Skip to main content

Mass Variations in the Siberian Permafrost Region Based on New GRACE Results and Auxiliary Modeling

  • Conference paper
IGFS 2014

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 144))

Abstract

GRACE (Gravity Recovery And Climate Experiment) determines the integral mass variations in the Earth system with a high spatial-temporal resolution. These mass variations should be adequately separated for better understanding of the individual signal contributions. In Siberia, the temporal mass variations are related to hydrological processes including thawing of permafrost layers. Permafrost layers with different thickness cover about 80% of Siberia. These frozen sheets play an important role for sea level rise and the global hydrological water cycle. In this study, the integral mass variations in Siberia are precisely estimated based on the new release of GRACE (RL05a) from GeoForschungsZentrum (GFZ) in Potsdam. In addition, various hydrological contributions (lake level variation, river run-off, etc.) can be estimated from different models and specific data. Here, mass variations in the Siberian permafrost region based on GRACE results and different hydrological models/data [i.e., GLDAS (Global Land Data Assimilation System) and GPCP (Global Precipitation Climatology Project)] are jointly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J Hydrometeor 4(6):1147–1167

    Article  Google Scholar 

  • Chao B, Wu Y, Zhang Z, Ogawa R (2011) Gravity variation in Siberia: GRACE observation and possible causes. Terr Atmos Ocean Sci 22(2):149–155. doi:10.3319/TAO.2010.07.26.03(TibXS)

    Article  Google Scholar 

  • Cheng M, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res Solid Earth 118(2):740–747. doi:10.1002/jgrb.50058

    Article  Google Scholar 

  • Davis JL, Tamisiea ME, Elsegui P, Mitrovica JX, Hill EM (2008) A statistical filtering approach for gravity recovery and climate experiment (GRACE) gravity data. J Geophys Res Solid Earth 113(B4). doi:10.1029/ 2007JB005043

    Google Scholar 

  • Flechtner F, Dobslaw H (2014) AOD1B product description document for product release 05 (Rev. 4.2, May 20, 2014). Technical Note, GFZ German Research Centre for Geosciences Department 1: Geodesy and Remote Sensing

    Google Scholar 

  • Frappart F, Ramillien G, Biancamaria S, Mognard NM, Cazenave A (2006) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys Res Lett 33(2). doi:10.1029/2005GL024778

    Google Scholar 

  • Frappart F, Ramillien G, Famiglietti JS (2011) Water balance of the Arctic drainage system using grace gravimetry products. Int J Rem Sens 32(2):431–453. doi:10.1080/01431160903474954

    Article  Google Scholar 

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Ohio State University, Department of Geodetic Science and Surveying, Report No. 327

    Google Scholar 

  • Jin S, Feng G (2013) Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Glob Planet Change 106:20–30. doi:10.1016/j.gloplacha.2013.02.008

    Article  Google Scholar 

  • Jin S, Hassan A, Feng G (2012) Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. J Geodyn 62:40–48. doi:10.1016/j.jog.2012.01.009

    Article  Google Scholar 

  • Klees R, Revtova EA, Gunter BC, Ditmar P, Oudman E, Winsemius HC, Savenije HHG (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175(2):417–432. doi:10.1111/j.1365-246X. 2008.03922.x

    Article  Google Scholar 

  • Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable grace-type gravity field models. J Geodesy 81(11):733–749. doi:10.1007/s00190-007-0143-3

    Article  Google Scholar 

  • Landerer FW, Dickey JO, Güntner A (2010) Terrestrial water budget of the Eurasian pan-arctic from GRACE satellite measurements during 2003–2009. J Geophys Res Atmos 115(D23). doi:10.1029/2010JD014584

    Google Scholar 

  • Majhi I, Yang D (2008) Streamflow characteristics and changes in Kolyma basin in Siberia. J Hydrometeorol 9(2):267–279. doi:10.1175/2007JHM845. 1

    Article  Google Scholar 

  • Milly P, Betancourt J, Falkenmark M, Hirsch R, Kundzewicz Z, Lettenmaier D, Stouffer R (2008) Stationarity is dead: whither water management? Earth 4:20. doi:10.1126/science.1151915

    Google Scholar 

  • Muskett RR, Romanovsky VE (2009) Groundwater storage changes in Arctic permafrost watersheds from GRACE and in–situ measurements. Environ Res Lett 4(4):045009

    Article  Google Scholar 

  • Ogawa R (2010) Transient, seasonal and inter-annual gravity changes from GRACE data: geophysical modelings. Ph.D. thesis, Department of Natural History Sciences, Graduate School of Science, Hokkaido University

    Google Scholar 

  • Ray RD, Rowlands DD, Egbert GD (2003) Tidal models in a new era of satellite gravimetry. Space Sci Rev 108(1–2):271–282. doi:10.1023/A: 1026223308107

    Google Scholar 

  • Rodell M et al (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394. doi:10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999– 1002

    Article  Google Scholar 

  • Sasgen I, Konrad H, Ivins ER, Van den Broeke MR, Bamber JL, Martinec Z, Klemann V (2013) Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 7(5):1499–1512. doi:10.5194/tc-7-1499-2013

    Article  Google Scholar 

  • Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res Solid Earth 113(B8). doi:10.1029/ 2007JB005363

    Google Scholar 

  • Seoane L, Ramillien G, Frappart F, Leblanc M (2013) Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation. Hydrol Earth Syst Sci 17(12):4925–4939. doi:10.5194/hess-17-4925-2013

    Article  Google Scholar 

  • Steffen H, Müller J, Peterseim N (2012) Mass variations in the Siberian permafrost region from GRACE. In: Kenyon S, Pacino MC, Marti U (eds) Geodesy for Planet Earth, vol 136. Springer, Berlin/Heidelberg, pp 597–603

    Chapter  Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8):L08402. doi:10.1029/2005GL025285

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tiwari V, Srinivas N, Singh B (2014) Hydrological changes and vertical crustal deformation in South India: inference from GRACE, GPS and absolute gravity data. Phys Earth Planetary In 231:74–80. doi:10.1016/j. pepi.2014.03.002

    Article  Google Scholar 

  • Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S (2014) Temperature and peat type control co2 and ch4 production in Alaskan permafrost peats. Glob Chang Biol 20(8):2674–2686. doi:10.1111/ gcb.12572

    Article  Google Scholar 

  • Velichko AA, Timireva SN, Kremenetski KV, MacDonald GM, Smith LC (2011) West Siberian plain as a late glacial desert. Quat Int 237(12):45–53. doi:10.1016/j.quaint.2011.01.013

    Article  Google Scholar 

  • Velicogna I, Wahr J (2013) Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophys Res Lett 40(12):3055–3063. doi:10.1002/grl.50527

    Article  Google Scholar 

  • Velicogna I, Tong J, Zhang T, Kimball JS (2012) Increasing subsurface water storage in discontinuous permafrost areas of the Lena river basin, Eurasia, detected from GRACE. Geophys Res Lett 39(9). doi:10.1029/ 2012GL051623

    Google Scholar 

  • Vey S, Steffen H, Müller J, Boike J (2013) Inter-annual water mass variations from GRACE in central Siberia. J Geodesy 87(3):287–299. doi:10.1007/ s00190-012-0597-9

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229. doi:10.1029/ 98JB02844

    Article  Google Scholar 

  • Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499–1515. doi:10.1111/j.1365-246X.2009.04355.x

    Article  Google Scholar 

  • Yang Z-p, Gao J-x, Zhao L, Xu X-l, Ouyang H (2013) Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet plateau. Plant Soil 367(1–2):687–700. doi:10.1007/s11104-012-1511-1

    Article  Google Scholar 

  • Zhang Z-Z, Chao BF, Lu Y, Hsu H-T (2009) An effective filtering for grace time-variable gravity: fan filter. Geophys Res Lett 36(17). doi:10.1029/ 2009GL039459

    Google Scholar 

  • Zhong M, Duan J, Xu H, Peng P, Yan H, Zhu Y (2009) Trend of China land water storage redistribution at medi- and large-spatial scales in recent five years by satellite gravity observations. Chin Sci Bull 54(5):816–821. doi:10.1007/s11434-008-0556-2

    Google Scholar 

Download references

Acknowledgements

We would like to thank the GeoForschungsZentrum (GFZ) in Potsdam and the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100% of the raw telemetry and L2 data of the twin GRACE satellites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Shabanloui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shabanloui, A., Müller, J. (2015). Mass Variations in the Siberian Permafrost Region Based on New GRACE Results and Auxiliary Modeling. In: Jin, S., Barzaghi, R. (eds) IGFS 2014. International Association of Geodesy Symposia, vol 144. Springer, Cham. https://doi.org/10.1007/1345_2015_186

Download citation

Publish with us

Policies and ethics