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Classification and Elementary Properties
of Müntz Sequences

Again we consider Λ = {λk}∞k=1 satisfying 0 < λ1 < λ2 < . . . and∑∞
n=1 1/λk < ∞. At first we will be concerned with different classes of Λ

which are distinguished by special properties. Then we study the underly-
ing Müntz polynomials

∑n
k=1 αktλk . In particular we give estimates for the

inclination of the elements tλk as well as of the differences tλk − tλk+1 . One
of the main results of this chapter is Theorem 7.4.4 where we show that Λ
is non-lacunary if and only if M(Λ) is closing. For E we always consider C0

or Lp.

7.1 Different Classes of Λ

We start with

Definition 7.1.1 A sequence Λ satisfying 0 < λ1 < λ2 < . . . (as well as the
corresponding sequence M(Λ) and the Müntz space [M(Λ)]E) will be called
1. standard , if

lim
k→∞

λk+1

λk
= 1 ,

2. rational , if all λk are non-negative rationals,
3. integer, if all λk are non-negative integers,
4. sparse or non-dense , if

∑
k 1/λk < ∞,

5. dense , if
∑

k 1/λk = ∞.

In 6.3.1 we already introduced lacunary and quasilacunary sequences. Now
we extend this notion.

Definition 7.1.2 Λ will be called block lacunary if, for some increasing se-
quence of integers n̄ = {nk}∞k=1 and some β > 1, we have λnk+1/λnk

≥ β,
k = 1, 2, . . .

If Λ is block lacunary with respect to n̄ and β we also speak of a (n̄, β)-block
lacunary sequence. The intervals
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94 7 Classification and Elementary Properties of Müntz Sequences

Ik = {m : m an integer , nk + 1 ≤ m ≤ nk+1}

will be called block intervals.

Recall that, according to 6.3.1, Λ is quasilacunary if it is (n̄, β)-block lacunary
for some β > 1 and we have supk(nk+1 − nk) < ∞. Moreover, Λ is lacunary
if it is (n̄, β)-block lacunary with nk+1 − nk = 1 for all k.

Proposition 7.1.3 The following are equivalent
(i) Λ is quasilacunary
(ii) There are lacunary Λ1, . . . , Λm such that Λ = ∪m

i=1Λi

(iii) For arbitrary β > 1 there is N such that Λ ∩ [βj , βj+1], j = 1, 2, . . ., has
at most N elements
(iv) There is an increasing sequence of integers n̄ = {nk}∞k=1 and some β > 1
such that

λnk+1/λnk
≥ β, k = 1, 2, . . . , and sup

k
(nk+1 − nk) < ∞ .

Proof. (i) ⇒ (ii) : If we fix exactly one λj in each block we obtain finitely
many lacunary Λi satisfying (ii).
(ii) ⇒ (iii) : Fix an arbitrary β > 1. Since all Λj are lacunary there are
Nj > 0 such that Λj ∩ [βk, βk+1] has at most Nj elements for all k. Put
N = supj=1,...,m Nj .
(iii) ⇒ (iv) : Fix β > 1 and put mk = sup{i : λi ≤ βk}. Then, by (iii),
supk(mk+1 − mk) < ∞. We may assume Λ∩ ]βk, βk+1] �= ∅ for each k, oth-
erwise enlarge Λ. Hence we have mk �= mk+1 and βk ≤ λmk+1, . . . , λmk+1 ≤
βk+1. Put nk = m2k. Then supk(nk+1 − nk) < ∞ and

λnk+1

λnk

≥ β2k+1

β2k
= β .

(iv) ⇒ (i) : By assumption we have

nk+1−1∏
j=nk

(
λj+1

λj

)
=

λnk+1

λnk

≥ β

and the numbers of the factors in the preceding products are uniformly
bounded. Therefore we find δ > 1 and, for each k, some index mk such
that nk ≤ mk ≤ nk+1 and λmk+1/λmk

≥ δ. Since supk(nk+1 − nk) < ∞
we also have supk(mk+1 −mk) < ∞. Now, Λ is quasilacunary with respect to
m̄ = {mk}∞k=1 and δ. ��

We also note that block lacunary and standard are opposite properties.

Proposition 7.1.4 The following are equivalent
(i) Λ is not block lacunary
(ii) Λ is standard
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Proof. (i) ⇒ (ii) : Otherwise find δ > 0 and indices n1 < n2 < . . . with
λnk+1/λnk

≥ 1 + δ for all k.
(ii) ⇒ (i) is obvious. ��

We conclude this section with two more classes of Λ.

Definition 7.1.5 1. Let, for some a > 0a, δ > 0 and s ≥ 1

λk = a + δks, k = 1, 2, . . .

Then we call Λ an s-arithmetic sequence. If s = 1 then Λ is simply called an
arithmetic sequence.
2. Let n̄ = {nk}∞k=1 be an increasing sequence of indices and assume that there
are numbers ak > 0 and δk > 0 with

λj = ak + (j − nk)δk, nk + 1 ≤ j ≤ nk+1, k = 1, 2, . . .

Put ā = {ak}∞k=1 and δ̄ = {δk}∞k=1. Then Λ will be called a (n̄, ā, δ̄)-block
arithmetic sequence.

Of course, an s-arithmetic sequence is non-dense if and only if s > 1.
Virtually nothing is known about the Banach space [M({ks}∞k=1)]C if

s > 1. On the other hand, in 9.3 we will give a complete Banach space
characterization of [M(Λ)]E for E = C and E = Lp, 1 ≤ p < ∞, if Λ is
quasilacunary. (Then [M(Λ)]C ∼ c0 and [M(Λ)]Lp

∼ lp.) Moreover, in 10.2
we show that there is a block lacunary Λ where [M(Λ)]C is not isomorphic
to c0.

Definition 7.1.6 1. Let, for some a > 0 and q > 0, λk = aqk, k = 1, 2, . . .
Then we call Λ a geometric (or (a, q)-geometric) sequence.
2. Let n̄ = {nk}∞k=1 be an increasing sequence of indices and assume that there
are numbers ak > 0 and qk > 0 with

λj = akqj−nk

k , nk + 1 ≤ j ≤ nk+1, k = 1, 2, . . .

Put ā = {ak}∞k=1 and q̄ = {qk}∞k=1. Then Λ will be called a (n̄, ā, q̄)-block
geometric sequence.

7.2 Iterated Differences

For the sequence Λ let dΛ denote the differences dΛ = {λk+1 − λk}∞k=1. Then
go on to define in the same fashion d2(Λ) = d(dΛ), d3(Λ) = d(d2(Λ)) etc. Put
d0(Λ) = Λ.

Definition 7.2.1 The sequence Λ will be called
1. k-regular (or strictly k-regular) if, for some positive integer k, all sequences
dj(Λ), j = 0, 1, . . . , k, consist of non-negative (or strictly positive) numbers,
2. absolutely monotone (or strictly absolutely monotone), if Λ is k-regular
(or strictly k-regular) for all positive integers k.
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For example, the sequence Λ = {qk}∞k=1 is strictly absolutely monotone for
any q > 1. It will turn out that strictly absolutely monotone sequences are
always block lacunary but not necessarily lacunary.

Proposition 7.2.2 Let Λ be a strictly absolutely monotone sequence of inte-
gers. Then we have λk ≥ 2k−1 for all k. Moreover, Λ is block-lacunary.

Proof. Let Λ = {λk}∞k=1 be a strictly absolutely monotone sequence of in-
tegers. Define a1,k = λk, k = 1, 2, . . . and, by induction, am,k = am−1,k −
am−1,k−1, k = m,m+1, . . .. Then all am,k are positive integers. In particular,
am,m ≥ 1 for all m. Induction on k − m yields am,k ≥ 2k−m for all k and m.

Assume that Λ is not block lacunary. Then, according to 7.1.4, Λ is stan-
dard and we have limm→∞ λm+1/λm = 1. Fix ε ∈ ]0, 1[ and find m0 such that
λm+1/λm ≤ 1 + ε for all m ≥ m0. With the first part of Proposition 7.2.2 we
obtain

2m−1 ≤ λm ≤ (1 + ε)m−m0λm0

for all m ≥ m0 and hence

1 ≤ lim
m→∞

(
1 + ε

2

)m−m0
(

1
2

)m0−1

λm0 = 0 ,

a contradiction. ��

Proposition 7.2.3 There exists a strictly absolutely monotone non-lacunary
sequence Λ of integers.

Proof. At first we observe that, if {αk}∞k=1 is strictly absolutely monotone
and {βk}∞k=1 is absolutely monotone then {αk + βk}∞k=1 is strictly absolutely
monotone. This is a straightforward consequence of the definitions.

Now we use induction to introduce strictly absolutely monotone sequences
{am,j}∞j=1, m = 1, 2, . . ., and indices j1 = 1 < j2 < . . .. Put a1,j = 2j and
j1 = 1.

If we have already {am,j}∞j=1 and jm for some m then let jm+1 > jm be
such that

jm+1 − jm

jm+1 − 1 − jm
≤ 1 +

1
2(m + 1)

.

Let b be a positive integer with am,jm+1/b ≤ 2−1(m + 1)−1. Put

am+1,j =
{

am,j , j ≤ jm

am,j + b(j − jm), j > jm
.

Since 0, . . . , 0︸ ︷︷ ︸
jm times

, b, 2b, 3b, . . . is absolutely monotone, {am+1,j}∞j=1 is strictly ab-

solutely monotone and we obtain

am+1,jm+1

am+1,jm+1−1
≤ 1 +

1
m + 1

.
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Finally, put λj = am,j if jm−1 < j ≤ jm. It follows from the construction that
Λ = {λj}∞j=1 is a strictly absolutely monotone sequence of integers and we
have

lim
m→∞

λjm

λjm−1
= lim

m→∞

am,jm

am,jm−1
= 1 .

Hence Λ is not lacunary. ��

7.3 Elementary Properties of Müntz Sequences
and Polynomials

Now we focus on M(Λ) instead of Λ. We want to discuss elementary properties
of M(Λ) where Λ satisfies some of the preceding conditions. We start with a
technical lemma.

Lemma 7.3.1 Let g(t) = tλ − tµ, where 0 < λ < µ, and put ρ = µ/λ. Then
we obtain

||g||C = ν(ρ) ·
(

1 − 1
ρ

)
with ν(ρ) = ρ

1
1−ρ .

ν(ρ) is a strictly increasing function on ]1,∞[ satisfying 1/e < ν(ρ) < 1
and limρ→1 ν(ρ) = 1/e. Moreover, t0 := (λ/µ)1/(µ−λ) is the unique maximum
point of |g(t)|.

Proof. It follows from simple calculus that g attains its unique maximum at
t0 and that ||g||C = ν(ρ)(1 − 1/ρ). We have

d log ν

dρ
=

1/ρ − 1 + log ρ

(1 − ρ)2

and
d(1/ρ − 1 + log ρ)

dρ
=

1
ρ

(
1 − 1

ρ

)
> 0 for ρ > 1 .

Since 1/ρ − 1 + log ρ = 0 if ρ = 1 we obtain d log ν
dρ > 0 and hence log ν and ν

are strictly increasing. ��

Lemma 7.3.1 has a number of consequences. At first we note

Proposition 7.3.2 The Müntz sequences {tλk}N
k=1 and {tµk}N

k=1 are isomet-
rically equivalent in C[0, 1] if and only if

λj+1

λj
=

µj+1

µj
for j = 1, 2, . . . , N − 1 .

Proof. The sufficiency of the condition for isometric equivalence follows easily
by substituting τ = tλ1 and τ = tµ1 .

For the necessity assume that ||tλ1 − tλj ||C = ||tµ1 − tµj ||C . With Lemma
7.3.1 we conclude λj/λ1 = µj/µ1. ��
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As a direct consequence of 2.7.2 we have

Proposition 7.3.3 Let E be either Lp, for 1 ≤ p < ∞, or C. Then span
{tλk}n

k=1 ⊂ E is a continuous function of (λ1, . . . , λn) with respect to (the
logarithm of) the Banach-Mazur distance and the ball opening Θ of subspaces
in E.

Using the last two propositions we obtain

Proposition 7.3.4 Let Λ be a (a, q)-geometric sequence with q > 1. Then

(a) {tλk}∞k=1 is isometrically equivalent in C to {tλk}∞k=l for all l = 1, 2, . . ..,
(b) If Λ is finite, i.e. if Λ = {aq, aq2, . . . , aqn} for some n, then Ma,q =
[M(Λ)]C is a continuous function of the parameters a and q with respect to
the ball opening Θ as metric. Furthermore, for some ε > 0 we find a Lipschitz
constant c(q, ε) with

Θ(Ma,q,Ma,τ ) ≤ c(q, ε) · |q − τ |, τ ∈ [q − ε, q + ε] .

We finish this section with an estimate of the values of a Müntz polynomial
which has only two summands.

Lemma 7.3.5 There is a constant κ > 0 satisfying the following: Let 0 <
λ < µ and g(t) = tλ − tµ. Then, for any t ∈ [0, 1], we have

|g(t)| ≤ κtλ/2||g||C .

Proof. Put ρ = λ/µ. Then, according to 7.3.1, we obtain

||g||C = ρ
ρ

1−ρ (1 − ρ) .

Put f(t) = tλ/2 − tµ−λ/2. Then, with the preceding ρ, 7.3.1 implies

||f ||C =
(

ρ

2 − ρ

) ρ
2(1−ρ) 2 − 2ρ

2 − ρ
.

Put

τ(s) =
(

1
s(2 − s)

) s
2(1−s) 2 − 2s

2 − s
, s ∈ ]0, 1[ .

Then τ is continuous and we have

lim
s→0

τ(s) = 1 and lim
s→1

τ(s) = lim
x→∞

τ

(
x

1 + x

)
= 0 .

Hence there is a constant κ > 0 with τ(s) ≤ κ for all s ∈ ]0, 1[. We obtain, for
any t ∈ [0, 1],
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|g(t)| ≤ tλ/2||f ||C = tλ/2 ||f ||C
||g||C

||g||C

= tλ/2τ(ρ)||g||C
≤ κtλ/2||g||C

��

Now we turn to general Müntz polynomials with two summands.

Proposition 7.3.6 Let p(t) = atλ + btµ with 0 < λ < µ. Then for any
t ∈ [0, 1] we have

|p(t)| ≤ (2κ + 1)tλ/2||p||C .

where κ is the constant of Lemma 7.3.5.

Proof. Assume ||p||C = 1. We have

p(t) = atλ + btµ = a(tλ − tµ) + (a + b)tµ .

Hence p(1) = a+b and |a+b| ≤ ||p||C = 1. Put g(t) = tλ−tµ. Then we obtain
|a| · ||g||C = ||a(tλ − tµ)||C ≤ 2. Using 7.3.5 we see that, for any t ∈ [0, 1],

|p(t)| ≤ κtλ/2|a| · ||g||C + tµ ≤ (2κ + 1)tλ/2 .

��

Compare Proposition 7.3.6 with Corollary 6.1.3. There the constant depends
on the given exponents λj while here κ is independent of λ and µ.

If t in the preceding proposition is small then |p(t)| is small. In particular
we obtain a lower estimate for

min{t0 ∈ [0, 1] : |p(t0)| = ||p||C}

In the next chapter we extend Proposition 7.3.6 to general Müntz polynomials.

7.4 Differences of Müntz Sequences

Lemma 7.3.1 implies that the elements of a Müntz sequence M(Λ) have, in
general, “bad” mutual disposition. As we have noted already, even if Λ has
“large gaps”, i.e. if

∑∞
k=1 1/λk < ∞, in general M(Λ) is not a basis or uni-

formly minimal. (Lateron in 9.2 we shall see that M(Λ) is a basis if and only
if Λ is lacunary. This is also equivalent to the condition that Λ is uniformly
minimal or separated.) For standard Λ the normalized elements of M(Λ) are
even closing (see 7.4.4, for the definition of closing see 2.2.1).

The situation does not improve if we go over to the sequence of differ-
ences. Again, we obtain a closing sequence in general. However, the geometry
of differences of a Müntz sequence helps to understand more complicated phe-
nomena such as the geometry of octants which we discuss in 7.5
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Lemma 7.4.1 Consider µ > λ > 0 and τ > 0 such that

2µ ≤ λ + τ and τλ ≤ µ2 .

Then for the functions g1(t) = tλ − tµ, g2(t) = tµ − tτ and ∆(t) = g1(t) −
g2(t) = tλ − 2tµ + tτ we have ||∆||C ≤ 5e2||g1||2C .

Proof. By substituting tλ = s we can assume that λ = 1 and hence µ ≥ 1. So
we deal with g1(t) = t − tµ, g2(t) = tµ − tτ where 2µ − 1 ≤ τ ≤ µ2. Consider
two cases.

1. τ = 2µ − 1. Here, τ − 1 = 2(µ − 1) = 2α with α = µ − 1. Moreover,

∆(t) = t − 2tµ + t2µ−1 = t(1 − tα)2 ,

∆′(t) = 1 − 2µtα + (2µ − 1)t2α and µ2 − (2µ − 1) = α2 .

So we have a unique point t0 of maximum for ∆ with tα0 = 1/(2µ− 1). Thus,

||∆||C = (2µ − 1)−1/α

(
1 − 1

2µ − 1

)2

≤
(

2(µ − 1)
2µ − 1

)2

≤
(

2(µ − 1)
µ

)2

.

By Lemma 7.3.1, ||g1||C ≥ e−1(1−1/µ), so ||∆||C ≤ (2(1−1/µ))2 ≤ 4e2||g1||2C .
2. τ > 2µ − 1. Since τ ≤ µ2 we have

||t2µ−1 − tτ || ≤ 1 − 2µ − 1
τ

≤ 1 − 2µ − 1
µ2

=
(

1 − 1
µ

)2

≤ e2||g1||2C .

Now, using the previous case and triangle inequality we finish the proof of
7.4.1 ��

As a consequence of Lemma 7.4.1 we obtain estimates for the inclination of
the elements of M(Λ) and their differences with respect to the sup-norm.

Theorem 7.4.2 Let Λ = {λk}∞k=1 and put ek = tλk , gk = ek+1 − ek,
k = 1, 2, . . .. Then we have, with respect to the sup-norm || · ||C ,

(a) ( ̂ek, ek+1) ∼ 1 − λk/λk+1 as k → ∞. In particular, if Λ is a standard
sequence, then M(Λ) is closing.

(b) ( ̂gk, gk+1) ≤ 10e2( ̂ek, ek+1) provided that

2λk+1 ≤ λk + λk+2 and λkλk+2 ≤ λ2
k+1 .

If the latter conditions hold for all k and Λ is standard then {gk}∞k=1 is closing,
too.

Proof. (a) is a direct consequence of Lemma 7.3.1. To prove (b) fix k. Then
we have



7.4 Differences of Müntz Sequences 101

( ̂gk, gk+1) ≤
||gk − gk+1||C

||gk||C
=

||∆||C
||gk||C

≤ 5e2||gk||C

and, with the notion of angle (see 1.2),

||gk||C = ||ek+1 − ek||C = ϕ(ek, ek+1) ≤ 2( ̂ek, ek+1) .

This finishes part (b) of the theorem. ��
For example Λ = {k2}∞k=1 satisfies the assumptions of Theorem 7.4.2 (b).

Now we turn to the Lp-case for 1 ≤ p < ∞. Recall that

||tλ||Lp
= (λp + 1)−1/p .

Lemma 7.4.3 For 0 < λ < µ we obtain

1
2

(
λ

2pµ

) pλ/µ+1/µ

p2(1−λ/µ)

≤ ||(λp + 1)1/ptλ − (µp + 1)1/ptµ||Lp

≤ 1 −
(

λ

µ

)1/p

+ p1/p

(
1 − λ

µ

)1/p

.

Proof. We have, with a = (λp + 1)1/p and b = (µp + 1)1/p,

||btµ − atλ||Lp
≤ (b − a)||tµ||Lp

+ a||tλ − tµ||Lp

≤
(
1 − a

b

)
+ a

(∫ 1

0

(tλ − tµ)dt

)1/p

≤ 1 − a

b
+ a

(
1

λ + 1
− 1

µ + 1

)1/p

≤ 1 −
(

λ

µ

)1/p

+
(

λp + 1
λ + 1

)1/p (
1 − λ

µ

)1/p

≤ 1 −
(

λ

µ

)1/p

+ p1/p

(
1 − λ

µ

)1/p

.

Here we used |tλ − tµ|p ≤ (tλ − tµ) and (λc+1)/(µc+1) ≥ λ/µ for any c > 0.
Put t0 = (a/(2b))1/(µ−λ). Then atλ − btµ ≥ atλ/2 if 0 ≤ t ≤ t0. This

implies

||btµ − atλ||Lp
≥ a

2

(∫ t0

0

tλpdt

)1/p

=
1
2
t
λ+1/p
0

=
1
2

(
λp + 1

2p(µp + 1)

) 1+λp

p2(µ−λ)

≥ 1
2

(
λ

2pµ

) pλ/µ+1/µ

p2(1−λ/µ)

. ��
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We obtain, using

̂(x, y) ≤ ||x − y|| ≤ 2 ̂(x, y) if ||x|| = 1 and ||y|| = 1 ,

Theorem 7.4.4 The following are equivalent
(i) Λ = {λk}∞k=1 is standard
(ii) Λ is not block-lacunary
(iii) M(Λ) is closing in C[0, 1]
(iv) M(Λ) is closing in Lp if 1 ≤ p < ∞

Proof. (i) ⇔ (ii) follows from 7.1.2, (i) ⇔ (iii) follows from 7.4.2 (a) and
7.3.1. (i) ⇔ (iv) follows from 7.4.3. Note, if

1
2

(
λk

2pλk+1

)λk/λk+1+1/(pλk+1)
p(1−λk/λk+1)

tends to 0, then limk→∞ λk/λk+1 = 1. ��

7.5 The Inclination of Positive Octants
of Müntz Sequences

The results of the preceding section allow us to get estimates of the inclinations
of the positive octants for any Müntz sequence.

For any sequence ē = {ek}∞k=1 in a Banach space and integers n, m with
m ≤ n define the positive (m,n)-octant as

Ωm,n(ē) =

{
n∑

k=m

αkek : αk ≥ 0, k = m, . . . , n

}
,

and positive normed (m,n)-octant as

Ω̃m,n(ē) =

{
x : x =

n∑
k=m

αkek, αk ≥ 0, k = m, . . . , n, ||x|| ≤ 1

}
.

Now we consider again an increasing sequence {λk}∞k=1 of positive real num-
bers and put ek = tλk . The error of approximation of Müntz polynomials with
positive coefficients can be estimated by the following theorem.

Theorem 7.5.1 For all integers n and m with 0 ≤ m < n we have, with
respect to the sup-norm on [0, 1],

(a) ( ̂Ω̃1,m, Ω̃m+1,n) = ||tλm − tλm+1 ||C

(b)
1
2
||tλm − tλm+1 ||C ≤ ( ̂Ω1,m, Ωm+1,n) ≤ ||tλm − tλm+1 ||C
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Hence

( ̂Ω1,m, Ωm+1,n) ∼ 1 − λm

λm+1
and ( ̂Ω̃1,m, Ω̃m+1,n) ∼ 1 − λm

λm+1
as m → ∞

Proof. (a): Put a = ( ̂Ω̃1,m, Ω̃m+1,n). Take polynomials p(t) =
∑m

k=1 αktλk

and q(t) =
∑n

k=m+1 βktλk with

αk ≥ 0, βk ≥ 0 for all k, ||p||C =
m∑

k=1

αk = 1, ( ̂Ω̃1,m, Ω̃m+1,n) = ||p − q||C

and ||q||C ≤ 1. Hence
∑n

k=m+1 βk ≤ 1. We obtain

||tλm − tλm+1 ||C ≥ a ≥ p(t) − q(t) ≥ tλm −
n∑

k=m+1

βktλm+1 ≥ tλm − tλm+1 ≥ 0

for all t ∈ [0, 1]. This implies a = ||tλm − tλm+1 ||C .
(b): Let a be as in (a) and put b = ( ̂Ω1,m, Ωm+1,n). Take polynomials p ∈ Ω1,m

and q ∈ Ωm+1,n such that ||p||C = 1 and b = ||p − q||C . Then we have
||q||C ≤ b + 1. Hence

b ≥
∥∥∥∥p − q

||q||C

∥∥∥∥
C

− ||q||C + 1 ≥ a − b

and we obtain a/2 ≤ b. The right-hand inequality of (b) follows directly from
the definitions.

The last assertion of Theorem 7.5.1 is a consequence of 7.4.2. ��

We also obtain the straightforward.

Proposition 7.5.2 Let E = C or E = Lp, 1 ≤ p < ∞. Then for any Müntz
sequence M(Λ) and any Müntz polynomial p(t) =

∑
k αktλk we have

||p||E ≤
∥∥∥∥∥
∑

k

|αk|tλk

∥∥∥∥∥
E

.
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