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1 Introduction

These lecture notes are an expanded version of the lectures given by the second and
the fourth author in the summer school ”Open Quantum Systems” held in Grenoble,
June 16–July 4, 2003. We are grateful to Stéphane Attal and Alain Joye for their
hospitality and invitation to speak.

The lecture notes have their root in the recent review article [JP4] and our goal
has been to extend and complement certain topics covered in [JP4]. In particular, we
will discuss the scattering theory of non-equilibrium steady states (NESS) (this topic
has been only quickly reviewed in [JP4]). On the other hand, we will not discuss
the spectral theory of NESS which has been covered in detail in [JP4]. Although
the lecture notes are self-contained, the reader would benefit from reading them in
parallel with [JP4].

Concerning preliminaries, we will assume that the reader is familiar with the
material covered in the lecture notes [At, Jo, Pi]. On occasion, we will mention or
use some material covered in the lectures [D1, Ja].

As in [JP4], we will work in the mathematical framework of algebraic quantum
statistical mechanics. The basic notions of this formalism are reviewed in Section 3.
In Section 4 we introduce open quantum systems and describe their basic properties.
The linear response theory (this topic has not been discussed in [JP4]) is described



Topics in Non-Equilibrium Quantum Statistical Mechanics 3

in Subsection 4.4. The linear response theory of open quantum systems (Kubo for-
mulas, Onsager relations, Central Limit Theorem) has been studied in the recent
papers [FMU, FMSU, AJPP, JPR2].

The second part of the lecture notes (Sections 6–8) is devoted to an example.
The model we will discuss is the simplest non-trivial example of the Electronic
Black Box Model studied in [AJPP] and we will refer to it as the Simple Electronic
Black Box Model (SEBB). The SEBB model is to a large extent exactly solvable—
its NESS and entropy production can be exactly computed and Kubo formulas can
be verified by an explicit computation. For reasons of space, however, we will not
discuss two important topics covered in [AJPP]—the stability theory (which is es-
sentially based on [AM, BM]) and the proof of the Central Limit Theorem. The
interested reader may complement Sections 6–8 with the original paper [AJPP] and
the recent lecture notes [JKP].

Section 5, in which we discuss statistical mechanics of a free Fermi gas, is the
bridge between the two parts of the lecture notes.

Acknowledgment. The research of V.J. was partly supported by NSERC. Part of
this work was done while Y.P. was a CRM-ISM postdoc at McGill University and
Centre de Recherches Mathématiques in Montreal.

2 Conceptual Framework

The concept of reference state will play an important role in our discussion of non-
equilibrium statistical mechanics. To clarify this notion, let us consider first a clas-
sical dynamical system with finitely many degrees of freedom and compact phase
space X ⊂ R

n. The normalized Lebesgue measure dx on X provides a physically
natural statistics on the phase space in the sense that initial configurations sampled
according to it can be considered typical (see [Ru4]). Note that this has nothing to
do with the fact that dx is invariant under the flow of the system—any measure of
the form ρ(x)dx with a strictly positive density ρ would serve the same purpose.
The situation is completely different if the system has infinitely many degrees of
freedom. In this case, there is no natural replacement for the Lebesgue dx. In fact,
a measure on an infinite-dimensional phase space physically describes a thermo-
dynamic state of the system. Suppose for example that the system is Hamiltonian
and is in thermal equilibrium at inverse temperature β and chemical potential µ.
The statistics of such a system is described by the Gibbs measure (grand canonical
ensemble). Since two Gibbs measures with different values of the intensive ther-
modynamic parameters β, µ are mutually singular, initial points sampled according
to one of them will be atypical relative to the other. In conclusion, if a system has
infinitely many degrees of freedom, we need to specify its initial thermodynamic
state by choosing an appropriate reference measure. As in the finite-dimensional
case, this measure may not be invariant under the flow. It also may not be uniquely
determined by the physical situation we wish to describe.
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The situation in quantum mechanics is very similar. The Schrödinger represen-
tation of a system with finitely many degrees of freedom is (essentially) uniquely
determined and the natural statistics is provided by any strictly positive density ma-
trix on the Hilbert space of the system. For systems with infinitely many degrees
of freedom there is no such natural choice. The consequences of this fact are how-
ever more drastic than in the classical case. There is no natural choice of a Hilbert
space in which the system can be represented. To induce a representation, we must
specify the thermodynamic state of the system by choosing an appropriate reference
state. The algebraic formulation of quantum statistical mechanics provides a math-
ematical framework to study such infinite system in a representation independent
way.

One may object that no real physical system has an infinite number of degrees of
freedom and that, therefore, a unique natural reference state always exists. There are
however serious methodological reasons to consider this mathematical idealization.
Already in equilibrium statistical mechanics the fundamental phenomena of phase
transition can only be characterized in a mathematically precise way within such an
idealization: A quantum system with finitely many degrees of freedom has a unique
thermal equilibrium state. Out of equilibrium, relaxation towards a stationary state
and emergence of steady currents can not be expected from the quasi-periodic time
evolution of a finite system.

In classical non-equilibrium statistical mechanics there exists an alternative
approach to this idealization. A system forced by a non-Hamiltonian or time-
dependent force can be driven towards a non-equilibrium steady state, provided
the energy supplied by the external source is removed by some thermostat. This
micro-canonical point of view has a number of advantages over the canonical, in-
finite system idealization. A dynamical system with a relatively small number of
degrees of freedom can easily be explored on a computer (numerical integration, it-
eration of Poincaré sections, . . . ). A large body of “experimental facts” is currently
available from the results of such investigations (see [EM, Do] for an introduction
to the techniques and a lucid exposition of the results). From a more theoretical
perspective, the full machinery of finite-dimensional dynamical system theory be-
comes available in the micro-canonical approach. The Chaotic Hypothesis intro-
duced in [CG1,CG2] is an attempt to exploit this fact. It justifies phenomenological
thermodynamics (Onsager relations, linear response theory, fluctuation-dissipation
formulas,...) and has lead to more unexpected results like the Gallavotti-Cohen Fluc-
tuation Theorem. The major drawback of the micro-canonical point of view is the
non-Hamiltonian nature of the dynamics, which makes it inappropriate to quantum-
mechanical treatment.

The two approaches described above are not completely unrelated. For exam-
ple, we shall see that the signature of a non-equilibrium steady state in quantum
mechanics is its singularity with respect to the reference state, a fact which is well
understood in the classical, micro-canonical approach (see Chapter 10 of [EM]).
More speculatively, one can expect a general equivalence principle for dynamical
(micro-canonical and canonical) ensembles (see [Ru5]). The results in this direction
are quite scarce and much work remains to be done.
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3 Mathematical Framework

In this section we describe the mathematical formalism of algebraic quantum sta-
tistical mechanics. Our presentation follows [JP4] and is suited for applications to
non-equilibrium statistical mechanics. Most of the material in this section is well
known and the proofs can be found, for example, in [BR1, BR2, DJP, Ha, OP, Ta].
The proofs of the results described in Subsection 3.3 are given in Appendix 9.1.

3.1 Basic Concepts

The starting point of our discussion is a pair (O, τ), where O is a C∗-algebra with
a unit I and τ is a C∗-dynamics (a strongly continuous group R � t �→ τ t of
∗-automorphisms of O). The elements of O describe physical observables of the
quantum system under consideration and the group τ specifies their time evolution.
The pair (O, τ) is sometimes called a C∗-dynamical system.

In the sequel, by the strong topology on O we will always mean the usual norm
topology of O as Banach space. The C∗-algebra of all bounded operators on a
Hilbert space H is denoted by B(H).

A state ω on the C∗-algebra O is a normalized (ω(I) = 1), positive (ω(A∗A) ≥
0), linear functional on O. It specifies a possible physical state of the quantum me-
chanical system. If the system is in the state ω at time zero, the quantum mechanical
expectation value of the observable A at time t is given by ω(τ t(A)). Thus, states
evolve in the Schrödinger picture according to ωt = ω ◦ τ t. The set E(O) of all
states on O is a convex, weak-∗ compact subset of the Banach space dual O∗ of O.

A linear functional η ∈ O∗ is called τ -invariant if η ◦ τ t = η for all t. The set of
all τ -invariant states is denoted by E(O, τ). This set is always non-empty. A state
ω ∈ E(O, τ) is called ergodic if

lim
T→∞

1
2T

∫ T

−T

ω(B∗τ t(A)B) dt = ω(A)ω(B∗B),

and mixing if
lim

|t|→∞
ω(B∗τ t(A)B) = ω(A)ω(B∗B),

for all A,B ∈ O.
Let (Hη, πη, Ωη) be the GNS representation associated to a positive linear func-

tional η ∈ O∗. The enveloping von Neumann algebra of O associated to η is
Mη ≡ πη(O)′′ ⊂ B(Hη). A linear functional µ ∈ O∗ is normal relative to η or
η-normal, denoted µ 
 η, if there exists a trace class operator ρµ on Hη such that
µ(·) = Tr(ρµπη(·)). Any η-normal linear functional µ has a unique normal exten-
sion to Mη. We denote by Nη the set of all η-normal states. µ
 η iff Nµ ⊂ Nη.

A state ω is ergodic iff, for all µ ∈ Nω and A ∈ O,

lim
T→∞

1
2T

∫ T

−T

µ(τ t(A)) dt = ω(A).
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For this reason ergodicity is sometimes called return to equilibrium in mean; see
[Ro1, Ro2]. Similarly, ω is mixing (or returns to equilibrium) iff

lim
|t|→∞

µ(τ t(A)) = ω(A),

for all µ ∈ Nω and A ∈ O.
Let η and µ be two positive linear functionals in O∗, and suppose that η ≥ φ ≥ 0

for some µ-normal φ implies φ = 0. We then say that η and µ are mutually singular
(or orthogonal), and write η ⊥ µ. An equivalent (more symmetric) definition is:
η ⊥ µ iff η ≥ φ ≥ 0 and µ ≥ φ ≥ 0 imply φ = 0.

Two positive linear functionals η and µ in O∗ are called disjoint if Nη∩Nµ = ∅.
If η and µ are disjoint, then η ⊥ µ. The converse does not hold— it is possible that
η and µ are mutually singular but not disjoint.

To elucidate further these important notions, we recall the following well-known
results; see Lemmas 4.1.19 and 4.2.8 in [BR1].

Proposition 3.1. Let µ1, µ2 ∈ O∗ be two positive linear functionals and µ = µ1 +
µ2. Then the following statements are equivalent:

(i) µ1 ⊥ µ2.
(ii) There exists a projection P in πµ(O)′ such that

µ1(A) =
(
PΩµ, πµ(A)Ωµ

)
, µ2(A) =

(
(I − P )Ωµ, πµ(A)Ωµ

)
.

(iii) The GNS representation (Hµ, πµ, Ωµ) is a direct sum of the two GNS repre-
sentations (Hµ1 , πµ1 , Ωµ1) and (Hµ2 , πµ2 , Ωµ2), i.e.,

Hµ = Hµ1 ⊕Hµ2 , πµ = πµ1 ⊕ πµ2 , Ωµ = Ωµ1 ⊕Ωµ2 .

Proposition 3.2. Let µ1, µ2 ∈ O∗ be two positive linear functionals and µ = µ1 +
µ2. Then the following statements are equivalent:

(i) µ1 and µ2 are disjoint.
(ii) There exists a projection P in πµ(O)′ ∩ πµ(O)′′ such that

µ1(A) =
(
PΩµ, πµ(A)Ωµ

)
, µ2(A) =

(
(I − P )Ωµ, πµ(A)Ωµ

)
.

Let η, µ ∈ O∗ be two positive linear functionals. The functional η has a unique
decomposition η = ηn + ηs, where ηn, ηs are positive, ηn 
 µ, and ηs ⊥ µ. The
uniqueness of the decomposition implies that if η is τ -invariant, then so are ηn and
ηs.

To elucidate the nature of this decomposition we need to recall the notions of
the universal representation and the universal enveloping von Neumann algebra of
O; see Section III.2 in [Ta] and Section 10.1 in [KR].

Set
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Hun ≡
⊕

ω∈E(O)

Hω, πun ≡
⊕

ω∈E(O)

πω, Mun ≡ πun(O)′′.

(Hun, πun) is a faithful representation. It is called the universal representation of
O. Mun ⊂ B(Hun) is its universal enveloping von Neumann algebra. For any ω ∈
E(O) the map

πun(O) → πω(O)
πun(A) �→ πω(A),

extends to a surjective ∗-morphism π̃ω : Mun → Mω . It follows that ω uniquely
extends to a normal state ω̃(·) ≡ (Ωω, π̃ω(·)Ωω) on Mun. Moreover, one easily
shows that

Ker π̃ω = {A ∈ Mun | ν̃(A) = 0 for any ν ∈ Nω}. (1)

Since Ker π̃ω is a σ-weakly closed two sided ideal in Mun, there exists an orthog-
onal projection pω ∈ Mun ∩ M′

un such that Ker π̃ω = pωMun. The orthogonal
projection zω ≡ I − pω ∈ Mun ∩ M′

un is called the support projection of the state
ω. The restriction of π̃ω to zωMun is an isomorphism between the von Neumann
algebras zωMun and Mω . We shall denote by φω the inverse isomorphism.

Let now η, µ ∈ O∗ be two positive linear functionals. By scaling, without loss
of generality we may assume that they are states. Since η̃ is a normal state on Mun

it follows that η̃ ◦ φµ is a normal state on Mµ and hence that ηn ≡ η̃ ◦ φµ ◦ πµ
defines a µ-normal positive linear functional on O. Moreover, from the relation
φµ ◦ πµ(A) = zµπun(A) it follows that

ηn(A) = (Ωη, π̃η(zµ)πη(A)Ωη).

Setting
ηs(A) ≡ (Ωη, π̃η(pµ)πη(A)Ωη),

we obtain a decomposition η = ηn + ηs. To show that ηs ⊥ µ let ω be a µ-normal
positive linear functional on O such that ηs ≥ ω. By the unicity of the normal
extension η̃s one has η̃s(A) = η̃(pµA) for A ∈ Mun. Since πun(O) is σ-strongly
dense in Mun it follows from the inequality η̃s◦πun ≥ ω̃◦πun that η̃(pµA) ≥ ω̃(A)
for any positive A ∈ Mun. Since ω is µ-normal, it further follows from Equ. (1)
that ω(A) = ω̃(πun(A)) = ω̃(zµπun(A)) ≤ η̃(pµzµπun(A)) = 0 for any positive
A ∈ O, i.e., ω = 0. Since π̃η is surjective, one has π̃η(zµ) ∈ Mη ∩ M′

η and, by
Proposition 3.2, the functionals ηn and ηs are disjoint.

Two states ω1 and ω2 are called quasi-equivalent if Nω1 = Nω2 . They are
called unitarily equivalent if their GNS representations (Hωj

, πωj
, Ωωj

) are unitar-
ily equivalent, namely if there is a unitary U : Hω1 → Hω2 such that UΩω1 = Ωω2

and Uπω1(·) = πω2(·)U . Clearly, unitarily equivalent states are quasi-equivalent.
If ω is τ -invariant, then there exists a unique self-adjoint operator L on Hω such

that
LΩω = 0, πω(τ t(A)) = eitLπω(A)e−itL.
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We will call L the ω-Liouvillean of τ .
The state ω is called factor state (or primary state) if its enveloping von Neumann

algebra Mω is a factor, namely if Mω ∩M′
ω = CI . By Proposition 3.2 ω is a factor

state iff it cannot be written as a nontrivial convex combination of disjoint states.
This implies that if ω is a factor state and µ is a positive linear functional in O∗,
then either ω 
 µ or ω ⊥ µ.

Two factor states ω1 and ω2 are either quasi-equivalent or disjoint. They are
quasi-equivalent iff (ω1 + ω2)/2 is also a factor state (this follows from Theorem
4.3.19 in [BR1]).

The state ω is called modular if there exists a C∗-dynamics σω on O such that
ω is a (σω,−1)-KMS state. If ω is modular, then Ωω is a separating vector for Mω,
and we denote by ∆ω , J and P the modular operator, the modular conjugation and
the natural cone associated to Ωω. To any C∗-dynamics τ on O one can associate a
unique self-adjoint operator L on Hω such that for all t

πω(τ t(A)) = eitLπω(A)e−itL, e−itLP = P.

The operatorL is called standard Liouvillean of τ associated to ω. If ω is τ -invariant,
then LΩω = 0, and the standard Liouvillean is equal to the ω-Liouvillean of τ .

The importance of the standard Liouvillean L stems from the fact that if a state
η is ω-normal and τ -invariant, then there exists a unique vector Ωη ∈ KerL ∩ P
such that η(·) = (Ωη, πω(·)Ωη). This fact has two important consequences. On one
hand, if η is ω-normal and τ -invariant, then some ergodic properties of the quantum
dynamical system (O, τ, η) can be described in terms of the spectral properties of
L; see [JP2, Pi]. On the other hand, if KerL = {0}, then the C∗-dynamics τ has
no ω-normal invariant states. The papers [BFS, DJ2, FM1, FM2, FMS, JP1, JP2, JP3,
Me1, Me2, Og] are centered around this set of ideas.

In quantum statistical mechanics one also encounters Lp-Liouvilleans, for p ∈
[1,∞] (the standard Liouvillean is equal to theL2-Liouvillean). TheLp-Liouvilleans
are closely related to the Araki-Masuda Lp-spaces [ArM]. L1 and L∞-Liouvilleans
have played a central role in the spectral theory of NESS developed in [JP5]. The use
of other Lp-Liouvilleans is more recent (see [JPR2]) and they will not be discussed
in this lecture.

3.2 Non-Equilibrium Steady States (NESS) and Entropy Production

The central notions of non-equilibrium statistical mechanics are non-equilibrium
steady states (NESS) and entropy production. Our definition of NESS follows
closely the idea of Ruelle that a “natural” steady state should provide the statis-
tics, over large time intervals [0, t], of initial configurations of the system which are
typical with respect to the reference state [Ru3]. The definition of entropy produc-
tion is more problematic since there is no physically satisfactory definition of the
entropy itself out of equilibrium; see [Ga1, Ru2, Ru5, Ru7] for a discussion. Our
definition of entropy production is motivated by classical dynamics where the rate
of change of thermodynamic (Clausius) entropy can sometimes be related to the
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phase space contraction rate [Ga2, RC]. The latter is related to the Gibbs entropy
(as shown for example in [Ru3]) which is nothing else but the relative entropy with
respect to the natural reference state; see [JPR1] for a detailed discussion in a more
general context. Thus, it seems reasonable to define the entropy production as the
rate of change of the relative entropy with respect to the reference state ω.

Let (O, τ) be a C∗-dynamical system and ω a given reference state. The NESS
associated to ω and τ are the weak-∗ limit points of the time averages along the
trajectory ω ◦ τ t. In other words, if

〈ω〉t ≡
1
t

∫ t

0

ω ◦ τs ds,

then ω+ is a NESS associated to ω and τ if there exists a net tα → ∞ such that
〈ω〉tα(A) → ω+(A) for all A ∈ O. We denote by Σ+(ω, τ) the set of such NESS.
One easily sees that Σ+(ω, τ) ⊂ E(O, τ). Moreover, since E(O) is weak-∗ com-
pact, Σ+(ω, τ) is non-empty.

As already mentioned, our definition of entropy production is based on the con-
cept of relative entropy. The relative entropy of two density matrices ρ and ω is
defined, by analogy with the relative entropy of two measures, by the formula

Ent(ρ|ω) ≡ Tr(ρ(logω − log ρ)). (2)

It is easy to show that Ent(ρ|ω) ≤ 0. Let ϕi an orthonormal eigenbasis of ρ and
by pi the corresponding eigenvalues. Then pi ∈ [0, 1] and

∑
i pi = 1. Let qi ≡

(ϕi, ω ϕi). Clearly, qi ∈ [0, 1] and
∑

i qi = Trω = 1. Applying Jensen’s inequality
twice we derive

Ent(ρ|ω) =
∑
i

pi((ϕi, logω ϕi) − log pi)

≤
∑
i

pi(log qi − log pi) ≤ log
∑
i

qi = 0.

Hence Ent(ρ|ω) ≤ 0. It is also not difficult to show that Ent(ρ|ω) = 0 iff ρ = ω;
see [OP]. Using the concept of relative modular operators, Araki has extended the
notion of relative entropy to two arbitrary states on aC∗-algebra [Ar1,Ar2]. We refer
the reader to [Ar1,Ar2,DJP,OP] for the definition of the Araki relative entropy and
its basic properties. Of particular interest to us is that Ent(ρ|ω) ≤ 0 still holds, with
equality if and only if ρ = ω.

In these lecture notes we will define entropy production only in a perturbative
context (for a more general approach see [JPR2]). Denote by δ the generator of the
group τ i.e., τ t = etδ , and assume that the reference state ω is invariant under τ . For
V = V ∗ ∈ O we set δV ≡ δ + i[V, ·] and denote by τ tV ≡ etδV the corresponding
perturbed C∗-dynamics (such perturbations are often called local, see [Pi]). Starting
with a state ρ ∈ Nω , the entropy is pumped out of the system by the perturbation V
at a mean rate
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−1
t

(Ent(ρ ◦ τ tV |ω) − Ent(ρ|ω)).

Suppose that ω is a modular state for a C∗-dynamics σtω and denote by δω the
generator of σω . If V ∈ Dom (δω), then one can prove the following entropy balance
equation

Ent(ρ ◦ τ tV |ω) = Ent(ρ|ω) −
∫ t

0

ρ(τsV (σV )) ds, (3)

where
σV ≡ δω(V ),

is the entropy production observable (see [JP6, JP7]). In quantum mechanics σV
plays the role of the phase space contraction rate of classical dynamical systems
(see [JPR1]). We define the entropy production rate of a NESS

ρ+ = w∗ − lim
α

1
tα

∫ tα

0

ρ ◦ τsV ds ∈ Σ+(ρ, τV ),

by

Ep(ρ+) ≡ − lim
α

1
tα

(Ent(ρ ◦ τ tαV |ω) − Ent(ρ|ω)) = ρ+(σV ).

Since Ent(ρ ◦ τ tV |ω) ≤ 0, an immediate consequence of this equation is that, for
ρ+ ∈ Σ+(ρ, τV ),

Ep(ρ+) ≥ 0. (4)

We emphasize that the observable σV depends both on the reference state ω
and on the perturbation V . As we shall see in the next section, σV is related to the
thermodynamic fluxes across the system produced by the perturbation V and the
positivity of entropy production is the statement of the second law of thermody-
namics.

3.3 Structural Properties

In this subsection we shall discuss structural properties of NESS and entropy pro-
duction following [JP4]. The proofs are given in Appendix 9.1.

First, we will discuss the dependence ofΣ+(ω, τV ) on the reference state ω. On
physical grounds, one may expect that if ω is sufficiently regular and η is ω-normal,
then Σ+(η, τV ) = Σ+(ω, τV ).

Theorem 3.1. Assume that ω is a factor state on the C∗-algebra O and that, for all
η ∈ Nω and A,B ∈ O,

lim
T→∞

1
T

∫ T

0

η([τ tV (A), B]) dt = 0,

holds (weak asymptotic abelianness in mean). Then Σ+(η, τV ) = Σ+(ω, τV ) for
all η ∈ Nω .
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The second structural property we would like to mention is:

Theorem 3.2. Let η ∈ O∗ be ω-normal and τV -invariant. Then η(σV ) = 0. In
particular, the entropy production of the normal part of any NESS is equal to zero.

If Ent(η|ω) > −∞, then Theorem 3.2 is an immediate consequence of the
entropy balance equation (3). The case Ent(η|ω) = −∞ has been treated in [JP7]
and the proof requires the full machinery of Araki’s perturbation theory. We will not
reproduce it here.

If ω+ is a factor state, then either ω+ 
 ω or ω+ ⊥ ω. Hence, Theorem 3.2
yields:

Corollary 3.1. If ω+ is a factor state and Ep(ω+) > 0, then ω+ ⊥ ω. If ω is also a
factor state, then ω+ and ω are disjoint.

Certain structural properties can be characterized in terms of the standard Li-
ouvillean. Let L be the standard Liouvillean associated to τ and LV the standard
Liouvillean associated to τV . By the well-known Araki’s perturbation formula, one
has LV = L+ V − JV J (see [DJP, Pi]).

Theorem 3.3. Assume that ω is modular.

(i) Under the assumptions of Theorem 3.1, if KerLV �= {0}, then it is one-
dimensional and there exists a unique normal, τV -invariant state ωV such that

Σ+(ω, τV ) = {ωV }.

(ii) If KerLV = {0}, then any NESS in Σ+(ω, τV ) is purely singular.
(iii) If KerLV contains a separating vector for Mω , then Σ+(ω, τV ) contains a

unique state ω+ and this state is ω-normal.

3.4 C∗-Scattering and NESS

Let (O, τ) be a C∗-dynamical system and V a local perturbation. The abstract C∗-
scattering approach to the study of NESS is based on the following assumption:

Assumption (S) The strong limit

α+
V ≡ s − lim

t→∞
τ−t ◦ τ tV ,

exists.

The map α+
V is an isometric ∗-endomorphism of O, and is often called Møller

morphism. α+
V is one-to-one but it is generally not onto, namely

O+ ≡ Ranα+
V �= O.

Since α+
V ◦ τ tV = τ t ◦ α+

V , the pair (O+, τ) is a C∗-dynamical system and α+
V is an

isomorphism between the dynamical systems (O, τV ) and (O+, τ).
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If the reference state ω is τ -invariant, then ω+ = ω ◦ α+
V is the unique NESS

associated to ω and τV and

w∗ − lim
t→∞

ω ◦ τ tV = ω+.

Note in particular that if ω is a (τ, β)-KMS state, then ω+ is a (τV , β)-KMS state.
The map α+

V is the algebraic analog of the wave operator in Hilbert space scat-
tering theory. A simple and useful result in Hilbert space scattering theory is the
Cook criterion for the existence of the wave operator. Its algebraic analog is:

Proposition 3.3. (i) Assume that there exists a dense subset O0 ⊂ O such that for
all A ∈ O0, ∫ ∞

0

‖[V, τ tV (A)]‖dt <∞. (5)

Then Assumption (S) holds.
(ii) Assume that there exists a dense subset O1 ⊂ O such that for all A ∈ O1,

∫ ∞

0

‖[V, τ t(A)]‖dt <∞. (6)

Then O+ = O and α+
V is a ∗-automorphism of O.

Proof. For all A ∈ O we have

τ−t2 ◦ τ t2V (A) − τ−t1 ◦ τ t1V (A) = i
∫ t2

t1

τ−t([V, τ tV (A)]) dt,

τ−t2
V ◦ τ t2(A) − τ−t1

V ◦ τ t1(A) = −i
∫ t2

t1

τ−t
V ([V, τ t(A)]) dt,

(7)

and so

‖τ−t2 ◦ τ t2V (A) − τ−t1 ◦ τ t1V (A)‖ ≤
∫ t2

t1

‖[V, τ tV (A)]‖dt,

‖τ−t2
V ◦ τ t2(A) − τ−t1

V ◦ τ t1(A)‖ ≤
∫ t2

t1

‖[V, τ t(A)]‖dt.

(8)

To prove Part (i), note that (5) and the first estimate in (8) imply that for A ∈ O0

the norm limit
α+
V (A) ≡ lim

t→∞
τ−t ◦ τ tV (A),

exists. Since O0 is dense and τ−t ◦ τ tV is isometric, the limit exists for all A ∈ O,
and α+

V is a ∗-morphism of O. To prove Part (ii) note that the second estimate in
(8) and (6) imply that the norm limit
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β+
V (A) ≡ lim

t→∞
τ−t
V ◦ τ t(A),

also exists for all A ∈ O. Since α+
V ◦ β+

V (A) = A, α+
V is a ∗-automorphism of O.

��
Until the end of this subsection we will assume that the Assumption (S) holds

and that ω is τ -invariant.
Let ω̃ ≡ ω � O+ and let (Hω̃, πω̃, Ωω̃) be the GNS-representation of O+ as-

sociated to ω̃. Obviously, if α+
V is an automorphism, then ω̃ = ω. We denote by

(Hω+ , πω+ , Ωω+) the GNS representation of O associated to ω+. Let Lω̃ and Lω+

be the standard Liouvilleans associated, respectively, to (O+, τ, ω̃) and (O, τV , ω+).
Recall that Lω̃ is the unique self-adjoint operator on Hω̃ such that for A ∈ O+,

Lω̃Ωω̃ = 0, πω̃(τ t(A)) = eitLω̃πω̃(A)e−itLω̃ ,

and similarly for Lω+ .

Proposition 3.4. The map

Uπω̃(α+
V (A))Ωω̃ = πω+(A)Ωω+ ,

extends to a unitary U : Hω̃ → Hω+ which intertwines Lω̃ and Lω+ , i.e.,

ULω̃ = Lω+U.

Proof. Set π′ω̃(A) ≡ πω̃(α+
V (A)) and note that π′ω̃(O)Ωω̃ = πω̃(O+)Ωω̃ , so that

Ωω̃ is cyclic for π′ω̃(O). Since

ω+(A) = ω(α+
V (A)) = ω̃(α+

V (A)) = (Ωω̃, πω̃(α+
V (A))Ωω̃) = (Ωω̃, π

′
ω̃(A)Ωω̃),

(Hω̃, π
′
ω̃, Ωω̃) is also a GNS representation of O associated to ω+. Since GNS rep-

resentations associated to the same state are unitarily equivalent, there is a unitary
U : Hω̃ → Hω+ such that UΩω̃ = Ωω+ and

Uπ′ω̃(A) = πω+(A)U.

Finally, the identities

UeitLω̃π′ω̃(A)Ωω̃ = Uπω̃(τ t(α+
V (A)))Ωω̃ = Uπω̃(α+

V (τ tV (A)))Ωω̃

= πω+(τ tV (A))Ωω+ = eitLω+πω+(A)Ωω+

= eitLω+Uπ′ω̃(A)Ωω̃,

yield that U intertwines Lω̃ and Lω+ . ��
We finish this subsection with:



14 Walter Aschbacher et al.

Proposition 3.5. (i) Assume that ω̃ ∈ E(O+, τ) is τ -ergodic. Then

Σ+(η, τV ) = {ω+},

for all η ∈ Nω .
(ii) If ω̃ is τ -mixing, then

lim
t→∞

η ◦ τ tV = ω+,

for all η ∈ Nω .

Proof. We will prove the Part (i); the proof of the Part (ii) is similar. If η ∈ Nω ,
then η � O+ ∈ Nω̃ , and the ergodicity of ω̃ yields

lim
T→∞

1
T

∫ T

0

η(τ t(α+
V (A))) dt = ω̃(α+

V (A)) = ω+(A).

This fact, the estimate

‖η(τ tV (A)) − η(τ t(α+
V (A)))‖ ≤ ‖τ−t ◦ τ tV (A) − α+

V (A)‖,

and Assumption (S) yield the statement. ��

4 Open Quantum Systems

4.1 Definition

Open quantum systems are the basic paradigms of non-equilibrium quantum statis-
tical mechanics. An open system consists of a “small” system S interacting with a
large “environment” or “reservoir” R.

In these lecture notes the small system will be a ”quantum dot”—a quantum
mechanical system with finitely many energy levels and no internal structure. The
system S is described by a finite-dimensional Hilbert space HS = C

N and a Hamil-
tonian HS . Its algebra of observables OS is the full matrix algebra MN (C) and its
dynamics is given by

τ tS(A) = eitHSAe−itHS = etδS (A),

where δS(·) = i[HS , · ]. The states of S are density matrices on HS . A convenient
reference state is the tracial state, ωS(·) = Tr(·)/dimHS . In the physics literature
ωS is sometimes called the chaotic state since it is of maximal entropy, giving the
same probability 1/dimHS to any one-dimensional projection in HS .

The reservoir is described by a C∗-dynamical system (OR, τR) and a reference
state ωR. We denote by δR the generator of τR.

The algebra of observables of the joint system S + R is O = OS ⊗ OR and
its reference state is ω ≡ ωS ⊗ ωR. Its dynamics, still decoupled, is given by τ t =
τ tS ⊗ τ tR. Let V = V ∗ ∈ O be a local perturbation which couples S to the reservoir
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R. The ∗-derivation δV ≡ δR + δS + i[V, · ] generates the coupled dynamics τ tV
on O. The coupled joint system S + R is described by the C∗-dynamical system
(O, τV ) and the reference state ω. Whenever the meaning is clear within the context,
we will identify OS and OR with subalgebras of O via A⊗ IOR , IOS ⊗A. With a
slight abuse of notation, in the sequel we denote IOR and IOS by I .

We will suppose that the reservoir R has additional structure, namely that it con-
sists ofM parts R1, · · · ,RM , which are interpreted as subreservoirs. The subreser-
voirs are assumed to be independent—they interact only through the small system
which allows for the flow of energy and matter between various subreservoirs.

The subreservoir structure of R can be chosen in a number of different ways and
the choice ultimately depends on the class of examples one wishes to describe. One
obvious choice is the following: the j-th reservoir is described by the C∗-dynamical
system (ORj

, τRj
) and the reference state ωRj

, and OR = ⊗ORj
, τR = ⊗τRj

,
ω = ⊗ωRj

[JP4, Ru1]. In view of the examples we plan to cover, we will choose a
more general subreservoir structure.

We will assume that the j-th reservoir is described by a C∗-subalgebra ORj
⊂

OR which is preserved by τR. We denote the restrictions of τR and ωR to ORj
by

τRj
and ωRj

. Different algebras ORj
may not commute. However, we will assume

that ORi
∩ ORj

= CI for i �= j. If Ak, 1 ≤ k ≤ N , are subsets of OR, we denote
by 〈A1, · · · ,AN 〉 the minimal C∗-subalgebra of OR that contains all Ak. Without
loss of generality, we may assume that OR = 〈OR1 , · · · ,ORM

〉.
The system S is coupled to the reservoir Rj through a junction described by a

self-adjoint perturbation Vj ∈ OS ⊗ ORj
(see Fig. 1). The complete interaction is

given by

V ≡
M∑
j=1

Vj . (9)

An anti-linear, involutive, ∗-automorphism r : O → O is called a time reversal
if it satisfies r(HS) = HS , r(Vj) = Vj and r ◦ τ tRj

= τ−t
Rj

◦ r. If r is a time reversal,
then

r ◦ τ t = τ−t ◦ r, r ◦ τ tV = τ−t
V ◦ r,

and a state ω on O is time reversal invariant if ω ◦ r(A) = ω(A∗) for all A ∈ O. An
open quantum system described by (O, τV ) and the reference state ω is called time
reversal invariant (TRI) if there exists a time reversal r such that ω is time reversal
invariant.

4.2 C∗-Scattering for Open Quantum Systems

Except for Part (ii) of Proposition 3.3, the scattering approach to the study of NESS,
described in Subsection 3.4, is directly applicable to open quantum systems. Con-
cerning Part (ii) of Proposition 3.3, note that in the case of open quantum systems
the Møller morphism α+

V cannot be onto (except in trivial cases). The best one may
hope for is that O+ = OR, namely that α+

V is an isomorphism between the C∗-
dynamical systems (O, τV ) and (OR, τR). The next theorem was proved in [Ru1].
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Fig. 1. Junctions V1, V2 between the system S and subreservoirs.

Theorem 4.1. Suppose that Assumption (S) holds.

(i) If there exists a dense set OR0 ⊂ OR such that for all A ∈ OR0,
∫ ∞

0

‖[V, τ t(A)]‖dt <∞, (10)

then OR ⊂ O+.
(ii) If there exists a dense set O0 ⊂ O such that for all X ∈ OS and A ∈ O0,

lim
t→+∞

‖[X, τ tV (A)]‖ = 0, (11)

then O+ ⊂ OR.
(iii) If both (10) and (11) hold then α+

V is an isomorphism between the C∗-
dynamical systems (O, τV ) and (OR, τR). In particular, if ωR is a (τR, β)-
KMS for some inverse temperature β, then ω+ is a (τV , β)-KMS state.

Proof. The proof of Part (i) is similar to the proof of the Part (i) of Proposition 3.3.
The assumption (10) ensures that the limits

β+
V (A) = lim

t→∞
τ tV ◦ τ−t(A),

exist for all A ∈ OR. Clearly, α+
V ◦ β+

V (A) = A for all A ∈ OR and so OR ⊂
Ranα+

V .
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To prove Part (ii) recall that OS is a N2-dimensional matrix algebra. It has a
basis {Ek | k = 1, · · · , N2} such that τ t(Ek) = eitθkEk for some θk ∈ R. From
Assumption (S) and (11) we can conclude that

0 = lim
t→+∞

eitθkτ−t([Ek, τ
t
V (A)]) = lim

t→+∞
[Ek, τ

−t ◦ τ tV (A)] = [Ek, α
+
V (A)],

for all A ∈ O0 and hence, by continuity, for all A ∈ O. It follows that Ranα+
V

belongs to the commutant of OS in O. Since O can be seen as the algebraMN (OR)
of N × N -matrices with entries in OR, one easily checks that this commutant is
precisely OR.

Part (iii) is a direct consequence of the first two parts. ��

4.3 The First and Second Law of Thermodynamics

Let us denote by δj the generator of the dynamical group τRj
. (Recall that this

dynamical group is the restriction of the decoupled dynamics to the subreservoir
Rj). Assume that Vj ∈ Dom (δj). The generator of τV is δV = δR + i[HS + V, · ]
and it follows from (9) that the total energy flux out of the reservoir is given by

d

dt
τ tV (HS + V ) = τ tV (δV (HS + V )) = τ tV (δR(V )) =

M∑
j=1

τ tV (δj(Vj)).

Thus, we can identify the observable describing the heat flux out of the j-th reservoir
as

Φj = δj(V ) = δj(Vj) = δR(Vj).

We note that if r is a time-reversal, then r(Φj) = −Φj . The energy balance equation

M∑
j=1

Φj = δV (HS + V ),

yields the conservation of energy (the first law of thermodynamics): for any τV -
invariant state η,

M∑
j=1

η(Φj) = 0. (12)

Besides heat fluxes, there might be other fluxes across the system S + R (for
example, matter and charge currents). We will not discuss here the general theory of
such fluxes (the related information can be found in [FMU,FMSU,TM]). In the rest
of this section we will focus on the thermodynamics of heat fluxes. Charge currents
will be discussed in the context of a concrete model in the second part of this lecture.

We now turn to the entropy production. Assume that there exists a C∗-dynamics
σtR on OR such that ωR is (σR,−1)-KMS state and such that σR preserves each
subalgebra ORj

. Let δ̃j be the generator of the restriction of σR to ORj
and assume
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that Vj ∈ Dom (δ̃j). The entropy production observable associated to the pertur-
bation V and the reference state ω = ωS ⊗ ωR, where ωS(·) = Tr(·)/dimHS ,
is

σV =
M∑
j=1

δ̃j(Vj).

Until the end of this section we shall assume that the reservoirs ORj
are in

thermal equilibrium at inverse temperatures βj . More precisely, we will assume
that ωRj

is the unique (τRj
, βj)-KMS state on ORj

. Then δ̃j = −βjδj , and

σV = −
M∑
j=1

βjΦj .

In particular, for any NESS ω+ ∈ Σ+(ω, τV ), the second law of thermodynamics
holds:

M∑
j=1

βj ω+(Φj) = −Ep(ω+) ≤ 0. (13)

In fact, it is not difficult to show that Ep(ω+) is independent of the choice of the
reference state of the small system as long as ωS > 0; see Proposition 5.3 in [JP4].
In the case of two reservoirs, the relation

(β1 − β2)ω+(Φ1) = β1 ω+(Φ1) + β2 ω+(Φ2) ≤ 0,

yields that the heat flows from the hot to the cold reservoir.

4.4 Linear Response Theory

Linear response theory describes thermodynamics in the regime where the “forces”
driving the system out of equilibrium are weak. In such a regime, to a very good
approximation, the non-equilibrium currents depend linearly on the forces. The ul-
timate purpose of linear response theory is to justify well known phenomenological
laws like Ohm’s law for charge currents or Fick’s law for heat currents. We are still
far from a satisfactory derivation of these laws, even in the framework of classical
mechanics; see [BLR] for a recent review on this matter. We also refer to [GVV6]
for a rigorous discussion of linear response theory at the macroscopic level.

A less ambitious application of linear response theory concerns transport proper-
ties of microscopic and mesoscopic quantum devices (the advances in nanotechnolo-
gies during the last decade have triggered a strong interest in the transport properties
of such devices). Linear response theory of such systems is much better understood,
as we shall try to illustrate.

In our current setting, the forces that drive the system S +R out of equilibrium
are the different inverse temperatures β1, · · · , βM of the reservoirs attached to S. If
all inverse temperatures βj are sufficiently close to some value βeq, we expect linear
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response theory to give a good account of the thermodynamics of the system near
thermal equilibrium at inverse temperature βeq.

To emphasize the fact that the reference state ω = ωS ⊗ ωR depends on the βj
we set X = (X1, · · · ,XM ) with Xj ≡ βeq − βj and denote by ωX this reference
state. We assume that for some ε > 0 and all |X| < ε there exists a unique NESS
ωX+ ∈ Σ+(ωX , τV ) and that the functions X �→ ωX+(Φj) are C2. Note that ω0+

is the (unique) (τV , βeq)-KMS state on O. We will denote it simply by ωβeq .
In phenomenological non-equilibrium thermodynamics, the duality between the

driving forces Fα, also called affinities, and the steady currents φα they induce is
expressed by the entropy production formula

Ep =
∑
α

Fα φα,

(see [DGM]). The steady currents are themselves functions of the affinities φα =
φα(F1, · · · ). In the linear response regime, these functions are given by the relations

φα =
∑
γ

LαγFγ ,

which define the kinetic coefficients Lαγ .
Comparing with Equ. (13) and using energy conservation (12) we obtain in our

case

Ep(ωX+) =
M∑
j=1

Xj ωX+(Φj).

Thus Xj is the affinity conjugated to the steady heat flux φj(X) = ωX+(Φj) out
of Rj . We note in particular that the equilibrium entropy production vanishes. The
kinetic coefficients Lji are given by

Lji ≡
(
∂φj
∂Xi

)
X=0

= ∂Xi
ωX+(Φj)|X=0.

Taylor’s formula yields

φj(X) = ωX+(Φj) =
M∑
i=1

LjiXi +O(ε2), (14)

Ep(ωX+) =
M∑

i,j=1

LjiXiXj + o(ε2). (15)

Combining (14) with the first law of thermodynamics (recall (12)) we obtain that
for all i,

M∑
j=1

Lji = 0. (16)
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Similarly, (15) and the second law (13) imply that the quadratic form

M∑
i,j=1

LjiXiXj ,

on R
M is non-negative. Note that this does not imply that the M ×M -matrix L is

symmetric !
Linear response theory goes far beyond the above elementary relations. Its true

cornerstones are the Onsager reciprocity relations (ORR), the Kubo fluctuation-
dissipation formula (KF) and the Central Limit Theorem (CLT). All three of them
deal with the kinetic coefficients. The Onsager reciprocity relations assert that the
matrix Lji of a time reversal invariant (TRI) system is symmetric,

Lji = Lij . (17)

For non-TRI systems, similar relations hold between the transport coefficients of the
system and those of the time reversed one. For example, if time reversal invariance
is broken by the action of an external magnetic field B, then the Onsager-Casimir
relations

Lji(B) = Lij(−B),

hold.
The Kubo fluctuation-dissipation formula expresses the transport coefficients of

a TRI system in terms of the equilibrium current-current correlation function

Cji(t) ≡
1
2
ωβeq(τ

t
V (Φj)Φi + Φiτ tV (Φj)), (18)

namely

Lji =
1
2

∫ ∞

−∞
Cji(t) dt. (19)

The Central Limit Theorem further relates Lji to the statistics of the current fluctu-
ations in equilibrium. In term of characteristic function, the CLT for open quantum
systems in thermal equilibrium asserts that

lim
t→∞

ωβeq

(
ei
(∑M

j=1
ξj

∫ t

0
τs

V (Φj) ds
)
/
√
t
)

= e−
1
2

∑M

i,j=1
Dji ξjξi , (20)

where the covariance matrix Dji is given by

Dji = 2Lji.

If, for a self-adjoint A ∈ O, we denote by 1[a,b](A) the spectral projection on the
interval [a, b] of πωβeq

(A), the probability of measuring a value of A in [a, b] when
the system is in the state ωβeq is given by

Probωβeq
{A ∈ [a, b]} = (Ωωβeq

, 1[a,b](A)Ωωβeq
).
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It then follows from (20) that

lim
t→∞

Probωβeq

{
1
t

∫ t

0

τsV (Φj) ds ∈
[
a√
t
,
b√
t

]}
=

1√
2πLjj

∫ b

a

e−x2/2L2
jj dx.

(21)
This is a direct translation to quantum mechanics of the classical central limit the-
orem. Because fluxes do not commute, [Φj , Φi] �= 0 for j �= i, they can not be
measured simultaneously and a simple classical probabilistic interpretation of (20)
for the vector variable Φ = (Φ1, · · · , ΦM ) is not possible. Instead, the quantum
fluctuations of the vector variable Φ are described by the so-called fluctuation al-
gebra [GVV1, GVV2, GVV3, GVV4, GVV5, Ma]. The description and study of the
fluctuation algebra involve somewhat advanced technical tools and for this reason
we will not discuss the quantum CLT theorem in this lecture.

The mathematical theory of ORR, KF, and CLT is reasonably well understood in
classical statistical mechanics (see the lecture [Re]). In the context of open quantum
systems these important notions are still not completely understood (see however
[AJPP, JPR2] for some recent results).

We close this subsection with some general comments about ORR and KF.
The definition (18) of the current-current correlation function involves a sym-

metrized product in order to ensure that the function Cji(t) is real-valued. The cor-
responding imaginary part, given by

1
2

i[Φi, τ tV (Φj)],

is usually non-zero. However, since ωβeq is a KMS state, the stability condition
(see [BR2]) yields ∫ ∞

−∞
ωβeq(i[Φi, τ

t
V (Φj)]) dt = 0, (22)

so that, in this case, the symmetrization is not necessary and one can rewrite KF as

Lji =
1
2

∫ ∞

−∞
ωβeq(Φiτ

t
V (Φj)) dt.

Finally, we note that ORR follow directly from KF under the TRI assumption.
Indeed, if our system is TRI with time reversal r we have

r(Φi) = −Φi, r(τ tV (Φj)) = −τ−t
V (Φj), ωβeq ◦ r = ωβeq ,

and therefore

Cji(t) =
1
2
ωβeq(τ

−t
V (Φj)Φi + Φiτ−t

V (Φj)) = Cji(−t).

Since ωβeq is τV -invariant, this implies

Cji(t) =
1
2
ωβeq(Φjτ

t
V (Φi) + τ tV (Φi)Φj) = Cij(t),
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and ORR (17) follows from KF (19).
In the second part of the lecture we will show that the Onsager relations and the

Kubo formula hold for the SEBB model. The proof of the Central Limit Theorem
for this model is somewhat technically involved and can be found in [AJPP].

4.5 Fermi Golden Rule (FGR) Thermodynamics

Let λ ∈ R be a control parameter. We consider an open quantum system with cou-
pling λV and write τλ for τλV , ωλ+ for ω+, etc.

The NESS and thermodynamics of the system can be described, to second or-
der of perturbation theory in λ, using the weak coupling (or van Hove) limit. This
approach is much older than the ”microscopic” Hamiltonian approach discussed so
far, and has played an important role in the development of the subject. The classi-
cal references are [Da1,Da2,Haa,VH1,VH2,VH3]. The weak coupling limit is also
discussed in the lecture notes [D1].

In the weak coupling limit one “integrates” the degrees of freedom of the reser-
voirs and follows the reduced dynamics of S on a large time scale t/λ2. In the limit
λ → 0 the dynamics of S becomes irreversible and is described by a semigroup,
often called the quantum Markovian semigroup (QMS). The generator of this QMS
describes the thermodynamics of the open quantum system to second order of per-
turbation theory.

The “integration” of the reservoir variables is performed as follows. As usual,
we use the injectionA �→ A⊗I to identify OS with a subalgebra of O. ForA ∈ OS
and B ∈ OR we set

PS(A⊗B) = AωR(B). (23)

The map PS extends to a projection PS : O → OS . The reduced dynamics of the
system S is described by the family of maps T t

λ : OS → OS defined by

T t
λ(A) ≡ PS

(
τ−t
0 ◦ τ tλ(A⊗ I)

)
.

Obviously, T t
λ is neither a group nor a semigroup. Let ωS be an arbitrary reference

state (density matrix) of the small system and ω = ωS ⊗ωR. Then for any A ∈ OS ,

ω(τ−t
0 ◦ τ tλ(A⊗ I)) = TrHS (ωS T t

λ(A)).

In [Da1, Da2] Davies proved that under very general conditions there exists a linear
map KH : OS → OS such that

lim
λ→0

T
t/λ2

λ (A) = etKH(A).

The operator KH is the QMS generator (sometimes called the Davies generator)
in the Heisenberg picture. A substantial body of literature has been devoted to the
study of the operator KH (see the lecture notes [D1]). Here we recall only a few
basic results concerning thermodynamics in the weak coupling limit (for additional
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information see [LeSp]). We will assume that the general conditions described in
the lecture notes [D1] are satisfied.

The operator KH generates a positivity preserving contraction semigroup on
OS . Obviously, KH(I) = 0. We will assume that zero is the only purely imaginary
eigenvalue of KH and that KerKH = CI . This non-degeneracy condition can be
naturally characterized in algebraic terms, see [D1,Sp]. It implies that the eigenvalue
0 of KH is semi-simple, that the corresponding eigenprojection has the form A �→
Tr(ωS +A)I , where ωS + is a density matrix, and that for any initial density matrix
ωS ,

lim
t→∞

Tr(ωSetKH(A)) = Tr(ωS +A) ≡ ωS +(A).

The density matrix ωS + describes the NESS of the open quantum system in the
weak coupling limit. One further shows that the operator KH has the form

KH =
M∑
j=1

KH,j ,

where KH,j is the QMS generator obtained by considering the weak coupling limit
of the coupled system S + Rj , i.e.,

etKH,j (A) = lim
λ→0

PS
(
τ
−t/λ2

0 ◦ τ t/λ
2

λ,j (A⊗ I)
)
, (24)

where τλ,j is generated by δj + i[HS + λVj , · ].
One often considers the QMS generator in the Schrödinger picture, denotedKS.

The operator KS is the adjoint of KH with respect to the inner product (X,Y ) =
Tr(X∗Y ). The semigroup etKS is positivity and trace preserving. One similarly
defines KS,j . Obviously,

KS(ωS +) = 0, KS =
M∑
j=1

KS,j .

Recall our standing assumption that the reservoirs ORj
are in thermal equilibrium

at inverse temperature βj . We denote by

ωβ = e−βHS/Tr(e−βHS ),

the canonical density matrix of S at inverse temperature β (the unique (τS , β)-KMS
state on OS ). Araki’s perturbation theory of KMS-states (see [DJP,BR2]) yields that
for A ∈ OS ,

ωβj
⊗ ωRj

(τ−t
0 ◦ τ tλ,j(A⊗ I)) = ωβj

(A) +O(λ),

uniformly in t. Hence, for all t ≥ 0,

ωβj
(etKH,j (A)) = ωβj

(A),



24 Walter Aschbacher et al.

and so KS,j(ωβj
) = 0. In particular, if all βj’s are the same and equal to β, then

ωS+ = ωβ .
Let Od ⊂ OS be the ∗-algebra spanned by the eigenprojections of HS . Od

is commutative and preserved by KH, KH,j , KS and KS,j [D1]. The NESS ωS+

commutes with HS . If the eigenvalues of HS are simple, then the restriction KH �
Od is a generator of a Markov process whose state space is the spectrum of HS .
This process has played an important role in the early development of quantum field
theory (more on this in Subsection 8.2).

We now turn to the thermodynamics in the weak coupling limit, which we will
call Fermi Golden Rule (FGR) thermodynamics. The observable describing the heat
flux out of the j-th reservoir is

Φfgr,j = KH,j(HS).

Note that Φfgr,j ∈ Od. Since KS(ωS +) = 0 we have

M∑
j=1

ωS +(Φfgr,j) = ωS +(KH(HS)) = 0,

which is the first law of FGR thermodynamics.
The entropy production observable is

σfgr = −
M∑
j=1

βjΦfgr,j , (25)

and the entropy production of the NESS ωS + is

Epfgr(ωS+) = ωS+(σfgr).

Since the semigroup generated by KS,j is trace-preserving we have

d
dt

Ent(etKS,jωS +|ωβj
)|t=0 = −βj ωS+(Φfgr,j) − Tr(KS,j(ωS+) logωS+),

where the relative entropy is defined by (2). The function

t �→ Ent(etKS,jωS +|ωβj
),

is non-decreasing (see [Li]), and so

Epfgr(ωS +) =
M∑
j=1

d
dt

Ent(etKS,jωS +|ωβj
)|t=0 ≥ 0,

which is the second law of FGR thermodynamics. Moreover, under the usual non-
degeneracy assumptions, Epfgr(ωS +) = 0 if and only if β1 = · · · = βM (see
[LeSp] for details).
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Let us briefly discuss linear response theory in FGR thermodynamics using the
same notational conventions as in Subsection 4.4. The kinetic coefficients are given
by

Lfgr,ji = ∂Xi
ωS +(Φfgr,j)|X=0.

For |X| < ε one has

ωS +(Φfgr,j) =
M∑
i=1

Lfgr,jiXi +O(ε2),

Epfgr(ωS +) =
M∑

i,j=1

Lfgr,jiXiXj + o(ε2).

The first and the second law yield that for all i,

M∑
j=1

Lfgr,ji = 0,

and that the quadratic form
M∑

i,j=1

Lfgr,jiXiXj ,

is non-negative. The Kubo formula

Lfgr,ji =
∫ ∞

0

ωβeq(e
tKH(Φj)Φi) dt, (26)

and the Onsager reciprocity relations

Lfgr,ji = Lfgr,ij , (27)

are proven in [LeSp].
Finally, we wish to comment on the relation between microscopic and FGR

thermodynamics. One naturally expects FGR thermodynamics to produce the first
non-trivial contribution (in λ) to the microscopic thermodynamics. For example, the
following relations are expected to hold for small λ:

ωλ+ = ωS+ +O(λ),

ωλ+(Φj) = λ2ωS+(Φfgr,j) +O(λ3).
(28)

Indeed, it is possible to prove that if the microscopic thermodynamics exists and is
sufficiently regular, then (28) hold. On the other hand, establishing existence and
regularity of the microscopic thermodynamics is a formidable task which has been
so far carried out only for a few models. FGR thermodynamics is very robust and
the weak coupling limit is an effective tool in the study of the models whose micro-
scopic thermodynamics appears beyond reach of the existing techniques.

We will return to this topic in Section 8 where we will discuss the FGR thermo-
dynamics of the SEBB model.
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5 Free Fermi Gas Reservoir

In the SEBB model, which we shall study in the second part of this lecture, the
reservoir will be described by an infinitely extended free Fermi gas. Our description
of the free Fermi gas in this section is suited to this application.

The basic properties of the free Fermi gas are discussed in the lecture [Me3] and
in Examples 4.6 and 5.6 of the lecture [Pi] and we will assume that the reader is fa-
miliar with the terminology and results described there. A more detailed exposition
can be found in [BR2] and in the recent lecture notes [D2].

The free Fermi gas is described by the so called CAR (canonical anticommuta-
tion relations) algebra. The mathematical structure of this algebra is well understood
(see [D2] for example). In Subsection 5.1 we will review the results we need. Sub-
section 5.2 contains a few useful examples.

5.1 General Description

Let h and h be the Hilbert space and the Hamiltonian of a single Fermion. We will
always assume that h is bounded below. Let Γ−(h) be the anti-symmetric Fock
space over h and denote by a∗(f), a(f) the creation and annihilation operators for
a single Fermion in the state f ∈ h. The corresponding self-adjoint field operator

ϕ(f) ≡ 1√
2

(a(f) + a∗(f)) ,

satisfies the anticommutation relation

ϕ(f)ϕ(g) + ϕ(g)ϕ(f) = Re(f, g)I.

In the sequel a# stands for either a or a∗. Let CAR(h) be the C∗-algebra gen-
erated by {a#(f) | f ∈ h}. We will refer to CAR(h) as the Fermi algebra. The
C∗-dynamics induced by h is

τ t(A) ≡ eitdΓ (h)Ae−itdΓ (h).

The pair (CAR(h), τ) is a C∗-dynamical system. It preserves the Fermion number
in the sense that τ t commutes with the gauge group

ϑt(A) ≡ eitdΓ (I)Ae−itdΓ (I).

Recall that N ≡ dΓ (I) is the Fermion number operator on Γ−(h) and that τ and ϑ
are the groups of Bogoliubov automorphisms

τ t(a#(f)) = a#(eithf), ϑt(a#(f)) = a#(eitf).

To every self-adjoint operator T on h such that 0 ≤ T ≤ I one can associate a
state ωT on CAR(h) satisfying

ωT (a∗(fn) · · · a∗(f1)a(g1) · · · a(gm)) = δn,mdet{(gi, T fj)}. (29)
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This ϑ-invariant state is usually called the quasi-free gauge-invariant state gen-
erated by T . It is completely determined by its two point function

ωT (a∗(f)a(g)) = (g, Tf).

We will often call T the density operator or simply the generator of the state ωT .
Alternatively, quasi-free gauge-invariant states can be described by their action on
the field operators. For any integer n we define Pn as the set of all permutations π
of {1, . . . , 2n} such that

π(2j − 1) < π(2j), and π(2j − 1) < π(2j + 1),

for every j ∈ {1, . . . , n}. Denote by ε(π) the signature of π ∈ Pn. ωT is the unique
state on CAR(h) with the following properties:

ωT (ϕ(f1)ϕ(f2)) =
1
2
(f1, f2)− i Im(f1, T f2),

ωT (ϕ(f1) · · ·ϕ(f2n)) =
∑
π∈Pn

ε(π)
n∏

j=1

ωT (ϕ(fπ(2j−1))ϕ(fπ(2j))),

ωT (ϕ(f1) · · ·ϕ(f2n+1)) = 0.

If h = h1 ⊕ h2 and T = T1 ⊕ T2, then for A ∈ CAR(h1) and B ∈ CAR(h2) one
has

ωT (AB) = ωT1(A)ωT2(B). (30)

ωT is a factor state. It is modular iff KerT = Ker (I − T ) = {0}. Two states
ωT1 and ωT2 are quasi-equivalent iff the operators

T
1/2
1 − T 1/2

2 and (I − T1)1/2 − (I − T2)1/2, (31)

are Hilbert-Schmidt; see [De,PoSt,Ri]. Assume that KerTi = Ker (I −Ti) = {0}.
Then the states ωT1 and ωT2 are unitarily equivalent iff (31) holds.

If T = F (h) for some function F : σ(h) → [0, 1], then ωT describes a free
Fermi gas with energy density per unit volume F (ε).

The state ωT is τ -invariant iff T commutes with eith for all t. If the spectrum of
h is simple this means that T = F (h) for some function F : σ(h) → [0, 1].

For any β, µ ∈ R, the Fermi-Dirac distribution ρβµ(ε) ≡ (1 + eβ(ε−µ))−1

induces the unique β-KMS state on CAR(h) for the dynamics τ t ◦ϑ−µt. This state,
which we denote by ωβµ, describes the free Fermi gas at thermal equilibrium in the
grand canonical ensemble with inverse temperature β and chemical potential µ.

The GNS representation of CAR(h) associated to ωT can be explicitly com-
puted as follows. Fix a complex conjugation f �→ f̄ on h and extend it to Γ−(h).
Denote by Ω the vacuum vector and N the number operator in Γ−(h). Set

HωT
= Γ−(h) ⊗ Γ−(h),

ΩωT
= Ω ⊗Ω,

πωT
(a(f)) = a((I − T )1/2f) ⊗ I + (−I)N ⊗ a∗(T̄ 1/2f̄).
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The triple (HωT
, πωT

, ΩωT
) is the GNS representation of the algebra CAR(h) as-

sociated to ωT . (This representation was constructed in [AW] and if often called
Araki-Wyss representation.) If ωT is τ -invariant, the corresponding ωT -Liouvillean
is

L = dΓ (h) ⊗ I − I ⊗ dΓ (h̄).

If h has purely (absolutely) continuous spectrum so does L, except for the simple
eigenvalue 0 corresponding to the vector ΩωT

. On the other hand, 0 becomes a
degenerate eigenvalue as soon as h has some point spectrum. Thus (see the lecture
notes [Pi]) the ergodic properties of τ -invariant, gauge-invariant quasi-free states
can be described in terms of the spectrum of h. The state ωT is ergodic iff h has no
eigenvalues. If h has purely absolutely continuous spectrum, then ωT is mixing.

If ωT is modular, then its modular operator is

log∆ωT
= dΓ (s)⊗ I − I ⊗ dΓ (s̄),

where s = log T (I−T )−1. The corresponding modular conjugation is J(Φ⊗Ψ) =
uΨ̄ ⊗ uΦ̄, where u = (−I)N(N+I)/2.

Let θ be the ∗-automorphism of CAR(h) defined by

θ(a(f)) = −a(f). (32)

A ∈ CAR(h) is called even if θ(A) = A and odd if θ(A) = −A. Every element
A ∈ CAR(h) can be written in a unique way as a sum A = A+ + A− where
A± = (A ± θ(A))/2 is even/odd. The set of all even/odd elements is a vector
subspace of CAR(h) and CAR(h) is a direct sum of these two subspaces. It follows
from (29) that ωT (A) = 0 if A is odd. Therefore one has ωT (A) = ωT (A+) and

ωT ◦ θ = ωT . (33)

The subspace of even elements is a C∗-subalgebra of CAR(h). This subalgebra
is called even CAR algebra and is denoted by CAR+(h). It is generated by

{a#(f1) · · · a#(f2n) |n ∈ N, fj ∈ h}.

The even CAR algebra plays an important role in physics. It is preserved by τ and
ϑ and the pair (CAR+(h), τ) is a C∗-dynamical system.

We denote the restriction of ωT to CAR+(h) by the same letter. In particular,
ωβµ is the unique β-KMS state on CAR+(h) for the dynamics τ t ◦ ϑ−µt.

Let
A = a#(f1) · · · a#(fn), B = a#(g1) · · · a#(gm),

be two elements of CAR(h), where m is even. It follows from CAR that

‖[A, τ t(B)]‖ ≤ C
∑
i,j

|(fi, eithgj)|,

where one can take C = (max(‖fi‖, ‖gj‖))n+m−2. If the functions |(fi, eithgj)|
belong to L1(R,dt), then



Topics in Non-Equilibrium Quantum Statistical Mechanics 29
∫ ∞

−∞
‖[A, τ t(B)]‖dt <∞. (34)

Let h0 ⊂ h be a subspace such that for any f, g ∈ h0 the function t �→ (f, eithg) is
integrable. Let O0 = {a#(f1) · · · a#(fn) |n ∈ N, fj ∈ h0} and let O+

0 be the even
subalgebra of O0. Then for A ∈ O0 and B ∈ O+

0 (34) holds. If h0 is dense in h,
then O0 is dense in CAR(h) and O+

0 is dense in CAR+(h).
Let h1 and h2 be two Hilbert spaces, and let Ωh1 , Ωh2 be the vaccua in Γ−(h1)

and Γ−(h2). The exponential law for Fermions (see [BSZ] and [BR2], Example
5.2.20) states that there exists a unique unitary map U : Γ−(h1 ⊕ h2) → Γ−(h1) ⊗
Γ−(h2) such that

UΩh1⊕h2 = Ωh1 ⊗Ωh2 ,

Ua(f ⊕ g)U−1 = a(f) ⊗ I + (−I)N ⊗ a(g),

Ua∗(f ⊕ g)U−1 = a∗(f) ⊗ I + (−I)N ⊗ a∗(g),

UdΓ (h1 ⊕ h2)U−1 = dΓ (h1)⊗ I + I ⊗ dΓ (h2).

(35)

The presence of the factors (−I)N in the above formulas complicates the description
of a system containing several reservoirs. The following discussion should help the
reader to understand its physical origin.

Consider two boxes R1, R2 with one particle Hilbert spaces hi ≡ L2(Ri).
Denote by R the combined box i.e., the disjoint union of R1 and R2. The corre-
sponding one particle Hilbert space is h ≡ L2(R). Identifying the wave function Ψ1

of an electron in R1 with Ψ1 ⊕ 0 and similarly for an electron in R2 we can replace
h with the direct sum h1 ⊕ h2.

Assume that each box Ri contains a single electron with wave functions Ψi (see
Fig. 2). If the boxes are in thermal contact, the two electrons can exchange energy,
but the first one will always stay in R1 and the second one in R2. Thus they are
distinguishable and the total wave function is just Ψ1 ⊗ Ψ2. The situation is com-
pletely different if the electrons are free to move from one box into the other. In this
case, the electrons are indistinguishable and Pauli’s principle requires the total wave
function to be antisymmetric—the total wave function is Ψ1 ∧ Ψ2. Generalizing this
argument to many electrons states we conclude that the second quantized Hilbert

Fig. 2. Thermal contact and open gate between R1 and R2.
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space is Γ−(h1) ⊗ Γ−(h2) in the case of thermal contact and Γ−(h1 ⊕ h2) in the
other case. The exponential law provides a unitary map U between these two Hilbert
and one easily checks that

UΨ1 ∧ Ψ2 = Ua∗(Ψ1 ⊕ 0)a∗(0 ⊕ Ψ2)Ωh1⊕h2

= (a∗(Ψ1)(−I)N ⊗ a∗(Ψ2))Ωh1 ⊗Ωh2

= Ψ1 ⊗ Ψ2.

Denoting by OR1 ,OR2 and OR the CAR (or more appropriately the CAR+)
algebras of the boxes R1,R2 and R, the algebra of the combined system in the case
of thermal contact is OR1 ⊗ OR2 , while it is OR in the other case. We emphasize
that the unitary map U does not yield an isomorphism between these algebras i.e.,

UORU
∗ �= OR1 ⊗OR2 .

This immediately follows from the observation that (−I)N �∈ OR1 (unless, of
course, OR1 is finite dimensional, see Subsection 6.3), which implies

Ua∗(0 ⊕ Ψ2)U∗ = (−I)N ⊗ a∗(Ψ2) �∈ OR1 ⊗OR2 .

Note in particular that a∗(Ψ1) ⊗ I and I ⊗ a∗(Ψ2) commute while a∗(Ψ1 ⊕ 0) and
a∗(0⊕ Ψ2) anticommute. The factor (−I)N is required in order for a∗(Ψ1)⊗ I and
(−I)N ⊗ a∗(Ψ2) to anticommute.

5.2 Examples

Recall that the Pauli matrices are defined by

σx ≡
[
0 1
1 0

]
, σy ≡

[
0 −i
i 0

]
, σz ≡

[
1 0
0 −1

]
.

We set σ± ≡ (σx± iσy)/2. Clearly, σ2
x = σ2

y = σ2
z = I and σxσy = −σyσx = iσz .

More generally, with �σ = (σx, σy, σz) and �u,�v ∈ R
3 one has

(�u · �σ)(�v · �σ) = �u · �v I + i(�u× �v) · �σ.

Example 5.1. Assume that dim h = 1, i.e., that h = C and that h is the operator of
multiplication by the real constant ω. Then Γ−(h) = C⊕C = C

2 and dΓ (h) = ωN
with

N ≡ dΓ (I) =
[
0 0
0 1

]
=

1
2
(I − σz).

Moreover, one easily checks that
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a(1) =
[
0 0
1 0

]
, a∗(1) =

[
0 1
0 0

]
,

a∗(1)a(1) =
[
1 0
0 0

]
, a(1)a∗(1) =

[
0 0
0 1

]
,

(36)

which shows that CAR(h) is the algebra of 2 × 2 matrices M2(C) and CAR+(h)
its subalgebra of diagonal matrices. A self-adjoint operator 0 ≤ T ≤ I on H is
multiplication by a constant γ, 0 ≤ γ ≤ 1. The associated state ωT on CAR(h) is
given by the density matrix [

1 − γ 0
0 γ

]
.

Example 5.2. Assume that dim h = n. Without loss of generality we can set h = C
n

and assume that hfj = ωjfj for some ωj ∈ R, where {fj} is the standard basis of
C
n. Then,

Γ−(h) = C ⊕ C
n ⊕ C

n ∧ C
n ⊕ · · · ⊕ (Cn)∧n �

n⊗
i=1

C
2,

and CAR(h) is isomorphic to the algebra of 2n × 2n matrices M2n(C). This iso-
morphism is explicitly given by

a(fj) �
(
⊗j−1
i=1σz

)
⊗ σ+ ⊗

(
⊗n
i=j+1I

)
,

for j = 1, . . . , n. It follows that

a∗(fj)a(fj) �
1
2

(
⊗j−1
i=1 I

)
⊗ (I − σz)⊗

(
⊗n
i=j+1I

)
.

The map described by the above formulas is called the Jordan-Wigner transforma-
tion. It is a useful tool in the study of quantum spin systems (see [LMS, AB, Ar3]).
For β, µ ∈ R, the quasi-free gauge-invariant state associated to T = (I +
eβ(h−µ))−1 is given by the density matrix

e−β(H−µN)

Tr e−β(H−µN)
,

with

H ≡ dΓ (h) =
n∑

j=1

ωj a
∗(fj)a(fj), N ≡ dΓ (I) =

n∑
j=1

a∗(fj)a(fj).

It is an instructive exercise to work out the thermodynamics of the finite dimensional
free Fermi gas following Section 3 in [Jo].
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Example 5.3. In this example we will briefly discuss the finite dimensional approx-
imation of a free Fermi gas. Assume that h is a separable Hilbert space and let
Λn ⊂ Domh be an increasing sequence of finite dimensional subspaces. The al-
gebras CAR(Λn) are identified with subalgebras of CAR(h). We also assume that
∪nΛn is dense in h. Let pn be the orthogonal projection on Λn. Set hn = pnhpn
and let τn be the corresponding C∗-dynamics on CAR(Λn). Since pn converges
strongly to I one has, for f ∈ H,

lim
n→∞

‖a#(pnf) − a#(f)‖ = 0, lim
n→∞

‖τ tn(a#(pnf)) − τ t(a#(f))‖ = 0.

Let ωT be the gauge-invariant quasi-free state on CAR(h) associated to T . Let
Tn = pnTpn. Then

lim
n→∞

ωTn
(a∗(pnf)a(png)) = ωT (a∗(f)a(g)).

Assume that µ and η are two faithful ωT -normal states and let Ent(µ|η) be their
Araki relative entropy. Let µn and ηn be the restrictions of µ and η to CAR+(Λn).
Then the function

n �→ Ent(µn|ηn) = TrΛn
(µn(log µn − log ηn)),

is monotone increasing and

lim
n→∞

Ent(µn|ηn) = Ent(µ|η).

Additional information about the last result can be found in [BR2], Proposition
6.2.33.

Example 5.4. The tight binding approximation for an electron in a single Bloch band
of a d-dimensional (cubic) crystal is defined by h ≡ �2(Zd) with the translation
invariant Hamiltonian

(hψ)(x) ≡ 1
2d

∑
|x−y|=1

ψ(y), (37)

where |x| ≡
∑

i |xi|. In the sequel δx denotes the Kronecker delta function at x ∈
Z
d.

Writing ax ≡ a(δx), the second quantized energy and number operators are
given by

dΓ (h) =
1
2d

∑
|x−y|=1

a∗xay, dΓ (I) =
∑
x

a∗xax.

The Fourier transform ψ̂(k) ≡
∑

x ψ(x) e−ix·k maps h unitarily onto

ĥ ≡ L2([−π, π]d,
dk

(2π)d
).
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The set [−π, π]d is the Brillouin zone of the crystal and k is the quasi-momentum
of the electron. The Fourier transform diagonalizes the Hamiltonian which becomes
multiplication by the band function ε(k) ≡ 1

d

∑
i cos(ki). Thus h has purely ab-

solutely continuous spectrum σ(h) = [−1, 1], and in particular is bounded.
A simple stationary phase argument shows that

(f, eithg) = O(t−n),

for arbitrary n provided f̂ and ĝ are smooth and vanish in a neighborhood of the crit-
ical set {k | |∇kε(k)| = 0}. Since this set has Lebesgue measure 0, such functions
are dense in h. If f and g have bounded support in Z

d, then

(f, eithg) = O(t−d/2).

Example 5.5. The tight binding approximation of a semi-infinite wire is obtained by
restricting the Hamiltonian (37), for d = 1, to the space of odd functions ψ ∈ �2(Z)
and identifying such ψ with elements of �2(Z+), where Z+ ≡ {1, 2, · · · }. This is
clearly equivalent to imposing a Dirichlet boundary condition at x = 0 and

h =
1
2

∞∑
x=1

((δx, · )δx+1 + (δx+1, · )δx) .

The Fourier-sine transform ψ̃(k) ≡
∑

x∈Z+
ψ(x) sin(kx) maps unitarily �2(Z+)

onto the spaceL2([0, π], 2dk
π ) and the Hamiltonian becomes multiplication by cos k.

By a simple change of variable r = cos k we obtain the spectral representation of
the Hamiltonian h:

(hψ)#(r) = rψ#(r),

where

ψ#(r) ≡
√

2
π
√

1 − r2
ψ̃(arccos(r)),

maps unitarily the Fourier space L2([0, π], 2dk
π ) onto L2([−1, 1],dr). A straightfor-

ward integration by parts shows that

(f, eithg) = O(t−n),

if f#, g# ∈ Cn
0 ((−1, 1)). A more careful analysis shows that

(f, eithg) = O(t−3/2),

if f and g have bounded support in Z+.
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Example 5.6. The non-relativistic spinless Fermion of mass m is described in the
position representation by the Hilbert space L2(Rd,dx) and the Hamiltonian h =
−∆/2m, where ∆ is the usual Laplacian in R

d. The cases of physical interest are
d = 1, 2, 3. In the momentum representation the Hilbert space of the Fermion is
L2(Rd,dk) and its Hamiltonian (which we will again denote by h) is the operator
of multiplication by |k|2/2m.

The spectrum of h is purely absolutely continuous. Integration by parts yields
that

(f, eithg) = O(t−n),

for arbitrary n provided f̂ and ĝ are smooth, compactly supported and vanish in a
neighborhood of the origin. Such functions are dense in h. If f, g ∈ h are compactly
supported in the position representation, then

(f, eithg) = O(t−d/2).

6 The Simple Electronic Black-Box (SEBB) Model

In the second part of this lecture we shall study in detail the non-equilibrium statisti-
cal mechanics of the simplest non-trivial example of the electronic black box model
introduced in [AJPP]. The electronic black-box model is a general, independent
electron model for a localized quantum device S connected to M electronic reser-
voirs R1, · · · ,RM . The device is called black-box since, according to the scattering
approach introduced in Subsection 4.2, the thermodynamics of the coupled system
is largely independent of the internal structure of the device. The NESS and the
steady currents are completely determined by the Møller morphism which in our
simple model further reduces to the one-particle wave operator.

6.1 The Model

The black-box itself is a two level system. Its Hilbert space is HS ≡ C
2, its algebra

of observables is OS ≡M2(C), and its Hamiltonian is

HS ≡
[
0 0
0 ε0

]
.

The associated C∗-dynamics is τ tS(A) = eitHSA e−itHS . The black-box has a one-
parameter family of steady states with density matrices

ωS ≡
[
1 − γ 0

0 γ

]
, γ ∈ [0, 1],

which we shall use as the reference states.
According to Example 5.1 of Subsection 5.2, we can also think of S as a free

Fermi gas over C, namely HS = Γ−(C), HS = dΓ (ε0) = ε0a
∗(1)a(1) and OS =
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CAR(C). In this picture, the black-box S can only accommodate a single Fermion
of energy ε0. We denote by NS = a∗(1)a(1) the corresponding number operator.
In physical terms, S is a quantum dot without internal structure. We also note that
ωS is the quasi-free gauge-invariant state generated by TS ≡ γ. Therefore, we can
interpret γ as the occupation probability of the box.

Let hR be a Hilbert space and hR a self-adjoint operator on hR. We set OR ≡
CAR(hR) and

τ tR(A) ≡ eitdΓ (hR)A e−itdΓ (hR).

The reference state of the reservoir, ωR, is the quasi-free gauge-invariant state as-
sociated to the radiation density operator TR. We assume that hR is bounded from
below and that TR commutes with hR.

To introduce the subreservoir structure we shall assume that

hR = ⊕M
j=1hRj

, hR = ⊕M
j=1hRj

, TR = ⊕M
j=1TRj

.

The algebra of observables of the j-th reservoir is ORj
≡ CAR(hRj

) and its dy-
namics τRj

≡ τR � ORj
is generated by the Hamiltonian dΓ (hRj

). The state
ωRj

= ωR � ORj
is the gauge-invariant quasi-free state associated to TRj

. If pj
is the orthogonal projection on hRj

, then NRj
= dΓ (pj) is the charge (or number)

operator associated to the j-th reservoir. The total charge operator of the reservoir
is NR =

∑M
j=1NRj

.
The algebra of observables of the joint system S + R is O ≡ OS ⊗ OR, its

reference state is ω = ωS ⊗ωR, and its decoupled dynamics is τ0 = τS ⊗ τR. Note
that

τ t0(A) = eitH0A e−itH0 ,

where
H0 ≡ HS ⊗ I + I ⊗ dΓ (hR).

The junction between the box S and the reservoir Rj works in the following
way: The box can make a transition from its ground state to its excited state by
absorbing an electron of Rj in state fj/‖fj‖. Reciprocally, the excited box can relax
to its ground state by emitting an electron in state fj/‖fj‖ in Rj . These processes
have a fixed rate λ2‖fj‖2. More precisely, the junction is described by

λVj ≡ λ (a(1) ⊗ a∗(fj) + a∗(1) ⊗ a(fj)) ,

where λ ∈ R and the fj ∈ hj . The normalization is fixed by the condition∑
j ‖fj‖2 = 1. The complete interaction is given by

λV ≡
M∑
j=1

λVj = λ(a(1) ⊗ a∗(f) + a∗(1) ⊗ a(f)),

where f ≡ ⊕M
j=1fj . Note that “charge” is conserved at the junction, i.e., V com-

mutes with the total number operator N ≡ NS ⊗ I + I ⊗NR.
The full Hamiltonian is
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Hλ ≡ H0 + λV,

and the corresponding C∗-dynamics

τ tλ(A) ≡ eitHλA e−itHλ ,

is charge-preserving. In other words, τλ commutes with the gauge group

ϑt(A) ≡ eitNA e−itN ,

and [Hλ, N ] = 0. The C∗-dynamical system (O, τλ) with its decoupled dynamics
τ t0 and the reference state ω = ωS ⊗ ωR is our simple electronic black box model
(SEBB). This model is an example of the class of open quantum systems described
in Section 4.

6.2 The Fluxes

The heat flux observables have been defined in Subsection 4.3. The generator of τRj

is given by δj(·) = i[dΓ (hRj
), · ]. Note that Vj ∈ Dom δj iff fj ∈ DomhRj

. If
Vj ∈ Dom δj , then the observable describing the heat flux out of Rj is

Φj = λδj(Vj) = λ(a(1) ⊗ a∗(ihRj
fj) + a∗(1) ⊗ a(ihRj

fj)).

In a completely similar way we can define the charge current. The rate of change of
the charge in the box S is

d
dt
τ tλ(NS)|t=0 = i [dΓ (Hλ), NS ]

= −λ i [NS , V ] = λ i [NR, V ] =
M∑
j=1

λ i [NRj
, V ],

(38)

which allows us to identify

Jj ≡ λ i [NRj
, V ]

= λ i [NRj
, Vj ] = λ i [NR, Vj ] = λ(a(1) ⊗ a∗(ifj) + a∗(1) ⊗ a(ifj),

as the observable describing the charge current out of Rj .
Let us make a brief comment concerning these definitions. If hRj

is finite dimen-
sional, then the energy and the charge of Rj are observables, given by the Hamil-
tonian dΓ (hRj

) and the number operator NRj
= dΓ (pj), and

− d
dt
τ tλ(dΓ (hRj

))|t=0 = λ i[dΓ (hRj
), Vj ] = Φj ,

− d
dt
τ tλ(dΓ (pj))|t=0 = λ i[dΓ (pj), Vj ] = Jj .
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When hRj
becomes infinite dimensional (recall Example 5.3 in Subsection 5.2),

dΓ (hRj
) and NRj

are no longer observables. However, the flux observables Φj
and Jj are still well-defined and they are equal to the limit of the flux observables
corresponding to finite-dimensional approximations.

The first law of thermodynamics (energy conservation) has been verified in Sub-
section 4.3—for any τλ-invariant state η one has

M∑
j=1

η(Φj) = 0.

The analogous statement for charge currents is proved in a similar way. By (38),

M∑
j=1

Jj =
d
dt
τ tλ(NS)|t=0,

and so for any τλ-invariant state η one has

M∑
j=1

η(Jj) = 0. (39)

6.3 The Equivalent Free Fermi Gas

In this subsection we shall show how to use the exponential law for fermionic sys-
tems to map the SEBB model to a free Fermi gas. Let

h ≡ C ⊕ hR = C ⊕

⎛
⎝ M⊕

j=1

hRj

⎞
⎠ , Õ ≡ CAR(h), h0 ≡ ε0 ⊕ hR,

and, with a slight abuse of notation, denote by 1, f1, · · · , fM the elements of h

canonically associated with 1 ∈ C and fj ∈ hRj
. Then

vj ≡ (1, · )fj + (fj , · )1,

is a finite rank, self-adjoint operator on h and so is the sum v ≡
∑M

j=1 vj . We further
set

hλ ≡ h0 + λv, (40)

and define the dynamical group

τ̃ tλ(A) ≡ eitdΓ (hλ)A e−itdΓ (hλ),

on Õ. Finally, we set
T̃ ≡ TS ⊕ TR,

and denote by ω̃ be the quasi-free gauge-invariant state on Õ generated by T̃ .
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Theorem 6.1. Let U : Γ−(C⊕hR) → Γ−(C)⊗Γ−(hR) be the unitary map defined
by the exponential law (35) and set φ(A) ≡ U−1AU .

(i) φ : O → Õ is a ∗-isomorphism.
(ii) For any λ, t ∈ R one has φ ◦ τ tλ = τ̃ t−λ ◦ φ.

(iii) ω = ω̃ ◦ φ.
(iv) For j = 1, · · · ,M , one has

Φ̃j ≡ φ(Φj) = −λ (a∗(ihjfj)a(1) + a∗(1)a(ihjfj)) ,

and
J̃j ≡ φ(Jj) = −λ(a∗(ifj)a(1) + a∗(1)a(ifj)).

Proof. Clearly, φ is a ∗-isomorphism from B(Γ−(C⊕h)) onto B(Γ−(C)⊗Γ−(h)).
Using the canonical injections C → h and hR → h we can identify OS and OR
with the subalgebras of Õ generated by a(1 ⊕ 0) and {a(0 ⊕ f) | f ∈ hR}. With
this identification, (35) gives

φ(a(α) ⊗ I + (−I)NS ⊗ a(f)) = a(α) + a(f),

for α ∈ C and f ∈ hR. We conclude that

φ(A⊗ I) = A, (41)

for any A ∈ OS . In particular, since b ≡ (−I)NS = [a(1), a∗(1)] ∈ OS , we have
φ(b ⊗ I) = b. Relation b2 = I yields φ(I ⊗ a(f)) = b a(f). Since [b, a(f)] = 0,
we conclude that for A ∈ OR

φ(I ⊗A) =
{
A if A ∈ O+

R,
bA if A ∈ O−

R,
(42)

where O±
R denote the even and odd parts of OR. Equ. (41) and (42) show that

φ(O) ⊂ Õ. Since Õ =
〈
OS ,O+

R,O−
R
〉
, it follows from φ(OS ⊗ I) = OS , φ(I ⊗

O+
R) = O+

R and φ(b⊗O−
R) = O−

R that φ(O) ⊃ Õ. This proves Part (i).
From (35) we can see that U−1H0U = dΓ (h0) and from (41) and (42) that

U−1VjU = φ(Vj) = a(1) b a∗(fj) + a∗(1) b a(fj).

Since it also follows from CAR that

a(1) b = −a(1), a∗(1) b = a∗(1), (43)

we get

U−1VjU = −a(1) a∗(fj)+a∗(1) a(fj) = −a(1) a∗(fj)−a(fj) a∗(1) = −dΓ (vj).

Therefore U−1HλU = dΓ (h−λ) from which Part (ii) follows. A similar computa-
tion yields Part (iv).
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It remains to prove Part (iii). Using the morphism θ (recall Equ. (32)) to express
the even and odd parts of B ∈ OR, we can rewrite (41) and (42) as

φ(A⊗B) = A(B + θ(B))/2 +Ab (B − θ(B))/2,

from which we easily get

φ(A⊗B) = Aa(1)a∗(1)B +Aa∗(1)a(1)θ(B).

It follows from the factorization property (30) and the invariance property (33) of
quasi-free states that

ω̃ ◦ φ(A⊗B) = ω̃(Aa(1)a∗(1))ω̃(B) + ω̃(Aa∗(1)a(1))ω̃(B)
= ω̃(Aa(1)a∗(1)B +Aa∗(1)a(1)B)
= ω̃(AB) = ω̃(A)ω̃(B)
= ωS(A)ωR(B) = ω(A⊗B).

��
By Theorem 6.1, the SEBB model can be equivalently described by the C∗-

dynamical system (Õ, τ̃−λ) and the reference state ωT̃ . The heat and charge flux
observables are Φ̃j and J̃j . Since the change λ→ −λ affects neither the model nor
the results, in the sequel we will work with the system (Õ, τ̃λ) and we will drop the
∼. Hence, we will use the C∗-algebra O = CAR(C ⊕ hR) and C∗-dynamics

τ tλ(A) = eitdΓ (hλ)Ae−itdΓ (hλ),

with the reference state ω, the quasi-free gauge-invariant state generated by T =
TS ⊕ TR. The corresponding heat and charge flux observables are

Φj ≡ λ (a∗(ihjfj)a(1) + a∗(1)a(ihjfj)) ,

Jj ≡ λ(a∗(ifj)a(1) + a∗(1)a(ifj)).

The entropy production observable associated to ω is computed as follows. As-
sume that for j = 1, · · · ,M one has KerTRj

= Ker (I − TRj
) = {0} and set

sj ≡ − log TRj
(I − TRj

)−1, sR = ⊕M
j=1sj .

We also assume that 0 < γ < 1 and set sS = log γ(1 − γ)−1. Let s ≡ −sS ⊕
sR. Under the above assumptions, the reference state ω is modular and its modular
automorphism group is

σtω(A) = eitdΓ (s)A e−itdΓ (s).

If fj ∈ Dom(sj), then the entropy production observable is

σ = −λ (a∗(f)a(isS) + a∗(isS)a(f)) − λ (a∗(isRf)a(1) + a∗(1)a(isRf)) .
(44)
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The entropy balance equation

Ent(ω ◦ τ tλ|ω) = −
∫ t

0

ω(τsλ(σ)) ds,

holds and so, as in Subsection 3.2, the entropy production of any NESS ω+ ∈
Σ+(ω, τλ) is non-negative. In fact, it is not difficult to show that the entropy produc-
tion of ω+ is independent of γ as long as γ ∈ (0, 1) (see Proposition 5.3 in [JP4]).
In the sequel, whenever we speak about the entropy production, we will assume that
γ = 1/2 and hence that

σ = −λ (a∗(isRf)a(1) + a∗(1)a(isRf)) . (45)

In particular, if
TRj

= (I + eβj(hRj
−µj)),

then sj = −βj(hRj
− µj), and

σ = −
M∑
j=1

βj(Φj − µjJj). (46)

We finish with the following remark. In the physics literature, the Hamiltonian
(40) is sometimes called the Wigner-Weisskopf atom [WW] (see [JKP] for refer-
ences and additional information). The operators of this type are also often called
Friedrich Hamiltonians [Fr]. The point we wish to emphasize is that such Hamilto-
nians are often used as toy models which allow for simple mathematical analysis of
physically important phenomena.

6.4 Assumptions

In this subsection we describe a set of assumptions under which we shall study the
thermodynamics of the SEBB model.

Assumption (SEBB1) hRj
= L2((e−, e+),dr) for some −∞ < e− < e+ ≤ ∞

and hRj
is the operator of multiplication by r.

The assumption (SEBB1) yields that hR = L2((e−, e+),dr; CM ) and that hR
is the operator of multiplication by r. With a slight abuse of the notation we will
sometimes denote hRj

and hR by r. Note that the spectrum of hR is purely ab-
solutely continuous and equal to [e−, e+] with uniform multiplicity M . With the
shorthand f ≡ (f1, · · · , fM ) ∈ hR, the Hamiltonian (40) acts on C ⊕ hR and has
the form

hλ = ε0 ⊕ r + λ((1, · )f + (f, · )1). (47)

Assumption (SEBB2) The functions
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gj(t) ≡
∫ e+

e−

eitr |fj(r)|2 dr,

belong to L1(R,dt).

Assumption (SEBB2) implies that the function

G(z) ≡
∫ e+

e−

|f(r)|2
r − z dr = −i

∫ ∞

0

g(t) e−itz dt,

which is obviously analytic in the lower half-plane C− ≡ {z | Im z < 0}, is con-
tinuous and bounded on its closure C̄−. We denote by G(r − io) the value of this
function at r ∈ R.

Assumption (SEBB3) For j = 1, · · · ,M , the generator TRj
is the operator of

multiplication by a continuous function ρj(r) such that 0 < ρj(r) < 1 for r ∈
(e−, e+). Moreover, if

sj(r) ≡ log
[

ρj(r)
1 − ρj(r)

]
,

we assume that sj(r)fj(r) ∈ L2((e−, e+),dr).

Assumption (SEBB3) ensures that the reference state ωR of the reservoir is
modular. The function ρj(r) is the energy density of the j-th reservoir. The second
part of this assumption ensures that the entropy production observable (44) is well
defined.

The study of SEBB model depends critically on the spectral and scattering prop-
erties of hλ. Our final assumption will ensure that Assumption (S) of Subsection 3.4
holds and will allow us to use a simple scattering approach to study SEBB.

Assumption (SEBB4) ε0 ∈ (e−, e+) and |f(ε0)| �= 0.

We set

F (r) ≡ ε0 − r − λ2G(r − io) = ε0 − r − λ2

∫ e+

e−

|f(r′)|2
r′ − r + io

dr′. (48)

By a well-known result in harmonic analysis (see, e.g., [Ja] or any harmonic analysis
textbook),

ImF (r) = λ2π|f(r)|2, (49)

for r ∈ (e−, e+). We also mention that for any g ∈ hR = L2((e−, e+),dr; CM ),
the function

r �→
∫ e+

e−

f̄(r′) · g(r′)
r′ − r + io

dr′,

is also in hR.
The main spectral and scattering theoretic results on hλ are given in the follow-

ing Theorem which is an easy consequence of the techniques described in [Ja]. Its
proof can be found in [JKP].
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Theorem 6.2. Suppose that Assumptions (SEBB1), (SEBB2) and (SEBB4) hold.
Then there exists a constant Λ > 0 such that, for any 0 < |λ| < Λ:

(i) The spectrum of hλ is purely absolutely continuous and equal to [e−, e+].
(ii) The wave operators

W± ≡ s − lim
t→±∞

eith0 e−ithλ ,

exist and are complete, i.e., RanW± = hR and W± : h → hR are unitary.
Moreover, if ψ = α⊕ g ∈ h, then

(W−ψ)(r) = g(r) − λF (r)−1

[
α− λ

∫ e+

e−

f̄(r′) · g(r′)
r′ − r + io

dr′
]
f(r). (50)

Needless to say, the thermodynamics of the SEBB model can be studied under
much more general assumptions than (SEBB1)-(SEBB4). However, these assump-
tions allow us to describe the results of [AJPP] with the least number of technicali-
ties.

Parenthetically, we note that the SEBB model is obviously time-reversal invari-
ant. Write fj(r) = eiθj(r)|fj(r)|, and let

j(α⊕ (g1, · · · , gM )) = ᾱ⊕ (e2iθ1 ḡ1, · · · , e2iθM ḡM ),

where ·̄ denotes the usual complex conjugation. Then the map

r(A) = Γ (j)AΓ (j−1).

is a time reversal and ω is time reversal invariant.
Finally, as an example, consider a concrete SEBB model where each reservoir is

a semi-infinite wire in the tight-binding approximation described in Example 5.5 of
Subsection 5.2. Thus, for each j, hRj

= �2(Z+) and hRj
is the discrete Laplacian

on Z+ with Dirichlet boundary condition at 0. Choosing fj = δ1 we obtain, in the
spectral representation of hRj

,

hRj
= L2((−1, 1),dr),

hRj
= r,

f#
j (r) =

√
2
π

(1 − r2)1/4.

Thus, Assumptions (SEBB1) and (SEBB4) hold. Since, as t→ ∞, one has
∫ 1

−1

eitr|f#(r)|2 dr =
2M
t
J1(t) = O(t−3/2),

where J1 denotes a Bessel function of the first kind, Assumption (SEBB2) is also
satisfied. Hence, if ε0 ∈ (−1, 1), then the conclusions of Theorem 6.2 hold. In fact
one can show that in this case

Λ =

√
1 − |ε0|

2M
.
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7 Thermodynamics of the SEBB Model

Throughout this and the next section we will assume that Assumptions (SEBB1)-
(SEBB4) hold.

7.1 Non-Equilibrium Steady States

In this subsection we show that the SEBB model has a unique NESS ωλ+ which
does not depend on the choice of the initial state η ∈ Nω . Recall that the reference
state ω of the SEBB model is the quasi-free gauge-invariant state generated by T =
TS ⊕ TR, where TS = γ ∈ (0, 1) and TR = ⊕jρj(r).

Theorem 7.1. Let Λ > 0 be the constant introduced in Theorem 6.2. Then, for any
real λ such that 0 < |λ| < Λ the following hold:

(i) The limit
α+
λ (A) ≡ lim

t→∞
τ−t
0 ◦ τ tλ(A), (51)

exists for all A ∈ O. Moreover, Ranα+
λ = OR and α+

λ is an isomorphism
between the C∗-dynamical systems (O, τλ) and (OR, τR).

(ii) Let ωλ+ ≡ ωR ◦ α+
λ . Then

lim
t→∞

η ◦ τ tλ = ωλ+,

for all η ∈ Nω .
(iii) ωλ+ is the gauge-invariant quasi-free state on O generated by

T+ ≡W ∗
−TRW−,

where W− is the wave operator of Theorem 6.2.

Proof. Recall that τ tλ is a group of Bogoliubov automorphisms, τ tλ(a#(f)) =
a#(eithλf). Hence, for any observable of the form

A = a#(ψ1) · · · a#(ψn), (52)

τ−t
0 ◦ τ tλ(A) = a#(e−ith0eithλψ1) · · · a#(e−ith0eithλψn).

It follows from Theorem 6.2 that

lim
t→∞

τ−t
0 ◦ τ tλ(A) = a#(W−ψ1) · · · a#(W−ψn).

Since the linear span of set of elements of the form (52) is dense in O, the limit (51)
exists and is given by the Bogoliubov morphism α+

λ (a#(f)) = a#(W−f). Since
W− is a unitary operator between h and hR, Ranα+

λ = CAR(hR) = OR, which
proves Part (i).
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Since hR has purely absolutely continuous spectrum, it follows from our dis-
cussion of quasi-free states in Subsection 5.1 that ωR is mixing for τ t0. Part (ii) is
thus a restatement of Proposition 3.5.

If A = a∗(ψn) · · · a∗(ψ1)a(φ1) · · · a(φm) is an element of O, then

ω+(A) = ωR(a∗(W−ψn) · · · a∗(W−ψ1)a(W−φ1) · · · a(W−φm))

= δn,m det {(W−φi, TRW−ψj)}

= δn,m det {(φi, T+ψj)}.

and Part (iii) follows. ��

7.2 The Hilbert-Schmidt Condition

Since ω and ωλ+ are factor states, they are either quasi-equivalent (Nω = Nωλ+ )
or disjoint (Nω ∩ Nωλ+ = ∅). Since KerT = Ker (I − T ) = {0}, we also have
KerT+ = Ker (I − T+) = {0}, and so ω and ωλ+ are quasi-equivalent iff they are
unitarily equivalent.

Let α > 0. A function h : (e−, e+) → C is α-Hölder continuous if there exists
a constant C such that for all r, r′ ∈ (e−, e+), |h(r) − h(r′)| ≤ C|r − r′|α.

Theorem 7.2. Assume that all the densities ρj(r) are the same and equal to ρ(r).
Assume further that the functions ρ(r)1/2 and (1−ρ(r))1/2 areα-Hölder continuous
for some α > 1/2. Then the operators

(T+)1/2 − T 1/2 and (I − T+)1/2 − (I − T )1/2

are Hilbert-Schmidt. In particular, the reference state ω and the NESS ωλ+ are
unitarily equivalent and Ep(ωλ+) = 0.

Remark. We will prove this theorem in Appendix 9.2. Although the Hölder conti-
nuity assumption is certainly not optimal, it covers most cases of interest and allows
for a technically simple proof.

Theorem 7.2 requires a comment. By the general principles of statistical me-
chanics, one expects that Ep(ωλ+) = 0 if and only if all the reservoirs are in ther-
mal equilibrium at the same inverse temperature β and chemical potential µ (see
Section 4.3 in [JP4]). This is not the case in the SEBB model because the perturba-
tions Vj are chosen in such a special way that the coupled dynamics is still given by
a Bogoliubov automorphism. Following the strategy of [JP4], one can show that the
Planck law ρ(r) = (1 + eβ(r−µ))−1 can be deduced from the stability requirement
Ep(ωλ+) = 0 for a more general class of interactions Vj . For reasons of space we
will not discuss this subject in detail in these lecture notes (the interested reader may
consult [AJPP]).

We will see below that the entropy production of the SEBB model is non-
vanishing whenever the density operators of the reservoirs are not identical.
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7.3 The Heat and Charge Fluxes

Recall that the observables describing heat and charge currents out of the j-th reser-
voir are

Φj = λ(a∗(irfj)a(1) + a∗(1)a(irfj)),
Jj = λ(a∗(ifj)a(1) + a∗(1)a(ifj)).

The expectation of the currents in the state ωλ+ are thus

ωλ+(Φj) = iλωλ+

(
a∗(rfj)a(1) − a∗(1)a(rfj)

)
= 2λIm (rfj , T+1)
= 2λIm (W−rfj , TRW−1),

and

ωλ+(Jj) = iλωλ+

(
a∗(fj)a(1) − a∗(1)a(fj)

)
= 2λIm (fj , T+1)
= 2λIm (W−fj , TRW−1).

Setting

Gj(r) ≡
∫ e+

e−

r|fj(r′)|2
r′ − r + io

dr′,

it easily follows from Formula (50) that for k = 1, · · · ,M ,

(TRW−1)k(r) = −λρk(r)fk(r)
F (r)

,

(W−rfj)k(r) = δkj rfj(r) + λ2Gj(r)fk(r)
F (r)

,

from which we obtain

(W−rfj , TRW−1) = −λ
M∑
k=1

∫ e+

e−

|fk(r)|2ρk(r)
|F (r)|2

[
rF̄ (r)δkj + λ2Ḡj(r)

]
dr.

From Equ. (49) we have Im F̄ (r) = −λ2π|f(r)|2 and similarly Im Ḡj(r) =
πr|fj(r)|2. Hence,

ωλ+(Φj) = 2πλ4
M∑
k=1

∫ e+

e−

r|fk(r)|2ρk(r)
|F (r)|2

[
|f(r)|2δkj − |fj(r)|2

]
dr.

Since |f |2 =
∑

k |fk|2, the last formula can be rewritten as

ωλ+(Φj) = 2πλ4
M∑
k=1

∫ e+

e−

|fj(r)|2|fk(r)|2(ρj(r) − ρk(r))
rdr

|F (r)|2 . (53)
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In a completely similar way one obtains

ωλ+(Jj) = 2πλ4
M∑
k=1

∫ e+

e−

|fj(r)|2|fk(r)|2(ρj(r) − ρk(r))
dr

|F (r)|2 . (54)

An immediate consequence of Formulas (53) and (54) is that all the fluxes vanish
if ρ1 = · · · = ρM . Note also the antisymmetry in k and j of the integrands which
ensures that the conservation laws

M∑
j=1

ωλ+(Φj) =
M∑
j=1

ωλ+(Jj) = 0,

hold.

7.4 Entropy Production

By the Assumption (SEBB3) the entropy production observable of the SEBB model
is well defined and is given by Equ. (45) which we rewrite as

σ = −λ
M∑
j=1

(a∗(isjfj)a(1) + a∗(1)a(isjfj)) . (55)

Proceeding as in the previous section we obtain

ωλ+(σ) = −2λ
M∑
j=1

Im (W−sjfj , TRW−1),

which yields

ωλ+(σ) = 2πλ4
M∑

j,k=1

∫ e+

e−

|fj(r)|2|fk(r)|2
|F (r)|2 (sj(r) − sk(r)) ρk(r) dr.

Finally, symmetrizing the sum over j and k we get

ωλ+(σ) = πλ4
M∑

j,k=1

∫ e+

e−

|fj(r)|2|fk(r)|2
|F (r)|2 (sj(r) − sk(r)) (ρk(r) − ρj(r)) dr.

Since ρj = (1 + esj )−1 is a strictly decreasing function of sj ,

(sj(r) − sk(r))(ρk(r) − ρj(r)) ≥ 0,

with equality if and only if ρk(r) = ρj(r). We summarize:
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Theorem 7.3. The entropy production of ωλ+ is

ωλ+(σ) = πλ4
M∑

j,k=1

∫ e+

e−

|fj(r)|2|fk(r)|2
|F (r)|2 (sj(r) − sk(r)) (ρk(r) − ρj(r)) dr.

In particular, Ep(ω+) ≥ 0 (something we already know from the general principles)
and Ep(ω+) = 0 if and only if ρ1 = · · · = ρM .

Since ω and ωλ+ are factor states, they are either quasi-equivalent or disjoint.
By Theorem 3.2, if Ep(ωλ+) > 0, then ωλ+ is not ω-normal. Hence, Theorem 7.3
implies that if the densities ρj are not all equal, then the reference state ω and the
NESS ωλ+ are disjoint states.

Until the end of this section we will assume that the energy density of the j-th
reservoir is

ρβjµj
(r) ≡ 1

1 + eβj(r−µj)
,

where βj is the inverse temperature and µj ∈ R is the chemical potential of the j-th
reservoir. Then, by (46), Ep(ωλ+) can be written as

Ep(ωλ+) = Epheat(ωλ+) + Epcharge(ωλ+),

where

Epheat(ωλ+) = −
M∑
j=1

βjωλ+(Φj),

is interpreted as the entropy production due to the heat fluxes and

Epcharge(ωλ+) =
M∑
j=1

βjµjωλ+(Jj).

as the entropy production due to the electric currents.

7.5 Equilibrium Correlation Functions

In this subsection we compute the integrated current-current correlation functions

Lρ(A,B) ≡ lim
T→∞

1
2

∫ T

−T

ωρ+(τ tλ(A)B) dt,

where A and B are heat or charge flux observables and ωρ+ denotes the NESS ωλ+

in the equilibrium case ρ1 = · · · = ρM = ρ. To do this, note that Φl = dΓ (ϕl) and
Jl = dΓ (jl) where

ϕl = i[hRl
, λv] = −i[hλ, hRj

],
jl = i[pj , λv] = −i[hλ, pj ],
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are finite rank operators. We will only consider Lρ(Φj , Φk), the other cases are
completely similar.

Using the CAR, Formula (29) and the fact that ωρ+(Φl) = 0, one easily shows
that

ωρ+(τ tλ(Φj)Φk) = Tr (T+eithλϕje−ithλ(I − T+)ϕk).

Since

eithλϕje−ithλ = − d
dt

eithλhRj
e−ithλ ,

the integration can be explicitly performed and we have

Lρ(Φj , Φk) = − lim
T→∞

1
2
Tr (T+eithλhRj

e−ithλ(I − T+)ϕk)
∣∣∣∣
T

−T

.

Writing eithλhRj
e−ithλ = eithλe−ith0hRj

eith0e−ithλ and using the fact that ϕk is
finite rank, we see that the limit exists and can be expressed in terms of the wave
operators W± as

Lρ(Φj , Φk) =
1
2
{
Tr (T+W

∗
−hRj

W−(I − T+)ϕk)

− Tr (T+W
∗
+hRj

W+(I − T+)ϕk)
}
.

The intertwining property of the wave operators gives

T+ = W ∗
−ρ(hR)W− = ρ(hλ) = W ∗

+ρ(hR)W+,

from which we obtain

Lρ(Φj , Φk) =
1
2
Tr (TR(I − TR)hRj

(W−ϕkW
∗
− −W+ϕkW

∗
+)),

with TR = ρ(hR). Time reversal invariance further gives

W+ = jW− j, jϕk j = −ϕk,

and so

Lρ(Φj , Φk) =
1
2
Tr (TR(I − TR)hRj

(W−ϕkW
∗
− + jW−ϕkW

∗
− j))

= Tr (TR(I − TR)hRj
W−ϕkW

∗
−).

The last trace is easily evaluated (use the formula ϕk = λi[hRk
, v] and follow the

steps of the computation in Subsection 7.3). The result is
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Lρ(Φj , Φk) = −2πλ4

∫ e+

e−

|fj(r)|2
[
|fk(r)|2 − δjk|f(r)|2

]
ρ(r)(1 − ρ(r)) r2dr

|F (r)|2 ,

Lρ(Jj , Φk) = −2πλ4

∫ e+

e−

|fj(r)|2
[
|fk(r)|2 − δjk|f(r)|2

]
ρ(r)(1 − ρ(r)) rdr

|F (r)|2 ,

Lρ(Φj ,Jk) = −2πλ4

∫ e+

e−

|fj(r)|2
[
|fk(r)|2 − δjk|f(r)|2

]
ρ(r)(1 − ρ(r)) rdr

|F (r)|2 ,

Lρ(Jj ,Jk) = −2πλ4

∫ e+

e−

|fj(r)|2
[
|fk(r)|2 − δjk|f(r)|2

]
ρ(r)(1 − ρ(r)) dr

|F (r)|2 .

(56)

Note the following symmetries:

Lρ(Φj , Φk) = Lρ(Φk, Φj),
Lρ(Jj ,Jk) = Lρ(Jk,Jj),
Lρ(Φj ,Jk) = Lρ(Jk, Φj).

(57)

Note also thatLρ(Φj , Φk) ≤ 0 andLρ(Jj ,Jk) ≤ 0 for j �= k whileLρ(Φj , Φj) ≥ 0
and Lρ(Jj ,Jj) ≥ 0.

7.6 Onsager Relations. Kubo Formulas.

Let βeq and µeq be given equilibrium values of the inverse temperature and the
chemical potential. The affinities (thermodynamic forces) conjugated to the currents
Φj and Jj are

Xj = βeq − βj , Yj = βjµj − βeqµeq.

Indeed, it follows from the conservations laws (12) and (39) that

Ep(ωλ+) =
M∑
j=1

(Xj ωλ+(Φj) + Yj ωλ+(Jj)) .

Since

ρβjµj
(r) =

1
1 + eβeq(r−µeq)−(Xjr+Yj)

,

we have

∂Xk
ρβjµj

(r)|X=Y =0 = δkj ρ(r)(1 − ρ(r)) r,
∂Yk

ρβjµj
(r)|X=Y =0 = δkj ρ(r)(1 − ρ(r)),

where ρ ≡ ρβeqµeq . Using these formulas, and explicit differentiation of the steady
currents (53) and (54) and comparison with (56) lead to

∂Xk
ωλ+(Φj)|X=Y =0 = Lρ(Φj , Φk),

∂Yk
ωλ+(Φj)|X=Y =0 = Lρ(Φj ,Jk),

∂Xk
ωλ+(Jj)|X=Y =0 = Lρ(Jj , Φk),

∂Yk
ωλ+(Jj)|X=Y =0 = Lρ(Jj ,Jk),
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which are the Kubo Fluctuation-Dissipation Formulas. The symmetry (57) gives the
Onsager reciprocity relations

∂Xj
ωλ+(Φk)|X=Y =0 = ∂Xk

ωλ+(Φj)|X=Y =0,

∂Yj
ωλ+(Jk)|X=Y =0 = ∂Yk

ωλ+(Jj)|X=Y =0,

∂Yj
ωλ+(Φk)|X=Y =0 = ∂Xk

ωλ+(Jj)|X=Y =0.

The fact that Lρ(Φj , Φj) ≥ 0 and Lρ(Jj ,Jj) ≥ 0 while Lρ(Φj , Φk) ≤ 0 and
Lρ(Jj ,Jk) ≤ 0 for j �= k means that increasing a force results in an increase of the
conjugated current and a decrease of the other currents. This is not only true in the
linear regime. Direct differentiation of (53) and (54) yields

∂Xk
ωλ+(Φk) = 2πλ4

∑
j 	=k

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
r2dr
|F (r)|2 ≥0,

∂Yk
ωλ+(Jk) = 2πλ4

∑
j 	=k

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
dr

|F (r)|2 ≥0,

∂Xk
ωλ+(Φj) = −2πλ4

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
r2dr
|F (r)|2 ≤ 0,

∂Yk
ωλ+(Jj) = −2πλ4

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
dr

|F (r)|2 ≤ 0.

Note that these derivatives do not depend on the reference states of the reservoirs
Rj for j �= k.

8 FGR Thermodynamics of the SEBB Model

For j = 1, · · · ,M , we set

g̃j(t) ≡
∫ e+

e−

eitrρj(r)|fj(r)|2 dr.

In addition to (SEBB1)-(SEBB4) in this section we will assume

Assumption (SEBB5) g̃j(t) ∈ L1(R,dt) for j = 1, · · · ,M .

8.1 The Weak Coupling Limit

In this subsection we study the dynamics restricted to the small system on the van
Hove time scale t/λ2.

Recall that by Theorem 6.1 the algebra of observables OS of the small system
is the 4-dimensional subalgebra of O = CAR(C ⊕ hR) generated by a(1). It is
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the full matrix algebra of the subspace hS ⊂ Γ−(C ⊕ hR) generated by the vec-
tors {Ω, a(1)Ω}. In this basis, the Hamiltonian and the reference state of the small
system are

HS =
[
0 0
0 ε0

]
, ωS =

[
1 − γ 0

0 γ

]
.

LetA ∈ OS be an observable of the small system. We will study the expectation
values

ω(τ t/λ
2

λ (A)), (58)

as λ → 0. If A = a#(1), then (58) vanishes, so we need only to consider the
Abelian 2-dimensional even subalgebra O+

S ⊂ OS . Since a∗(1)a(1) = NS and
a(1)a∗(1) = I −NS , it suffices to consider A = NS . In this case we have

ω ◦ τ t/λ
2

λ (NS) = ω(a∗(eithλ/λ
2
1)a(eithλ/λ

2
1))

= (eithλ/λ
2
1, (γ ⊕ TR)eithλ/λ

2
1). (59)

Using the projection pj on the Hilbert space hRj
of the j-th reservoir we can rewrite

this expression as

ω ◦ τ t/λ
2

λ (NS) = γ|(1, eithλ/λ
2
1)|2 +

M∑
j=1

(pjeithλ/λ
2
1, TRj

pjeithλ/λ
2
1).

Theorem 8.1. Assume that Assumptions (SEBB1)-(SEBB5) hold.

(i) For any t ≥ 0,
lim
λ→0

|(1, eithλ/λ
2
1)|2 = e−2πt|f(ε0)|2 . (60)

(ii) For any t ≥ 0 and j = 1, · · · ,M ,

lim
λ→0

(pjeithλ/λ
2
1, TRj

pj eithλ/λ
2
1) =

|fj(ε0)|2
|f(ε0)|2

ρj(ε0)
(
1 − e−2πt|f(ε0)|2

)
.

(61)

The proof of Theorem 8.1 is not difficult—for Part (i) see [Da1, D1], and for Part
(ii) [Da2]. These proofs use the regularity Assumption (SEBB5). An alternative
proof of Theorem 8.1, based on the explicit form of the wave operator W−, can be
found in [JKP].

Theorem 8.1 implies that

γ(t) ≡ lim
λ→0

ω ◦ τ t/λ
2

λ (NS)

= γ e−2πt|f(ε0)|2 +
(
1 − e−2πt|f(ε0)|2

) M∑
j=1

|fj(ε0)|2
|f(ε0)|2

ρj(ε0),

from which we easily conclude that for all A ∈ OS one has
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lim
λ→0

ω ◦ τ t/λ
2

λ (A) = Tr(ωS(t)A),

where

ωS(t) =
[
1 − γ(t) 0

0 γ(t)

]
.

According to the general theory described in Section 4.5 we also have

ωS(t) = etKSωS ,

where KS is the QMS generator in the Schrödinger picture. We shall now discuss
its restriction to the algebra of diagonal 2 × 2-matrices. In the basis

[
1 0
0 0

]
,

[
0 0
0 1

]
, (62)

of this subalgebra we obtain the matrix representation

KS = 2π
M∑
j=1

|fj(ε0)|2
[
−ρj(ε0) 1− ρj(ε0)
ρj(ε0) −(1 − ρj(ε0))

]
.

In the Heisenberg picture we have

lim
λ→0

ωS ◦ τ t/λ
2

λ (A) = Tr(ωS etKHA),

where KH is related to KS by the duality

Tr(KS(ωS)A) = Tr(ωSKH(A)).

The restriction ofKH to the subalgebra of diagonal 2×2-matrices has the following
matrix representation relative to the basis (62),

KH = 2π
M∑
j=1

|fj(ε0)|2
[
−ρj(ε0) ρj(ε0)

1 − ρj(ε0) −(1 − ρj(ε0))

]
.

We stress thatKS andKH are the diagonal parts of the full Davies generators in the
Schrödinger and Heisenberg pictures discussed in the lecture notes [D1].

As we have discussed in Section 4.5, an important property of the generatorsKS

and KH is the decomposition

KS =
M∑
j=1

KS,j , KH =
M∑
j=1

KH,j ,

where KS,j and KH,j are the generators describing interaction of S with the j-th
reservoir only. Explicitly,
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KS,j = 2π|fj(ε0)|2
[
−ρj(ε0) 1− ρj(ε0)
ρj(ε0) −(1 − ρj(ε0))

]
,

KH,j = 2π|fj(ε0)|2
[
−ρj(ε0) ρj(ε0)

1 − ρj(ε0) −(1 − ρj(ε0))

]
.

Finally, we note that

ωS+ ≡ lim
t→∞

ωS(t) =
M∑
j=1

|fj(ε0)|2
|f(ε0)|2

[
1 − ρj(ε0) 0

0 ρj(ε0)

]
.

ωS+ is the NESS on the Fermi Golden Rule time scale: for any observable A of the
small system,

lim
t→∞

lim
λ→0

ω ◦ τ t/λ
2

λ (A) = Tr(ωS+A) = ωS+(A).

In the sequel we will refer to ωS+ as the FGR NESS.

8.2 Historical Digression—Einstein’s Derivation of the Planck Law

Einstein’s paper [Ei], published in 1917, has played an important role in the his-
torical development of quantum mechanics and quantum field theory. In this paper
Einstein made some deep insights into the nature of interaction between radiation
and matter which have led him to a new derivation of the Planck law. For the history
of these early developments the interested reader may consult [Pa].

The original Einstein argument can be paraphrased as follows. Consider a two-
level quantum system S with energy levels 0 and ε0, which is in equilibrium with
a radiation field reservoir with energy density ρ(r). Due to the interaction with the
reservoir, the system S will make constant transitions between the energy levels
0 and ε0. Einstein conjectured that the corresponding transition rates (transition
probabilities per unit time) have the form

k(ε0, 0) = Aε0(1 − ρ(ε0)), k(0, ε0) = Bε0ρ(ε0),

where Aε0 and Bε0 are the coefficients which depend on the mechanics of the inter-
action. (Of course, in 1917 Einstein considered the bosonic reservoir (the light)—in
this case in the first formula one has 1+ρ(ε0) instead of 1−ρ(ε0)). These formulas
are the celebrated Einstein’s A and B laws. Let p̄0 and p̄ε0 be probabilities that in
equilibrium the small system has energies 0 and ε0 respectively. If S is in thermal
equilibrium at inverse temperature β, then by the Gibbs postulate,

p̄0 = (1 + e−βε0)−1, p̄ε0 = e−βε0(1 + e−βε0)−1.

The equilibrium condition

k(0, ε0)p̄0 = k(ε0, 0)p̄ε0 ,
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yields

ρ(ε0) =
Aε0

Bε0

(1 − ρ(ε0))e−βε0 .

In 1917 Einstein naturally could not compute the coefficients Aε0 and Bε0 . How-
ever, if Aε0/Bε0 = 1 for all ε0, then the above relation yields the Planck law for
energy density of the free fermionic reservoir in thermal equilibrium,

ρ(ε0) =
1

1 + eβε0
.

In his paper Einstein points out that to compute the numerical value of Aε0 and Bε0

one would need an exact [quantum] theory of electro-dynamical and mechanical
processes.

The quantum theory of mechanical processes was developed in the 1920’s by
Schrödinger, Heisenberg, Jordan, Dirac and others. In 1928, Dirac extended quan-
tum theory to electrodynamical processes and computed the coefficients Aε0 and
Bε0 from the first principles of quantum theory. Dirac’s seminal paper [Di] marked
the birth of quantum field theory. To compute Aε0 and Bε0 Dirac developed the
so-called time-dependent perturbation theory, which has been discussed in lecture
notes [D1, JKP] (see also Chapter XXI in [Mes], or any book on quantum mechan-
ics). In his 1949 Chicago lecture notes [Fer] Fermi called the basic formulas of
Dirac’s theory the Golden Rule, and since then they have been called the Fermi
Golden Rule.

In this section we have described the mathematically rigorous Fermi Golden
Rule theory of the SEBB model. In this context Dirac’s theory reduces to the com-
putation ofKS andKH since the matrix elements of these operators give the transi-
tion probabilities k(ε0, 0) and k(0, ε0). In particular, in the case of a single reservoir
with energy density ρ(r),

Aε0 = Bε0 = 2π|f(ε0)|2.

Einstein’s argument can be rephrased as follows: if the energy density ρ is such that

ωS+ = e−βHS/Tr(e−βHS ) = (1 + e−βε0)−1

[
1 0
0 e−βε0

]
,

for all ε0 (namely HS ), then

ρ(ε0) =
1

1 + eβε0
.

8.3 FGR Fluxes, Entropy Production and Kubo Formulas

Any diagonal observable A ∈ O+
S of the small system is a function of the Hamil-

tonian HS . We identify such an observable with a function g : {0, ε0} → R. Oc-
casionally, we will write g as a column vector with components g(0) and g(ε0). In
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the sequel we will use such identifications without further comment. A vector ν is
called a probability vector if ν(0) ≥ 0, ν(ε0) ≥ 0 and ν(0)+ν(ε0) = 1. The diago-
nal part of any density matrix defines a probability vector. We denote the probability
vector associated to FGR NESS ωS+ by the same letter. Similarly, to a probability
vector one uniquely associates a diagonal density matrix. With these conventions,
the Hamiltonian and the number operator of the small system are

HS = ε0a
∗(1)a(1) =

[
0
ε0

]
, NS = a∗(1)a(1) =

[
0
1

]
.

The Fermi Golden Rule (FGR) heat and charge flux observables are

Φfgr,j = KH,j(HS) = 2πε0|fj(ε0)|2
[

ρj(ε0)
−(1 − ρj(ε0))

]
,

Jfgr,j = KH,j(NS) = 2π|fj(ε0)|2
[

ρj(ε0)
−(1 − ρj(ε0))

]
.

The steady heat and the charge currents in the FGR NESS are given by

ωS+(Φfgr,j) = 2π
M∑
k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

ε0(ρj(ε0)− ρk(ε0)),

ωS+(Jfgr,j) = 2π
M∑
k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

(ρj(ε0) − ρk(ε0)).
(63)

The conservation laws

M∑
j=1

ωS+(Φfgr,j) = 0,
M∑
j=1

ωS+(Jfgr,j) = 0,

follow from the definition of the fluxes and the relation KS(ωS+) = 0. Of course,
they also follow easily from the above explicit formulas.

Until the end of this subsection we will assume that

ρj(r) =
1

1 + eβj(r−µj)
.

Using Equ. (63), we can also compute the expectation of the entropy production
in the FGR NESS ωS+. The natural extension of the definition (25) is

σfgr ≡ −
M∑
j=1

βj (Φfgr,j − µj Jfgr,j) ,

from which we get
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ωS+(σfgr) = 2π
M∑

j,k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

(ρk(ε0)− ρj(ε0))βj(ε0 − µj). (64)

Writing

sj ≡ log
ρj(ε0)

1 − ρj(ε0)
= βj(ε0 − µj),

and symmetrizing the sum in Equ. (64) we obtain

ωS+(σfgr) = π

M∑
j,k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

(ρk(ε0)− ρj(ε0))(sj − sk),

which is non-negative since ρl(ε0) is a strictly decreasing function of sl. The FGR
entropy production vanishes iff all sj’s are the same. Note however that this condi-
tion does not require that all the βj’s and µj’s are the same.

Let βeq and µeq be given equilibrium values of the inverse temperature and
chemical potential, and

ωSeq = e−βeq(HS−µeq)/Tr(e−βeq(HS−µeq)) =
[
(1 + e−βeqε0)−1 0

0 (1 + eβeqε0)−1

]
,

the corresponding NESS. As in Subsection 7.6, the affinities (thermodynamic forces)
areXj = βeq −βj and Yj = βjµj −βeqµeq. A simple computation yields the FGR
Onsager reciprocity relations

∂Xj
ωS+(Φfgr,k)|X=Y =0 = ∂Xk

ωS+(Φfgr,j)|X=Y =0,

∂Yj
ωS+(Jfgr,k)|X=Y =0 = ∂Yk

ωS+(Jfgr,i)|X=Y =0,

∂Yj
ωS+(Φfgr,k)|X=Y =0 = ∂Xk

ωS+(Jfgr,i)|X=Y =0.

(65)

We set

Lfgr(A,B) =
∫ ∞

0

ωSeq(etKH(A)B) dt,

where A and B are the FGR heat or charge flux observables. Explicit computations
yield the FGR Kubo formulas

∂Xk
ωS+(Φfgr,j)|X=Y =0 = Lfgr(Φfgr,j , Φfgr,k),

∂Yk
ωS+(Φfgr,j)|X=Y =0 = Lfgr(Φfgr,j ,Jfgr,k),

∂Xk
ωS+(Jfgr,j)|X=Y =0 = Lfgr(Jfgr,j , Φfgr,k),

∂Yk
ωS+(Jfgr,j)|X=Y =0 = Lfgr(Jfgr,j ,Jfgr,k).

(66)

8.4 From Microscopic to FGR Thermodynamics

At the end of Subsection 4.5 we have briefly discussed the passage from the mi-
croscopic to the FGR thermodynamics. We now return to this subject in the context
of the SEBB model. The next theorem is a mathematically rigorous version of the
heuristic statement that the FGR thermodynamics is the first non-trivial contribution
(in λ) to the microscopic thermodynamics.
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Theorem 8.2. (i) For any diagonal observable A ∈ OS ,

lim
λ→0

ωλ+(A) = ωS+(A).

(ii) For j = 1, · · · ,M ,

lim
λ→0

λ−2ωλ+(Φj) = ωS+(Φfgr,j), lim
λ→0

λ−2ωλ+(Jj) = ωS+(Jfgr,j).

(iii) Let sj ≡ log ρj(ε0)/(1 − ρj(ε0)) and define the FGR entropy production by

σfgr ≡ 2π
M∑
j=1

|fj(ε0)|2sj
[
−ρj(ε0)

1 − ρj(ε0)

]
.

Then
lim
λ→0

λ−2 Ep(ωλ+) = ωS+(σfgr).

The proof of this theorem is an integration exercise. We will restrict ourselves to
an outline of the proof of Part (i) and several comments. Let A = NS = a∗(1)a(1).
Then

ωλ+(A) = (W−1, TRW−1) =
M∑
j=1

λ2

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr,

and

ωS+(A) =
M∑
j=1

|fj(ε0)|2
|f(ε0)|2

ρj(ε0).

Hence, to prove Part (i) we need to show that

lim
λ→0

λ2

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr =

|fj(ε0)|2
|f(ε0)|2

ρj(ε0).

By Assumption (SEBB2), R(r) ≡ ReG(r − io) and π|f(r)|2 = ImG(r − io) are
bounded continuous functions. The same is true for ρj(r) by Assumption (SEBB3).
Since

F (r) = ε0 − r − λ2R(r) + iλ2π|f(r)|2,
we have

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr =

∫ e+

e−

|fj(r)|2ρj(r)
(r − ε0 + λ2R(r))2 + π2λ4|f(r)|4 dr.

Using the above-mentioned continuity and boundedness properties it is not hard to
show that
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lim
λ→0

λ2

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr

= ρj(ε0)|fj(ε0)|2 lim
λ→0

λ2

∫ e+

e−

dr
(r − ε0 + λ2R(r))2 + π2λ4|f(r)|4

= ρj(ε0)|fj(ε0)|2 lim
λ→0

λ2

∫ ∞

−∞

dr
r2 + π2λ4|f(ε0)|4

=
|fj(ε0)|2
|f(ε0)|2

ρj(ε0).

The proofs of Parts (ii) and (iii) are similar. Clearly, under additional regularity
assumptions one can get information on the rate of convergence in Parts (i)-(iii).
Finally, it is not difficult to show, using the Kubo formulas described in Subsection
7.6 and 8.3, that

lim
λ→0

λ−2Lρ(A,B) = Lfgr(Afgr, Bfgr),

where A, B are the microscopic heat or charge flux observables and Afgr, Bfgr are
their FGR counterparts.

9 Appendix

9.1 Structural Theorems

Proof of Theorem 3.1

Recall that πω(O)′′ is the Banach space dual of Nω . If A ∈ O and Ã ∈ πω(O)′′ is
a weak-∗ accumulation point of the net

1
t

∫ t

0

πω(τsV (A)) ds,

t ≥ 0, it follows from the asymptotic abelianness in mean that Ã ∈ πω(O)′. Since
ω is a factor state we have πω(O)′ ∩ πω(O)′′ = CI and therefore, for any η ∈ Nω ,
one has

η(Ã) = ω(Ã). (67)

Let µ, ν ∈ Nω and µ+ ∈ Σ+(µ, τV ). Let tα → ∞ be a net such that

lim
α

1
tα

∫ tα

0

µ ◦ τsV (A) ds = µ+(A),

for allA ∈ O. Passing to a subnet, we may also assume that for allA ∈ O and some
ν+ ∈ Σ+(ν, τV ),

lim
α

1
tα

∫ tα

0

ν ◦ τsV (A) ds = ν+(A).
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By the Banach-Alaoglu theorem, for any A ∈ O there exists a subnet tγ(A) of the
net tα and A# ∈ πω(O)′′ such that, for all η ∈ Nω

lim
γ

1
tγ(A)

∫ tγ(A)

0

η(πω(τsV (A))) ds = η(A#).

Hence, µ+(A) = µ(A#) and ν+(A) = ν(A#). By (67) we also have µ(A#) =
ω(A#) = ν(A#) and so µ+(A) = ν+(A). We conclude that µ+ = ν+ and that

Σ+(µ, τV ) ⊂ Σ+(ν, τV ).

By symmetry, the reverse inclusion also holds and

Σ+(µ, τV ) = Σ+(ω, τV )

for all µ ∈ Nω . ��

Proof of Theorem 3.3

To prove this theorem we use the correspondence between ω-normal states and el-
ements of the standard cone P obtained from ω (see Theorem 4.41 in [Pi]); this is
possible since ω is modular by assumption.

Note that if KerLV �= {0}, then there is an ω-normal, τV -invariant state η. By
Theorem 3.1, Σ+(ω, τV ) = Σ+(η, τV ) and obviously Σ+(η, τV ) = {η}. Two non-
zero elements in KerLV therefore yield the same vector state and are represented
by the same vector in the standard cone, i.e., KerLV ∩ P is a one-dimensional
half-line. Recall that any ζ ∈ hω can be uniquely decomposed as

ζ = ζ1 − ζ2 + iζ3 − iζ4,

with ζi in P . Since eitLV preserves the standard cone, eitLV ζ = ζ iff eitLV ζi = ζi
for all i (i.e., ζi ∈ KerLV ∩ P for all i). Hence, KerLV is one-dimensional and
Part (i) follows.

The proof of Part (ii) is simple. Any NESS η ∈ Σ+(ω, τV ) can be uniquely
decomposed as ηn + ηs where ηn 
 ω and ηs ⊥ ω. Since η is τV -invariant, ηn and
ηs are also τV -invariant. Therefore ηn is represented by a vector ζ in KerLV ∩ P .
If KerLV = {0}, then ηn = 0 and η ⊥ ω.

It remains to prove Part (iii). Let ϕ ∈ KerLV be a separating vector for Mω.
Let B ∈ πω(O)′ be such that ‖Bϕ‖ = 1 and let νB be the vector state associated to
Bϕ, νB(·) = (Bϕ, ·Bϕ). For any A ∈ πω(O),

1
t

∫ t

0

νB
(
τsV (A)

)
ds =

1
t

∫ t

0

(
Bϕ, eisLV πω(A)e−isLV Bϕ

)
ds

=
(

1
t

∫ t

0

e−isLV B∗B ϕds, πω(A)ϕ
)
.
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Hence, by the von Neumann ergodic theorem,

νB+(A) ≡ lim
t→∞

1
t

∫ t

0

νB
(
τsV (A)

)
ds =

(
PKerLV

B∗B ϕ, πω(A)ϕ
)
,

where PKerLV
is the projection on KerLV . Since ϕ is cyclic for πω(O)′, for every

n ∈ N we can find a Bn such that ‖ω − νBn
‖ < 1/n. The sequence νBn

is Cauchy
in norm and for all ω+ ∈ Σ+(ω, τV ),

‖ω+ − νBn+‖ ≤ ‖ω − νBn
‖ < 1/n.

This implies that the norm limit of νBn
is the unique NESS in Σ+(ω, τV ). Since

νBn+ ∈ Nω and Nω is a norm closed subset of O∗, this NESS is ω-normal. ��

9.2 The Hilbert-Schmidt Condition

Proof of Theorem 7.2

We will prove that T 1/2
+ − T 1/2 is Hilbert-Schmidt. The proof that (I − T+)1/2 −

(I − T )1/2 is also Hilbert-Schmidt is identical. For an elementary introduction to
Hilbert-Schmidt operators (which suffices for the proof below) the reader may con-
sult Section VI.6 in [RS].

By our general assumptions, the functions f(r) and F (r)−1 are bounded and
continuous. By the assumption of Theorem 7.2, all the densities ρj(r) are the same
and equal to ρ(r). Hence,

TR =
M⊕
j=1

ρj(r) = ρ(hR).

Let pR be the orthogonal projection on the reservoir Hilbert space hR. Since T 1/2−
T

1/2
R = T

1/2
S , T 1/2

+ (I−pR), (I−pR)T 1/2
+ are obviously Hilbert-Schmidt, it suffices

to show that pRT
1/2
+ pR − T 1/2

R is a Hilbert-Schmidt operator on the Hilbert space
hR. Since

pRT
1/2
+ pR − T 1/2

R = −pRW ∗
−[W−pR, T

1/2
R ],

it suffices to show that K ≡ [W−pR, T
1/2
R ] is a Hilbert-Schmidt operator on hR.

By Theorem 6.2, for g ∈ hR,

(Kg)(r) = λ2 f(r)
F (r)

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2
r′ − r + io

f̄(r′) · g(r′) dr′.

Let Kij be an operator on L2((e−, e+),dr) defined by

(Kijh)(r) = λ2 fi(r)
F (r)

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2
r′ − r + io

f̄j(r′)h(r′) dr′.
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To prove that K is Hilbert-Schmidt on hR, it suffices to show that Kij is Hilbert-
Schmidt on L2((e−, e+),dr) for all i, j.

Let h1, h2 ∈ L2((e−, e+),dr) be bounded continuous functions. Then

(h1,Kijh2) = λ2

∫ e+

e−

h̄1(r)fi(r)g2(r)
F (r)

dr, (68)

where

g2(r) = lim
ε↓0

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2
r′ − r + iε

f̄j(r′)h2(r′) dr′.

Using the identity

1
r′ − r + iε

=
r′ − r

(r′ − r)2 + ε2
− iε

(r′ − r)2 + ε2
,

and the fact that, for r ∈ (e−, e+), one has

lim
ε↓0
ε

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2
(r′ − r)2 + ε2

f̄j(r′)h2(r′) dr′ = π(ρ(r)1/2 − ρ(r)1/2)f̄j(r)h2(r)

= 0,

(see the Lecture [Ja]), we obtain

g2(r) = lim
ε↓0

∫ e+

e−

(r′ − r)(ρ(r′)1/2 − ρ(r)1/2)
(r′ − r)2 + ε2

f̄j(r′)h2(r′) dr′.

Since fj and h2 are bounded and ρ(r)1/2 is 1
2 -Hölder continuous, we have

sup
ε>0,r∈(e−,e+)

∣∣∣∣∣
∫ e+

e−

(r′ − r)(ρ(r′)1/2 − ρ(r)1/2)
(r′ − r)2 + ε2

f̄j(r′)h2(r′) dr′
∣∣∣∣∣

≤ C sup
r∈(e−,e+)

∫ e+

e−

f̄j(r′)h2(r′)
|r′ − r|1/2 dr′ <∞.

Moreover, since h̄1(r)F (r)−1fi(r) ∈ L1((e−, e+),dr), we can invoke the domi-
nated convergence theorem to rewrite Equ. (68) as

(h1,Kijh2) = lim
ε↓0

(h1,Kij,εh2) (69)

where Kij,ε is the integral operator on L2((e−, e+),dr) with kernel

kε(r, r′) = λ2 fi(r)f̄j(r
′)

F (r)
(r′ − r)(ρ(r′)1/2 − ρ(r)1/2)

(r′ − r)2 + ε2
.

We denote by ‖ · ‖HS the Hilbert-Schmidt norm. Then
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‖Kij,ε‖2
HS =

∫
|kε(r, r′)|2 dr dr′.

Since ρ(r)1/2 is α-Hölder continuous for α > 1/2 and F (r)−1 is bounded there
exists a constant C such that, for r, r′ ∈ (e−, e+) and ε > 0, one has the estimate

|kε(r, r′)|2 ≤ C
|fi(r)|2|fj(r′)|2
|r − r′|2(1−α)

.

Therefore, since 2(1 − α) < 1, we conclude that

sup
ε>0

‖Kij,ε‖2
HS = sup

ε>0

∫
|kε(r, r′)|2 dr dr′ <∞.

The Hilbert-Schmidt class of operators on L2((e−, e+),dr) is a Hilbert space with
the inner product (X,Y ) = Tr(X∗Y ). Since {Kij,ε}ε>0 is a bounded set in this
Hilbert space, there is a sequence εn → 0 and a Hilbert-Schmidt operator K̃ij such
that for any Hilbert-Schmidt operator X on L2((e−, e+),dr),

lim
n→∞

Tr(X∗Kij,εn
) = Tr(X∗K̃ij).

Taking X = (h1, ·)h2, where hi ∈ L2((e−, e+),dr) are bounded and continuous,
we derive from (69) that (h1, K̃ijh2) = (h1,Kijh2). Since the set of such h’s is
dense in L2((e−, e+),dr), K̃ij = Kij and so Kij is Hilbert-Schmidt. ��
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[FM2] Fröhlich, J., Merkli, M.: Another return of ”return to equilibrium”. Commun. Math.
Phys., 251, 235 (2004).
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[Ja] Jakšić, V.: Topics in spectral theory. Volume I of this series.
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[JP5] Jakšić, V., Pillet, C.-A.: Non-equilibrium steady states for finite quantum systems
coupled to thermal reservoirs. Commun. Math. Phys. 226, 131 (2002).
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