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Preface

This lecture course is concerned with some mathematical problems originated
from the theory of compressible Navier-Stokes equations (cf.[9],[15],[16]).

The lecture notes consist of three sections. We discuss the problem of strong
approximation of weak limits in section I and prove, firstly, that weak limit
of some sequence of functions in Orlicz space can be approximated in strong
sense (in norm) by the subsequence of averaged functions if the radius of av-
eraging tends to zero slowly enough. This result allows us to control the order
of approximation by weakly converging sequence. In particular, it justifies the
smoothing approach near singularities in computation of non-smooth solutions
to partial differential equations. Secondly, we consider the weak converging
sequence of approximate solutions to averaged Navier-Stokes equations for
incompressible fluids and obtain strong convergence to the solution of the
limiting equations.

The section II contents the recent results [23],[25] in theory of transport
equations in Orlicz spaces. We introduce special class of convex functions
(Young functions) and corresponding Orlicz spaces. It allows us to obtain
exact well-posedness (existence and uniqueness) results for linear transport
equations in Orlicz spaces and describe the optimal conditions for coefficients.
It is worthy to be mentioned that this class of Young functions (of fast growth
at infinity, greater than any polynomial) is connected with Gronwall-type in-
equality and Osgood’s uniqueness theorem (cf.[26]) for Cauchy problem in

A. V. Kazhikhov: Approximation of Weak Limits and Related Problems, LNMCIME 1871, 75–
100 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



76 Alexandre V. Kazhikhov

ordinary differential equations theory. Namely, we obtain optimal conditions
for coefficients in Gronwall inequality. At the same time it gives the rela-
tions between Orlicz-Sobolev spaces and Osgood’s condition in uniqueness
problem.

The section III concerns with some problems related to compactness argu-
ments. Besides the classical compactness (cf.[1],[2],[3]) so called compensated
compactness ([4]-[7]) is also under consideration. We expose new version of
classic compactness theorem which, in fact, is a particular case of compen-
sated compactness. On the other side, we give a new and very simple proof of
“div-curl” lemma (the mostly important tool in applications of compensated
compactness theory to nonlinear P.D.E’s. ) which reduces the compensated
compactness to the current one. Finally, a new viewpoint on the general com-
pensated compactness theorem (Theorem of L.Tartar) is suggested: vanishing
of quadratic form on the kernel of operator instead of algebraic conditions.
Such approach, perhaps, can be more convenient in some cases when it is
possible to describe the kernel of differential operator.

The lecture course was given to participants of Summer School “Mathe-
matical Foundations of Turbulent Viscous Flows” organized by C.I.M.E. Au-
thor would like to express a deep gratitude to School Scientific Directors Prof.
Marco Cannone and Prof. Tetsuro Miyakawa as well as C.I.M.E. officials Diret-
tore Prof. Pietro Zecca, Segretario Prof. Elvira Mascolo and School Secretary
Dr. Veronika Sustik.

1 Strong Approximation of Weak Limits by Averagings

1.1 Notations and Basic Notions from Orlicz Function
Spaces Theory

Let Ω ⊂ R
n be bounded domain with smooth boundary Γ , and x =

(x1, . . . , xn) are the points of Ω. By L1(Ω) we denote the space of integrable
functions on Ω. L∞(Ω) is the space of essentially bounded functions, Lp(Ω),
1 < p < ∞ – the Lebesgue space of functions which are integrable in power
p. We shall use also the Orlicz function spaces, and remind the basic notions
(cf. [18]).

Let m(r) be defined on [0,∞) function, continuous from the right, non-
negative, non-decreasing and such that

m(0) = 0, m(r) → ∞ as r → ∞. (1.1)

The convex function (Young function)

M(t) =

t∫

0

m(r)dr (1.2)
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produces Orlicz class KM (Ω) containing the functions f(x) ∈ L1(Ω) such
that M(|f(x)|) belong to L1(Ω), too.The liner span of KM (Ω) endowed with
the norm

‖f‖LM (Ω) = inf



λ > 0

∣∣∣∣∣∣

∫

Ω

M

(
|f(x)|

λ

)
dx ≤ 1



 (1.3)

is called as Orlicz space LM (Ω)associated with Young function M(t). The
closure of L∞(Ω) in the norm (1.3) yields, in general, another Orlicz space
EM (Ω), and the inclusions take place

EM (Ω) ⊆ KM (Ω) ⊆ LM (Ω). (1.4)

One says function M(t) satisfies ∆2−condition (cf.[18]) if there exist constants
C > 0 and t0 > 0 such that

M(2t) ≤ C M(t) for ∀t ≥ t0. (1.5)

Three sets EM , KM and LM coincide if and only if M(t) satisfies ∆2-condition.
As rule, it’s possible to compare two Young functions M1(t) and M2(t),
namely, M2(t) dominates M1(t) if there exist constants C > 0 and α > 0
such that

M1(αt) ≤ M2(t) for ∀ t ≥ t0 = t0(α,C). (1.6)

In this case
EM2 ⊆ EM1 and LM2 ⊆ LM1 .

If each function Mk, k = 1, 2, dominates the other one, then M1 and M2 are
equivalent, M1

∼= M2, and corresponding Orlicz spaces are the same. Further,
one says function M2 dominates M1 essentially if

lim
t→∞

M1(βt)
M2(t)

= 0, ∀β = const > 0. (1.7)

In this case the strong embeddings

EM2 ⊂ EM1 , LM2 ⊂ LM1 (1.8)

are valid.
Denote by

n(r) = m−1(r) (1.9)

the inverse function to m(r) and introduce Young function

N(t) =

t∫

0

n(r)dr. (1.10)
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This function is called as complementary convex function to M(t), and it’s
equivalent to the next one:

N(t) ∼= sup
r>0

{tr − M(r)} . (1.11)

Two Orlicz spaces LM and LN are supplementary, and for any f(x) ∈ LM (Ω),
g(x) ∈ LN (Ω) there exists the integral

< f, g >≡
∫

Ω

f(x)g(x)dx (1.12)

which defines the linear continuous functional on EN (Ω) with fixed f ∈
LM (Ω) and any g ∈ EM (Ω). It gives the notion of weak convergence (ac-
tually, weak* convergence) in LM (Ω): the sequence {fn(x)}converges weakly
to f(x) ∈ LM (Ω), fn ⇀ f if

< fn, g >→< f, g > for each g ∈ EN (Ω). (1.13)

At the same time it’s possible to define mean convergence in LM (Ω):

fn → f in mean value, if
∫

Ω

M(|fn − f |)dx → 0 as n → ∞. (1.14)

If M(t) satisfies ∆2-condition, mean 2convergence is equivalent to the strong-
convergence, i.e. in norm of LM (Ω). Otherwise, mean convergence is stronger
than weak, but weaker than strong one. As an important and interesting
examples we shall use three Young functions: M1(t) = tp,1 < p < ∞,
M2(t) = et − t − 1 and M3(t) = (1 + t) ln(1 + t) − t. The first function
M1(t) yields the Lebesgue space Lp(Ω), the second one M2(t) produces two
Orlicz spaces LM2 and EM2 because M2(t) doesn’t satisfy ∆2-condition, and
M3(t) is slowly increasing function which is essentially dominated byM1(t).
The Orlicz space LM3(Ω) is located between L1(Ω) and any Lp(Ω), p > 1.

Finally, for any f(x) ∈ L1(Ω) and h > 0, let us denote

fh(x) =
1
2
hN

∫

Ω

f(y)ω
(

x − y
h

)
dy (1.15)

an averaging of f(x) where ω(z) is the kernel of averaging:

ω(z) ∈ C∞
0 (RN ), ω(z) ≥ 0,

∫

RN

ω(z)dz = 1.

Formula (1.15) often is called as the mollification of function f and, in fact,
it is the convolution of f with the mollifier 1

hN ω(z/h).
It’s the well-known fact that
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‖fh − f‖LM (Ω) → 0 as h → 0 (1.16)

if M(t) satisfies ∆2-condition, and
∫

Ω

M(|fh − f |)dx → as h → 0 (1.17)

for any M(t), i.e.the sequence of {fh} approximates f in the sense of mean
convergence.

1.2 Strong Approximation of Weak Limits

Let us consider some sequence of functions {fn(x)}, n = 1, 2, . . ., from Orlicz
space LM (Ω) such that fn ⇀ f weakly in LM (Ω), as n → ∞. For each fn(x)
we construct the family of averaged functions (fn)h(x).

Theorem 1.1 If M(t) satisfies ∆2-condition then there exists subsequence
(fm)hm

such that

(fm)hm
→ f strongly in LM (Ω)

as m → ∞, h → 0.

For any M(t) there exists subsequence (fm)hm
converging to f in mean value,

i.e. in the sense (1.14).

Proof. Step 1. Simple example.

In order to understand the problem we consider firstly, one very simple ex-
ample of the sequence fn(x) = sin(nx), n = 1, 2, . . ., x ∈ R

1, Ω = (0, 2π), of
periodic functions. In this case we have

fn(x) ⇀ 0 weakly in L2(0, 2π).

Let us take the Steklov averaging

(fn)h(x) =
1
2h

x+h∫

x−h

fn(ξ)dξ. (1.18)

It’s easy to calculate

(fn)h(x) =
sinnh

nh
sin(nx). (1.19)

and thereby to obtain:

a) If h = hn → 0 as n → ∞, but nhn → ∞ (for example, hn = n−α,
0 < α < 1) then

(fn)hn
→ 0 as n → ∞,

i.e. (fn)hn
(x) tends to 0 strongly when hn → 0 slowly enough.

b) If nhn → const �= 0 (or are bounded), then (fn)hn
⇀ 0 weakly only.
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Step 2. One-dimensional case, Steklov averaging.

Now consider the case of N = 1, x ∈ R
1, and fn(x) ⇀ f(x) weakly in LM (Ω),

whereM(t) satisfies ∆2-condition.
For the sake of simplicity we assume fn(x), f(x) to be T -periodic, T =

const > 0, and, moreover, without loss of generality, one can admit f(x) ≡ 0,
since it is possible to consider the sequence of differences fn −f instead of fn,
i.e.

fn(x) ⇀ 0 weakly in LM (0, T ). (1.20)

Let us construct the family of functions

(fn)h(x) =
1
2h

x+h∫

x−h

fn(ξ)ξ (1.21)

and the sequence

Fn(x) =

x∫

0

fn(ξ)dξ (1.22)

which doesn’t depend on h.
It means

(fn)h(x) =
1
2h

(Fn(x + h) − Fn(x − h)). (1.23)

The sequence {Fn(x)} possesses the estimates

sup
x

|Fn(x)| ≤ C, ‖F ′
n()x‖LM (0,T ) ≤ C (1.24)

with constant C independent on n.
Compactness theorem yields Fn(x) → 0 strongly in LM (0, T ), i.e.

‖Fn(x)‖LM (0,T ) ≤ Cn, Cn → 0 as n → ∞. (1.25)

If we take Fn(x + h) or Fn(x − h) (displacements of Fn(x)) then

‖Fn(x + h)‖LM
≤ Cn · C, ‖Fn(x − h)‖LM

≤ Cn · C (1.26)

with C independent on h, h ∈ (01].
It gives

‖(fn)h‖LM (0,T ) ≤ C · Cn

h
. (1.27)

So, if we take h = hn such that Cn · h−1
n → 0 as n → ∞, for example,

hn = Cβ
n , 0 < β = const < 1, then

(fn)hn
→ 0 strongly in LM (0, T ) (1.28)

It proves the theorem 1 in 1-dimensional case.
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Step 3. The general case.

Let the sequence {fn(x)}, x ∈ Ω ⊂ R
N , be weakly converging in LM (Ω) to

f(x) ≡ 0,where M(t) satisfies ∆2-condition.
We extend fn(x) by 0 outside of Ω and consider the family (fn)h(x) given

by the formula (1.15)

(fn)h(x) =
1
hn

∫

RN

fn(y)ω
(

x − y
h

)
dy (1.29)

with arbitrary kernel of averaging ω(z).
At the beginning we fix some h = h0, for example h0 = 1, and consider

the sequence

Fn(x) =
∫

RN

fn(y)ω(x − y)dy ≡
∫

RN

fn(x − z)ω(z)dz

which doesn’t depend on h.
As in one-dimensional case we conclude by the compactness theorem

Fm(x) → 0 strongly in LM (Ω),

i.e. ‖Fm‖LM (Ω) ≤ Cm, Cm → 0 as m → ∞. If we take the family

Fm h(x) ≡
∫

RN

fm(y)ω
(

x − y
h

)
dy

then for h ≤ h0 = 1

‖Fmh‖LM (Ω) ≤ C‖Fm‖LM (Ω)

with constant C independent on h, i.e.

‖Fmh‖LM (Ω) ≤ C · Cm.

In view of (fn)h = h−NFnh it means that if we choose h = hm such that

Cmh−N
m → 0 as m → ∞, hm → 0, (1.30)

for instance, hN
m = Cβ

m, 0 < β < 1, then(fm)hm
→ 0 strongly in LM (Ω).

The theorem 1.1 is proved for the case of Young function M(t) satisfying
∆2-condition. For any M(t) the same proof is acceptable if one considers
the mean convergence (1.14) instead of strong or strong convergence in any
Banach function space where the set of smooth functions is dense, for example,
in the space EM (Ω).
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Remark 1.1

The main significance of theorem 1.1 seems to be useful for justification of
the smoothing approach in computation of non-smooth solutions to P.D.E’s.
Big oscillations occur near singularities. The appearance of oscillations can be
connected with weak convergence of approximate solutions to the exact one.
The procedure of ”smoothing” means, in fact, an averaging, and the theorem
1.1 indicates that the radius of averaging must be big enough according to
assumption (1.30).

1.3 Applications to Navier-Stokes Equations

It this section we illustrate the theorem 1.1 by one simple example of Navier-
Stokes equations for viscous incompressible fluid. We consider the sequence
{un} of solutions to Navier-Stokes equations [20]:

∂un

∂t
+ (un · ∇)un + ∇pn = ν∆un + fn,

divun = 0, (x, t) ∈ Q = Ω × (0, T ), Ω ⊂ R
3, Γ = ∂Ω.

(1.31)

which are complemented with the initial and boundary data

un

∣∣∣∣∣
t=0

= u0
n(x), x ∈ Ω, un

∣∣∣∣∣
Γ

= 0, t ∈ (0, T ) (1.32)

Let us suppose
u0

n(x) ⇀ u0(x) weakly in L2(Ω),

fn ⇀ f weakly in L2(0, T ;L2(Ω)) as n → ∞.

In view of well-known a priori estimate

sup
0<t<T

‖un(t)‖L2(Ω) +

T∫

0

‖∇un(t)‖2
L2(Ω)dt ≤ C (1.33)

with constant C independent on n, we may admit

un ⇀ u weakly in L2(0, T ;W 1,2(Ω)) ∩ Lp(0, T ;L2(Ω)) (1.34)

with any p, 1 ≤ p < ∞.
According to the theorem 1.1 it’s possible to extract subsequence {(um)hm

}
of averaged functions (with respect all independent variables or to spatial vari-
ables only) such that

(um)hm
→ u strongly in L2(0, T ;W 1,2(Ω)) ∩ Lp(0, T ;L2(Ω)),

(fm)hm
→ f strongly inL2(0, T ;L2(Ω)).
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And the question arises here: are {(um)hm
} approximate solutionsto the lim-

iting equations

∂u
∂t

+ (u · ∇)u + ∇p = ν∆u + f , divu = 0 (1.35)

in some strong sense?
To give answer to this question we apply the operator of averaging to

equations (1.31) and obtain the system (1.35) for (u)hm
with new right part

Fm = (fm)hm
+ [((um)hm

· ∇)(um)hm
− ((um · ∇)um)hm

] ≡

(fm)hm
+ ϕm.

Theorem 1.2 There exists subsequence (um)hm
such that the difference ϕm

tends to zero in the norm of space Lp(0, T ;Lq(Ω)) with exponents (p, q),
p ∈ [1, 2], q ∈ [1, 3/2], 1/p + 3/2q > 2.

The proof follows from theorem 1.1 because the sequence {(un · ∇)un} is
bounded in Lp(0, T ;Lq(Ω)) with such exponents (cf.[20]).

2 Transport Equations in Orlicz Spaces

2.1 Statement of Problem

Here we are concerned with the spatially periodic Cauchy problem for the
linear first-order equation (such as the well-known continuity equation in fluid
mechanics)

∂ρ

∂t
+ div(ρu) = h, x = (x1, . . . , xn) ∈ R

n, t ∈ (0, T ) (2.1)

complemented with the initial data

ρ|t=0 = ρ0(x), x ∈ R
n (2.2)

Besides, we consider the adjoint problem

∂ζ

∂t
+ u · ∇ζ = g, x ∈ R

n, t ∈ (0, T ) (2.3)

ζ|t=T = ζT (x), x ∈ R
n (2.4)

Here ρ(x, t) and ζ(x, t) are unknown functions, while u = (u1, . . . , un), h,
g, ρ0, and ζT are given ones, and we assume, for the sake of simplicity, all
functions being periodic with respect to all spatial variables xk, k = 1, 2, . . . , n.
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We denote by Ω the period set, Ω =
n∏

k=1

(0, Tk), 0 < Tk < ∞, and by Q =

Ω×(0, T ) the domain of functions in the space of independent variables (x, t).
Our main goal is to search for the minimal, as it is possible, conditions

for the smoothness of the coefficients u = (u1, . . . , un) (forming the velocity
vector in mechanics) to provide the existence and uniqueness of generalized
solutions to the problems (2.1),(2.2) and (2.3),(2.4). There is a particular
interest in compressible Navier-Stokes equations concerned with conditions

namely for the divergency of the velocity vector (divu =
n∑

i=1

∂ui

∂xi
) as far as

this quantity and the density play the important role in the estimating of
solutions (cf.[9],[15],[16]).

For the case of solutions ρ, ζ from Lebesgue spaces Lp(Ω), 1 � p � ∞,
such conditions for divu were obtained by R.J.DiPerna and P.L.Lions [23],
namely

divu ∈ L1(0, T, L∞(Ω)) (2.5)

and these conditions seem to be optimal except the case of p = 1 for the
problem (2.1), (2.2) and p = ∞ for the problem (2.3), (2.4), respectively.

We use Orlicz function spaces associated with Young functions of low and
fast growth at the infinity instead of Lp(Ω) for construction of generalized
solutions to the problems (2.1),(2.2) and (2.3),(2.4), and replace the condition
(2.5) with the assumption of integrability in certain Orlicz spaces. We remind
the Hölder inequality

∫

D

f(x)g(x)dx � C‖f‖LM (D) · ‖g‖LN (D) (2.6)

for conjugate Orlicz spaces. We use Orlicz spaces associated with Young func-
tion of rather fast increase. Namely, let us introduce the class K of convex
functions M such that (cf.[16],[25])

K =
{

M(r)
∣∣∣∣

∞∫
ln M(r)

r2
dr = ∞

}
(2.7)

where the last condition means the integral to be diverging at the infinity. The
class K contains functions increasing at the infinity faster than polinomials
and non slower than the exponent. Roughly speaking class K consists of Young
functions like that

M(t) = exp{ t

lnα1t · lnα2 lnt · · · lnαm ln · · · lnt︸ ︷︷ ︸
m times

}

If all αi ≤ 1 then M(t) ∈ K, but if at least one αj > 1 then M(t) does not
belong to K. Two another (but equivalent) definitions of class K in terms of
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inverse function M−1(t) and supplementary function N(t) are the following
ones (cf.[25])

K =
{

M(r)
∣∣∣∣

∞∫
1

rM−1(r)
dr = ∞

}
=

{
M(r)

∣∣∣∣
∞∫

1
N(r)

dr = ∞
}

Remark that, given function H, the composition H ◦ M ∈ K if and only if
the inverse function H−1 increases at the infinity non faster than polinomials.

2.2 Existence and Uniqueness Theorems

Let us explain the main idea to obtain a priori estimates for the solution ρ(x, t)
to the problem (2.1),(2.2). If ρ is a classic solution to the equation (2.1) and
Φ(ρ) is an arbitrary smooth function of ρ then the equality

∂Φ(ρ)
∂t

+ div(Φ(ρ)u) + [ρΦ′(ρ) − Φ(ρ)]divu = Φ′(ρ) · h (2.8)

holds besides of (2.1); here Φ′(ρ) =
dΦ

dρ
. So, if the function Φ(ρ) is such that

rΦ′(r) − Φ(r) ≺≺ Φ(r) (2.9)

then there exists Young function M(s) to provide the relation

M(rΦ′(r) − Φ(r)) � Φ(r) (2.10)

and one can apply the Hölder inequality (2.6) to the third term in equation
(2.8). Then the complementary function N(r) gives the corresponding Orlicz
space for divu to be from. The remarkable fact is that (2.9) and (2.10) are
possible if and only if N(r) belongs to the class K and Φ(r) is a function of
slow growth (less than any power r1+ε with positive ε).

Proposition 2.1. Let N(r) ∈ K, and Φ satisfies the condition (2.9). Then a
priori estimates

‖ρ‖L∞(0,T,LΦ(Ω)) � C

(
1+

∫

Q

N(|divu|)dxdt

)
·
[
‖ρ0‖LΦ(Ω) +‖h‖L1(0,T,LΦ(Ω))

]

(2.11)

‖ζ‖L∞(0,T,LΨ (Ω)) � C

(
1+

∫

Q

N(|divu|)dxdt

)
·
[
‖ζT ‖LΨ (Ω)+‖g‖L1(0,T,LΨ (Ω))

]

(2.12)
hold for the solutions of the problems (2.1),(2.2) and (2.3),(2.4) respectively,
where Ψ is the complementary function to Φ.
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A priori estimates (2.11) and (2.12) allow us to prove the existence of
solutions under the assumption on divu to be from the Orlicz class KN (Q)
(or from Orlicz space EN (Q)) associated with some N ∈ K and u being from
L1(0, T, LΦ(Ω)) or L1(0, T, LΨ (Ω)) for the problems (2.1),(2.2) and (2.3),(2.4)
respectively.

Theorem 2.1. If ρ0 ∈ LΦ(Ω), ζT ∈ LΨ (Ω),

h ∈ L1(0, T, LΦ(Ω)), g ∈ L1(0, T, LΨ (Ω)),

u ∈ L1(0, T, LΦ(Ω)) or u ∈ L1(0, T, LΨ (Ω))

and divu ∈ KN (Q) with N ∈ K, then there exist solutions to the problems
(2.1),(2.2) or (2.3),(2.4) respectively.

Scetch of proof. We approximate all prescribed functions with the se-
quences of smooth functions and construct the sequence of classic solutions
which contents weakly converging subsequence in view of (2.11),(2.12). Pass-
ing to the limit yields the existence of weak solutions. (More details one can
find in [25].)

To provide the uniqueness of solution it is nesessary to complete the above
conditions with additional smoothness of u.

Theorem 2.2 If the conditions of Theorem 2.1 are fulfilled and

u ∈ L1(0, T,W 1,1(Ω))

then the generalized solutions of the problems (2.1),(2.2) and (2.3),(2.4) are
unique.

The proof relies upon the following results given below.

2.3 Gronwall-type Inequality and Osgood Uniqueness Theorem

To prove the uniqueness in Theorem 2.2 we reduce the problem to the in-
equality of Gronwall type

∫

Ω

|ψ|dx � C

t∫

0

∫

Ω

|ψ| · |divu|dxds (2.13)

for the difference ψ of the solutions.
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This inequality yields ψ ≡ 0 if and only if divu ∈ KN (Q) with some
N ∈ K.
Indeed, denote α(t) =

∫
Ω

ψ(x, t)dx, A(t) =
∫ t

0
α(s)ds and

β(t) =
{

0, if α(t) = 0,
1

α(t)

∫
Ω

f(x, t)ψ(x, t)dx, if α(t) �= 0

Then (2.13) takes the form

α(t) ≤
∫ t

0

α(s)β(s)ds (2.14)

It gives after changing of variables:

N(
α(t)
A(t)

) ≤ N(
1

A(t)

∫ A(t)

0

β(A−1(τ))dτ)

≤ 1
A(t)

∫ A(t)

0

N(β(A−1(τ)))dτ =
1

A(t)

∫ t

0

N(β(s))α(s)ds (2.15)

Here we have used Jensen’s inequality for convex functions

M(
1

mesΩ

∫

Ω

f(x)dx) ≤ 1
mesΩ

∫

Ω

M(f(x))dx

∀f ∈ LM (Ω),∀M(t) − convex.

Inequalities (2.14),(2.15) lead to differential inequality

dA

dt
≤ A(t)N−1(

1
A(t)

), A(0) = 0 (2.16)

By Osgood uniqueness theorem (2.16) implies A(t) ≡ 0 and then ψ = 0 a.e.
In this connection let us consider Cauchy problem for the system of ordinary
differential equations

dx
dt

= u(x, t), x|t=0 = x0 ∈ R
n (2.17)

We suppose u(x, t) ∈ L1(0, T,W 1LN (Ω)) with some N ∈ K (that means:
gradient of u with respect to x belongs to L1(0, T, LN (Ω))).

By the embedding theorem (cf.[24]) the field u possesses the continuity
modulus (in the generalized Hölder sense)

σ(s) =

∞∫

s−n

N−1(ξ)
ξ1+1/n

dξ (2.18)

By Osgood uniqueness theorem the solution of (2.17) is unique if and only
if (cf.[26], Ch.3, Corollary 6.2)
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∫

0

ds

σ(s)
= ∞ (2.19)

In view of (2.18) this condition is equivalent to N(r) being from K.

Proposition 2.2 If
∂ui

∂xj
∈ L1(0, T, LN (Ω)), i, j = 1, 2, . . . , n, then the

uniqueness of solution to Cauchy problem (2.17) is equivalent to the assump-
tion N(r) ∈ K.

2.4 Conclusive Remarks

The nesessity of conditions for the coefficients in well-posedness theorems we
illustrate by the following example.

Example 2.1 Let n = 2, and γ(s) is continuous odd function such that

γ(0) = 0, and γ(s) → ∞ as s → ∞, and
∫

0

ds

γ(s)
< ∞. We construct a vector

field on the plane R
2 by the formula

u = u(x, y) = (γ(x),−yγ ′(x)) (2.20)

Then the system of equations for the trajectories

dx

dt
= γ(x),

dy

dt
= −yγ′(x) (2.21)

yields the solutions

x(t) = ±Γ−1(t), y(t) = Cexp

(
−

t∫

1

γ′(Γ−1(s))ds

)
(2.22)

(here Γ (z) =

z∫

0

ds

γ(s)
), forming a double surface containing the axis

{ (x, y, t) |x = t = 0 }. In particular, taking γ(x) = 2
√

x, we obtain the family
of solutions

x = t2, y =
C

t
(2.23)

Thus, the function

ζ(x, y, t) =
{

1, −Γ−1(t) < x < Γ−1(t)
0, otherwise (2.24)

is a nontrivial solution to the transport equation (2.3) vith zero initial data.



Approximation of Weak Limits and Related Problems 89

Such a non-uniqueness example appeared due to the non-embeddings

u �∈ L1(0, T,W 1,1
loc (R2)) and divu ∈ KM (Q) with M �∈ K

Example 2.2 Set

ζ = χC , ρ = β−n(t)χC , u =
β′(t)
β(t)

x (2.25)

with χC standing for the charasteristic function of C, and C, in its turn, is the
cone C = { (x, t) | |x| � β(t)} with a positive function β(t) vanishing as t = T .

Since

meas supp ρ(t, ·) = meas supp ζ(t, ·) → 0 as t → T

then the formula (2.25) defines the example of nontrivial solution to the homo-
geneous problem (2.3),(2.4) and decaying solution to the problem (2.1),(2.2).
Such an example is possible due to the non-embedding

divu ∈ L1(0, T ;LM,loc(Rn)) with M ∈ K

Remark on “Div-condition”. Here we consider the connection appear-
ing between the functions Φ(r) satisfying (2.9) and corresponding Young func-
tions M(r) (or their complementaries N(s)) from (2.10) which describe the
function space for divu. Given function M(r) produces the class of functions
Φ(r) with the property (2.9) which have the same growth with respect to the
linear function, with the power-type difference only. Namely, two functions
Φ1(r) and Φ2(r) satisfy (2.10) with the same M(r) if and only if there exists
q = const > 0 such that

Φ1(r)
r

=

(
Φ2(r)

r

)q

, r > 0 (2.26)

This explains, in particular, the condition (2.5) for the case of Lebesgue spaces
Lp.

3 Some Remarks on Compensated Compactness Theory

3.1 Introduction

Compactness method (as it’s named by J.-L.Lions in his famous book [1])
concerns with the solving of some boundary value problem

L(u) = 0 (3. 1)
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by the construction of sequence of “approximate” solutions {un}

Ln(un) = 0, n = 1, 2, . . . (3. 2)

and passing to the limit as n → ∞.
As rule, the sequence {un} converges in certain sense to some element u,

but it’s not so evident for u to be the solution of (3.1), in particular, in the
case of nonlinear problem (3.1).

The simple example

un(x) = sin(nx) on [0, 2π]

illustrates the typical situation:

un(x) ⇀ 0 weakly in L2(0, 2π) as n → ∞

but u2
n(x) ⇀ 1

2 .
Very often one has quadratic nonlinearity

un ⇀ u, vn ⇀ v weakly in L2(Ω)

Then
un · vn ⇀ χ in sense of distributions D′(Ω)

And the question is wheather equality

χ(x) = u(x) · v(x) in D′(Ω)

holds or not?
This question possesses the positive answer if one of two sequences {un}

or {vn} converges in strong sense, i.e. if

un → u or vn → v in norm of L2(Ω)

So, the main goal of compactness method is to obtain a strong convergence at
least for one sequence, and the principal tool here is based on the Aubin- Simon
compactness theorem (cf.[1],Ch.2, theorem 5.1, [2],[3]), which is elucidated in
the next section for the convenience of reader.

As a one of very useful tool in solving of non-linear P.D.E.’s is so called
theory of compensated compactness (cf.[4]-[7]). Roughly speaking, this theory
allows us to pass to the limit in weakly converging sequences under minimal
conditions which don’t provide in general case strong convergence of any se-
quence either {un} or{vn}.

The mostly important for the applications to nonlinear P.D.E.’s theory is
one particular version of compensated compactness, namely, so called “div-
curl” lemma [4],[5],[7]. Numerous interesting results were obtained on the base
of this lemma (cf. [8]-[17]).
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3.2 Classical Compactness (Aubin-Simon Theorem)

Now we recall here one well-known and widely-used compactness argument
(cf. [1], Ch. 2, Theorem 5.1). Let B0, B and B1 be three Banach spaces such
that

B0 ↪→↪→ B ↪→ B1

Here ↪→ means continuous embedding while ↪→↪→ is continuous and
compact one.

If the sequence{un(t)} is bounded in Lp0(0, T ; B0), 1 ≤ p0 ≤ ∞, and the
sequence of derivatives {dun/dt} is bounded in Lp1(0, T ; B1), 1 ≤ p1 ≤ ∞,
then {un(t)} is compact in Lp(0, T ; B) with 1 ≤ p ≤ p0 in the case of
p0 < ∞ and 1 ≤ p < ∞ in the case of p0 = ∞, p1 = 1.

This theorem was proved firstly by J.P.Aubin [2] in the case 1 < p0, p1 < ∞
and for the limiting cases by J.Simon [3].

The same result takes the place if the sequence of time-derivatives of the
other sequence {vn(t)} instead of {un(t)} is bounded (cf.[16], lemma 6).

LetV and W be two Banach function spaces defined on the bounded do-
main Ω ∈ R

N and such that D(Ω) ↪→ V ↪→↪→ W ↪→ D′(Ω) We suppose, of
course, for any Banach spaceB located between D(Ω)and D′(Ω) the product
with infinitely differentiable functions is defined:

∀u ∈ B,∀φ ∈ D(Ω) ∃(u · φ) ∈ B.

In particular, it’s valid for the spaces V and W as well as for their conjugate
spaces V ′ and W ′ which satisfy the embedding relations

D(Ω) ↪→ W ′ ↪→↪→ V ′ ↪→ D′(Ω)

Finally, let V ′
1 be some Banach space, arbitrary wide

V ′ ↪→ V ′
1 ↪→ D′(Ω).

Now we suppose that there exist two sequences {un(t)} and {vn(t)} such that

un(t) → u(t) weakly in Lp(0, T ;W ), 1 < 0 ≤ ∞

vn(t) → v(t) weakly in Lq(0, T ;W ′), q ≥ p

p − 1

Then one can define the sequence of products {un(t) · vn(t)} as a sequence in
the space L1(0, T ;D′(Ω) by the rule

< un · vn, φ >=< vn, un · φ >, ∀φ ∈ D(Ω),

where < g, φ > designates the value of distribution g on the test function φ.
We assume also the sequence {un · vn} to be converging in D′(0, T ;D′(Ω)

un · vn → χ in D′(0, T ;D′(Ω)
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If we suppose additionally {un(t)} is bounded in Lp(0, T ;V ) and {v′n(t)} is
bounded in Lp1(0, T ;V ′

1), 1 ≤ p1 ≤ ∞ then the equality χ = u · v holds in
sense of D′(0, T ;D′(Ω)). This proposition is a particular case of compensated
compactness theory (see subsection 4 below) but it’s proof can be reduced to
Aubin - Simon theorem if we take B0 = W ′, B = V ′ and B1 = V ′

1 .
To apply this version of compactness theorem to P.D.E. theory we define,

firstly, the sequence {vn} which admits a priori estimates for time-derivatives.
The other factor in non-linear term gives the sequence {un}. It indicates the
spaces V and W ′. Then we have to check the compactness of embedding V into
W or, if it’s easier, W ′ into V ′. (See, for example, application to compressible
Navier-Stokes equations in [16], subsection 5.2, and also recent paper [31])

3.3 Compensated Compactness – “div-curl” Lemma

Let Ω ⊂ R
N be bounded domain with boundary Γ , and let {w1

n} and
{w2

n}, n = 1, 2, . . . , be two sequences of vector fields on Ω such that

w1
n ⇀ w1, w2

n ⇀ w2 weakly in L2(Ω) as n → ∞. (3. 3)

Then the sequence of scalar products Q(w1
n, w2

n) =
∑N

i=1(w
1
n)i(w2

n)i is
bounded in L1(Ω), so

Q(w1
n(x),w2

n(x)) ⇀ χ(x) in D′(Ω) (3. 4)

And the question is: wheather equality

χ(x) = Q(w1(x),w2(x)) in D′Ω (3. 5)

holds or not?
Let us introduce two operators of vector analysis:

diva =
N∑

i=1

∂ai

∂xi
, (curla)ij =

∂ai

∂xj
− ∂aj

∂xi
, i, j = 1, 2, . . . , N. (3. 6)

Proposition 3.1 (F.Murat[4],[5], see also [7])
If the sequence {divw1

n} is compact in H−1
loc (Ω) and {curlw2

n} is com-
pact in (H−1

loc (Ω)m, m = N(N − 1)/2 , then the equality (3.5) is valid.

Remark 3.1 If div and curl of one sequence {w1
n} or {w2

n} are compact,
then this sequence is strongly compact in L2(Ω) as a solution to elliptic prob-
lem for Laplace operator (see decomposition (3.7) below).

Proof. Introduce two function spaces:

J(Ω) = {u ∈ L2(Ω) | divu = 0}
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G(Ω) = {v ∈ L2(Ω) | v = ∇ψ, ψ ∈
◦

H1 (Ω)}
which make Helmholtz-Weyl decomposition (cf.[19]-[21])

L2(Ω) = J(Ω) ⊕ G(Ω) (3. 7)

(To find ψ for given w one has to solve Dirichlet problem for Poisson equation
with right hand part divw. Such operator is continious map from H−1(Ω)

into
◦

H1 (Ω)(cf.[1], [13]). In particular, if the sequence {divwn} is compact
in H−1(Ω) then the corresponding sequence {vn} in decomposition (3.7) is
compact in L2(Ω). )

Now one can represent

w1
n = u1

n + v1
n, w2

n = u2
n + v2

n

where uk
n ∈ J(Ω), vk

n ∈ G(Ω), k = 1, 2.. Then one has

{divv1
n = divw1

n}

-compact set in H−1
loc (Ω), according to assumption, and curlv1

n ≡ 0. It means
the set {v1

n} is compact in L2(Ω).
By the same way

{curlu2
n = curlw2

n}
is compact set in (H−1

loc (Ω))m, m = 1/2N(N − 1) and divu2
n ≡ 0.

It implies compactness of {u2
n} in L2(Ω). So, the scalar product can be

rewritten as follows

Q(w1
n,w2

n) = Q(u1
n,u2

n) + Q(v1
n,v2

n) + (u1
n · v2

n) + (u2
n · v1

n)

After integrating over Ω two last terms vanish since J(Ω) and G(Ω) are
orthogonal subspaces. And two first terms content strongly converging se-
quences {u2

n} and {v1
n} what allows to pass to the limit in (3.4),(3.5) and

to prove proposition 3.1. In addition we remark that test function φ ∈ D(Ω)
can be included in any sequence {w1

n} or {w2
n}. It is also the reason why the

smoothness of boundary Γ is not so important.
As it has been noted, our proof relies upon decomposition (3.7) which itself

is based on the optimal estimates for the solutions of Dirichlet problem. We
are able to prove “div-curl” lemma for the wide class of Orlicz spaces instead
of L2(Ω) (cf.[27],[28].) Indeed, let {w1

n} and {w2
n}be two sequences such that

w1
n ⇀ w1 weakly in LM (Ω), w2

n ⇀ w2 weakly in LN (Ω)

where M(t) and N(t) are mutually complementary Young functions.
Then we have the convergence (3.4), and to prove (3.5) it is necessary

to provide decomposition (3.7) and strong compactness of {v1
n} and {u2

n} in
LM (Ω) and LN (Ω), respectively. We assume additionally the set {div w1

n}
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to be compact in Orlicz-Sobolev space W−1LM (Ω) which is conjugate for
◦

W 1 EN (Ω), and the set {curl w2
n} to be compact in W−1LN (Ω) (conjugate

for
◦

W 1 EM (Ω)), respectively.
One can use decomposition (3.7) and corresponding optimal estimates if

Young function M(t) or N(t) satisfies additional condition (cf.[29],[30])

1 < p1 = const ≤ tM ′(t)
M(t)

≤ p2 = const < ∞,

or

1 < q1 = const ≤ tN ′(t)
N(t)

≤ q2 = const < ∞

This means that the spaces LM (Ω) and LN (Ω) are located between Lebesgue
spaces (Lp1(Ω), Lp2(Ω)) and (Lq1(Ω), Lq2(Ω)) , respectively. Optimal
estimates are obtained in [29],[30] by interpolation of estimates for Lebesgue
spaces. For the limiting cases p1 = 1 or q1 = 1 and p2 = ∞ or q2 = ∞
the optimal results are not proved still and it remains as an interesting open
problem.

3.4 Compensated Compactness-theorem of L. Tartar

Let

Q(u) =
p∑

i,j=1

bij ui uj (3. 8)

be arbitrary quadratic form with constant coefficients, (bij = const) on R
p.

Let {un(x)}, x ∈ Ω ⊂ R
N be some sequence such that

un(x) ⇀ u(x) weakly in (L2(Ω))p as n → ∞ (3. 9)

Then
Q(un(x)) ⇀ χ(x) in D′(Ω) (3. 10)

and the question is

χ(x) = Q(u(x)) in D′(Ω) ? (3. 11)

Suppose, some additional information is known, namely, let

A : (L2(Ω))p → (H−1(Ω))q

be linear bounded operator of the form

Ak(u) =
p∑

i=1

N∑
j=1

akij
∂ui

∂xj
, k = 1, 2, . . . , q (3. 12)

where, for simplicity, akij are real constants.
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Finally, let us introduce the set

Λ = {λ ∈ R
p| ∃ξ ∈ R

N , ξ �= 0,

p∑
i=1

N∑
j=1

akijλiξj = 0, ∀k = 1, 2, . . . , q}

(3. 13)

Proposition 3.2 (L.Tartar[6])
Assume (3.9), (3.10) and additionally

{A(un)} is compact in (H−1
loc (Ω))q (3. 14)

and
Q(λ) = 0, ∀λ ∈ Λ (3. 15)

Then the equality (3.11) holds.

Remark 3.2. “div-curl” lemma is a particular case of this proposition.

Proof. To make a proof looking like the proof of “div-curl” lemma we
assume at the beginning operator A to be closed. It means the set ImA∗ is

closed, where A∗ : (
◦

H1 (Ω))q → (L2(Ω))p is an adjoint operator, or, by

other words, second order operator A ◦ A∗ : (
◦

H1 (Ω))q → (H−1(Ω))q is
strongly elliptic.

We shall use decomposition (cf.[22])

L2(Ω) = kerA ⊕ ImA∗ (3. 16)

instead of (3.7). Then for ∀ n = 1, 2, . . . one has

un = vn + wn, vn ∈ kerA, wn ∈ ImA∗

The set {wn} is compact in (L2(Ω))p since operator A is invertible on ImA∗,
and {A(wn)} = A(un)} is compact in (H−1(Ω))q according to assumption.

Rewrite quadratic form Q:

Q(un) = Q(vn) + Q(wn) + Q̃(vn,wn) + Q̃(wn,vn) (3. 17)

where

Q̃(µ, ν) =
p∑

i,j=1

bijµiνj

is bilinear form on R
p × R

p such that Q(u) = Q̃(u,u).
Formula (3.17) means that only one question is in limiting passing, namely,

does Q(vn) converge to Q(v) if vn ∈ kerA ?
Fourier transformation applied to equalities

Ak(vn) = 0 k = 1, 2, . . . , q
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yields
p∑

i=1

N∑
j=1

akij (v̂n)iξj = 0

where v̂n is Fourier image of vn extended by 0 on the whole R
N and ξ =

(ξ1, ξ2, . . . , ξN ) - parameters of Fourier transformation
It means both Re(v̂n) and Im(v̂n) belong to the set Λ , and according to

assumption (15)
Q̃(v̂n, ¯̂vn) = 0.

It gives by Plancherel-Parseval identity
∫

RN

Q(vn)dx = CN

∫

RN

Q̃(v̂n, ¯̂vn)dξ = 0

Passing to the limit in (3.17) we obtain the result of proposition 3.2 in the
case of closed set ImA∗ in (L2(Ω))p . Note that construction of sequence wn

does not depend explicitly on the norm of inverse operatorA−1. In general case
we can approximate each wn from closure of ImA∗ by sequence {wnm} from
ImA∗ and pass to the limit by standard diagonal procedure. In conclusion
of this section we underline once again that proposition 3.2 is not a new
mathematical result, but the sense of condition (3.15) as vanishing of form Q
on subspace kerA is a new viewpoint which can be usefull in some cases when
kerA admits the simple description.

3.5 Generalizations and Examples

New approach to compensated compactness theory based on decomposition
(3.16) allows us to give clear and short proofs of main known theorems formu-
lated in propositions 3.1 and 3.2. At the same time we can give some natural
generalizations of theory on the other cases of compensated compactness ar-
guments.

a). We shall start from generalization of “div-curl” lemma as a most im-
portant for the theory of nonlinear partial differential equations.

Consider two operators of vector analysis (3.6):

A1(u) = divu, A2(u) = curlu

as linear bounded operators from L2(Ω) onto H−1(Ω).The kernel of operator
A1 is the subspace J(Ω) in Helmholtz-Weyl decomposition (3.7). It’s easy to
calculate the adjoint operator for A1, namely, operator-gradient: A∗

1 = −∇,

which acts as bounded linear one from
◦

H1 (Ω) onto L2(Ω) and ImA∗
1 =

G(Ω) - the second subspace in decomposition (7). Moreover, G(Ω) = kerA2,
so (3.7) is a particular case of decomposition (3.16):

L2(Ω) = J(Ω) ⊕ G(Ω) = kerA1 ⊕ ImA∗
1 = ImA∗

2 ⊕ kerA2
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Now let us consider two arbitrary linear bounded operators instead of (3.6):

A1 : (L2(Ω))N → (H−1(Ω))p, A2 : (L2(Ω))N → (H−1(Ω))q (3. 18)

Then the following assertion takes place.

Proposition 3.3 Assume (3.3) and (3.4), and additionally let the sets

{A1(w1
n)} and {A2(w2

n)}

are compact in (H−1
loc (Ω))p and (H−1

loc (Ω)q, respectively.
Then equality (3.5) holds, if operators A1 and A2 satisfy the condition

kerAi ⊆ ImA∗
j , i �= j (3. 19)

Proof. At the first step we use decomposition (3.16) with operator A1 and
represent w1

n as follows

w1
n = u1

n + v1
n, u1

n ∈ kerA1, v1
n ∈ ImA∗

1 (3. 20)

Then v1
n → v1 strongly in L2(Ω), and in the scalar product

(w1
n · w2

n) = (u1
n · w2

n) + (v1
n · w2

n)

one can pass to the limit in second term. In the first term we use decomposition
(3.16) with operator A2 and represent w2

n :

w2
n = u2

n + v2
n, u2

n ∈ kerA2, v2
n ∈ ImA∗

2

where the sequence {v2
n} is compact (strongly) in L2(Ω). It means that

(u1
n · w2

n) = (u1
n · u2

n) + (u1
n · v2

n)

and we can pass to the limit in the last term, while the first one vanishes after
integrating over Ω since u1

n and u2
n are orthogonal in view of condition

(3.19). It proves the proposition 3.3
If assumption (3.19) doesn’t take place and subspaces kerA1 and kerA2

have nontrivial intersection, i.e.

S = kerA1

⋂
kerA2 �= {0} (3. 21)

then (3.5) doesn’t take place, in general. In this case some additional condi-
tions are needed, but on the subspace S only. For example, another operator

A3 : (L2(Ω))N → (H−1(Ω))r

is compact on S. If kerA3

⋂
S �= {0} then one has to continue the

procedure adding new operators.
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Example 3.1
Consider the simple case of N=2 and A1 = A2 = div, i.e.

A1(w) = A2(w) =
∂w1

∂x1
+

∂w2

∂x2

Then S = kerA1

⋂
kerA2 = J(Ω) �= {0}. Taking operator A3 of the form

A3(w) =
∂w2

∂x1
+ a

∂w1

∂x2
+ b

∂w2

∂x2

with arbitrary real parameters a and b , we obtain equality (5), in assumption
of compactness of the set {A3(wk

n)} in H−1
loc (Ω), if b2 + 4a < 0. If b2 + 4a ≥ 0,

then another conditions are required on kerA3

⋂
J(Ω).

b). Most part of applications to nonlinear P.D.E. problems concerns with
the case when operator A in (3.12) is defined by a priori estimates connected
with conservation laws, and quadratic form (3.8) is related to non-linearity of
the system of equations, so these two given objects are independent, in some
sense, each on other, and don’t satisfy the crucial assumption (3.15). Such
situation is needed for some additional information on kerA, e.g. another op-
erator B : L2(Ω) → (H−1(Ω))r has locally compact image.

Example 3.2 Let N = 2, p = 2, q = 1, A = div and

Q(u) = u2
1 + u1u2.

Then
Λ = {λ ∈ R

2 | ∃ξ ∈ R
2, ξ �= 0, λ1ξ1 + λ2ξ2 = 0}

which means Λ = R
2, while

Q(λ) = λ1(λ1 + λ2), and Q(λ) �= 0 ∀ λ ∈ Λ = R
2

Since kerA = J(Ω) one can add any operator

B(u) =
2∑

i=1

ai
∂u1

∂xi
+

2∑
i=1

bi
∂u2

∂xi

to be compact in H−1
loc (Ω) on the sequence {un} from subspace J(Ω) under

condition
(a1 − b2)2 + 4a2b1 < 0

which provides operator B to be elliptic on J(Ω).
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