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Brownian bridge asymptotics for random
mappings

This chapter reviews Brownian bridge asymptotics for random mappings, first
described in 1994 by Aldous and Pitman. The limit distributions as n → ∞, of
various functionals of a uniformly distributed random mapping from an n ele-
ment set to itself, are those of corresponding functionals of a Brownian bridge.
Similar results known to hold for various non-uniform models of random map-
pings, according to a kind of invariance principle. A mapping Mn : [n] → [n]
can be identified with its digraph {i → Mn(i), i ∈ [n]}, as in Figure 1.
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Figure 9.1: Digraph of a mapping M50 : [50] → [50].

Note how the mapping digraph encodes various features of iterates of the
mapping. A mapping digraph can be decomposed as a collection of rooted trees
together with some extra structure (cycles, basins of attraction). If each rooted
tree is regarded as a plane tree and encoded by its Harris walk, defined by depth-
first search following Harris [193], then given some ordering of tree-components,
one can concatenate these Harris walks to define a mapping-walk which encodes
numerous features of Mn.
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From now on, we shall be interested in a uniformly distributed random map-
ping Mn. The connection between random mappings and Brownian bridge, first
developed in [17], can be summarized as follows.

• For a uniform random mapping, the induced distribution on tree-
components is such that the tree-walks, suitably normalized, converge to
Brownian excursion as the tree size increases to infinity. So it is to be ex-
pected that the mapping-walks, suitably normalized, should converge to
a limit process defined by some concatenation of Brownian excursions.

• With an appropriate choice of ordering of tree components, the weak limit
of normalized mapping walks is reflecting Brownian bridge.

The subtle issue is how to order the tree components so that both
a) the mapping-walk encodes structure of cycles and basins of the mapping,

and
b) the limit in distribution of the normalized mapping-walk can be explicitly

identified.
How this can be done is discussed in some detail in the following sections,

which are organized as follows:

9.1. Basins and trees deals with the definitions of basins and trees.
9.2. Mapping walks introduces two variants of the mapping walk.
9.3. Brownian asymptotics contains the main result: the scaled mapping-

walk derived from a uniform random mapping Mn, with 2n steps of size
±1/

√
n per unit time, converges in distribution to 2|Bbr| where Bbr is a

standard Brownian bridge.
9.4. The diameter As an application of the main result, the diameter of the

digraph of Mn, normalized by
√

n, is shown to converge in distribution to
an unusual functional of Bbr.

9.5. The height profile The normalized height profile of the forest derived
from Mn converges weakly to the process of local times of |Bbr|.

9.6. Non-uniform random mappings This section collects references to
extensions of these asymptotics to various kinds of non-uniform random
mappings.

9.1. Basins and trees

Fix a mapping Mn. It has a set of cyclic points

Cn := {i ∈ [n] : Mk
n(i) = i for some k ≥ 1},

where Mk
n is the kth iterate of Mn. Let Tn,c be the set of vertices of the tree

component of the digraph with root c ∈ Cn. Note that Tn,c might be a trivial tree
with just a single root vertex. The tree components are bundled by the disjoint
cycles Cn,j ⊆ Cn to form the basins of attraction (connected components) of the
mapping digraph, say

Bn,j :=
⋃

c∈Cn,j

Tn,c ⊇ Cn,j with
⋃
j

Bn,j = [n] and
⋃
j

Cn,j = Cn (9.1)
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where all three unions are disjoint unions, and the Bn,j and Cn,j are indexed in
some way by j = 1, . . . , |Cn|. Note that each tree component Tn,c is regarded here
just as a subset of [n], which is given the structure of a rooted tree by the action
of Mn. The precise meaning of Bn,j and Cn,j now depends on the convention
for ordering the cycles, which turns out to be of some importance. Two possible
conventions are the cycles-first ordering, meaning the Cn,j are put in order of
their least elements, and the basins-first ordering meaning the Bn,j are put in
order of their least elements. Rather than introduce two separate notations for
the two orderings, the same notation may be used for either ordering, with an
indication of which is meant. Whichever ordering, the definitions of Bn,j and
Cn,j are always linked by Bn,j ⊇ Cn,j , and (9.1) holds.

The following basic facts are easily deduced from these definitions, and results
of Sections Section 2.4 and Section 4.5.

Structure of the basin partition Let Πbasins
n be the random partition of

[n] whose blocks are the basins of attraction of uniform random mapping Mn.
Then Πbasins

n is a Gibbs[n](1•, w•) partition, for wj the number of mappings of
[j] whose digraph is connected. As remarked below Theorem 2.4, that implies
the result of Aldous [14] that

Πbasins
n

d→ Π(0, 1
2 )

∞ (9.2)

where the limit is a (0, 1
2 ) partition of positive integers.

Structure of the tree partition Let Πtrees
n be the random partition of [n]

whose blocks are the tree components of the uniform random mapping Mn.
So Πtrees

n is a refinement of Πbasins
n , with each basin split into its tree compo-

nents. Note that the number of components of Πtrees
n equals the the number

of cyclic points of Mn: |Πtrees
n | = |Cn|. From the structure of a mapping di-

graph, Πtrees
n is a Gibbs[n](v•, w•) partition for vk = k!, the number of different

ways that the restriction of Mn can act as a permutation of a given set of k
cyclic points, and wj = jj−1 the number of rooted trees labeled by a set of
size j. Let qj := e−jjj−1/j!, so (qj , j = 0, 1, . . .) is the distribution of total
size of a critical Galton-Watson tree with Poisson offspring distribution. Since
qj ∼ (2π)−1/2j−3/2, Theorem 2.5 gives for each � > 0, as n → ∞

(Πtrees
n given |Πtrees

n | = [�
√

n]) d→ Π( 1
2 |
√

2�)
∞ (9.3)

where the limit is the partition of positive integers generated by lengths of
excursions of a standard Brownian bridge Bbr conditioned on Lbr

1 = �, where
Lbr

1 := L0
1(B

br). It is well known that Lbr
1 has the Rayleigh density

P(Lbr
1 ∈ d�) = � exp(− 1

2�2)d� (� > 0). (9.4)

As a consequence of Cayley’s result that knn−k−1 is the number of forests labeled
by [n] with a specified set of k roots,

P(|Cn| = k) =
k

n

k−1∏
i=1

(
1 − i

n

)
(9.5)
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and hence that
|Cn|/

√
n

d→ Lbr
1 (9.6)

jointly with
Πtrees

n
d→ Π( 1

2 , 1
2 )

∞ (9.7)

where Π( 1
2 , 1

2 )
∞ is the random partition of positive integers generated by sam-

pling from the interval partition defined by excursions of the standard Brownian
bridge Bbr, whose distribution is defined by the (1

2 , 1
2 ) prediction rule. Recall

from (4.45) that Lbr
1 is encoded in Π( 1

2 , 1
2 )

∞ as the almost sure limit as n → ∞
of |Πn( 1

2 ,
1
2 )|/

√
2n, where |Πn( 1

2 ,
1
2 )| is the number of distinct excursions of Bbr

discovered by n independent uniform points on [0, 1].

Joint distribution of trees and basins As a check on (9.2) and (9.7), and
to understand the joint structure of tree and basin partitions generated by a
uniform random mapping Mn, it is instructive to compute the joint law of the
random variables

#Tn(1) := size of the tree containing 1 in the digraph of Mn (9.8)

and

#Bn(1) := size of the basin containing 1 in the digraph of Mn. (9.9)

Note that #Tn(1) and #Bn(1) are size-biased picks from the block-sizes of Πtrees
n

and Πbasins
n respectively. So their limit distributions as n → ∞, with normal-

ization by n, are the structural distributions of the weak limits of Πtrees
n and

Πbasins
n respectively.
To expose the combinatorial structure underlying the joint law of #Tn(1)

and #Bn(1), introduce new variables

Nn,1 := #Tn(1)− 1; Nn,2 := #Bn(1)−#Tn(1); Nn,3 := n−#Bn(1). (9.10)

Then for each possible vector of integers

(n1, n2, n3) with ni ≥ 0 and n1 + n2 + n3 = n − 1, (9.11)

there is the formula

P(Nn,i = ni, i = 1, 2, 3) =
(

n − 1
n1, n2, n3

)
(n1 + 1)n1nn2

2 nn3
3

nn
. (9.12)

The multinomial coefficient appears here for obvious reasons. For each particular
choice n1 + 1 possible elements of the set Tn(1), the factor (n1 + 1)n1 is the
number of possible rooted trees induced by the action of Mn on this set, by
Cayley’s formula (6.24). For each choice n3 possible elements of [n]\Bn(1), the
factor nn3

3 is the number of possible actions of Mn restricted to this set. This
reflects part (i) of the following lemma. Part (ii) of the lemma explains the
symmetry of formula (9.12) in (n2, n3) for fixed n1. See also [359] for similar
joint distributions derived from random mappings, known as Abel multinomial
distributions.
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Lemma 9.1. For a uniform random mapping Mn,
(i) Conditionally given the restriction of Mn to Bn(1) with Bn(1) = B, the

restriction of Mn to [n]−B is a uniform random mapping from [n]−B to [n]−B.
(ii) Conditionally given that Tn(1) is some subset T of [n] with 1 ∈ T , the

restriction of Πtrees
n to Bn(1)\T and the restriction of Πtrees

n to [n] − Bn(1) are
exchangeable.

Proof. The first statement is obvious. To clarify statement (ii), given Tn(1) =
T , each restriction of Πtrees

n is regarded as a random partition of a random subset
of [n], with some notion of a trivial partition if the subset is empty. According to
(i), given also Bn(1) = B, the restriction of Πtrees

n to [n]−B is the tree-partition
generated by a uniform random mapping from B to B. On the other hand, the
restriction of Πtrees

n to B − T is the tree partition generated by a uniformly
chosen composite structure on B − T , whereby B − T is partitioned into tree
components, and the roots of these components are assigned a linear order. But
this is bijectively equivalent to a mapping from B − T to B − T , hence the
conclusion. �

By Stirling’s formula, the probability in (9.12) is asymptotically equivalent
to

1
n2

1
2π

1√
n1/n

√
n2/n

√
n3/n

as ni → ∞, i = 1, 2, 3, (9.13)

hence as n → ∞

(Nn,1, Nn,2, Nn,3)/n
d→ Dirichlet(1

2 , 1
2 , 1

2 ). (9.14)

Recalling the definitions (9.10) of the Nn,i, this implies

#Bn(1)
n

d→ β1, 1
2

and
#Tn(1)

n

d→ β 1
2 ,1 (9.15)

where βa,b has beta(a, b) distribution. As a check, according to Theorem 3.2,
β1, 1

2
and β 1

2 ,1 are the structural distributions of (0, 1
2 ) and (1

2 , 1
2 ) partitions

respectively. So (9.15) agrees with (9.2) and (9.7). As indicated by Aldous [14],
Lemma 9.1 (i) allows recursive application of the second convergence in (9.15)
to show that the size-biased frequencies of Πbasins

n approach the GEM(0, 1
2 )

frequencies (3.8), hence the convergence (9.2) of Πbasins
n to a (0, 1

2 ) partition.

Exercises

9.1.1. Develop a variation of the above argument to show that the size-biased
frequencies of Πtrees

n approach the GEM(1
2 , 1

2 ) frequencies, hence the convergence
(9.7) of Πtrees

n to a ( 1
2 , 1

2 ) partition.
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Notes and comments

This section is based on [17, 24]. The theory of random mappings has a long
history. See [260, 17, 191] and papers cited there.

9.2. Mapping walks

The construction in [17] encodes the restriction of the digraph of Mn to each
tree component Tn,c of size k by the Harris walk of 2k steps associated with this
tree, which was defined in Section 6.3. This tree-walk derived from Tn,c, with
increments of ±1 on the non-negative integers, makes an excursion which starts
at 0 and returns to 0 for the first time after 2k steps, after reaching a maximum
level 1 + hn(c), where hn(c) is the maximal height above c of all vertices of the
tree Tn,c with root c, that is

hn(c) = max{h : ∃i ∈ [n] with Mh
n (i) = c and M j

n(i) /∈ Cn for 0 ≤ j < h}.
(9.16)

Given that c is a cyclic point such that the set of vertices Tn,c equals K for some
subset K of [n] with c ∈ K and |K| = k, the restriction of the digraph of Mn to
K has uniform distribution on the set of kk−1 trees labeled by K with root c.
According to a basic result of Aldous, Theorem 6.4, as k → ∞, the distribution
of this tree-walk when scaled to have 2k steps of ±1/

√
k per unit time, converges

to the distribution of 2Bex, for Bex a standard Brownian excursion.
We now define a mapping-walk (to code Mn) as a concatenation of its tree-

walks, to make a walk of 2n steps starting and ending at 0 with exactly |Cn|
returns to 0, one for each tree component of the mapping digraph. To concate-
nate the tree-walks, an order of tree-components must be specified. To retain
useful information about Mn in the mapping-walk, we want the ordering of
tree-walks to respect the cycle and basin structure of the mapping. Here are
two orderings that do so.

Definition 9.2. (Cycles-first ordering) Fix a mapping Mn from [n] to [n].
First put the cycles in increasing order of their least elements, say cn,1 < cn,2 <
. . . < cn,|Cn|. Let Cn,j be the cycle containing cn,j , and let Bn,j be the basin
containing Cn,j . Within cycles, list the trees around the cycles, as follows. If the
action of Mn takes cn,j → cn,j,1 → · · · → cn,j for each 1 ≤ j ≤ |Cn|, the tree
components Tn,c are listed with c in the order

(

Cn,1︷ ︸︸ ︷
cn,1,1, . . . , cn,1,

Cn,2︷ ︸︸ ︷
cn,2,1, . . . , cn,2, . . . . . . ,

Cn,|Cn|︷ ︸︸ ︷
cn,|Cn|,1, . . . , cn,|Cn|). (9.17)

The cycles-first mapping-walk is obtained by concatenating the tree walks de-
rived from Mn in this order. The cycles-first search of [n] is the permutation
σ : [n] → [n] where σj is the jth vertex of the digraph of Mn which is visited in
the corresponding concatenation of tree searches.
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Definition 9.3. (Basins-first ordering)[17] First put the basins Bn,j in in-
creasing order of their least elements, say 1 = bn,1 < bn,2 < . . . bn,|Cn|; let
cn,j ∈ Cn,j be the cyclic point at the root of the tree component containing
bn,j . Now list the trees around the cycles, just as in (9.17), but for the newly
defined cn,j and cn,j,i. Call the corresponding mapping-walk and search of [n]
the basins-first mapping-walk and basins-first search.

Let us briefly observe some similarities between the two mapping-walks. For
each given basin B of Mn with say b elements, the restriction of Mn to B is
encoded in a segment of each walk which equals at 0 at some time, and returns
again to 0 after 2b more steps. If the basin contains exactly c cyclic points, this
walk segment of 2b steps will be a concatenation of c excursions away from 0.
Exactly where this segment of 2b steps appears in the mapping-walk depends on
the ordering convention, as does the ordering of excursions away from 0 within
the segment of 2b steps. However, many features of the action of Mn on the
basin B are encoded in the same way in the two different stretches of length
2b in the two walks, despite the permutation of excursions. One example is the
number of elements in the basin whose height above the cycles is h, which is
encoded in either walk as the number of upcrossings from h to h + 1 in the
stretch of walk of length 2b corresponding to that basin.

9.3. Brownian asymptotics

The idea now is that for either of the mapping walks derived above from a uni-
form mapping Mn, a suitable rescaling converges weakly in C[0, 1] as n → ∞ to
the distribution of the reflecting Brownian bridge defined by the absolute value
of a standard Brownian bridge Bbr with Bbr

0 = Bbr
1 = 0 obtained by conditioning

a standard Brownian motion B on B1 = 0. Jointly with this convergence, re-
sults of [17] imply that for a uniform random mapping, the basin sizes rescaled
by n, jointly with corresponding cycle sizes rescaled by

√
n, converge in dis-

tribution to a limiting bivariate sequence of random variables (λIj
, Lbr

Ij
)j=1,2,...

where (Ij)j=1,2,... is a random interval partition of [0, 1], with λIj
the length

of Ij and Lbr
Ij

the increment of local time of Bbr at 0 over the interval Ij . For
the basins-first walk, the limiting interval partition is (Ij) = (ID

j ), according to
the following definition. Here U,U1, U2, . . . denotes a sequence of independent
uniform (0, 1) variables, independent of Bbr, and the local time process of Bbr

at 0 is assumed to be normalized as occupation density relative to Lebesgue
measure.

Definition 9.4. (The D-partition [17]) Let ID
j := [DVj−1 ,DVj

] where V0 =
DV0 = 0 and Vj is defined inductively along with the DVj

for j ≥ 1 as follows:
given that DVi

and Vi have been defined for 0 ≤ i < j, let

Vj := DVj−1 + Uj(1 − DVj−1),

so Vj is uniform on [DVj−1 , 1] given Bbr and (Vi,DVi
) for 0 ≤ i < j, and let

DVj
:= inf{t ≥ Vj : Bbr

t = 0}.
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On the other hand, for the cycles-first walk, the limits involve a different
interval partition. This is the partition (Ij) = (IT

j ) defined as follows using the
local time process (Lbr

u , 0 ≤ u ≤ 1) of Bbr at 0:

Definition 9.5. (The T -partition) Let IT
j := [Tj−1, Tj ] where T0 := 0, V̂0 :=

0, and for j ≥ 1
V̂j := 1 −

∏j
i=1(1 − Ui), (9.18)

so V̂j is uniform on [V̂j−1, 1] given Bbr and (V̂i, Ti) for 0 ≤ i < j, and

Tj := inf{u : Lbr
u /Lbr

1 > V̂j}.

The main result can now be stated as follows:

Theorem 9.6. [24] The scaled mapping-walk (M [n]
u , 0 ≤ u ≤ 1) derived from

a uniform random mapping Mn, with 2n steps of ±1/
√

n per unit time, for
either the cycles-first or the basins-first ordering of excursions corresponding to
tree components, converges in distribution to 2|Bbr| jointly with (9.6) and (9.7),

where (Lbr
u , 0 ≤ u ≤ 1) is the process of local time at 0 of Bbr, and Π( 1

2 , 1
2 )

∞ is
the random partition of positive integers generated by sampling from the interval
partition defined by excursions Bbr. Moreover,
(i) for the cycles-first ordering, with the cycles Bn,j in order of their least ele-
ments, these two limits in distribution hold jointly with

(
|Bn,j |

n
,
|Cn,j |√

n

)
d→ (λIj

, Lbr
Ij

) (9.19)

as j varies, where the limits are the lengths and increments of local time of Bbr

at 0 associated with the interval partition (Ij) := (IT
j ); whereas

(ii) [17] for the basins-first ordering, with the basins Bn,j listed in order of
their least elements, the same is true, provided the limiting interval partition is
defined instead by (Ij) := (ID

j ).

The result for basins-first ordering is part of [17, Theorem 8]. The variant
for cycles-first ordering can be established by a variation of the argument in
[17], exploiting the exchangeability of the tree components in the cycles-first
ordering. See also [58] and [15] for alternate approaches to the basic result of
[17].

The random set of pairs {(|Bn,j |/n, |Cn,j |/
√

n) , 1 ≤ j ≤ |Cn|} is the same,
no matter what ordering convention is used. So Theorem 9.6 implies that the
distribution of the random set of limit points, {(λIj

, Lbr
Ij

), j ≥ 1}, regarded as
a point process on R

2
>0, is the same for (Ij) = (ID

j ) or (Ij) = (IT
j ). This fact

about Brownian bridge is not at all obvious, but can be verified by application
of Brownian excursion theory. See [24] for further discussion.

To gain useful information about large random mappings from Theorem 9.6,
it is necessary to understand well the joint law of Bbr and one or other of the
limiting interval partitions (Ij) whose definition depends on the path of Bbr. To
be definite, assume from now on that the ordering convention is basins first. One
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feature of natural interest is the maximal height above the cycle of the tallest
tree in the basin. Let this maximal height be Hn,j for the jth basin. Theorem
9.6 implies (

|Bn,j |
n

,
|Cn,j |√

n
,
Hn,j√

n

)
d→ (λj , Lj , 2M j)j=1,2,... (9.20)

where we abbreviate λj := λIj
, Lj := Lbr

Ij
, and M j := |Bbr|(DVj−1 ,DVj

) is the
maximal value of |Bbr| on Ij . It follows easily from Definition 9.4, the strong
Markov property of Bbr at the times DVj

, and Brownian scaling, that

λj = Wj

j−1∏
i=1

(1 − Wi) (9.21)

for a sequence of independent random variables Wj with beta(1, 1
2 ) distribution,

and that
(Lj ,M j) =

√
λj(L̃j , M̃j) (9.22)

for a sequence of independent and identically distributed random pairs (L̃j , M̃j),
independent of (λj). The common distribution of (L̃j , M̃j) is that of

(L̃1, M̃1) :=

(
Lbr

DU√
DU

,
Mbr

DU√
DU

)
(9.23)

where DU is the time of the first zero of Bbr after a uniform[0, 1] random time U
which is independent of Bbr, Lbr

t := L0
t (B

br), and and Mbr
t := max0≤u≤t |Bbr

u |
for 0 ≤ t ≤ 1. It is known [341] that for (λj) as in (9.21), assumed indepen-
dent of B1, the B2

1λj are the points (in size-biased random order) of a Poisson
process on R>0 with intensity measure 1

2 t−1e−t/2dt which is the Lévy measure
of the infinitely divisible gamma(1

2 , 1
2 ) distribution of B2

1 . Together with stan-
dard properties of Poisson processes, this observation and the previous formulae
(9.21) to (9.23) yield the following lemma. See also [24] for related results.

Lemma 9.7. If B1 is a standard Gaussian variable independent of the sequence
of triples (λj , Lj ,M j)j=1,2,... featured in (9.20), then the random vectors

(B2
1λj , |B1|Lj , |B1|M j)

are the points of a Poisson point process on R
3
>0 with intensity measure µ defined

by

µ(dt d� dm) =
e−t/2 dt

2t
P (

√
tL̃1 ∈ d�,

√
tM̃1 ∈ dm) (9.24)

for t, �,m > 0, where (L̃1, M̃1) is the pair of random variables derived from a
Brownian bridge by (9.23).

For a process X := (Xt, t ∈ J) parameterized by an interval J , and I =
[GI ,DI ] a subinterval of J with length λI := DI − GI > 0, we denote by X[I]
or X[GI ,DI ] the fragment of X on I, that is the process

X[I]u := XGI+u (0 ≤ u ≤ λI). (9.25)



202 9 Brownian bridge asymptotics

Denote by X∗[I] or X∗[GI ,DI ] the standardized fragment of X on I, defined by
the Brownian scaling operation

X∗[I]u :=
XGI+uλI

− XGI√
λI

( 0 ≤ u ≤ 1). (9.26)

The process B̃br := B∗[0, τ1], where τ1 is an inverse local time at 0 for the
unconditioned Brownian motion B, is known as a Brownian pseudo-bridge, and
there is the following absolute continuity relation between the laws of B̃br and
Bbr found in [59]: for each non-negative measurable function g on C[0, 1],

E[g(B̃br)] =

√
2
π

E[g(Bbr)/Lbr
1 ].

See Exercise 4.5.2 . It follows from [366, Theorem 1.3] and [17, Proposition 2]
that the process Bbr

∗ [0,DU ], obtained by rescaling the path of Bbr on [0,D1] to
have length 1 by Brownian scaling, has the same distribution as a rearrangement
of the path of the pseudo-bridge B̃br. Neither the maximum nor the local time
at 0 are affected by such a rearrangement, so there is the equality in distribution

(L̃1, M̃1)
d= (L̃br

1 , M̃br
1 ) (9.27)

where L̃br
1 := L0

1(B̃
br) M̃br

1 := max0≤u≤1 |B̃br
u |. So (9.27) yields the formula

P (
√

tL̃1 ∈ d�,
√

tM̃1 ≤ y) =

√
2
π

√
t

�
P (

√
tLbr

1 ∈ d�,
√

tMbr
1 ≤ y), (9.28)

for t, �, y > 0. Now the joint law of Lbr
1 and Mbr

1 is characterized by the following
identity: for all � > 0 and y > 0

∫ ∞

0

e−t/2

√
2πt

dt P (
√

tLbr
1 ∈ d�,

√
tMbr

1 ≤ y) = e−�d� exp
(

−2�

e2y − 1

)
(9.29)

which can be read from [374, Theorem 3, Lemma 4 and (36) ], with the following
interpretation. Let (Lt, t ≥ 0) be the local time process of the Brownian motion
B at 0, let T be an exponential random variable with mean 2 independent of B,
and let GT be the time of the last 0 of B before time T . Then (9.29) provides
two expressions for

P

(
LT ∈ d�, sup

0≤u≤GT

|Bu| ≤ y

)
,

on the left side by conditioning on GT , and on the right side by conditioning on
LT . See also [384, Chapter XII, Exercise (4.24)].

Using (9.24), (9.28) and (9.29), we deduce that in the Poisson point process
of Lemma 9.7,

E[number of points (|B1|Lj , |B1|M j) with |B1|Lj ∈ d� and |B1|M j ≤ y] =
(9.30)
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∫ ∞

0

e−t/2 dt

2t
P (

√
tL̃1 ∈ d�,

√
tM̃1 ≤ y) = �−1e−�d� exp

(
−2�

e2y − 1

)
. (9.31)

A significant check on these calculations can be made as follows. By further
integration, the expected number of points j with |B1|M j greater than y is

η(y) :=
∫ ∞

0

�−1e−�d�

[
1 − exp

(
−2�

e2y − 1

)]
. (9.32)

Now the probability of no point greater than y is e−η(y), so

P(|B1|max
j

M j ≤ y) = e−η(y). (9.33)

But the event (|B1|maxj M j ≤ y) is identical to the event (Mbr
1 ≤ y), where

Mbr
1 := max0≤u≤1 |Bbr

u |. And e−η(y) = 1
1+2/(e2y−1) = tanh y by application of

the Lévy-Khintchine formula for the exponential distribution, that is

1
1 + λ

= exp
[
−
∫ ∞

0

�−1e−�(1 − e−λ�)d�

]
,

for λ = 2/(e2y − 1). Thus for B1 standard Gaussian independent of Bbr and
y > 0, there is the remarkable formula

P(|B1|Mbr
1 ≤ y) = tanh y (y ≥ 0) (9.34)

which is a known equivalent of Kolmogorov’s formula

P(Mbr
1 ≤ x) =

∞∑
n=−∞

(−1)ne−2n2x2
(x ≥ 0) (9.35)

As observed in [60], formula (9.34) allows the Mellin transform of Mbr
1 to be

expressed in terms of the Riemann zeta function. See also [339, 371, 373] for
closely related Mellin transforms obtained by the technique of multiplication
by a suitable independent random factor to introduce Poisson or Markovian
structure.

Notes and comments

This section is based on [17] and [24].

9.4. The diameter

The diameter of Mn is the random variable

∆n := max
i∈[n]

Tn(i)
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where Tn(i) is the number of iterations of Mn starting from i until some value
is repeated:

Tn(i) := min{j ≥ 1 : M j
n(i) = Mk

n(i) for some 0 ≤ k < j}

where M0
n(i) = i and M j

n(i) := Mn(M j−1
n (i)) is the image of i under j-fold

iteration of Mn for j ≥ 1. Since by definition ∆n = maxj(|Cn,j | + Hn,j), it
follows from (9.20) that as n → ∞

∆n√
n

d→ ∆ := max
j

(Lj + 2M j). (9.36)

So we obtain the following corollary of Theorem 9.6:

Corollary 9.8. [22] Let B1 be a standard Gaussian variable independent of ∆.
Then the distribution of ∆ in (9.36) is characterized by

P (|B1|∆ ≤ v) = e−E1(v)−I(v) (v ≥ 0) (9.37)

where

E1(v) :=
∫ ∞

v

u−1e−udu

I(v) :=
∫ v

0

u−1e−u

[
1 − exp

(
−2u

ev−u − 1

)]
du.

Proof. From (9.36) and Lemma 9.7, the event |B1|∆ ≤ v is the event that
there is no j with |B1|Lj + 2|B1|M j > v. But from (9.30) - (9.31), E1(v) is the
expected number of j with |B1|Lj ≥ v, while I(v) is the expected number of j
with |B1|Lj < v and |B1|Lj + 2|B1|M j > v. �

Integration of (9.37) gives a formula for E(∆p) for arbitrary p > 0, which is
easily shown to be the limit as n → ∞ of E((∆n/

√
n)p). This formula was first

found for p = 1 by Flajolet-Odlyzko [156, Theorem 7] using singularity analysis
of generating functions. See also [408, 289, 97] for related asymptotic studies of
the diameter of undirected random trees and graphs.

Exercises

9.4.1. (Problem: the diameter of a Brownian tree) Szekeres [408] found
an explicit formula for the asymptotic distribution of the diameter of a uniform
random tree labeled by [n], with normalization by

√
n. Aldous [6, 3.4] observed

that this is the distribution of the diameter of T (2Bex), and raised the following
problem, which is still open: can this distribution be characterized directly in
the Brownian world?
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Notes and comments

This section is based on [22]. The technique of characterizing the law of some
Brownian functional X by first considering the law of |B1|X for B1 a standard
Gaussian variable independent of X, and the related idea of random Brownian
scaling have found numerous applications [439, 374, 372].

9.5. The height profile

We continue to suppose that Mn is a uniform random mapping from [n] to [n].
For v ∈ [n] let h(v,Mn) be the least m ≥ 0 such that Mm

n (v) ∈ Cn. So h(v,Mn)
is the height of v in the forest derived from Mn whose set of roots is the random
set Cn of cyclic points of Mn. For h = 0, 1, 2, . . . let Z∗,n(h) be the number of
v ∈ [n] such that h(v,Mn) = h. Call this process (Z∗,n(h), h ≥ 0) the height
profile of the mapping forest. Let (Zk,n(h), h ≥ 0) be the height profile of the
mapping forest conditioned on the event (Z∗,n(0) = k) that Mn has exactly
k cyclic points. Then (Zk,n(h), h ≥ 0) has the same distribution as the height
profile generated by a uniform random forest of k rooted trees labeled by [n],
to which the limit theorem (8.30) applies, by inspection of (8.34) and (4.9). To
review:

Lemma 9.9. If (Zk,n(h), h ≥ 0) is either
(i) the height profile of a uniform random forest of k rooted trees labeled by [n],
or
(ii) the height profile of the forest derived from a random mapping from [n] to
[n] conditioned to have k cyclic points,
then the distribution of the sequence (Zk,n(h), h ≥ 0) is that described by Lemma
8.6, and in the limit regime as n → ∞ and 2k/

√
n → � ≥ 0

(
2√
n

Zk,n(2
√

nv), v ≥ 0
)

d→ (Q�,1,v, v ≥ 0) (9.38)

where the law of (Q�,1,v, v ≥ 0) is defined by Theorem 8.4.

The following result is now obtained by mixing the result of the previous
lemma with respect to the distribution of the number Z∗,n(0) = |Cn| of cyclic

points of Mn. According to (9.6), |Cn|/
√

n
d→ L0

1(B
br), so the result is:

Theorem 9.10. Drmota-Gittenberger [116] The normalized height profile of
the forest derived from a uniform random mapping Mn converges weakly to the
process of local times of a reflecting Brownian bridge of length 1:

(
2√
n

Z∗,n(2
√

nv), v ≥ 0
)

d→ (Lv
1(|Bbr|, v ≥ 0) (9.39)
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Notes and comments

This section is based on [358]. Presumably the convergence in distribution of
height profiles (9.39) holds jointly with all the convergences in distribution de-
scribed in Theorem 9.6. This must be true, but seems difficult to establish.
Corresponding results of joint convergence in distribution of occupation time
processes and unconditioned walk paths to their Brownian limits, for simple
random walks, can be read from Knight [254]. Presumably corresponding re-
sults are known for simple random walks with bridges or excursions as limits,
but I do not know a reference.

9.6. Non-uniform random mappings

Definition 9.11. Let p be a probability distribution on [n]. Call Mn p-mapping
from [n] to [n] if the images Mn(i) of points i ∈ [n] are independent and iden-
tically distributed according to p.

Combinatorial properties of p-mappings, and some elementary asymptotics
are reviewed in [359]. Further asymptotic features of p-mappings were studied
in [327]. In [23, 16] it is shown that Brownian bridge asymptotics apply for
models of random mappings more general than the uniform model, in particular
for p-mapping model under suitable conditions. Proofs are simplified by use of
Joyal’s bijection between mappings and trees, discussed in Exercise 10.1.4 .
Another important result on p-mappings is Burtin’s formula which is presented
in Exercise 10.1.5 . But these results for p-mappings are best considered in
connection with p-trees and p-forests, which are the subject of Chapter 10.




