Skip to main content

Topological Mechanism of Polymer Nucleation and Growth – The Role of Chain Sliding Diffusion and Entanglement

  • Chapter
  • First Online:
Interphases and Mesophases in Polymer Crystallization III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 191))

Abstract

Direct evidence of nucleation during the induction period of nucleation from the melt is obtained for the first time by means of small angle X-ray scattering (SAXS). This confirmed that the induction period of crystallization from the melt corresponds to the process of nucleation, not to that of spinodal decomposition. This success is due to a significant increase in the scattering intensity (Ix) from the nuclei (104 times as large as is normal), which was achieved by adding a nucleating agent (NA) to a “model polymer” of polyethylene (PE). Ix increased soon after quenching to the crystallization temperature (Tc) and saturated after the induction time (τi). Lamellae start stacking later than the Mn.

Power laws of the molecular weight (Mn) dependence of the primary nucleation rate (I) and the growth rate (V) of PE, i.e., I or V ∝ Mn−H where H is a constant, were found for both morphologies of folded chain crystals (FCCs) and extended chain crystals (ECCs). As the power law was also confirmed on isotactic polypropylene (iPP), universality of the power law is suggested. It is to be noted that the power H increases significantly with increase of the degree of order of the crystal structure. The power law confirms that the topological nature of polymer chains, such as chain sliding diffusion and the chain entanglement within the interface between the nucleus and the melt or those within a nucleus, adopts a most important role in the nucleation and growth of polymers. This is theoretically explained by improving the “chain sliding diffusion theory” proposed by Hikosaka.

Entanglement dependence of the nucleation rate I is qualitatively obtained for the first time by changing the number density of entanglement (νe) within the melt. An experimental formula of I as a function of νe was obtained on PE, Ie) ∝ exp(−γνe) where γis a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker R, Döring W (1935) Ann Phys 24:719

    CAS  Google Scholar 

  2. Zeldovich YaB (1943) Acta Physicochim USSR 18:1

    Google Scholar 

  3. Frenkel J (1946) Kinetic Theory of Liquids. Oxford University, London

    Google Scholar 

  4. Turnbull D, Fisher JC (1949) J Chem Phys 17:71

    Article  CAS  Google Scholar 

  5. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University, Ithaca, New York

    Google Scholar 

  6. de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University, Ithaca, New York

    Google Scholar 

  7. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford

    Google Scholar 

  8. Hikosaka M, Amano K, Rastogi S, Keller A (2000) J Materials Sci 35:5157

    Article  CAS  Google Scholar 

  9. Hikosaka M, Amano K, Rastogi S, Keller A (1997) Macromolecules 30:2067

    Article  CAS  Google Scholar 

  10. Hikosaka M, Tsukijima K, Rastogi S, Keller A (1992) Polymer 33:2502

    Article  CAS  Google Scholar 

  11. Bassett DC, Block S, Piermarini GJ (1974) J Appl Phys 45:4146

    Article  CAS  Google Scholar 

  12. Yasuniwa M, Enoshita R, Takemura T (1976) Jpn J Appl Phys 15:1421

    Article  CAS  Google Scholar 

  13. Hikosaka M, Minomura S, Seto T (1980) Jpn J Appl Phys 19:1763

    Article  CAS  Google Scholar 

  14. Hikosaka M (1987) Polymer 28:1257

    Article  CAS  Google Scholar 

  15. Hikosaka M (1990) Polymer 31:458

    Article  CAS  Google Scholar 

  16. Frisch HL (1957) J Chem Phys 27:90

    CAS  Google Scholar 

  17. Andres RP, Boudart M (1965) J Chem Phys 42:2057

    Article  CAS  Google Scholar 

  18. Akpalu YA, Amis EJ (1999) J Chem Phys 111:8686

    Article  CAS  Google Scholar 

  19. Imai M, Mori K, Kizukami T, Kaji K, Kanaya T (1992) Polymer 33:4457

    CAS  Google Scholar 

  20. Nishi M, Hikosaka M, Ghosh SK, Toda A, Yamada K (1999) Polym J 31:749

    Article  CAS  Google Scholar 

  21. Nishi M, Hikosaka M, Toda A, Takahashi M (1998) Polymer 39:1591

    Article  CAS  Google Scholar 

  22. Rastogi S, Hikosaka M, Kawabata H, Keller A (1991) Macromolecules 24:6384

    Article  CAS  Google Scholar 

  23. Hikosaka M, Okada H, Toda A, Rastogi S, Keller A (1995) J Chem Soc Faraday Trans 91:2573

    Article  CAS  Google Scholar 

  24. Frank FC, Tosi M (1961) Proc Roy Soc A263:323

    Google Scholar 

  25. Price F (1969) Nucleation in polymer crystallization. In: Zettlemoyer AC (ed) Nucleation. Marcel Dekker, Inc, New York

    Google Scholar 

  26. Wunderlich B (1980) Macromolecular Physics. Academic Press, London

    Google Scholar 

  27. Okada M, Nishi M, Takahashi M, Matsuda H, Toda A, Hikosaka M (1998) Polymer 39:4535

    Article  CAS  Google Scholar 

  28. Hoffman JD, Frolen LJ, Ross GS, Lauritzen JI (1975) J Res NBS 79A:671

    CAS  Google Scholar 

  29. Hikosaka M, Yamazaki S, Wataoka I, Das NC, Okada K, Toda A, Inoue K (2003) J Macromol Sci B42:847

    Google Scholar 

  30. Guinier A (1967) Theory of technique of the radiocrystallograpy, (Japanese ed). Rigaku Denki, Tokyo

    Google Scholar 

  31. Roe RJ (2000) Methods of X-rayand neutron scattering in polymer science. Oxford Univ Press, New York

    Google Scholar 

  32. Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Phys Rev Lett 81:373

    Article  CAS  Google Scholar 

  33. Ghosh SK, Hikosaka M, Toda A (2001) Colloid Polym Sci 279:382

    Article  CAS  Google Scholar 

  34. Ghosh SK, Hikosaka M, Toda A, Yamazaki S, Yamada K (2002) Macromolecules 18:6985

    Google Scholar 

  35. Garti N, Sato K (eds) (2001) Crystallization Process in Fats and Lipid Systems. Marcel Dekker, Inc, New York

    Google Scholar 

  36. Nozaki K, Hikosaka M (2000) J Material Sci 35:1239

    Article  CAS  Google Scholar 

  37. Wunderlich B (1973) Macromolecular Physics, vol 1&2. Academic Press, New York

    Google Scholar 

  38. Magill JH, Kojima M, Li HM (1973) the IUPAC Symp Macromol, Aberdeen, UK

    Google Scholar 

  39. Labaig JJ (1978) PhD Thesis, Faculty of Science, University of Strasbourg

    Google Scholar 

  40. Hoffman JD (1982) Polymer 23:656

    Article  CAS  Google Scholar 

  41. Hoffman JD, Miller RL (1988) Macromolecules 21:3038

    Article  CAS  Google Scholar 

  42. Kossel W (1927) Nach Ges Wiss Gottingen 135

    Google Scholar 

  43. Volmer M (1939) Kinetik der Phasenbildung

    Google Scholar 

  44. Burton WK, Cabrera N, Frank FC (1950-1951) Phil Trans Roy Soc A243:299

    Google Scholar 

  45. Watanabe H (1986) Kobunnshi High Polym Jpn 35:111046

    Google Scholar 

  46. Hoffman JD (1994) International Polymer Physics Symposium (Honoring Prof Kawai) p 19

    Google Scholar 

  47. Toda A (1992) Colloid Polym Sci 270:667

    Article  CAS  Google Scholar 

  48. Hikosaka M, Rastogi S, Keller A, Kawabata H (1992) J Macromol Sci Phys B31:87

    Google Scholar 

  49. Yamazaki S, Hikosaka M, Gu F, Ghosh SK, Arakaki M, Toda A (2001) Polym J 33:906

    Article  CAS  Google Scholar 

  50. Yamazaki S, Hikosaka M, Toda A, Wataoka I, Gu F (2002) Polymer 43:6585

    CAS  Google Scholar 

  51. Psarski M, Piorkowska E, Galeski A (2000) Macromolecules 33:916

    Article  CAS  Google Scholar 

  52. Yamazaki S, Hikosaka M, Toda A, Okada K, Gu F, Watanabe K, submitted to Polymer

    Google Scholar 

  53. Alfonso GC, Scardigli P (1997) Macromol Symp 118:323

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Akihiko Toda, Dr. Isao Wataoka, Dr. Swapan K. Ghosh of Hiroshima University, Dr. K. Yamada of SunAllomer Co. Ltd., Dr. Katsuaki Inoue of the Japan Synchrotron Radiation Institute (JASRI) and Dr. Zdenek Kozisek of the Institute of Physics, Academy of Sciences of the Czech Republic for their help with the experiments and discussions. SAXS experiments were carried out at the BL40B2 of SPring8 (SP8) at JASRI (Proposal No. 2001B0187-NDL-np—2004A0224-NL-2b-np) in Harima and at the BL-10C small angle installation of the Photon Factory (PF) at KEK in Tsukuba. The authors also thank Asahi Denka Kogyo K.K. for supplying the nucleating agent. This work was partly supported by the Grant-in-Aid for Scientific Research on Priority Areas B2 (No.12127205) and Scientific Research A2 (No. 12305062). The authors are grateful to the financial support from the International Joint Research grant, NEDO, 1996–1998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Hikosaka .

Editor information

Giuseppe Allegra

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hikosaka, M., Watanabe, K., Okada, K., Yamazaki, S. Topological Mechanism of Polymer Nucleation and Growth – The Role of Chain Sliding Diffusion and Entanglement. In: Allegra, G. (eds) Interphases and Mesophases in Polymer Crystallization III. Advances in Polymer Science, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_010

Download citation

Publish with us

Policies and ethics