Skip to main content

Generation of Balanced Subdomain Clusters with Minimum Interface for Distributed Domain Decomposition Applications

  • Conference paper
Domain Decomposition Methods in Science and Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 40))

Summary

Balancing and dual Domain Decomposition Methods (DDMs) are used in practice on parallel computing environments with the number of generated subdomains being generally larger than the number of available processors. The present study describes partitioning concepts used to: (a) generate subdomains for such DDMs and (b) organize these subdomains into subdomain clusters, in order to assign each cluster to a processor. The discussion concerns distributed computing environments with dedicated homogeneous processors, as well as with heterogeneous and/or non-dedicated processors. The FETI method is used to obtain numerical results demonstrating the merits of the described partitioning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • D. Charmpis and M. Papadrakakis. Enhancing the performance of the FETI method with preconditioning techniques implemented on clusters of networked computers. Computational Mechanics, 30(1):12–28, 2002.

    Article  Google Scholar 

  • D. Charmpis and M. Papadrakakis. Subdomain cluster generation for domain decomposition methods using graph partitioning optimization. Engineering Computations, 20(8):932–963, 2003.

    Article  Google Scholar 

  • C. Farhat, N. Maman, and G. Brown. Mesh partitioning for implicit computations via iterative domain decomposition: impact and optimization of the subdomain aspect ratio. International Journal for Numerical Methods in Engineering, 38:989–1000, 1995.

    Article  Google Scholar 

  • C. Farhat, K. Pierson, and M. Lesoinne. The second generation FETI methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems. Computer Methods in Applied Mechanics and Engineering, 184:333–374, 2000.

    Article  Google Scholar 

  • Y. Fragakis and M. Papadrakakis. The mosaic of high performance domain decomposition methods for structural mechanics: formulation, interrelation and numerical efficiency of primal and dual methods. Computer Methods in Applied Mechanics and Engineering, 192:3799–3830, 2003.

    Article  Google Scholar 

  • G. Karypis and V. Kumar. METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices — Version 4.0. Technical report, Department of Computer Science, University of Minnesota, USA, 1998.

    Google Scholar 

  • M. Lesoinne and K. Pierson. An efficient FETI implementation on distributed shared memory machines with independent numbers of subdomains and processors. Contemporary Mathematics, 218:318–324, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Charmpis, D.C., Papadrakakis, M. (2005). Generation of Balanced Subdomain Clusters with Minimum Interface for Distributed Domain Decomposition Applications. In: Barth, T.J., et al. Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26825-1_58

Download citation

Publish with us

Policies and ethics