check Toscano’s formula

Sα(n, k) =
1

αkk!

k∑
j=1

(−1)j

(
k

j

)
(−kα)n↑ (α 	= 0). (3.19)

3.2.8. [132] Deduce the formula (3.13) for Eα,θ(Kn) by integration from the
general formula (2.27) and the beta(1 − α, θ + α) distribution of the frequency
P̃1 of the first block.

3.2.9. For real p > 0 let [k]p := Γ(k + p)/Γ(k) so that [k]p = (k)p↑ for p =
1, 2, . . .. For 0 < α < 1, and all real p > 0,

Eα,0[Kn]p =
Γ(p)[pα]n

Γ(n)α
. (3.20)

3.2.10. Let Π∞ := (Πn) be an exchangeable random partition of N, with
ranked frequencies denoted simply (Pj) instead of (P ↓

j ). Let p be the EPPF
of Π∞, and let q be derived from p by (2.8).

• There is the formula

q(n1, . . . , nk) = E




k∏
i=1




∞∑
j=1

Pni
j




 (3.21)

without further qualification if
∑

j Pj = 1 a.s., and with the qualification
if P(

∑
j Pj < 1) > 0 that ni ≥ 2 for all i.
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• For each fixed a > 0, the distribution of (Πn) on PN, and that of (Pj) on
P↓

1 , is uniquely determined by the values of p(n1, . . . , nk) for ni ≥ a for
all a. Similarly for q instead of p.

• (Πn) is an (α, θ) partition, or equivalently (Pj) has pd(α, θ) distribution,
iff p satisfies the recursion

p(n1 + 1, . . . , nk) =
n1 − α

n + θ
p(n1, . . . , nk). (3.22)

Note that p is subject also to the constraints of an EPPF, that is symmetry,
the addition rule, and P (1) = 1. These constraints and (3.22) imply p =
p(α,θ) as in (3.6).

• (Πn) is an (α, θ) partition, or equivalently (Pj) has pd(α, θ) distribution,
iff q satisfies the recursion

q(n1 + 1, . . . , nk) =
n1 − α

n + θ
q(n1, . . . , nk) +

n∑
s=2

q(n1 + ns, . . . , nk) (3.23)

where the number of arguments of q(n1 + 1, . . . , nk) and q(n1, . . . , nk) is
k, and the number of arguments of q(n1 +ns, . . . , nk) is k−1, with ns the
missing argument. Note that q is subject also to the a priori constraints
of symmetry, and q(1, . . . , 1) ≡ 1. These constraints and (3.23) imply that
q = q(α,θ) is given by formula (2.8) for p = p(α,θ) as in (3.6). There does
not appear to be any simpler formula for q(α,θ).

In the case θ = 0, the recursion (3.23) for q = q(α,0) was derived by Talagrand
[412, Proposition 1.2.2], using relations of Ghirlanda-Guerra [166] in the con-
text of Derrida’s random energy model [105] in the theory of spin glasses. The
appearance of pd(α, 0) in that setting is explained in Exercise 4.2.1 . Once the
parallel between (3.22) and (3.23) has been observed for θ = 0, the result for
general θ is easily guessed, and can be verified algebraically using (2.8). The
identities (2.8) and (3.22) have a transparent probabilistic meaning, the latter
in terms of the Chinese Restaurant Process. Can (3.23) too be understood with-
out calculation in some setting? Does (3.23) or PD(α, θ) have an interpretation
in terms of spin glass theory for θ 	= 0?

3.3. Asymptotics

The asymptotic properties of (α, θ) partitions of [n] for large n depend on
whether α is negative, 0, or positive. Recall the notations Kn := |Πn| for the
number of blocks of Πn, and |Πn|j for the number of blocks of Πn of size j. So

Kn := |Πn| =
n∑

j=1

|Πn|j

Case (α < 0). Then θ = −mα for some positive integer m, and Kn = m for
all sufficiently large n almost surely.
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Case (α = 0). Immediately from the prediction rule, for a (0, θ) partition, the
Xi are independent Bernoulli(θ/(θ + i − 1) variables. Hence [263]

lim
n→∞

Kn

log n
= θ, a.s. P0,θ for every θ > 0. (3.24)

Moreover, it follows easily from Lindeberg’s theorem that the P0,θ distribution
of (Kn − θ log n)/

√
θ log n converges to standard normal as n → ∞. By consid-

eration of the Ewens sampling formula (2.20), for each fixed k

{(|Πn|j , j ≥ 1); P0,θ} d→ (Zθ,j , j ≥ 1) (3.25)

meaning that under P0,θ which governs Π∞ as a (0, θ) partition, the finite dimen-
sional distributions of the counts (|Πn|j , j ≥ 1) converge without normalization
to those of (Zθ,j , j ≥ 1), where the Zθ,j are independent Poisson variables with
parameters θ/j. See [27] for various generalizations and refinements of these
results.

Case (0 < α < 1). Now Kn is a sum of dependent indicators Xi. It is easily
seen from (3.13) and Stirling’s formula that

Eα,θKn ∼ Γ(θ + 1)
αΓ(θ + α)

nα

which indicates the right normalization for a limit law.

Theorem 3.8. For 0 < α < 1, θ > −α, under Pα,θ as n → ∞,

Kn/nα → Sα almost surely (3.26)

and in pth mean for every p > 0, for a strictly positive random variable Sα, with
continuous density

d

ds
Pα,θ(Sα ∈ ds) = gα,θ(s) :=

Γ(θ + 1)
Γ( θ

α + 1)
s

θ
α gα(s) (s > 0) (3.27)

where gα = gα,0 is the Mittag-Leffler density (0.43) of the Pα,0 distribution of
Sα, whose pth moment is Γ(p + 1)/Γ(pα + 1).

Proof. Fix α ∈ (0, 1). Let Fn be the field of events generated by Πn. The
formula (3.6) for the EPPF of Πn under Pα,θ gives the likelihood ratio

Mα,θ,n :=
dPα,θ

dPα,0

∣∣∣∣
Fn

=
fα,θ(Kn)
f1,θ(n)

(3.28)

where for θ > −α

fα,θ(k) :=
(θ + α)k−1↑α

(α)k−1↑α
=

Γ( θ
α + k)

Γ( θ
α + 1)Γ(k)

∼ kθ/α

Γ( θ
α + 1)

as k → ∞. (3.29)
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Thus, for each θ > −α,

(Mα,θ,n,Fn;n = 1, 2, . . .) is a positive Pα,0-martingale.

By the martingale convergence theorem Mα,θ,n has a limit Mα,θ almost surely
(Pα,0). Theorem 3.2 shows that Π∞ has infinitely many blocks with strictly
positive frequencies, and hence Kn → ∞ almost surely (Pα,0) so (3.29) gives

Mα,θ,n ∼ Γ(θ + 1)
Γ( θ

α + 1)

(
Kn

nα

)θ/α

almost surely(Pα,0) (3.30)

Moreover the ratio of the two sides in (3.30) is bounded away from 0 and ∞.
Using (3.20), it follows that for each θ > −α, the martingale Mα,θ,n is bounded
in Lp(Pα,0), hence convergent in Lp(Pα,0) to Mα,θ for every p > 1. Hence

Eα,0Mα,θ = 1. (3.31)

But also by (3.30),

Γ(θ + 1)
Γ( θ

α + 1)

(
Kn

nα

)θ/α

→ Mα,θ =
Γ(θ + 1)

Γ(θ/α + 1)
Sθ/α

α (3.32)

Pα,0 almost surely and in Lp, where Sα := Mα,α/Γ(α + 1). Now (3.31) and (3.32)
yield the moments of the Pα,0 distribution of S. Since these are the moments
(0.42) of the Mittag-Leffler distribution, the conclusions of the theorem in case
θ = 0 are evident. The corresponding results for θ > 0 follow immediately from
the results for θ = 0, due to the following corollary of the above argument. �

Corollary 3.9. Let Pα,θ denote the distribution on PN of an (α, θ)-partition
Π∞ := (Πn). For each 0 < α < 1, θ > −α, the laws Pα,θ and Pα,0 are mutually
absolutely continuous, with density

dPα,θ

dPα,0
=

Γ(θ + 1)
Γ( θ

α + 1)
S

θ
α
α (3.33)

where Sα is the almost sure limit of |Πn|/nα under Pα,θ for every θ > −α.

Proof. This is read from the previous argument, by martingale theory. �

In view of Corollary 3.9, the limit random variable

Sα := lim
n

|Πn|/nα (3.34)

plays a key role in describing asymptotic properties of an (α, θ) partition Π∞.

Definition 3.10. Say that Π∞, an exchangeable partition of N has α-diversity
Sα if the limit (3.34) exists and is strictly positive and finite almost surely.
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This limit random variable Sα can be characterized in a number of different
ways, by virtue of the following lemma. According to Theorem 3.8 and Corollary
3.9, the conditions of the Lemma apply to an (α, θ) partition Π∞, for each
α ∈ (0, 1), and each θ > −α.

Write Ai ∼ Bi if Ai/Bi → 1 almost surely as i → ∞.

Lemma 3.11. Fix α ∈ (0, 1), An exchangeable random partition Π∞ has α-
diversity Sα, defined as an almost sure limit (3.34), which is strictly positive
and finite, if and only if

P ↓
i ∼ Zi−1/α as i → ∞ (3.35)

for some random variable Z with 0 < Z < ∞. In that case Sα and Z determine
each other by

Z−α = Γ(1 − α)Sα

and the following conditions also hold:

(1 −
∑k

i=1 P̃i) ∼ αΓ(1 − α)1/αZk1−1/α as k → ∞ (3.36)

where P̃i is the frequency of the ith block of Π∞ in order of appearance;

|Πn|j ∼ pα(j)Sαnα for each j = 1, 2, . . . (3.37)

where |Πn|j is the number of blocks of Πn of size j, and (pα(j), j = 1, 2, . . .) is
the discrete probability distribution defined by

pα(j) = (−1)j−1

(
α

j

)
=

α(1 − α)j−1↑
j!

(3.38)

and

|Πn|j/|Πn| → pα(j) for every j = 1, 2, . . . a.s. as n → ∞. (3.39)

Sketch of proof. By Kingman’s representation, it suffices to establish the
Lemma for Π∞ with deterministic frequencies P ↓

i . Most of the claims in this
case can be read from the works of Karlin [232] and Rouault [392], results in
the theory of regular variation [66], and large deviation estimates for sums of
bounded independent random variables obtained by Poissonization [158]. �

The discrete probability distribution (3.38) arises in other ways related to
the positive stable law of index α. See the exercises below, and [351, 355] for
further references.

The ranked frequencies

Theorem 3.12. Case (α = 0) [153]. A random sequence (P ↓
i ) has pd(0, θ)

distribution iff for Γθ a gamma(θ) variable independent of (P ↓
i ), the sequence

(ΓθP
↓
i ) is the ranked sequence of points of a Poisson process on (0,∞) with

intensity θx−1e−xdx.
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Proof. This follows from previous discussion.

Theorem 3.13. Case (0 < α < 1).
(i) [341] A random sequence (P ↓

i ) with
∑

i P ↓
i = 1 has pd(α, 0) distribution iff

the limit
Sα := lim

i→∞
iΓ(1 − α)(P ↓

i )α (3.40)

exists almost surely, and the sequence (S−1/α
α P ↓

i ) is the ranked sequence of points
of a Poisson process on (0,∞) with intensity αΓ(1 − α)−1x−α−1dx.
(ii) [351] For θ > −α, and (P ↓

i ) the pd(α, θ) distributed sequence of ranked
frequencies of an (α, θ)-partition Π∞, the limit Sα defined by (3.40) exists and
equals almost surely the α-diversity of Π∞, that is

Sα = limn→∞|Πn|/nα. (3.41)

(iii) [341] For θ > −α, the pd(α, θ) distribution is absolutely continuous with
respect to pd(α, 0), with density

dpd(α, θ)
dpd(α, 0)

=
Γ(θ + 1)
Γ( θ

α + 1)
S

θ
α
α

for Sα as in (3.40).

Proof. Part (i) follows from results of [341] which are reviewed in Section 4.1. If
a sequence of ranked frequencies admits the limit (3.40) almost surely in (0,∞),
then it can be evaluated as in (3.41) using the associated random partition Π∞.
This was shown by Karlin [232] for Π∞ with deterministic frequencies, and the
general result follows by conditioning on the frequencies. This gives (ii), and
(iii) is just a translation of Corollary 3.9 via Kingman’s correspondence, using
(ii). �

In particular, parts (i) and (ii) imply that if S := Sα is the α-diversity of
an (α, 0) partition Π∞, then S−1/α has the stable(α) law whose Lévy density
is αΓ(1 − α)−1x−α−1dx. This can also be deduced from Theorem 3.8, since
we know from (0.43) that a random variable S has Mittag-Leffler(α) law iff
S−1/α has this stable(α) law. It must also be possible to establish the Poisson
character of the random set of points {S−1/αP ↓

i } = {S−1/αP̃i} by some direct
computation based on the prediction rule for an (α, 0) partition, but I do not
know how to do this.

Exercises

3.3.1. [351](Poisson subordination) Fix α ∈ (0, 1), and let Z be the closure
of the range of a stable subordinator of index α. Let N be a homogeneous
Poisson point process on R>0 and let Xi be the number of points of N in the
ith interval component of the complement of Z that contains at least one point



72 3 Sequential constructions of random partitions

of N . Then the Xi are independent and identically distributed with distribution
(pα(j), j = 1, 2, . . .) as in (3.38). Generalize to a drift-free subordinator that is
not stable.

3.3.2. If Pα governs independent X1,X2, . . . with distribution (3.38), as in the
previous exercise, then

Eα(zXi) = 1 − (1 − z)α. (3.42)

Let Sk := X1 + · · · + Xk. Then

Pα(Sk = n) = [zn](1 − (1 − z)α)k (3.43)

so the generalized Stirling number Sα(n, k) in (3.11), (3.12), (3.18), (3.19), ac-
quires another probabilistic meaning as

Sα(n, k) =
n!
k!

α−k
Pα(Sk = n) (3.44)

and the distribution of Kn for an (α, θ) partition is represented by the formula

Pα,θ(Kn = k) =
( θ

α + 1)k−1↑
α(θ + 1)n−1↑

n!
k!

Pα(Sk = n). (3.45)

3.3.3. (A local limit theorem) [355] In the setting of Theorem 3.8, establish
the local limit theorem

Pα,θ(Kn = k) ∼ gα,θ(s)n−α as n → ∞ with k ∼ snα. (3.46)

Deduce from (3.11) and (3.46) an asymptotic formula for Sα(n, k) as n → ∞
with k ∼ snα.

3.3.4. For 0 < α < 1, as n → ∞, for each p > 0

Eα,θ(Kp
n) ∼ nαp Γ( θ

α + p + 1)Γ(θ + 1)
Γ(θ + pα + 1)Γ( θ

α + 1)
. (3.47)

Notes and comments

Lemma 3.11 is from unpublished work done jointly with Ben Hansen. There is
much interest in power law behaviour, such as described by Lemma 3.11, in the
literature of physical processes of fragmentation and coagulation. See [306] and
papers cited there.

3.4. A branching process construction of the two-parameter model

This section offers an interpretation of the (α, θ) model for 0 ≤ α ≤ 1, θ > −α,
in terms of a branching process in continuous time, which generalizes the model



3.4 A branching process construction 73

of Tavaré [414] in case θ = 0. This brings out some interesting features of (α, θ)
partitions which are hidden from other points of view.

Fix 0 ≤ α ≤ 1. Consider a population of individuals of two types, novel and
clone. Each individual is assigned a color, and has infinite lifetime. Starting from
a single novel individual at time t = 0, of some first color, suppose that each
individual produces offspring throughout its infinite lifetime as follows:

• Novel individuals produce novel offspring according to a Poisson process
with rate α, and independently produce clone offspring according to a
Poisson process with rate 1 − α.

• Clones produce clone offspring according to a Poisson process with rate 1.

Each novel individual to appear is assigned a new color, distinct from the colors
of all individuals in the current population. Each clone has the same color as its
parent. Let

Nt := number of all individuals at time t

N∗
t := number of novel individuals at time t.

Thus N∗
0 = N0 = 1, and 1 ≤ N∗

t ≤ Nt for all t ≥ 0. The process (N∗
t , t ≥ 0) is a

Yule process with rate α, that is a pure birth process with transition rate iα from
state i to state i + 1. Similarly, (Nt, t ≥ 0) is a Yule process with rate 1. Think
of the individuals as colored balls occupying boxes labelled by N := {1, 2, . . .}.
So the nth individual to be born into the population is placed in box n. The
colors of individuals then induce a random partition of N. Each novel individual
appears in the first of an infinite subset of boxes containing individuals of the
same color.

Proposition 3.14. The random partition of Π of N, generated by the colors
of successive individuals born into the population described above, is an (α, 0)
partition. The number of blocks in the induced random partition of [n] is the
value of N∗

t at every time t such that Nt = n. For each t > 0, the conditional
distribution of N∗

t given Nt = n is identical to the distribution of Kn, the number
of blocks of the partition of [n], for an (α, 0) partition.

Proof. Let Πn be the partition of [n] induced by Π. It follows easily from the
description of the various birth rates that (Πn, n = 1, 2, . . .) is a Markov chain
with transition probabilities described by the (α, θ) urn scheme, independent of
the process (Nt, t ≥ 0). �

According to a standard result for the Yule process

e−tNt
a.s.→ W

e−αtN∗
t

a.s.→ W ∗,

where W and W ∗ are both exponentially distributed with mean 1. Combined
with Proposition 3.14 this implies

Corollary 3.15. W ∗ = SWα where S := limn→∞ Kn/nα is independent of W .
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A formula for the moments of S follows immediately, confirming the result
of Theorem 3.8 that S has Mittag-Leffler distribution with parameter α.

To present a continuous time variation of the residual allocation model, let
N

(k)
t = be the number of individuals of the kth color to appear that are present

in the population at time t. From the previous analysis, as t → ∞
(

e−tNt,
N

(1)
t

Nt
,
N

(2)
t

Nt
,
N

(3)
t

Nt
, . . .

)
a.s.→ (W, X1, X1X2, X1X2X3, . . .) (3.48)

where W , X1,X2, . . . are independent, W has exp(1) distribution, and Xi (de-
noted Wi in (3.8)) has beta(1 − α, iα) distribution. Equivalently,

e−t(Nt, N
(1)
t , N

(2)
t , . . .) a.s.→ (W,WX1,WX1X2, . . .). (3.49)

In particular, the limit law of e−t(N (1)
t , Nt − N1

t ) is that of WX1 and WX1,
which are independent gamma(1 − α) and gamma(α) respectively. The subse-
quent terms have more complicated joint distributions.

Case 0 ≤ α ≤ 1, θ > −α. Define a population process with two types of
individuals, exactly as in the case θ = 0 treated as above, but with the following
modification of the rules for the offspring process of the first novel individual
only. This first individual produces novel offspring at rate α + θ (instead of α
as before) and clone offspring at rate 1 − α (exactly as before). Both clone and
novel offspring of the first individual reproduce just as before. And the rules for
coloring are just as before. It is easily checked that the transition rules when the
partition is extended from n individuals to n + 1 individuals are exactly those
of the (α, θ) prediction rule. So the random partition Π of N induced by this
population process is an (α, θ) partition.

Case 0 ≤ α ≤ 1, θ ≥ 0. This can be described more simply by a slight
modification of the rules for the above scheme. The modified scheme is then a
generalization of the process described by Tavaré [414] in case α = 0, θ > 0.
Instead of letting the first individual produce novel offspring at rate α+θ, let the
first individual produce novel offspring at rate α, and let an independent Poisson
migration process at rate θ bring further novel individuals into the population.
Otherwise the process runs as before. Now the first novel individual follows the
same rules as all other novel individuals.

If the distinction between novel and clone individuals is ignored, we just
have a Yule process with immigration, where all individuals produce offspring
at rate 1, and there is immigration at rate θ. If we keep track of the type
of individuals, since each immigrant is novel by definition, it is clear that the
partition generated by all the colors is a refinement of the partition whose classes
are the progeny of the first individual, the progeny of the first immigrant, the
progeny of the second immigrant, and so on. Each of these classes is created by
a Yule process with rate 1, whose individuals are partitioned by coloring exactly
as before in case θ = 0. This structure reveals the following result:



3.4 A branching process construction 75

Proposition 3.16. Let 0 ≤ α ≤ 1, θ ≥ 0. Let a stick of length 1 be broken
into lengths Pn = X1 . . . Xn−1Xn according to the GEM (0, θ) distribution, as
in (3.8). Then, let each of these stick be broken further, independently of each
other, according to the GEM (α, 0), to create a countable array of sticks of
lengths

P1X11, P1X11X12, P1X11X12X13, . . .

P2X21, P2X21X22, P2X21X22X23, . . .

where X1,X2, . . . , X11,X12, . . . , X21,X22, . . . are independent, with Xj ∼
beta(1, θ) for all j, and Xij ∼ beta(1− α, jα) for all i and j. Let Q1, Q2, . . . be
a size-biased random permutation of the lengths in this array. Then the Qn are
distributed according to GEM(α, θ), that is:

Qn = Y 1Y 2 . . . Y n−1Yn

where the Yj are independent beta(1 − α, θ + jα).

By arguing as in Hoppe [202], Proposition 3.16 can be restated as follows:

Proposition 3.17. Let 0 < α <, θ ≥ 0. Let {Ai} be a (0, θ) random partition of
[n]. Given {Ai}, with say k blocks, let {Aij}, j = 1, . . . , k be independent (α, 0)
random partitions of Ai. Then {Aij} is an (α, θ) random partition of [n].

In view of Theorem 3.2, either of these propositions follow easily from the
other. A direct calculation shows that the result for finite partitions reduces to
the following variant of formula (1.16) for the generating function of numbers
of cycles in a random permutation of [n]:

n∑
j=1

θj
∑

{Ci,1≤i≤j}
Πj

i=1(|Ci| − 1)!α|Ci|−1 = θ(θ + α) . . . (θ + (n − 1)α) (3.50)

where the second sum is over all partitions {Ci, 1 ≤ i ≤ j} of [n] into j parts,
and |Ci| is the number of elements of Ci. See also [368, (67)], [371, Proposition
22] for further discussion, and (5.26) for a more refined result.

Notes and comments

This section is based on an unpublished supplement to the technical report
[346], written in November 1992. See also Feng and Hoppe [152] for a similar
approach, with reference to an earlier model of Karlin. See Dong, Goldschmidt
and Martin [113] for some recent developments.




