Skip to main content

Chemical Methods for Protein Ubiquitination

  • Chapter
  • First Online:
Protein Ligation and Total Synthesis I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 362))

Abstract

In eukaryotic cells, many proteins undergo extensive post-translational modifications (PTMs) such as methylation, acetylation, phosphorylation, glycosylation, and ubiquitination. Among these, ubiquitination is a particularly interesting PTM from both structural and functional viewpoints. In ubiquitination, the C-terminal carboxyl group of the small ubiquitin protein is attached to the ε-amine of a lysine residue of a substrate protein through an isopeptide bond. Ubiquitination has been shown to be involved in the regulation of many cellular processes including protein degradation and gene expression. And dysfunction of these processes is implicated in many human diseases. Despite many years of intensive research, a large number of protein ubquitination events remain poorly characterized. The challenge lies with the tremendous difficulties in isolating homogeneously modified proteins from biological samples for structural and functional studies. Enzymatic ubiquitination in vitro often has limited practical value due to the large number of substrate-specific E3 ligases and the difficulties in identifying or isolating these enzymes. Chemical approaches to the preparation of ubiquitinated proteins provide a powerful solution, and the development of such approaches has been the subject of intense research by many research laboratories. This review summarizes the methodological developments of protein chemical ubiquitination in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Angew Chem Int Ed 44:7342–7372

    Article  CAS  Google Scholar 

  2. Walsh CT (2006) Posttranslational modification of proteins. Roberts and Company, Englewood

    Google Scholar 

  3. Hochstrasser M (2000) Nat Cell Biol 2:E153–E157

    Article  CAS  Google Scholar 

  4. Pickart CM (2001) Annu Rev Biochem 70:503–533

    Article  CAS  Google Scholar 

  5. Kerscher O, Felberbaum R, Hochstrasser M (2006) Annu Rev Cell Dev Biol 22:159–180

    Article  CAS  Google Scholar 

  6. Hochstrasser M (2009) Nature 458:422–429

    Article  CAS  Google Scholar 

  7. Chen ZJ, Sun LJ (2009) Mol Cell 33:275–286

    Article  CAS  Google Scholar 

  8. Ikeda F, Crosetto N, Dikic I (2010) Cell 143:677–681

    Article  CAS  Google Scholar 

  9. Li W, Ye Y (2008) Cell Mol Life Sci 65:2397

    Article  CAS  Google Scholar 

  10. Hochstrasser M (1995) Curr Opin Cell Biol 7:215

    Article  CAS  Google Scholar 

  11. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J-I, Chen ZJ (2001) Nature 412:346

    Article  CAS  Google Scholar 

  12. Chatterjee C, McGinty RK, Pellois J-P, Muir TW (2007) Angew Chem Int Ed 46:2814–2818

    Article  CAS  Google Scholar 

  13. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Nature 453:812–816

    Article  CAS  Google Scholar 

  14. Yang R, Bi X, Li F, Cao Y, Liu C-F (2014) Chem Commun 50:7971

    Article  CAS  Google Scholar 

  15. Li Y-T, Liang J, Li J-B, Fang G-M, Huang Y, Liu L (2014) J Pept Sci 20:102

    Article  Google Scholar 

  16. Weller CE, Huang W, Chatterjee C (2014) Chembiochem 15:1263

    Article  CAS  Google Scholar 

  17. Yang R, Pasunooti KK, Li F, Liu X-W, Liu C-F (2009) J Am Chem Soc 131:13592–13593

    Article  CAS  Google Scholar 

  18. Yang R, Pasunooti KK, Li F, Liu X-W, Liu C-F (2010) Chem Commun 46:7199–7201

    Article  CAS  Google Scholar 

  19. Kumar KSA, Haj-Yahya M, Olschewski D, Lashuel HA, Brik A (2009) Angew Chem Int Ed 48:8090–8094

    Article  Google Scholar 

  20. Kumar KSA, Spasser L, Erlich LA, Bavikar SN, Brik A (2010) Angew Chem Int Ed 49:9126–9131

    Article  CAS  Google Scholar 

  21. Kumar KSA, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A (2011) Angew Chem Int Ed 50:6137–6141

    Article  CAS  Google Scholar 

  22. Virdee S, Kapadnis PB, Elliott T, Lang K, Madzak J, Nguyen DP, Riechmann L, Chin JW (2011) J Am Chem Soc 133:10708–10711

    Article  CAS  Google Scholar 

  23. El Oualid F, Merkx R, Ekkebus R, Hameed DS, Smit JJ, De Jong A, Hilkmann H, Sixma TK, Ovaa H (2010) Angew Chem Int Ed 49:10149–10153

    Article  Google Scholar 

  24. Merkx R, De Bruin G, Kruithof A, Van Den Bergh T, Snip E, Lutz M, El Oualid F, Ovaa H (2013) Chem Sci 4:4494–4498

    Article  CAS  Google Scholar 

  25. Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW (2010) Nat Chem Biol 6:750–757

    Article  CAS  Google Scholar 

  26. Castañeda C, Liu J, Chaturvedi A, Nowicka U, Cropp TA, Fushman D (2011) J Am Chem Soc 133:17855–17868

    Article  Google Scholar 

  27. Li X, Fekner T, Ottesen JJ, Chan MK (2009) Angew Chem Int Ed 48:9184–9187

    Article  CAS  Google Scholar 

  28. McGinty RK, Köhn M, Chatterjee C, Chiang KP, Pratt MR, Muir TW (2009) ACS Chem Biol 4:958–968

    Article  CAS  Google Scholar 

  29. Fierz B, Kilic S, Hieb AR, Luger K, Muir TW (2012) J Am Chem Soc 134:19548–19551

    Article  CAS  Google Scholar 

  30. Chatterjee C, McGinty RK, Fierz B, Muir TW (2010) Nat Chem Biol 6:267–269

    Article  CAS  Google Scholar 

  31. Chen J, Ai Y, Wang J, Haracska L, Zhuang Z (2010) Nat Chem Biol 6:270–272

    Article  CAS  Google Scholar 

  32. Meier F, Abeywardana T, Dhall A, Marotta NP, Varkey J, Langen R, Chatterjee C, Pratt MR (2012) J Am Chem Soc 134:5468–5471

    Article  CAS  Google Scholar 

  33. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW (2011) Nat Chem Biol 7:113–119

    Article  CAS  Google Scholar 

  34. Eger S, Scheffner M, Marx A, Rubini M (2010) J Am Chem Soc 132:16337–16339

    Article  CAS  Google Scholar 

  35. Weikart ND, Mootz HD (2010) Chembiochem 11:774–777

    Article  CAS  Google Scholar 

  36. Sommer S, Weikart ND, Brockmeyer A, Janning P, Mootz HD (2011) Angew Chem Int Ed 50:9888–9892

    Article  CAS  Google Scholar 

  37. Valkevich EM, Guenette RG, Sanchez NA, Chen Y-C, Ge Y, Strieter ER (2012) J Am Chem Soc 134:6916–6919

    Article  CAS  Google Scholar 

  38. Trang VH, Valkevich EM, Minami S, Chen Y-C, Ge Y, Strieter ER (2012) Angew Chem Int Ed 51:13085–13088

    Article  CAS  Google Scholar 

  39. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Science 266:776–779

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the A*Star Science and Engineering Research Council for financial support (SERC 112 120 2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Fa Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, R., Liu, CF. (2014). Chemical Methods for Protein Ubiquitination. In: Liu, L. (eds) Protein Ligation and Total Synthesis I. Topics in Current Chemistry, vol 362. Springer, Cham. https://doi.org/10.1007/128_2014_613

Download citation

Publish with us

Policies and ethics