Skip to main content

Sensors for Soil, Substrates, and Concrete Based on the MCM100 Microchip

  • Chapter
Electromagnetic Aquametry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Debye P (1929) Polar molecules. Rheinhold, New York

    MATH  Google Scholar 

  2. Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol, propylene glycol, and n-propanol. J Chem Phys 19:1481–1493

    Google Scholar 

  3. Stacheder M, Blume P, Fundinger R, Koehler K, Ruf R (2001) Reliability of Trime-TDR Sensors for moisture determination in pure and contaminated concrete. In: Proceedings of the fourth international conference on electromagnetic wave interactions with water and moist substances, Weimar, 13–16 May 2001, pp 266–273

    Google Scholar 

  4. Ferguson JG (1953) Classification of bridge methods of measuring impedances. Bell Syst Tech J 12:452–459

    Google Scholar 

  5. Hilhorst MA (1984) A sensor for the determination of the complex permittivity of materials as a measure for the moisture content. In Bergveld P (ed) Sensors & actuators. Kluwer Technical Books, Deventer, pp 79–84

    Google Scholar 

  6. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines, Water Resour Res 16(3):574–582

    Google Scholar 

  7. Hilhorst MA, Groenwold J, De Groot JF (1992) Water content measurements in soil and rockwool substrates: dielectric sensors for automatic in situ measurements. In: Sensors in horticulture, Acta Hortic 304:209–218

    Google Scholar 

  8. Hilhorst MA (1998) Dielectric characterisation of soil. Doctoral-thesis, Wageningen University and Research Center, Wageningen, the Netherlands, ISBN 90-5485-810-9

    Google Scholar 

  9. Bratton WL, Pluimgraaff DJMH, Hilhorst MA (1995) CPT sensors for biocharacterization of contaminated sites. In: International symposium on cone penetration testing, Sweden, Oct

    Google Scholar 

  10. SOWACS website: www.sowacs.com, february 2004

    Google Scholar 

  11. Hadjar A (1997) Zerstorungsfreie Feuchtemessverfahren fur Beton. In: Kupfer K (ed) 9 Feuchtetag, 7/18 Sept, MFPA an der Bauhaus-Universitat Weimar, pp 301–316

    Google Scholar 

  12. van Beek A, Hilhorst MA (1999) Dielectric characterization of young concrete. Heron 44(1), pp 3–17

    Google Scholar 

  13. Sokoll T, Jannsen B, Jacob AF (2002) A novel sensor for measuring ion concentration in concrete structures. In: Kupfer K (ed) 11 Feuchtetag, 18/19 Sept 2002, pp 36–46

    Google Scholar 

  14. Foster KR, Schwan HP (1986) Dielectric permittivity and electrical conductivity of biological materials. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton, FL, pp 27–98

    Google Scholar 

  15. Nacke T, Frense D, Göller A, Beckmann D (2001) Impedance spectroscopy — a tool for in situ biomass analyses and for the study of the toxic sensitivity of cells in suspension cultures. In: Proceedings of the fourth international conference on electromagnetic wave interactions with water and moist substances, Weimar, 13–16 May 2001, pp 93–100

    Google Scholar 

  16. Hilhorst MA, Balendonck J, Kampers FWH (1993) A broad-bandwidth mixed analog/digital integrated circuit for the measurement of complex impedances. IEEE J Solid-state Circuits 28(7):764–769

    Article  Google Scholar 

  17. Topp GC, Davis JL, Annan AP (1982) Electromagnetic determination of soil water content using TDR: II. Evaluation of installation and configuration of parallel transmission lines. Soil Sci Soc Am J 46:678–684

    Article  Google Scholar 

  18. Hilhorst MA, Dirksen C (1994) Dielectric water content sensors: time domain versus frequency domain. In: Proc of the symposium on TDR in environmental, infrastructure and mining applications, Evanston, Illinois, Sept 1994, pp 23–33

    Google Scholar 

  19. Dirksen C, Hilhorst MA (1994) Calibration of a new frequency domain sensor for soil water content and bulk electrical conductivity. In: Proceedings of the symposium on TDR in environmental, infrastructure and mining applications, Evanston, Illinois, Sept 1994, pp 43–153

    Google Scholar 

  20. Balendonck J (1997) Smart sensor chip for dielectric measurements In: Proceedings 8th international congress, transducers & systems, Sensor 97, Nürnberg, May 1997, vol 1, pp 253–258

    Google Scholar 

  21. Balendonck J, Hilhorst MA (1998) MCM100 Smart sensor interface for complex impedance measurement. Datasheet and application note. Report IMAG-DLO, Wageningen, Note P98-50, 45 pp

    Google Scholar 

  22. Balendonck J, Hilhorst MA (2001) Application of an intelligent dielectric sensor for soil water content, electrical conductivity and temperature. In: Proceedings of the 18th IEEE instrumentation and measurement technology conference, IMTC-2001, Budapest, 23–25 May 2001, pp 1817–1822

    Google Scholar 

  23. Seyfried MS, Murdock MD (2002) Effects of soil type and temperature on soil water measurement using a soil dielectric sensor. In: I.C. Paltineau (ed.), First International Symposium on Soil Water Measurement using Capacitance and Impedance, Beltsville, MD. 6–8 November 2002, pp 1–13

    Google Scholar 

  24. Kaatze U, Uhlendorf V (1981) The dielectric properties of water at microwave frequencies. Z Phys Chem, Neue Folge, 126:151–165

    Google Scholar 

  25. Balendonck J, Hilhorst MA (2001) WET sensor application note. IMAG Report 2001-07, Wageningen

    Google Scholar 

  26. Heimovaara TJ (1993) Time domain reflectometry in soil science: theoretical backgrounds, measurements and models. PhD thesis, University of Amsterdam

    Google Scholar 

  27. Topp GC, Ferré PA (2001) Electromagnetic wave measurements of soil water content: a state-of-the-art. In: Fourth international conference on electromagnetic wave interaction with water and moist substances, Weimar, 13–16 May 2001

    Google Scholar 

  28. Kuyper MC, Balendonck J (1997) Application of dielectric soil moisture sensors for real-time automated irrigation control. In: Sensors in horticulture, Tiberias, Israel, August 1997

    Google Scholar 

  29. Perdok UD, Kroesbergen B, Hilhorst MA (1996) Influence of gravimetric water content and bulk density on the dielectric properties of soil. Eur J Soil Sci 47:367–371

    Article  Google Scholar 

  30. Kalman Rajkai (2002) Personal communication, Soil Science Department of the Research Institute for Soil Science and Agricultural Chemistry of Budapest, Hungary

    Google Scholar 

  31. Sonneveld C, van den Ende J (1971) Soil analysis by means of a 1:2 volume extract. Plant Soil 35:505–516

    Article  Google Scholar 

  32. Hilhorst MA, Balendonck J (1999) A pore water conductivity sensor to facilitate non-invasive soil water content measurements. In: Staffort JV (ed) Proceedings of the 2nd European conference in precision agriculture, Society of Chemical Industry, Odense, pp 211–220

    Google Scholar 

  33. Hilhorst MA (2000) A pore water conductivity sensor. Soil Sci Soc Am J 64(6), pp 1922–1925

    Article  Google Scholar 

  34. Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry for soil water content measurements. Soil Sci Soc Am J 57:660–667

    Article  Google Scholar 

  35. Balendonck J, Hilhorst MA, van Roest H (2002) Water content and temperature dependency of pore water conductivity for the FD sensor in growing substrates. In: 11 Feuchtetag, 18/19 Sept 2002, MFPA an der Bauhaus-Universität Weimar, pp 67–76

    Google Scholar 

  36. van Beek A (2000) Dielectric properties of young concrete, non-destructive dielectric sensor for monitoring the strength development of young concrete. Dissertation, Delft University

    Google Scholar 

  37. NEN 5970 (1999) Bepaling van de druksterkteontwikkeling van jong beton op basis van de gewogen rijpheid, oktober

    Google Scholar 

  38. ASTM C-1074-93 (1998) Revised standard for testing young concrete, defined by the Am Soc for Testing and Materials

    Google Scholar 

  39. Tobio JM (1957) A study of the setting process: dielectric behaviour of several Spanish cements. In: Silicates Industrials, Comunication présentée aux Journees Internationales d’études, Liant hydrauliques 1957, de l’Assoiation belge pour favoriser L’étude des Verres et Composés siliceux, pp 30–35, 81-87

    Google Scholar 

  40. De Loor GP (1953) Method of obtaining information on the internal dielectric constant of mixtures. Appl Sci Res pp 479–482

    Google Scholar 

  41. Al-Qadi IL, Hazim OA, Su W, Riad SM (1995) Dielectric properties of Portland cement concrete at low frequencies. J Mat Civ Eng 7:192–198

    Article  Google Scholar 

  42. van Breugel K, Hilhorst MA, van Beek K, Stenfert-Kroese W (1996) In situ measurement of dielectric properties of hardening concrete as a basis for strength development. In: Proceedings of the 3rd conference on non-destructive evaluation of civil structures and materials, Sept 1996, pp 7–21

    Google Scholar 

  43. Hilhorst MA, van Breugel K, Pluimgraaf DJMH, Stenfert Kroese W (1996) Dielectric sensors used in environmental and construction engineering. Mat Res Soc Symp Proc 411:404–406

    Google Scholar 

  44. Stenfert Kroese WH, Hilhorst MA (2000) Method for determining the degree of hardening of a material. Patent WO9642014 and US 6023170, 2 Aug 2000

    Google Scholar 

  45. Dirksen C (1999) Soil Physics Measurements. Geo-Eeology, Catena Verlag, Reiskirchen, Germany, 1999

    Google Scholar 

  46. Richards LA (1949) Methods for measuring soil moisture tension. Soil Sci 68:95–112

    Google Scholar 

  47. Mullins CE, Mandiringana OT, Nisbet TR, Aitken MN (1986) The design, limitations, and use of a portable tensiometer. J Soil Sci 37:691–700

    Google Scholar 

  48. Bouyoucos GJ, Mick AH (1940) Electrical resistance method for the continuous measurement of soil moisture under field conditions. Michigan Agricultural Experimental Station, Tech Bull no 172

    Google Scholar 

  49. Thomson SJ, Armstrong CF (1987) Calibration of the Watermark Model 200 Soil Moisture Sensor. Appl Eng Agric 3(2): 186–189

    Google Scholar 

  50. Spaans EJA, Baker JM (1992) Calibration of the Watermark soil-water sensors for soil matric potential and temperature. Plant Soil 143:213–217

    Article  Google Scholar 

  51. Hilhorst MA, de Jong JJ (1988) A dielectric tensiometer. Agricultural Water Management 13:411–415, technical note

    Article  Google Scholar 

  52. Liu Jin-Chen (2002) Ein neues Verfahren zur Messung des Matrixpotenzials im Bodem. In: 11 Feuchtetag, 18/19 Sept 2002, MFPA an der Bauhaus-Universität Weimar, pp 77–84

    Google Scholar 

  53. Or D, Wraith JM (1999) A new soil matric-potential sensor based on time-domain-reflectometry. Water Resour Res 35:3399–3407

    Article  Google Scholar 

  54. Bouyoucos GJ (1953) More durable plaster of Paris blocks. Soil Sci 76:447–451

    Article  Google Scholar 

  55. Liu Jin-Chen (1999) Device and method for determining properties of a soil. US Patent 5.898.310, 27 Apr 1999

    Google Scholar 

  56. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  57. Jaynes DB (1984) Comparisons of soil-water hysteresis models. J Hydrol 75:289–299

    Article  Google Scholar 

  58. Otten W, Raats PAC, Kabat P (1999) Hydraulic properties of root-zone substrates used in greenhouse horticulture. In: MTh van Genuchten et al (eds) Characterization and measurement of the hydraulic properties of unsaturated media, proceedings of international workshop, 22–27 Oct 1997, Riverside, California, pp 477–489

    Google Scholar 

  59. Kool JB, Parker JC (1987) Development and evaluation of closed form expressions for hysteretic soil hydraulic properties. Water Resour Res 23:105–114

    Article  Google Scholar 

  60. Scott PS, Farquhar GJ, Kouwen N (1983) Hysteretic effects on net infiltration. In: Advances in infiltration, Publication 11–83, American Society of Agricultural Engineering, St. Joseph, MI, pp 163–170

    Google Scholar 

  61. Paul W, Hilhorst MA, Münstermann C, Schmitz M (1998) Neue Meβtechniken zur gleichzeitigen Bestimmung von Wassergehalt, Wasserspannung und verfügbaren Düngersalzen im Boden, Vortrag Internationale Tagung Landtechnik, Garching 1998, VDI-MEG Verlag, Düsseldorf, 1998, S.223–228

    Google Scholar 

  62. Balendonck J et al (2001) Waterman. Final report, EC-project FAIR1-CT95-0681, CD-ROM, 13 Jan 2001

    Google Scholar 

  63. Paul W (2002) Prospects for controlled application of water and fertiliser, based on sensing permittivity of soil. Comput Electron Agric 36:51–163

    Article  Google Scholar 

  64. Whalley WR, Watts CW, Hilhorst MA, Bird NRA, Balendonck J, Longstaff DJ (2001) The design of porous material sensors to measure the matric potential of water in soil. EurJ Soil Sci 52:511–519

    Article  Google Scholar 

  65. Paul W (1998) Sensors for soil attributes, plant transpiration and water stress. In: Int Conf on Agr Eng; part 2, Oslo 1998, 98-C-010, pp 850–853

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balendonck, J., Hilhorst, M.A., Whalley, W.R. (2005). Sensors for Soil, Substrates, and Concrete Based on the MCM100 Microchip. In: Kupfer, K. (eds) Electromagnetic Aquametry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26491-4_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-26491-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22222-4

  • Online ISBN: 978-3-540-26491-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics