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Exchangeable random partitions

This chapter is a review of basic ideas from Kingman’s theory of exchangeable
random partitions [253], as further developed in [14, 347, 350]. This theory
turns out to be of interest in a number of contexts, for instance in the study of
population genetics, Bayesian statistics, and models for processes of coagulation
and fragmentation. The chapter is arranged as follows.

2.1. Finite partitions This section introduces the exchangeable partition
probability function (EPPF) associated with an exchangeable random par-
tition Πn of the set [n] := {1, . . . , n}. This symmetric function of composi-
tions (n1, · · · , nk) of n gives the probability that Πn equals any particular
partition of [n] into k subsets of sizes n1, n2, . . .,nk, where ni ≥ 1 and
Σini = n. Basic examples are provided by Gibbs partitions for which the
EPPF assumes a product form.

2.2. Infinite partitions A random partition Π∞ of the set N of positive in-
tegers is called exchangeable if its restriction Πn to [n] is exchangeable
for every n. The distribution of Π∞ is determined by an EPPF which
is a function of compositions of positive integers subject to an addition
rule expressing the consistency of the partitions Πn as n varies. King-
man [250] established a one-to-one correspondence between distributions
of such exchangeable random partitions of N and distributions for a se-
quence of nonnegative random variables P ↓

1 , P ↓
2 , . . . with P ↓

1 ≥ P ↓
2 ≥ . . .

and
∑

k P ↓
k ≤ 1. In Kingman’s paintbox representation, the blocks of Π∞

are the equivalence classes generated by the random equivalence relation
∼ on positive integers, constructed as follows from ranked frequencies (P ↓

k )
and a sequence of independent random variables Ui with uniform distribu-
tion on [0, 1], where (Ui) and (P ↓

k ) are independent: i ∼ j iff either i = j or
both Ui and Uj fall in Ik for some k, where the Ik are some disjoint random
sub-intervals of [0, 1] of lengths P ↓

k . Each P ↓
k with P ↓

k > 0 is then the as-
ymptotic frequency of some corresponding block of Π∞, and if

∑
k P ↓

k < 1
there is also a remaining subset of N with asymptotic frequency 1−

∑
k P ↓

k ,
each of whose elements is a singleton block of Π∞.
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2.3. Structural distributions A basic property of every exchangeable ran-
dom partition Π∞ of N is that each block of Π∞ has a limiting relative
frequency almost surely. The structural distribution associated with Π∞
is the probability distribution on [0, 1] of the asymptotic frequency of the
block of Π∞ that contains a particular positive integer, say 1. In terms
of Kingman’s representation, this is the distribution of a size-biased pick
from the associated sequence of random frequencies (P ↓

k ). Many impor-
tant features of exchangeable random partitions and associated random
discrete distributions, such as the mean number of frequencies in a given
interval, can be expressed in terms of the structural distribution.

2.4. Convergence Convergence in distribution of a sequence of exchange-
able random partitions Πn of [n] as n → ∞ can be expressed in several
equivalent ways: in terms of induced partitions of [m] for fixed m, in terms
of ranked or size-biased frequencies, and in terms of an associated process
with exchangeable increments.

2.5. Limits of Gibbs partitions Limits of Gibbs partitions lead to ex-
changeable random partitions of N with ranked frequencies (P ↓

i , i ≥ 1)
distributed according to some mixture over s of the conditional distribu-
tion of ranked jumps of some subordinator (Tu, 0 ≤ u ≤ s) given Ts = 1.
Two important special cases arise when T is a gamma process, or a stable
subordinator of index α ∈ (0, 1). The study of such limit distributions is
pursued further in Chapter 4.

2.1. Finite partitions

A random partition Πn of [n] is called exchangeable if its distribution is invari-
ant under the natural action on partitions of [n] by the symmetric group of
permutations of [n]. Equivalently, for each partition {A1, . . . , Ak} of [n],

P(Πn = {A1, . . . , Ak}) = p(|A1|, . . . , |Ak|)

for some symmetric function p of compositions (n1, . . . , nk) of n. This function
p is called the exchangeable partition probability function (EPPF) of Πn. For
instance, given two positive sequences v• = (v1, v2, . . .) and w• = (w1, w2, . . .),
the formula

p(n1, . . . , nk; v•, w•) :=
vk

∏k
i=1 wni

Bn(v•, w•)
(2.1)

where Bn(v•, w•) is a normalization constant, defines the EPPF of a Gibbs
partition determined by v• and w• as discussed in Section 1.5 . In most appli-
cations, it is the sizes of blocks of an exchangeable random partition Πn which
are of primary interest. The next three paragraphs present three different ways
to encode these block sizes as a random composition of [n], and show how the
distributions of these encodings are determined by the EPPF p.

Decreasing order Let (N↓
n,1, . . . , N

↓
n,Kn

) denote the partition of n induced
by Πn, that is the random composition of n defined by the sizes of blocks of
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Πn with blocks in decreasing order of size. Then for each partition of n with
component sizes (ni) in decreasing order,

P((N↓
n,1, . . . , N

↓
n,Kn

) = (n1, . . . , nk)) =
n!∏n

i=1(i!)mimi!
p(n1, . . . , nk) (2.2)

where

mi :=
k∑

�=1

1(n� = i) (2.3)

is the number of components of size i in the given partition of n, and the
combinatorial factor is the number of partitions of [n] corresponding to the
given partition of n. Let |Πn|j denote the number of blocks of Πn of size j.
Due to the bijection between partitions of n and possible vectors of counts
(mi, 1 ≤ i ≤ n), for (mi) a vector of non-negative integers subject to

∑
i mi = k

and
∑

i imi = n, the probability

P(|Πn|i = mi for 1 ≤ i ≤ n), (2.4)

that is the probability that Πn has mi blocks of size i for each 1 ≤ i ≤ n, is
identical to the the probability in (2.2) for (n1, . . . , nk) the decreasing sequence
subject to (2.3).

Size-biased order of least elements Let (Ñn,1, . . . , Ñn,Kn
) denote the ran-

dom composition of n defined by the sizes of blocks of Πn with blocks in order
of appearance. Then for all compositions (n1, . . . , nk) of n into k parts,

P((Ñn,1, . . . , Ñn,Kn
) = (n1, . . . , nk)) (2.5)

=
n!

nk(nk + nk−1) · · · (nk + · · · + n1)
∏k

i=1(ni − 1)!
p(n1, . . . , nk) (2.6)

where the combinatorial factor is the number of partitions of [n] with the pre-
scribed block sizes in order of appearance [115]. Note that (Ñn,1, . . . , Ñn,Kn

) is
a size-biased random permutation of (N↓

n,1, . . . , N
↓
n,Kn

), meaning that given the
decreasing rearrangement, the blocks appear in the random order in which they
would be discovered in a process of simple random sampling without replace-
ment.

Exchangeable random order It is often convenient to consider the block
sizes of a random partition of [n] in exchangeable random order, meaning that
conditionally given Πn = {A1, . . . , Ak}, random variables (Nex

n,1, . . . , N
ex
n,k) are

constructed as Nex
n,i = |Aσ(i)| where σ is a uniformly distributed random per-

mutation of [k]. Then

P((Nex
n,1, . . . , N

ex
n,Kn

) = (n1, . . . , nk)) =
(

n

n1, . . . , nk

)
1
k!

p(n1, . . . , nk). (2.7)
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To see this, recall that p(n1, . . . , nk) is the probability of any particular partition
of [n] with block sizes (n1, . . . , nk) in some order. Dividing by k! gives the
probability of obtaining a particular ordered partition of [n] after randomizing
the order of the blocks, and the multinomial coefficent is the number of such
ordered partitions consistent with (n1, . . . , nk).

Partitions generated by sampling without replacement. Let

Π(x1, . . . , xn)

denote the partition of [n] generated by a sequence x1, . . . , xn. That is the parti-
tion whose blocks are the equivalence classes for the random equivalence relation
i ∼ j iff xi = xj . If (X1, . . . , Xn) is a sequence of exchangeable random variables,
then Π(X1, . . . , Xn) is an exchangeable random partition of [n]. Moreover, the
most general possible distribution of an exchangeable random partition of [n]
is obtained this way. To be more precise, there is the following basic result. See
Figure 2.1 for a less formal statement.

Proposition 2.1. [14] Let Πn be an exchangeable random partition of [n], and
let πn := (N↓

n,i, 1 ≤ i ≤ Kn) be the corresponding partition of n defined by
the decreasing rearrangement of block sizes of Πn. Then the joint law of Πn

and πn is that of Π(X1, . . . , Xn) and πn, where conditionally given πn the se-
quence (X1, . . . , Xn) is defined by simple random sampling without replacement
from a list x1, . . . , xn with N↓

n,i values equal to i for each 1 ≤ i ≤ Kn, say
(X1, . . . , Xn) = (xσ(1), . . . , xσ(n)) where σ is a uniform random permutation of
[n].

Exercises

2.1.1. Prove Proposition 2.1.

2.1.2. Corresponding to each probability distribution Q on the set Pn of par-
titions of n, there is a unique distribution of an exchangeable partition Πn of
[n] which induces a partition πn of n with distribution Q: given πn, let Πn have
uniform distribution on the set of all partitions of [n] whose block sizes are
consistent with πn.

2.1.3. A function p defined on the set of compositions of n is the EPPF of
some exchangeable random partition Πn of [n] if and only if p is non-negative,
symmetric, and

n∑
k=1

∑
(n1,...,nk)

(
n

n1, . . . , nk

)
1
k!

p(n1, . . . , nk) = 1,

where the second sum is over all compositions (n1, . . . , nk) of n with k parts.
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Figure 2.1: A random partition Π11 of [11]. To state Proposition 2.1 less for-
mally: if Πn is exchangeable, then given that the block sizes of Πn in decreasing
order define some pattern of boxes, as above left for n = 11, known as a Ferrer’s
diagram, corresponding to a partition of the integer n, the partition of [n] is
recovered by filling the boxes with numbers sampled from [n] without replace-
ment, then taking the partition generated by the columns of boxes, to get e.g.
Πn = {{4, 9, 3, 8, 10}, {1, 11, 5}, {2, 6}, {7}} as above.

2.1.4. (Serban Nacu [318]) . Let Xi be the indicator of the event that i is the
least element of some block of an exchangeable random partition Πn of [n]. Show
that the joint law of the (Xi, 1 ≤ i ≤ n) determines the law of Πn.

2.1.5. (Problem) Characterize all possible laws of strings of 0’s and 1’s which
can arise as in the previous exercise. Variants of this problem, with side condi-
tions on the laws, are easier but still of some interest. Compare with Exercise
3.2.4 .

2.1.6. The EPPF of an exchangeable random partition Πn of [n] is
p(n1, . . . , nk) := P(Πn = Π) for each particular partition Π = {A1, . . . , Ak}
of [n] with |Ai| = ni for all 1 ≤ i ≤ n. Let q(n1, . . . , nk) be the common value
of P(Πn ≥ Π) for each such Π, where Πn ≥ Π means that Πn is coarser than Π,
i.e. each block of Πn is some union of blocks of Π. Each of the functions p and
q determines the other via the formula

q(n1, . . . , nk) =
k∑

j=1

∑
{B1,...,Bj}

p(nB1 , . . . , nBj
) (2.8)

where the second sum is over partitions {B1, . . . , Bj} of [k], and nB :=
∑

i∈B ni.
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2.2. Infinite partitions

For 1 ≤ m ≤ n let Πm,n denote the restriction to [m] of Πn, an exchangeable
random partition of [n]. Then Πm,n is an exchangeable random partition of [m]
with some EPPF pn : Cm → [0, 1], where Cm is the set of compositions of m. So
for each partition {A1, . . . , Ak} of [m]

P(Πm,n = {A1, . . . , Ak}) = pn(|A1|, . . . , |Ak|)

where the definition of the EPPF of Πn, that is pn : Cn → [0, 1], is extended
recursively to Cm for m = n − 1, n − 2, . . . , 1, using the addition rule of prob-
ability. Thus the function p = pn satisfies the following addition rule: for each
composition (n1, . . . , nk) of m < n

p(n1, . . . , nk) =
k∑

j=1

p(. . . , nj + 1, . . .) + p(n1, . . . , nk, 1) (2.9)

where (. . . , nj +1, . . .) is derived from (n1, . . . , nk) by substituting nj +1 for nj .
For instance,

1 = p(1) = p(2) + p(1, 1) (2.10)

and

p(2) = p(3) + p(2, 1); p(1, 1) = p(1, 2) + p(2, 1) + p(1, 1, 1) (2.11)

where p(1, 2) = p(2, 1) by symmetry of the EPPF.

Consistency [253, 14, 347] Call a sequence of exchangeable random partitions
(Πn) consistent in distribution if Πm has the same distribution as Πm,n for every
m < n. Equivalently, there is a symmetric function p defined on the set of all
integer compositions (an infinite EPPF) such that p(1) = 1, the addition rule
(2.9) holds for all integer compositions (n1, . . . , nk), and the restriction of p to
Cn is the EPPF of Πn. Such (Πn) can then be constructed so that Πm = Πm,n

almost surely for every m < n. The sequence of random partitions Π∞ := (Πn)
is then called an exchangeable random partition of N, or an infinite exchangeable
random partition. Such a Π∞ can be regarded as a random element of the set
PN of partitions of N, equipped with the σ-field generated by the restriction
maps from PN to P[n] for all n. One motivation for the study of exchangeable
partitions of N is that if (Πn) is any sequence of exchangeable partitions of [n]
for n = 1, 2, . . . which has a limit in distribution in the sense that Πm,n

d→ Πm,∞
for each m as n → ∞, then the sequence of limit partitions (Πm,∞,m = 1, 2, . . .)
is consistent in distribution, hence constructible as an exchangeable partition of
N. This notion of weak convergence of random partitions is further developed
in Section 2.4.
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Partitions generated by random sampling Let (Xn) be an infinite ex-
changeable sequence of real random variables. According to de Finetti’s theo-
rem, (Xn) is obtained by sampling from some random probability distribution
F . That is to say there is a random probability distribution F on the line, such
that conditionally given F the Xi are i.i.d. according to F . To be more explicit,
if

Fn(x) :=
1
n

n∑
i=1

1(Xi ≤ x)

is the empirical distribution of the first n values of the sequence, then by combi-
nation of de Finetti’s theorem [122, p. 269] and the Glivenko-Cantelli theorem
[122, p. 59]

F (x) = lim
n

Fn(x) uniformly in x almost surely. (2.12)

Let Π∞ be the exchangeable random partition of N generated by (Xn), meaning
that the restriction Πn of Π∞ to [n] is the partition generated by (X1, . . . , Xn),
as defined above Proposition 2.1. The distribution of Π∞ := (Πn) is determined
by the distribution of (P ↓

i , i ≥ 1), where P ↓
i is the magnitude of the ith largest

atom of F . Note that 1 −
∑

i P ↓
i is the magnitude of the continuous compo-

nent of F , which might be strictly positive, and that almost surely each i such
that Xi is not an atom of F contributes a singleton component {i} to Π∞. To
summarize this setup, say Π∞ is generated by sampling from a random distrib-
ution with ranked atoms (P ↓

i , i ≥ 1). According to the following theorem, every
infinite exchangeable partition has the same distribution as one generated this
way. This is the infinite analog of Proposition 2.1, according to which every
finite exchangeable random partition can be generated by a process of random
sampling without replacement from some random population.

Theorem 2.2. (Kingman’s representation [251, 253]) Let Π∞ := (Πn) be an
exchangeable random partition of N, and let (N↓

n,i, i ≥ 1) be the decreasing
rearrangement of block sizes of Πn, with N↓

n,i = 0 if Πn has fewer than i blocks.
Then N↓

n,i/n has an almost sure limit P ↓
i as n → ∞ for each i. Moreover the

conditional distribution of Π∞ given (P ↓
i , i ≥ 1) is as if Π∞ were generated by

random sampling from a random distribution with ranked atoms (P ↓
i , i ≥ 1).

Proof. (Sketch, following Aldous [14, p. 88]) Without loss of generality, it can
be supposed that on the same probability space as Π∞ there is an independent
sequence of i.i.d. uniform [0, 1] variables Uj . Let Xn = Uj if n falls in the jth
class of Π∞ to appear. Then (Xn, n = 1, 2, . . .) is exchangeable. Hence Π∞ is
generated by random sampling from F which is the uniform almost sure limit
of

Fn(u) :=
1
n

n∑
m=1

1(Xm ≤ u) =
∞∑

i=1

N↓
n,i

n
1(Ûn,i ≤ u)
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for some Πn-dependent rearrangement Ûn,i of the Uj . By the almost sure uni-
formity (2.12) of convergence of Fn to F , the size N↓

n,i/n of the ith largest atom
of Fn has almost sure limit P ↓

i which is the size of the ith largest atom of F . �

Theorem 2.2 sets up a bijection (Kingman’s correspondence) between prob-
ability distributions for an infinite exchangeable random partition, as specified
by an infinite EPPF, and probability distributions of (P ↓

i ) on the set

P↓
[0,1] := {(p1, p2, . . .) : p1 ≥ p2 ≥ · · · ≥ 0 and

∞∑
i=1

pi ≤ 1} (2.13)

of ranked sub-probability distributions on N.
Note that the set of all infinite EPPF’s p : ∪∞

n=1Cn → [0, 1], with the topology
of pointwise convergence, is compact.

Theorem 2.3. (Continuity of Kingman’s correspondence [250, §5], [252, p. 45])
Pointwise convergence of EPPF’s is equivalent to weak convergence of finite
dimensional distributions of the corresponding ranked frequencies.

A similar result holds for the frequencies of blocks in order of appearance. See
Theorem 3.1. Assuming for simplicity that Π∞ has proper frequencies, meaning
that

∑
i P ↓

i = 1 a.s., Kingman’s correspondence can be made more explicit
as follows. Let (Pi) denote any rearrangement of the ranked frequencies (P ↓

i ),
which can even be a random rearrangement. Then

p(n1, . . . , nk) =
∑

(j1,...,jk)

E

[
k∏

i=1

Pni
ji

]
(2.14)

where (j1, . . . , jk) ranges over all ordered k-tuples of distinct positive integers.
This is easily seen from Kingman’s representation for (Pi) = (P ↓

i ). The formula
holds also for any rearrangement of these frequencies, because the right side is
the expectation of a function of (P1, P2, . . .) which is invariant under finite or
infinite permutations of its arguments. In particular (Pi) could be the sequence
(P̃i) of limit frequencies of classes of (Πn) in order of appearance, which is a
size-biased random permutation of (P ↓

i ). A much simpler formula in this case
is described later in Theorem 3.1.

Exercises

The first two exercises recall some forms of Pólya’s urn scheme [151, VII.4],
which allow explicit sequential constructions of exchangeable sequences and
random partitions. See [300],[350] for more in this vein.
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2.2.1. (Beta-binomial) Fix a, b > 0. Let Sn := X1 + · · · + Xn, where the Xi

have values 0 or 1. Check that

P(Xn+1 = 1 |X1, . . . , Xn) =
a + Sn

a + b + n
(2.15)

for all n ≥ 0 if and only if the Xi are exchangeable and the almost sure limit of
Sn/n has the beta(a, b) distribution.

2.2.2. (Dirichlet-multinomial) Fix θ1, . . . , θm > 0. Let (Xn, n = 1, 2, . . .) be
a process with values in {1, . . . , m}. If for each n ≥ 0, given (X1, . . . , Xn) with
ni values equal to i for each 1 ≤ i ≤ m, where n1 + · · · + nm = n,

Xn+1 = i with probability
θi + ni

θ1 + · · · + θm + n

then (Xn) is exchangeable with asymptotic frequencies Pi with the Dirichlet
(θ1, . . . , θm) distribution (0.47), and conversely.

2.2.3. (Sampling from exchangeable frequencies) Let p(n1, . . . , nk) be the
EPPF corresponding to some sequence of random ranked frequencies
(P ↓

1 , . . . , P ↓
m) with

∑m
i=1 P ↓

i = 1 for some m < ∞. Let (P1, . . . , Pm) be the
exchangeable sequence with

∑m
i=1 Pi = 1 obtained by putting these ranked fre-

quencies in exchangeable random order. Then

p(n1, . . . , nk) = (m)k↓E

[
k∏

i=1

Pni
i

]
.

2.2.4. (Coupon Collecting) If P ↓
i = 1/m for 1 ≤ i ≤ m then

p(n1, . . . , nk) = (m)k↓/mn where n :=
k∑

i=1

ni. (2.16)

2.2.5. (Sampling from exchangeable Dirichlet frequencies) [428] If
(P1, . . . , Pm) has the symmetric Dirichlet distribution (0.47) with parameters
θ1 = · · · = θm = κ > 0, then

p(n1, . . . , nk) = (m)k↓

∏k
i=1(κ)ni↑
(mκ)n↑

. (2.17)

Note that the coupon collector’s partition (2.16) is recovered in the limit as
κ → ∞.

2.2.6. (The Blackwell-MacQueen urn scheme) [68]. Fix θ > 0. Let (Xn)
with values in [0, 1] be governed by the following prediction rule: n ≥ 0,

P(Xn+1 ∈ · |X1, . . . , Xn) =
θ λ(·) +

∑n
i=1 1(Xi ∈ ·)

θ + n
(2.18)

where λ(·) is Lebesgue measure on [0, 1]. Then (Xn) is exchangeable, distributed
as a sample from a Dirichlet(θ) process Fθ as in (0.46).
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2.2.7. (The Ewens sampling formula) [144, 26, 145] As m → ∞ and κ → 0
with mκ → θ, the EPPF in (2.17) converges to the EPPF

p0,θ(n1, . . . , nk) =
θk

(θ)n↑

k∏
i=1

(ni − 1)! (2.19)

Such a partition is generated by X1, . . . , Xn governed by the Blackwell-MacQueen
urn scheme (2.18). The corresponding partition of n has distribution

P(|Πn|i = mi, 1 ≤ i ≤ n) =
n! θk

(θ)n↑

n∏
i=1

1
imimi!

(2.20)

for (mi) as in (2.4). The corresponding ranked frequencies are the ranked jumps
of the Dirichlet(θ) process. The frequencies in order of appearance are described
in Theorem 3.2.

2.2.8. (Continuity of Kingman’s correspondence) Prove Theorem 2.3.

Notes and comments

The theory of exchangeable random partitions described here, following [14]
and [347], is essentially equivalent to Kingman’s theories of partition structures
[250, 251] and of exchangeable random equivalence relations [253]. The theory is
simplified by describing the consistent sequence of distributions of partitions of
[n] by its EPPF, rather than by the corresponding sequence of distributions of
integer partitions, which is what Kingman called a partition structure. Donnelly
and Joyce [114] and Gnedin [172] developed a parallel theory of composition
structures, whose extreme points are represented by open subsets of [0, 1]. See
also [198, 199] for alternate approaches.

In the work of Kerov and Vershik on multiplicative branchings [241, 242, 244],
each extreme infinite exchangeable partition corresponds to a real-valued char-
acter of the algebra of symmetric functions, with certain positivity conditions.
See also Aldous [14] regarding exchangeable arrays, and Kallenberg [231] for
paintbox representations of random partitions with general symmetries.

2.3. Structural distributions

Let (Pi) be a random discrete probability distribution with size-biased permu-
tation (P̃j). So in particular

P̃1 = Pσ(1) where P(σ(1) = i |P1, P2, . . .) = Pi (i = 1, 2, . . .). (2.21)

The random variable P̃1 may be called a size-biased pick from (Pi). Let ν̃ denote
the distribution of P̃1 on (0, 1]. Following the terminology of Engen [132], ν̃ is
called the structural distribution associated with the random discrete distrib-
ution (Pi). Note that if a random partition Π∞ is derived by sampling from
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(Pi), then the size-biased permutation (P̃j) can be constructed as the sequence
of class frequencies of Π∞ in order of appearance. Then P̃1 is the frequency
of the class of Π∞ that contains 1. It follows from (2.21) that for an arbitrary
non-negative measurable function g,

∫
ν̃(dp)g(p) = E[g(P̃1)] = E

[∑
i

Pig(Pi)

]
. (2.22)

Hence, taking g(p) = f(p)/p, for arbitrary non-negative measurable function f
there is the formula

E

[∑
i

f(Pi)

]
= E

[
f(P̃1)

P̃1

]
=
∫ 1

0

f(p)
p

ν̃(dp). (2.23)

Formula (2.23) shows that the structural distribution ν̃ encodes much infor-
mation about the entire sequence of random frequencies. Taking f in (2.23) to
be the indicator of a subset B of (0, 1], formula (2.23) shows that the point
process with a point at each Pj ∈ (0, 1] has mean intensity measure p−1ν̃(dp). If
(Pi) = (P ↓

i ) is in decreasing order, for x > 1
2 there can be at most one P ↓

i > x,
so the structural distribution ν̃ determines the distribution ν of P ↓

1 = maxi P̃i

on (1
2 , 1] via the formula

P(P ↓
1 > x) = ν(x, 1] =

∫

(x,1]

p−1ν̃(dp) (x > 1
2 ). (2.24)

Typically, formulas for P(P ↓
1 > x) get progressively more complicated on the

intervals (1
3 , 1

2 ], (1
4 , 1

3 ], · · ·. See e.g. [339, 371]. Note that by (2.14) for k = 1 and
n1 = n and (2.23)

p(n) = E

[∑
i

Pn
i

]
= E[ P̃n−1

1 ] = µ(n − 1) (n = 1, 2, · · ·), (2.25)

where µ(q) is the qth moment of the distribution ν̃ of P̃1 on (0, 1]. From (2.10),
(2.11), and (2.25) the following values of the EPPF of an infinite exchangeable
random partition Π∞ are also determined by the first two moments of the
structural distribution:

p(1, 1) = 1−µ(1); p(2, 1) = µ(1)−µ(2); p(1, 1, 1) = 1−3µ(1)+2µ(2). (2.26)

So the distribution of Π3 on partitions of the set {1, 2, 3} is determined by the
first two moments of P̃1. The distribution of Πn is not determined for all n by
the structural distribution ( Exercise 2.3.4 ). But moments of the structural
distribution play a key role in the description of a number of particular models
for random partitions. See for instance [362, 170].
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Exercises

2.3.1. (Improper frequencies) Show how to modify the results of this section
to be valid also for exchangeable random partitions of the positive integers with
improper frequencies. Show that formula (2.14) is false in the improper case.
Find the patch for that formula, which is not so pretty. See for instance Kerov
[244, equation (1.3.1)].

2.3.2. (Mean number of blocks) Engen [132]. For an infinite exchangeable
partition (Πn) with P̃1 the frequency of the block containing 1,

E(|Πn|) = E[kn(P̃1)], (2.27)

where kn(v) := (1 − (1 − v)n)/v is a polynomial of degree n − 1.

2.3.3. (Proper frequencies) [350] For an infinite exchangeable partition (Πn)
with frequencies P̃i, the frequencies are proper, meaning

∑
i P̃i = 1 almost

surely, iff P(P̃1 > 0) = 1, and also iff |Πn|/n → 0 almost surely.

2.3.4. (The structural distribution does not determine the distribu-
tion of the infinite partition) Provide an appropriate example.

2.3.5. (Problem: characterization of structural distributions) What is
a necessary and sufficient condition for a probability distribution F on [0, 1] to
be a structural distribution? For some necessary and some sufficient conditions
see [368].

2.4. Convergence

There are many natural combinatorial constructions of exchangeable random
partitions Πn of [n] which are not consistent in distribution as n varies, so not
immediately associated with an infinite exchangeable partition Π∞. However,
it is often the case that a sequence of combinatorially defined exchangeable
partitions (Πn) converges in distribution as n → ∞ meaning that

Πm,n
d→ Πm,∞ for each fixed m as n → ∞, (2.28)

where Πm,n is the restriction to [m] of Πn, and (Πm,∞,m = 1, 2 . . .) is some
sequence of limit random partitions. Let pn(n1, . . . , nk) denote the EPPF of
Πn, defined as a function of compositions (n1, . . . , nk) of m for every m ≤ n,
as discussed in Section 2.2. Then (2.28) means that for all integer compositions
(n1, . . . , nk) of an arbitrary fixed m,

pn(n1, . . . , nk) → p(n1, . . . , nk) as n → ∞ (2.29)

for some limit function p. It is easily seen that any such limit p must be an infinite
EPPF, meaning that the sequence of random partitions Πm,∞ in (2.28) can
be constructed consistently to make an infinite exchangeable random partition
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Π∞ := (Πm,∞,m = 1, 2, . . .) whose EPPF is p. Let (P̃i) and (P ↓
i ) denote the

class frequencies of Π∞, in order of appearance, and ranked order respectively.
And let (Nn,i, i ≥ 1) and (N↓

n,i, i ≥ 1) denote the sizes of blocks of Πn, in order of
appearance and ranked order respectively, with padding by zeros to make infinite
sequences. It follows from the continuity of Kingman’s correspondence (Theorem
2.3) together with Proposition 2.1, and the obvious coupling between sampling
with and without replacement for a sample of fixed size as the population size
tends to ∞, that this notion (2.28)–(2.29) of convergence in distribution of Πn

to Π∞ is further equivalent to

(Nn,i/n)i≥1
d→ (P̃i)i≥1 (2.30)

meaning weak convergence of finite dimensional distributions, and similarly
equivalent to

(N↓
n,i/n)i≥1

d→ (P ↓
i )i≥1 (2.31)

in the same sense [173]. Let (Ui) be a sequence of independent and identically
distributed uniform (0, 1) variables independent of the Πn. Another equivalent
condition is that for each fixed u ∈ [0, 1]

∞∑
i=1

(Nn,i/n)1(Ui ≤ u) d→ F (u) (2.32)

for some random variable F (u). According to Kallenberg’s theory of processes
with exchangeable increments [226], a limit process (F (u), 0 ≤ u ≤ 1) can
then be constructed as an increasing right-continuous process with exchangeable
increments, with F (0) = 0 and F (1) = 1 a.s., and the convergence (2.32) then
holds jointly as u varies, and in the sense of convergence in distribution on the
Skorohod space D[0, 1]. To be more explicit,

F (u) =
∞∑

i=1

Pi1(Ui ≤ u) + (1 − Σ∞
i=1Pi)u (2.33)

where the Ui with uniform distribution on [0, 1] are independent of the Pi, and
either (Pi) = (P̃i) or (Pi) = (P ↓

i ) . The limit partition Π∞ can then be generated
by sampling from any random distribution such as F whose ranked atoms are
distributed like (P ↓

i ). The restriction Πm,∞ of Π∞ to [m] can then be generated
for all m = 1, 2, . . . by sampling from F , meaning that i and j with i, j ≤ m lie
in the same block of Πm,∞ iff Xi = Xj where the Xi are random variables which
conditionally given F are independent and identically distributed according to
F :

P(Xi ≤ u |F ) = F (u) (0 ≤ u ≤ 1).

This connects Kingman’s theory of exchangeable random partitions to the the-
ory of Bayesian statistical inference [350]. See also James [213, 212] for recent
work in this vein.
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2.5. Limits of Gibbs partitions

As an immediate consequence of (1.50), the decreasing arrangement of relative
sizes of blocks of a Gibbs[n](v•, w•) partition Πn, say

(N↓
n,1/n, . . . , N↓

n,|Πn|/n) (2.34)

has the same distribution as the decreasing sequence of order statistics of

(X1/n, . . . , XK/n) given SK/n = 1

where the Xi have distribution (1.41) and K with distribution (1.42) is inde-
pendent of the Xi, for some arbitrary ξ > 0 with v(w(ξ)) < ∞. Since the
distribution of a Gibbs[n](v•, w•) partition depends only on the vj and wj for
1 ≤ j ≤ n, in this representation for fixed n the condition v(w(ξ)) < ∞ can
always be arranged by setting vj = wj = 0 for j > n. It is well known [151,
XVII.7] [230]that if Xn,1, . . . , Xn,kn

is for each n a sequence of independent and
identically distributed variables of some non-random length kn, with kn → ∞
as n → ∞, then under appropriate conditions

kn∑
i=1

Xn,i
d→ T :=

∞∑
i=1

J↓
i

where J↓
1 ≥ J↓

2 ≥ . . . ≥ 0 are the points of a Poisson point process on (0,∞)
with intensity measure Λ(dx), for some Lévy measure Λ on (0,∞) with

Ψ(λ) :=
∫ ∞

0

(1 − e−λx)Λ(dx) < ∞ (2.35)

for all λ > 0. Then
Λ(x,∞) = lim

n→∞
knP(Xn,1 > x)

for all continuity points x of Λ, and the Laplace transform of T is given by the
Lévy-Khintchine formula

E(e−λT ) = exp(−Ψ(λ)).

It is also known that if such a sum
∑kn

i=1 Xn,i has T as its limit in distribution as
n → ∞, then the convergence in distribution of

∑kn

i=1 Xn,i to T holds jointly with
convergence in distribution of the k largest order statistics of the Xn,i, 1 ≤ i ≤ kn

to the k largest points J↓
1 , . . . , J↓

k of the Poisson process.
It is therefore to be anticipated that if a sequence of Gibbs[n](v•, w•) parti-

tions converges as n → ∞ to some infinite partition Π∞, where either v• = v
(n)
•

or w• = w
(n)
• might be allowed to depend on n, and v

(n)
• is chosen to ensure

that the distribution of the number of components Kn of Πn grows to ∞ in
a deterministic manner, say Kn/kn → s > 0 for some normalizing constants
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kn, then the distribution of ranked frequencies (P ↓
i ) of Π∞ obtained from the

convergence of finite-dimensional distributions

(N↓
n,i/n)i≥1

d→ (P ↓
i )i≥1 with Kn/kn → s (2.36)

should be representable as

(P ↓
i )i≥1

d= ((J↓
s,i)i≥1 |Ts = 1) (2.37)

for the ranked points J↓
s,i of a Poisson point process with intensity sΛ, with∑

i J↓
s,i = Ts. This Poisson process may be constructed as the jumps of (Tu, 0 ≤

u ≤ s), where (Tu, u ≥ 0) is a subordinator with no drift and Lévy measure
Λ. Then for v

(n)
• chosen so that Kn/kn converges in distribution to S for some

strictly positive random variable S, the limit law of (P ↓
i ) in (2.36) should be

∫ ∞

0

P((J↓
s,i) ∈ · |Ts = 1)P(S ∈ ds). (2.38)

To make rigorous sense of this, it is first necessary to give a rigorous meaning to
the law of (J↓

s,i) given Ts = 1, for instance by showing that for fixed s the law of
(J↓

s,i) given Ts = t can be constructed to be weakly continuous in t. Second, to
justify weak convergence of conditional probability distributions it is necessary
to establish an appropriate local limit theorem.

This program has been carried out in two cases of combinatorial significance.
One case, treated in detail in [27], covers the class of logarithmic combinatorial
assemblies:

Theorem 2.4. [189, 27] Let w• = (wj) be a sequence of weights with

wj ∼ θ(j − 1)!yj as j → ∞

for some θ > 0 and y > 0. Let Πn be a Gibbs[n](v
(n)
• , w•) partition, either for

v
(n)
• ≡ 1•, or more generally for any array of weights v

(n)
• such that |Πn|/ log n

converges in probability to θ as n → ∞. Then Πn converges in distribution
to Π∞ as n → ∞, where Π∞ is a (0, θ)-partition with EPPF (2.19), whose
Poisson-Dirichlet(0, θ) frequencies are the ranked jumps of a gamma process
(Tu, 0 ≤ u ≤ θ) given Tθ = 1.

Sketch of proof. The case when v
(n)
• ≡ 1• can be read from the work of [27],

where it is shown that in this case |Πn|/ log n converges in probability to θ as
n → ∞. The extension to more general v

(n)
• is quite straightforward. �

Two cases of Theorem 2.4 of special interest, discussed further in following
chapters, are

• Πn generated by the cycles of a uniform random permutation of [n], when
wj = (j − 1)!, y = 1, θ = 1;
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• Πn generated by the basins of a uniform random mapping of [n], with
wj = (j − 1)!

∑j−1
i=0 ji/i! as in (1.61), y = e, θ = 1

2 .

See [27] for many more examples. Note that mixtures over θ of (0, θ) partitions
could arise by suitable choice of v

(n)
• so that |Πn|/ log n had a non-degenerate

limit distribution, but this phenomenon does not seem to arise naturally in
combinatorial examples.

Another case, treated by Pavlov [335, 336, 337], and Aldous-Pitman [17]
covers a large number of examples involving random forests, where the limit
involves the stable subordinator of index 1

2 . A more general result, where the
limit partition is derived from a stable subordinator of index α for α ∈ (0, 1),
can be formulated as follows:

Theorem 2.5. Let w• = (wj) be a sequence of weights with exponential gen-
erating function w(ξ) :=

∑∞
j=1 ξjwj/j! such that w(ξ) = 1 for some ξ > 0. Let

(pj , j = 1, 2, . . .) be the probability distribution defined by pj = ξjwj/j! for ξ
with w(ξ) = 1, and suppose that

∞∑
j=i

pj ∼ c i−α

Γ(1 − α)
as i → ∞ (2.39)

for some α ∈ (0, 1). Let Πn be a Gibbs[n](v
(n)
• , w•) partition, for any array of

weights v
(n)
• such that |Πn|/nα converges in probability to s as n → ∞. Then Πn

converges in distribution to Π∞ as n → ∞, where Π∞ has ranked frequencies
distributed like the

ranked jumps of (Tu, 0 ≤ u ≤ cs) given Tcs = 1, (2.40)

where (Tu, u ≥ 0) is the stable subordinator of index α with E exp(−λTu) =
exp(−uλα).

Sketch of proof. This was argued in some detail in [17] for the particular
weight sequence wj = jj−1, corresponding to blocks with an internal structure
specified by a rooted labeled tree. Then ξ = e−1, α = 1

2 , and the limiting par-
tition can also be described in terms of the lengths of excursions of a Brownian
motion or Brownian bridge, as discussed in Section 4.4 . The proof of the result
stated above follows the same lines, appealing to the well known criterion for
convergence to a stable law, and the local limit theorem of Ibragimov-Linnik
[204]. �

In Section 4.3 the limiting partition Π∞ appearing in Theorem 2.5 is called
an (α|cs) partition. Mixtures of these distributions, obtained by randomizing
s for fixed α, arise naturally in a number of different ways, as shown in
Chapter 4.
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Exercises

2.5.1. (Problem: Characterizing all weak limits of Gibbs partitions)
Intuitively, the above discussion suggests that the only possible weak limits of
Gibbs partitions are partitions whose ranked frequencies are mixtures over s of
the law of ranked jumps of some subordinator (Tu, 0 ≤ u ≤ s) given Ts = 1,
allowing also the possibility of conditioning on the number of jumps in the
compound Poisson case. Show that if the conditioning is well defined by some
regularity of the distribution of Ts for all s, then such a partition can be achieved
as a limit of Gibbs partitions, allowing both v• and w• to depend on n. But due
to the difficulty in giving meaning to the conditioning when Ts does not have
a density, it is not clear how to formulate a rigorous result. Can that be done?
Does it make any difference whether or not w• is allowed to depend on n?




