Skip to main content

Coalescent Models of Demographic History: Application to Plant Domestication

  • Chapter
  • First Online:
Population Genomics

Part of the book series: Population Genomics

  • 15 Accesses

Abstract

A detailed understanding of the origins of domesticated species is important for many disciplines. Recent advances in this field have been made with the use of genome-wide polymorphisms and improved statistical methods. In this chapter, we review the most important developments of coalescent models for the inference of demographic history from genome-wide data. These methods include sequential Markovian models, range expansion models, and approximate Bayesian computation. We summarize the applications of the methods to some major cultivated cereals, including rice, maize, and millet. Then we discuss extensions of these methods that would better incorporate the interaction of demographic processes with selection and inclusion of gene flow with wild related species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.

    Google Scholar 

  • Beaumont MA. Approximate Bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst. 2010;41:379–406.

    Google Scholar 

  • Beichman AC, Huerta-Sanchez E, Lohmueller KE. Using genomic data to infer historic population dynamics of nonmodel organisms. Annu Rev Ecol Evol Syst. 2018;49:433–56.

    Google Scholar 

  • Beissinger TM, Wang L, Crosby K, Durvasula A, Hufford MB, Ross-Ibarra J. Recent demography drives changes in linked selection across the maize genome. Nat Plants. 2016;2(7):16084.

    Google Scholar 

  • Blum MG, François O. Non-linear regression models for approximate Bayesian computation. Stat Comput. 2010;20(1):63–73.

    Google Scholar 

  • Boitard S, Rodŕıguez W, Jay F, Mona S, Austerlitz F. Inferring population size history from large samples of genome-wide molecular data-an approximate Bayesian computation approach. PLoS Genet. 2016;12(3):e1005877.

    Google Scholar 

  • Burgarella C, Cubry P, Kane NA, Varshney RK, Mariac C, et al. A Western Sahara origin of African agriculture inferred from pearl millet genomes. Nat Ecol Evol. 2018;2:1377–80.

    Google Scholar 

  • Caye K, Jay F, Michel O, François O. Fast inference of individual admixture coefficients using geographic data. Ann Appl Stat. 2018;12(1):586–608.

    Google Scholar 

  • Charlesworth B. Effective population size and patterns of molecular evolution and variation. Nat Rev Genet. 2009;10(3):195–205.

    Google Scholar 

  • Choi JY, Platts AE, Fuller DQ, Wing RA, Purugganan MD. The rice paradox: multiple origins but single domestication in Asian rice. Mol Biol Evol. 2017;34(4):969–79.

    Google Scholar 

  • Civ́aň P, Craig H, Cox CJ, Brown TA. Three geographically separate domestications of Asian rice. Nat Plants. 2015;1:15164.

    Google Scholar 

  • Clotault J, Thuillet AC, Buiron M, De Mita S, Couderc M, et al. Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection on flowering genes since its domestication. Mol Biol Evol. 2011;29(4):1199–212.

    Google Scholar 

  • Csilléry K, Blum MG, Gaggiotti OE, François O. Approximate Bayesian computation (ABC) in practice. Trends Ecol Evol. 2010;25(7):410–8.

    Google Scholar 

  • Cubry P, Vigouroux Y, François O. The empirical distribution of singletons for geographic samples of DNA sequences. Front Genet. 2017;8:139.

    Google Scholar 

  • Cubry P, et al. The rise and fall of African rice cultivation revealed by analysis of 246 new genomes. Curr Biol. 2018;28(14):2274–82.

    Google Scholar 

  • Currat M, Ray N, Excoffier L. SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity. Mol Ecol Notes. 2004;4(1):139–42.

    Google Scholar 

  • Darwin C. The variation of animals and plants under domestication. London: John Murray; 1882.

    Google Scholar 

  • Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol. 2009;24:332–40.

    Google Scholar 

  • Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.

    Google Scholar 

  • Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28(8):2239–52.

    Google Scholar 

  • Edmonds CA, Lillie AS, Cavalli-Sforza LL. Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci. 2004;101(4):975–9.

    Google Scholar 

  • Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE, Glenn TC, et al. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol Phylogenet Evol. 2016;94:447–62.

    Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF. Gene flow and introgression from domesticated plants into their wild relatives. Annu Rev Ecol Syst. 1999;30(1):539–63.

    Google Scholar 

  • Excoffier L, Foll M, Petit RJ. Genetic consequences of range expansions. Annu Rev Ecol Evol Syst. 2009;40:481–501.

    Google Scholar 

  • Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9(10):e1003905.

    Google Scholar 

  • Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS. Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci. 1998;95(8):4441–6.

    Google Scholar 

  • François O, Blum MGB, Jakobsson M, Rosenberg NA. Demographic history of European populations of Arabidopsis thaliana. PLoS Genet. 2008;4(5):e1000075.

    Google Scholar 

  • Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and efficient estimation of individual ancestry coefficients. Genetics. 2014;196(4):973–83.

    Google Scholar 

  • Gaut BS, Seymour DK, Liu Q, Zhou Y. Demography and its effects on genomic variation in crop domestication. Nat Plants. 2018;4:512–20.

    Google Scholar 

  • Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5(10):e1000695.

    Google Scholar 

  • Harlan JR. Agricultural origins: centers and noncenters. Science. 1971;174:468–74.

    Google Scholar 

  • Hein J, Schierup M, Wiuf C. Gene genealogies, variation and evolution: a primer in coalescent theory. Oxford: Oxford University Press; 2004.

    Google Scholar 

  • Heled J, Drummond AJ. Bayesian inference of species trees from multilocus data. Mol Biol Evol. 2009;27(3):570–80.

    Google Scholar 

  • Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490:497–501.

    Google Scholar 

  • Hudson RR. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics. 2002;18:337–8.

    Google Scholar 

  • Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J. The genomic signature of crop-wild introgression in maize. PLoS Genet. 2013;9(5):e1003477.

    Google Scholar 

  • Kelleher J, Etheridge AM, McVean G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput Biol. 2016;12(5):e1004842.

    Google Scholar 

  • Kingman JFC. The coalescent. Stoch Process Appl. 1982;13(3):235–48.

    Google Scholar 

  • Kono TJ, Fu F, Mohammadi M, Hoffman PJ, Liu C, Stupar RM, Smith KP, Tiffin P, Fay JC, Morrell PL. The role of deleterious substitutions in crop genomes. Mol Biol Evol. 2016;33(9):2307–17.

    Google Scholar 

  • Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, et al. Current perspectives and the future of domestication studies. Proc Natl Acad Sci. 2014;111(17):6139–46.

    Google Scholar 

  • Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475(7357):493–6.

    Google Scholar 

  • Liu Q, Zhou Y, Morrell PL, Gaut BS. Deleterious variants in Asian rice and the potential cost of domestication. Mol Biol Evol. 2017;34(4):908–24.

    Google Scholar 

  • Lu J, Tang T, Tang H, Huang J, Shi S, Wu CI. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet. 2006;22(3):126–31.

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci. 2002;99(9):6080–4.

    Google Scholar 

  • Mazet O, Rodŕıguez W, Grusea S, Boitard S, Chikhi L. On the importance of being structured: instantaneous coalescence rates and human evolution – lessons for ancestral population size inference? Heredity. 2016;116(4):362–71.

    Google Scholar 

  • McVean GA, Cardin NJ. Approximating the coalescent with recombination. Philos Trans R Soc B Biol Sci. 2005;360(1459):1387–93.

    Google Scholar 

  • Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013;14:840–52.

    Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 2012;196(1):29–48.

    Google Scholar 

  • Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, Amas J, Dorph K, Barretto A, Gross B, Fuller DQ, et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet. 2016;48:1083–8.

    Google Scholar 

  • Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci. 2011;108(20):8351–6.

    Google Scholar 

  • Moyers BT, Morrell PL, McKay JK. Genetic costs of domestication and improvement. J Hered. 2017;109(2):103–16.

    Google Scholar 

  • Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H, Nidelet S, et al. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol Ecol. 2014;23(9):2210–27.

    Google Scholar 

  • Nielsen R, Beaumont MA. Statistical inferences in phylogeography. Mol Ecol. 2009;18(6):1034–47.

    Google Scholar 

  • Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190.

    Google Scholar 

  • Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, et al. Ancient admixture in human history. Genetics. 2012;192(3):1065–93.

    Google Scholar 

  • Peter BM. Admixture, population structure, and F -statistics. Genetics. 2016;202(4):1485–501.

    Google Scholar 

  • Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8(11):e1002967.

    Google Scholar 

  • Portères R. Berceaux agricoles primaires sur le continent africain. J Afr Hist. 1962;3(2):195–210.

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.

    Google Scholar 

  • Rosenberg NA, Nordborg M. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet. 2002;3(5):380–90.

    Google Scholar 

  • Sang T, Ge S. The puzzle of rice domestication. J Integr Plant Biol. 2007;49:760–8.

    Google Scholar 

  • Scarcelli N, Cubry P, Akakpo R, Thuillet AC, Obidiegwu J, Baco MN, et al. Yam genomics supports West Africa as a major cradle of crop domestication. Sci Adv. 2019;5(5):eaaw1947.

    Google Scholar 

  • Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat Genet. 2014;46(8):919–25.

    Google Scholar 

  • Spence JP, Steinrücken M, Terhorst J, Song YS. Inference of population history using coalescent HMMs: review and outlook. Curr Opin Genet Dev. 2018;53:70–6.

    Google Scholar 

  • Terhorst J, Kamm JA, Song YS. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet. 2017;49(2):303–9.

    Google Scholar 

  • Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X, Kudrna D, Ammiraju JSS, et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet. 2014;46:982–8.

    Google Scholar 

  • Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 2017a;18(1):215.

    Google Scholar 

  • Wang H, Vieira FG, Crawford JE, Chu C, Nielsen R. Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice. Genome Res. 2017b;27:1029–38.

    Google Scholar 

  • Wiuf C, Hein J. Recombination as a point process along sequences. Theor Popul Biol. 1999;55(3):248–59.

    Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS. The effects of artificial selection on the maize genome. Science. 2005;308(5726):1310–4.

    Google Scholar 

  • Yang Z. Molecular evolution: a statistical approach. Oxford: Oxford University Press; 2014.

    Google Scholar 

  • Zeder MA. Core questions in domestication research. Proc Natl Acad Sci. 2015;112(11):3191–8.

    Google Scholar 

  • Zhu Q, Zheng X, Luo J, Gaut BS, Ge S. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Mol Biol Evol. 2007;24:875–88.

    Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from French National Research Agency ANR-13-BSV7-0017, AFRICROP. It was developed in the framework of the Grenoble Alpes Data Institute, supported by the French National Research Agency ANR-15-IDEX-02, “Investissements d’avenir.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier François .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

François, O., Cubry, P., Burgarella, C., Vigouroux, Y. (2020). Coalescent Models of Demographic History: Application to Plant Domestication. In: Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2020_74

Download citation

  • DOI: https://doi.org/10.1007/13836_2020_74

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics